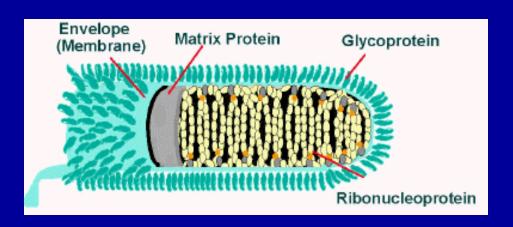
Zoonotic Viruses


- Zoonoses are diseases of vertebrate animals that can be transmitted to man: either directly or indirectly through an insect vector.
- When an insect vector is involved, the disease is also known as an arboviral disease.
- However, not all arboviral diseases are zoonosis: where the transmission cycle takes place exclusively between insect vector and human e.g. dengue and urban yellow fever.
- Examples of viral zoonoses that can be transmitted to man directly include rabies, hantaviruses, lassa and ebola fevers.

Rabies Virus

- member of the Lyassavirus of the Rhabdoviridae
- ssRNA enveloped virus, characteristic bullet-shaped appearance with 6-7 nm spike projections.
- virion 130-240nm * 80nm
- -ve stranded RNA codes for 5 proteins; G, M, N, L, S
- Exceedingly wide range of hosts
- There are 5 other members of Lyassavirus : Mokola, Lagosbat, Duvenhage, EBL-1, and EBL-2
- Duvenhage and EBL-2 have been associated with human rabies.

Rabies Virus

Structure of rabies virus (Source: CDC)

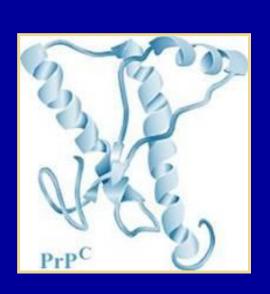
Rabies virus particles

Epidemiology

• Rabies is a zoonosis which is prevalent in wildlife. The main animals involved differs from continent to continent.

• Europe	fox, bats
• Middle East	wolf, dog
• Asia	dog
• Africa	dog, mongoose, antelope
• N America	foxes, skunks, raccoons,
	insectivorous bats
• S America	dog, vampire bats

Spongiform Encephalopathies and Prions


Prion

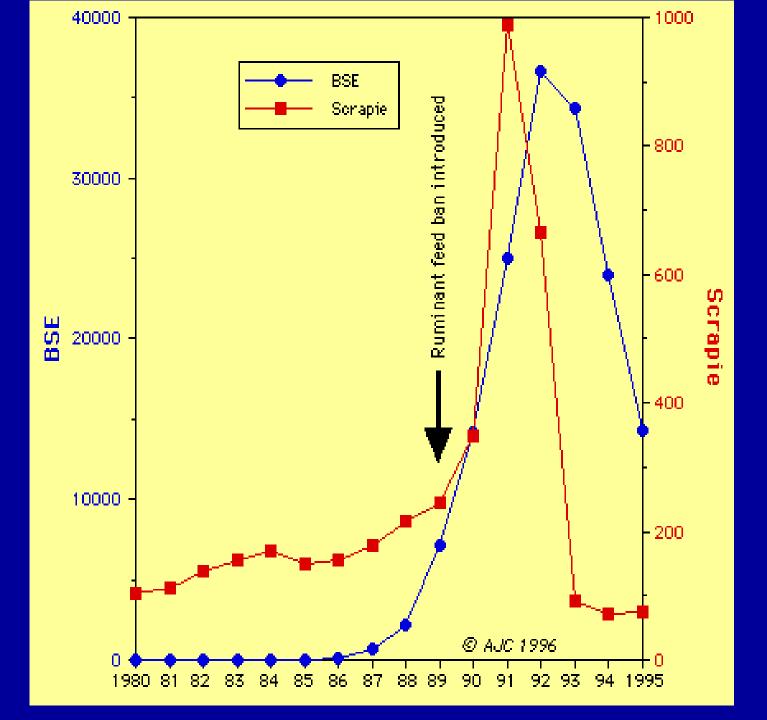
- Smaller than smallest known virus
- Not yet completely characterized
- Most widely accepted theory
 - Prion = Proteinaceous infectious particle
- Normal Protein
 - PrP^C (C for cellular)
 - Glycoprotein normally found at cell surface inserted in plasma membrane

Normal protein

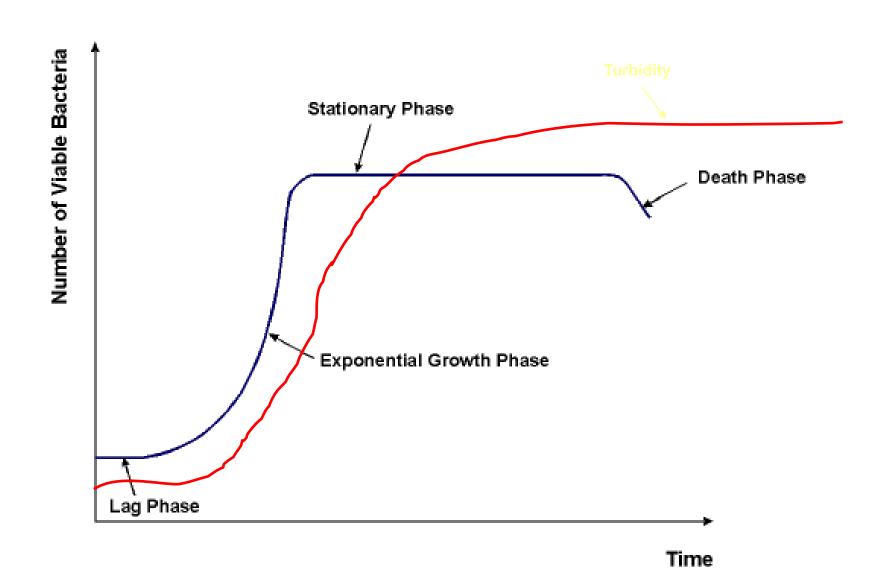
- Secondary structure dominated by alpha helices
- Easily soluble
- Easily digested by proteases
- Encoded by PRNP gene (in humans)

Abnormal Protein

- Insoluble in all but strongest solvents
- Highly resistant to digestion by proteases
 - Survives in tissues post-mortem
- Extremely resistant
 - Heat, normal sterilization processes, sunlight
- No detectable immune response


spongiform encephalopathies of humans and other animals

humans


- Kuru (Fore people in New Guinea)
- Creutzfeldt-Jakob disease (CJD)
- Gerstmann-Straussler-Scheinker (GSS)
- fatal familial insomnia
- new variant CJD

Animals

- Scrapie
- exotic ungulate encephalopathy
- bovine spongiform encephalopathy (BSE)
- transmissible mink encephalopathy
- feline spongiform encephalopathy
- chronic wasting disease (CWD)

Bacterial Pathogens

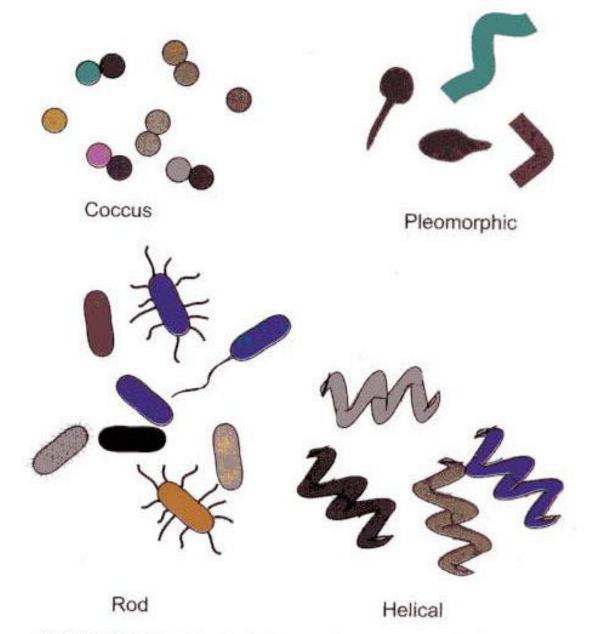


FIGURE 2.7 Typical shapes of representative bacteria.

Pathogenic Bacteria

Pathogenic bacteria possess virulence properties in the form of structures or chemical constituents that contribute to pathophysiology

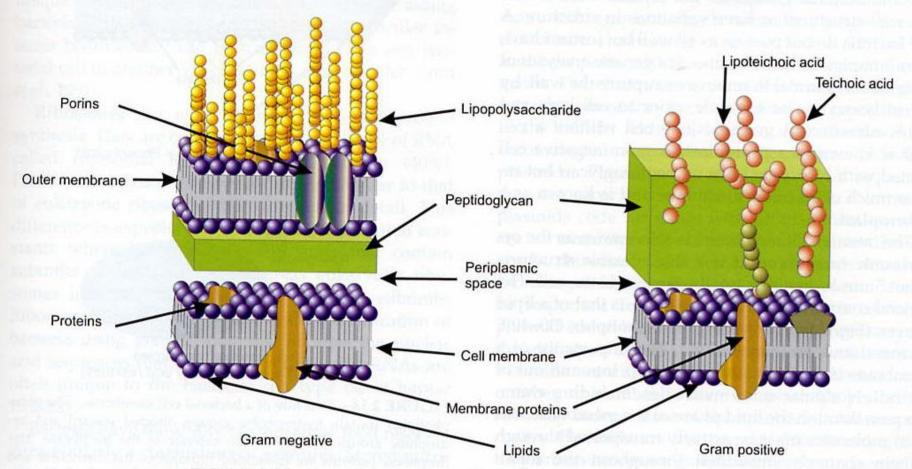
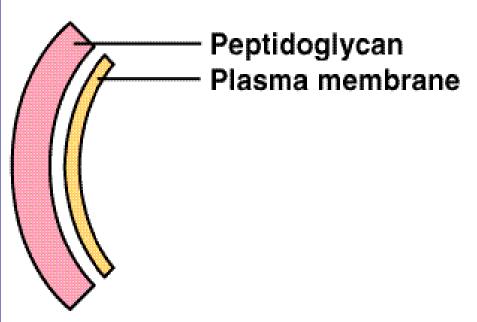
- Endotoxins
- Exotoxins

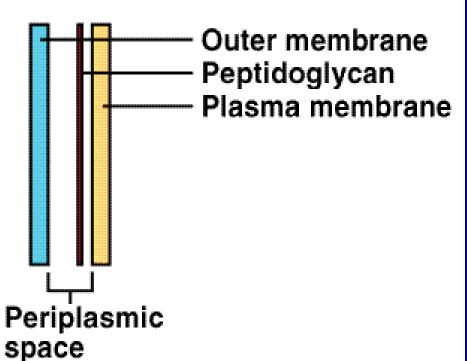
Pili: for attachment and effacement to cells and tissues

Invasins: to invade cells

Some bacteria make spores:

- highly to physical and chemical agents and
- very persistent in the environment


FIGURE 2.12 Comparison of gram-positive and gram-negative bacterial cell walls.

Bacterial Cell Wall

The gram-positive cell wall

The gram-negative cell wall

Peptidoglycan

- Responsible for rigidity of the cell
- 5-10% of wall mass in G-
- 60-70% of wall mass in G+
- Not a permeability barrier
- Site of action of penicillin- effects G+ much more than G-
- Archebacteria have modified version

Outer envelope

- Unique to G- bacteria
- Can contain enzymes or enzyme like materials
- Can act as permeability barrier but less so than plasma membrane
- Contains endotoxins, antigens, a big mix of different materials

Capsule

- Outside the cell wall- usually present only when cell has adequate carbon
- Composed of polysaccharide- glycocalyx
- External storage for carbon
- Protect from phagocytosis
- Glue

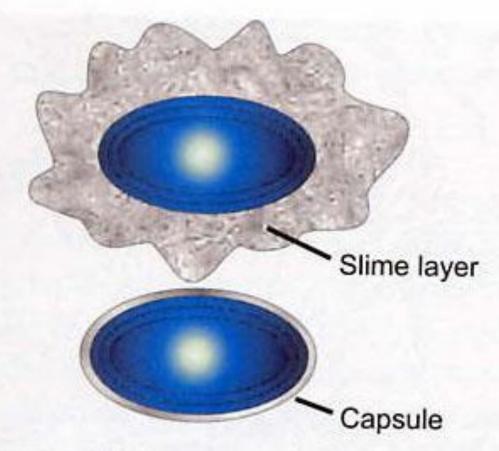


FIGURE 2.11 Two different types of glycocalyces: (1) slime layer; and (2) capsule.

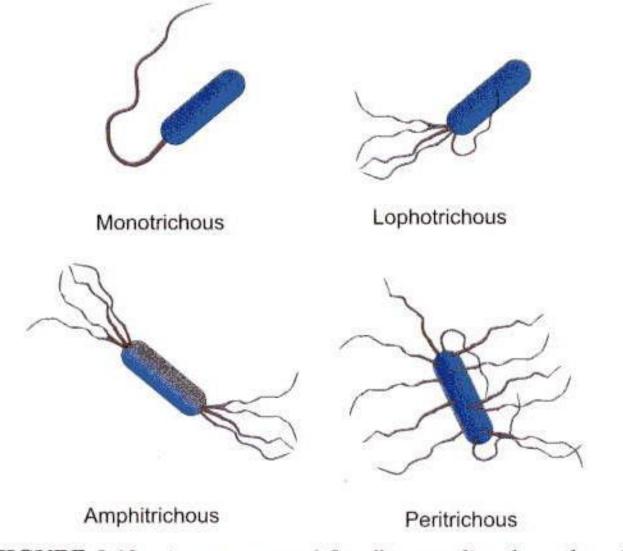
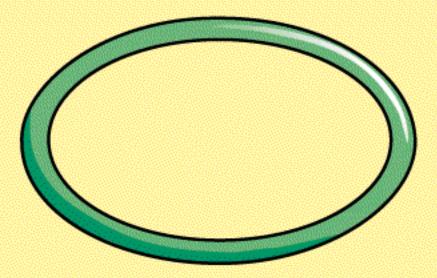
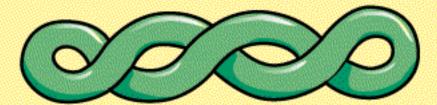
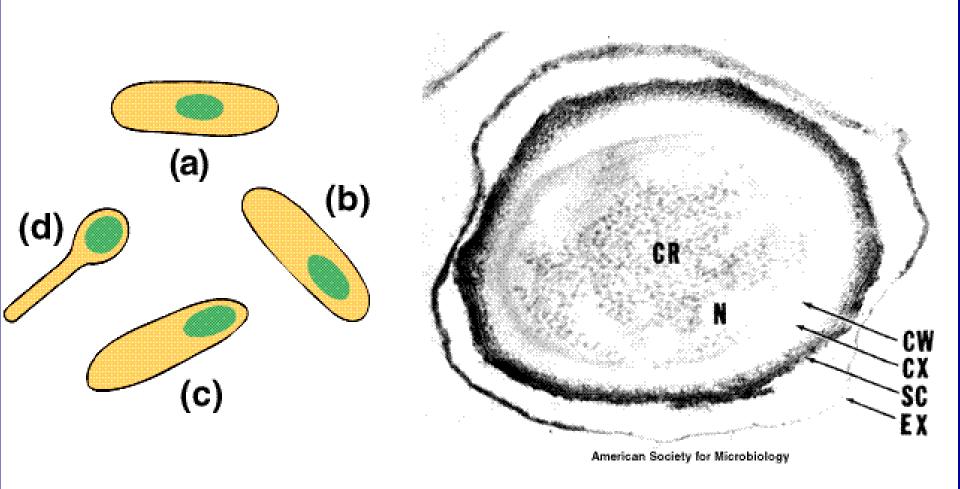




FIGURE 2.10 Arrangement of flagella extending from the cell envelope.



Open circle


Supercoiled

The Bacterial Endospore

Endospores

- Survival not reproduction
 - heat, drying, radiation, pH
- Turned on by running out of nutrients
- May be important in viable but not culturable phenomenon
- Great economic cost
- Major issue in food safety

Bacterial Taxonomy

- Very little known about bacterial diversity, except in reference to illness
- Early attempts at classifying bacteria were based morphological, biochemical, and serologic (phenotypic) properties
- More recent classification methods also rely on genetic (and advanced phenotypic) methods
 - e.g. DNA-DNA hybridization studies, rRNA homology, etc.
 - Chemotaxonomy- FAA, WCPA, Cell wall composition, etc.
- Polyphasic taxonomy approach results in fluidity at genus level and below

Bacterial Phyla

- Actinobacteria
- Aquificae
- Bacteroidetes
- Chlamydiae
- Chlorobi
- Cyanobacteria

- Deinococcus
- Firmicutes
- Fusobacteria
- Proteobacteria
- Spirochaetes
- Thermotogae

Actinobacteria

- Corynebacteria
- Mycobacteria
- Bifidobacteria

Bacteroidetes

Porphyromonas

Chlamydiae

Chlamydia

Fimicutes

- Bacilliales
 - Bacillus
 - Listeria
 - Staphylococcus
- Clostridiales
 - Clostridia
- Lactobacillales
 - Enterococcus
 - Lactobacillus
 - Lactococcus
 - Streptococcus
- Mollicutes
 - Mycoplasma

Proteobacteria

- Alphaproteobacteria
 - Bartonella
 - Brucella
 - Rickettsia
- Betaproteobacteria
 - Bordatella
 - Burkholderia
 - Neisseria

- Epsilonproteobacteria
 - Campylobacter
 - Helicobacter

Proteobacteria

- Gammaproteobacteria
 - Aeromonadaceae
 - Aeromonas
 - Enterobacteriales
 - Escherichia
 - Salmonella
 - Shigella
 - Yersinia
 - Legionellales
 - Coxiella
 - Legionella

- Gammaproteobacteria
 - Pasturellales
 - Pasturella
 - Haemophilus
 - Pseudomonadales
 - Pseudomonas
 - Thiotrichales
 - Francisella
 - Vibrionaceae
 - Vibrio

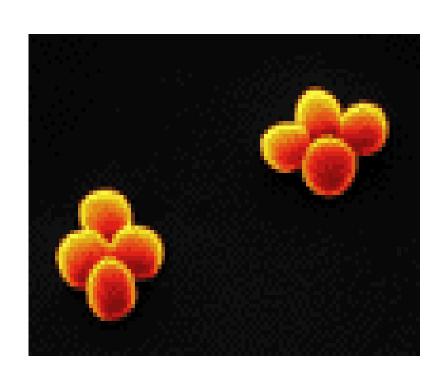
Spirochaetes

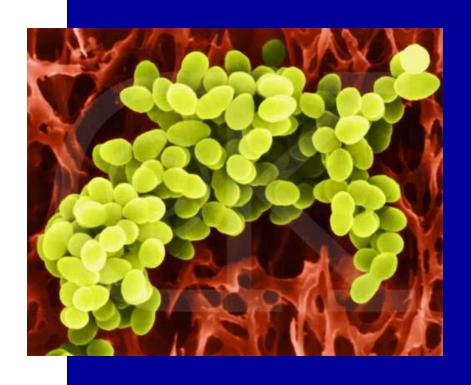
- Leptospira
- Borrelia
- Treponema

Bacillus anthracis: Anthrax

- Large, gram positive nonmotile rod
- Vegetative form and spores
- Nearly worldwide distribution
- Over 1,200 strains
- 5th Plaque of Bible
- Spores 1.5-3 microns

Epidemiology


- Three forms of natural disease
 - Inhalational
 - Rare (<5%)
 - Most likely encountered in bioterrorism event
 - 86-100% Mortality (despite treatment)
 - Cutaneous
 - Most common (95%)
 - Direct contact of spores on skin
 - <5% (treated) 20% (untreated) mortality
 - Gastrointestinal
 - Rare (<5%), never reported in U.S.
 - Ingestion
 - approaches 100% mortality


Staphylococcus aureus

- Gram positive, aerobic cocci
- Staph are found in air, dust, sewage, water milk, food, equipment, animals and humans: skin, hair, nose, throat, open sores, boils, saliva
- Transmitted to foods via handling, coughing, sneezing, wiping

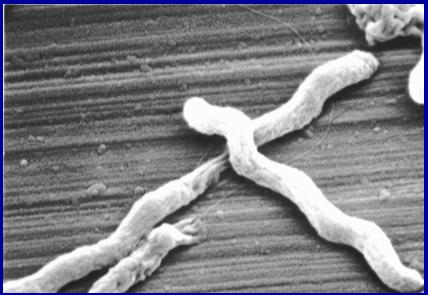
Staphylococcus aureus

Clostridium perfringens

Clostridium perfringens

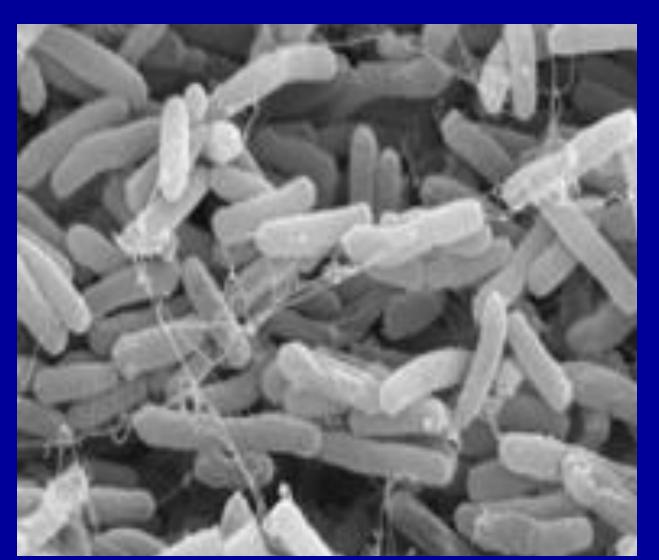
- Gram positive, spore forming, anaerobic rod
- Found in soil, intestinal tracts of man and animals
- Foodborne infection;8-22 hours; toxin is formed in the gut
- Symptoms: Diarrhea, severe dehydration, cramps

Clostridium perfringens


- Large number of cells (10⁸) needed to cause disease
- Associated foods: temperature abused foods, roast beef, stews, meat gravy, poultry

Campylobacters

- Gram-negative
- Curved rod
- about 1.5-3 microns
- motile via polar flagella
- Microaerophilic
- Prefer high CO₂



Complications and Sequelae of Campylobacteriosis; Guillain-Barré Syndrome

- Develop a rare disease of the nervous system beginning several weeks after the diarrheal illness.
- Called Guillain-Barré syndrome
- Person's immune system is "triggered" to attack the body's own nerves
- can lead to paralysis lasting several weeks; usually requires intensive care
- About 1 per 1000 reported campylobacteriosis cases leads to Guillain-Barré syndrome.
- Perhaps 40% of Guillain-Barré syndrome cases in this country may be triggered by campylobacteriosis.

Escherichia coli cells: ~0.5 x 1.0 micrometers Typical rod-shaped bacteria: fecal indicator and pathogenic strains

E. coli Genetics and Serology

Genetics:

- Single, circular DNA molecule, ~4 x 10⁶ base pairs
- Molecular weight of 4 x 10⁹
- Total length of about 1.4mm.

Serology:

- E. coli can be subdivided by somatic (cell-wall) or O antigens and flagellar or H antigens.
 - >160 recognized O types and 55 recognized H types
 - over 8000 possible OH serotypes.
 - also capsular (K) and fimbrial antigens.

Virulence Properties of *E. coli*

Enterotoxins:

- at least two types: Heat Stable (ST) and Heat Labile (LT)
- Verotoxins or Shiga-like toxins (interchangeable terms):
 - Verotoxin term is based on the reactions of toxins on Vero cells
 - VT1 (SLT I): similar to Siga-toxin (produced by some strains of Shigella dysenteriae)
 - VT2 (SLT II) which is only about 50% realted Shiga toxin.

Other Toxins:

 Cytolethal distending toxin (CLDT), VirCytotoxin, Cytotoxic necrotising factors (CNF), a possible Enteropathogenic E. coli EPEC) enterotoxin and a possible E. coli Sudden Infant Death Syndrome (SIDS)-toxin.

Haemolysins:

- extracellular haemolysin known as alpha-haemolysin (many strains)
- cell-associated haemolysin, beta-haemolysin, (some strains)
- enterohaemolysin: extracellular; Enterohaemorrhagic E. coli (EHEC)

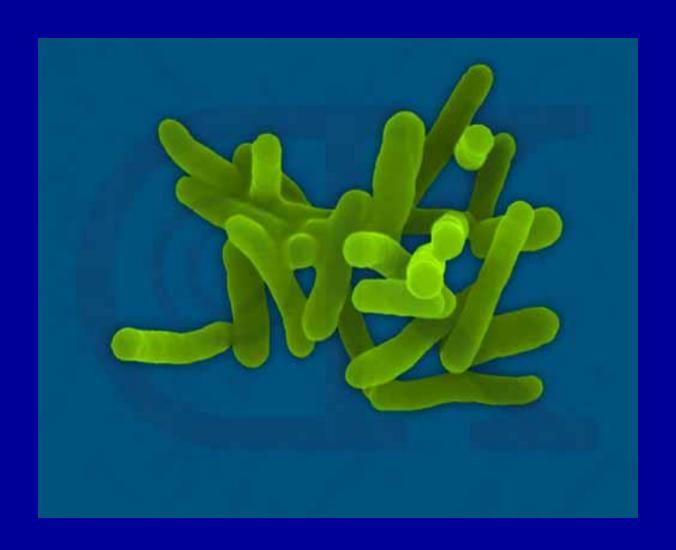
Pathogenic *E. coli*

Enteric Infections:

- Enteroadherent E. coli (EAEC)
- Enteroaggregative E. coli (EAggEC)
- Enterohaemorrhagic E. coli (EHEC)
- Enteroinvasive E.coli (EIEC)
- Enteropathogenic E. coli (EPEC)
- Enterotoxigenic E. coli (ETEC)

Extraintestinal Infections:

- Uropathogenic E. coli (UPEC): urinary tract infections
- Neonatal Menigitis E. coli (NMEC).


Virulence Properties of *E. coli*

- Fimbriae: CFAI/CFAII, Type 1 fimbriae, P fimbriae, S fimbriae
 - most important: K88, K99 and CFA fimbriae associated with enterotoxigenic *E. coli* (ETEC). They have differing species specificities.
 - The p-fimbriae: associated with urinary tract pathogens.
 - E. coli also produce common fimbriae not associated with virulence.

Adhesins:

- Intimin: non-fimbrial adhesin; causes the intimate association with target cells in enteropathogenic and enterohaemorrhagic *E. coli*.
 - Associated with the 'attachment and effacement' phenomenon
 - Causes destruction of the intestinal surface cells.
 - Other outer membrane proteins can act as adhesins.

Shigella spp.

Shigella and Shigellosis

- Fecal-oral transmission
 - person-to-person, fomites, food, water, ect.
- Waterborne and water-washed
- Reservoirs: humans and primates
- Infectious dose: low; as few as 10 cells to infect
- Incubation period: 1 to 7 days; typically, 1-3 days
- Duration of illness:
 - untreated: severe symptoms for about two weeks
 - Antibiotic treatment shortens illness and prevent spread to others

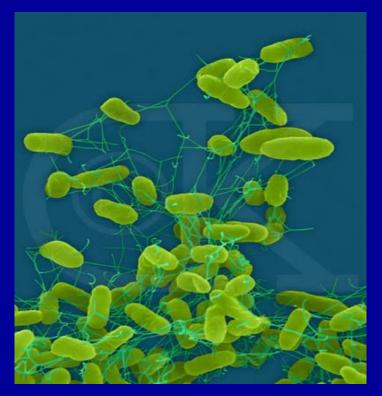
Shigellosis - Epidemiology

- Four species of Shigella: flexneri, sonnei, dysenteriae, boydii
- Major public health problem in many developing countries
 - causes about 5 to I0% of childhood diarrhoea
 - up to 25% of all diarrhea-related deaths can be associated with Shigella

Developing countries:

- Sh. flexneri is endemic (always present) in most communities
- Sh. dysenteriae type 1 often occurs in an epidemic pattern
 - organism can be absent for a number of years, then reappear and infect a large proportion of the population.
- These two species of Shigella generally produce the most severe illness.

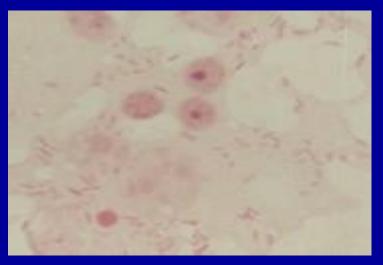
Developed countries:

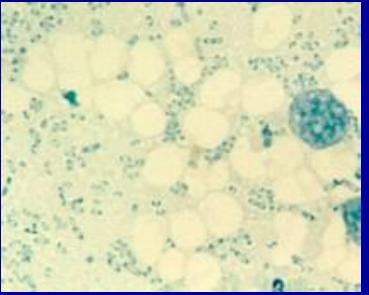

- Sh. sonnei is the most common and is the least virulent
- Sh. boydii causes disease of intermediate severity
 - is least common, except in the Indian sub-continent.

Salmonella and Salmonellosis

- Belong to Enterobacteriaceae family
- Gram-negative bacilli; facultative and flagellated (motile).
- 3 major antigens:
 - "H" or flagellar antigen (phase 1 & 2)
 - "O" or somatic antigen (part of the LPS moiety)
 - "Vi" or capsular antigen (called "K" in other Enterobacteriaceae).
- Posess LPS endotoxin characteristic of Gram-negative bacteria
 - composed of an "O" polysaccharide ("O" antigen)
 - "R" core
 - endotoxic inner "Lipid A".
 - Endotoxins evoke fever and can activate complement, kinin and clotting factors.

Salmonella spp.




Typhoid fever: (S. typhi and S. paratyphi): Systemic Infection

- Fecal-oral transmission
- Systemic infection:
 - Macrophages, reticuloendothelial system (esp. liver, spleen and bone marrow), gallbladder and intestines as major sites of damage
- 1.5-2 week incubation period
- Symptoms: fever, headache, malaise, anorexia, then bloody diarrhea
- Mortality rate 10%, if untreated
- Carrier state possible
 - "Typhoid Mary": infamous food handler; infected hundreds
- Fecally shed at billions/gram by ill persons and carriers

Yersinia pestis

- Gram Stain:
 - Small, gram-negative bipolar-stained coccobacilli
- Wayson Stain:
 - Pink-blue cells with a closed safety pin look

Yersinia pestis: Plague

- U.S. averages 13 cases/yr (10 in 1998)
- 30% of cases are in Native Americans in the Southwest. 15% case fatality rate
- Most cases occur in summer

Plague Epidemiology

- Three Clinical Types:
 - bubonic (infected lymph nodes)
 - septicemic (blood-borne organisms)
 - pneumonic (transmissible by aerosol; deadliest)

Legionella spp.

- Gram-negative
- Aerobic
- Non-sporing
- Encapsulated
- ~46 species, 68 serogroups
- Ubiquitous aquatic organism
- Thrives in warm environments (32C-45C)

Legionella: Legionellosis and Pontiac Fever

Reservoirs and amplifiers:

- Hot water systems
- circulating water ventilation systems (cooling towers)
- Plumbing (e.g., shower heads).
- Hot tubs, whirlpools, etc.
- Produce fresheners

Cleveland Auto plant outbreak, March, 2001:

- Plant cooling tower is considered a possible source of the outbreak.
- But, more than 100 other internal water sources -- favorite breeding grounds for the Legionella bacteria -- were also under investigation....

Legionnaire's Disease and Pontiac Fever

Legionnaire's disease:

- Bacterial pneumonia caused by Legionella pneumophila.
- A type of pneumonia that affects the lungs and may also affect the stomach and intestines, kidneys, and central nervous system.
- Incubation period: 2-10 days after exposure
- Frequently requires hospitalization
- Aerosol exposure from contaminated cooling towers, evaporative condensers, whirlpools, shower heads, faucets, & hot water tanks.

Pontiac fever: also caused by Legionella.

- A "flu-like" illness with fever, chills, headache, myalgia (pain in the muscles), cough, nausea, and breathlessness.
- Pneumonia does not occur.
- Usually lasts 2-5 days.
- Same sources as for Legionnaires' disease

100 C			212 F
90 C_	STEAM HUMIDIFICATION		
80 C_	HOT WATER RADIATORS	EAST DEATH DANCE	
70 C_		FAST DEATH RANGE	
60 C			140 F
50 C	HOT WATER	SLOW DEATH RANGE	122 F
40 C	SPAS COOLING TOWERS		115 F
30 C_	SHOWERS	OPTIMUM GROWTH RANGE	95 F
20 C_	SPRAY HUMIDIFIERS	LEGIONELLA ACTIVE	68 F
10 C_	PEVAPORATIVE COOLERS COOLING COILS	LEGIONELLA DORMANT	
0C_	TAP WATER		32 F