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BASIC FUNDAMENTALS OF GEAR DRIVES

A gear is a toothed wheel that engages another toothed mechanism to change speed or
the direction of transmitted motion. Gears are generally used for one of four different

reasons:
1. To increase or decrease the speed of rotation;
2. To change the amount of force or torque;

3. To move rotational motion to a different axis (i.e. parallel, right angles, rotating,

linear etc.); and
4. To reverse the direction of rotation.

Gears are compact, positive-engagement, power transmission elements capable of
changing the amount of force or torque. Sports cars go fast (have speed) but cannot pull
any weight. Big trucks can pull heavy loads (have power) but cannot go fast. Gears

cause this.

Gears are generally selected and manufactured using standards established by
American Gear Manufacturers Association (AGMA) and American National Standards
Institute (ANSI).

This course provides an outline of gear fundamentals and is beneficial to readers who
want to acquire knowledge about mechanics of gears. The course is divided into 6

sections:

Section -1 Gear Types, Characteristics and Applications
Section -2 Gears Fundamentals

Section -3 Power Transmission Fundamentals

Section -4 Gear Trains

Section -5 Gear Failure and Reliability Analysis

Section -6 How to Specify and Select Gear Drives



SECTION -1 GEAR TYPES, CHARACTERISTICS & APPLICATIONS
The gears can be classified according to:

1. the position of shaft axes

2. the peripheral velocity

3. the type of gears

4. the teeth position
According to the position of shaft axes:

Gears may be classified according to the relative position of the axes of revolution. The

axes may be:

1. Parallel shafts where the angle between driving and driven shaft is 0 degree.

Examples include spur gears, single and double helical gears.

2. Intersecting shafts where there is some angle between driving and driven shaft.

Examples include bevel and miter gear.

3. Non-intersecting and non-parallel shafts where the shafts are not coplanar.

Examples include the hypoid and worm gear.
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According to peripheral velocity:
Gears can be classified as:
1. Low velocity type, if their peripheral velocity lies in the range of 1 to 3 m/sec.

2. Medium velocity type, if their peripheral velocity lies in the range of 3 to 15

m/sec.

3. High velocity type, if their peripheral velocity exceeds 15 m/sec.



According to type of gears:

Gears can be classified as external gears, internal gears, and rack and pinion.

1. External gears mesh externally - the bigger one is called “gear” and the smaller

one is called “pinion”.

2. Internal gears mesh internally - the larger one is called “annular’ gear and the

smaller one is called “pinion”.

3. Rack and pinion type — converts rotary to linear motion or vice versa. There is a

straight line gear called “rack” on which a small rotary gear called “pinion” moves.

According to teeth position:

Gears are classified as straight, inclined and curved.

1. Straight gear teeth are those where the teeth axis is parallel to the shaft axis.

2. Inclined gear teeth are those where the teeth axis is at some angle.

3. Curve gear teeth are curved on the rim’s surface.

TYPE OF GEARS

Here is a brief list of the common forms.

Gear
|
Parallel Intersecting Non-Intersecting
Shaft Shaft and Non-parallel
[ Shaft
| | I
Spur Gear Helical Gear | | |
I Crossed Hypoid Worm
[ | Helical Gear Gear
Single Double Helical: Gear
Helical Herringbone
Gear Gear
| | I I | I |
Bevel Coniflex Zerol Spiral Miter Angular Crown
Gear Bevel Gear Bevel Gear Bevel Gear Gear Gear Gear




SPUR GEARS

Spur gears are used to transmit power between two parallel shafts. The teeth on these

gears are cut straight and are parallel to the shafts to which they are attached.

Spur Gears

Characteristics:
e Simplest and most economical type of gear to manufacture.

e Speed ratios of up to 8 (in extreme cases up to 20) for one step (single reduction)

design; up to 45 for two step design; and up to 200 for three-step design.
Limitations:
¢ Not suitable when a direction change between the two shafts is required.

e Produce noise because the contact occurs over the full face width of the mating

teeth instantaneously.
HELICAL GEARS

Helical gears resemble spur gears, but the teeth are cut at an angle rather than parallel
to the shaft axis like on spur gears. The angle that the helical gear tooth is on is referred
to as the helix angle. The angle of helix depends upon the condition of the shaft design
and relative position of the shafts. To ensure that the gears run smoothly, the helix angle
should be such that one end of the gear tooth remains in contact until the opposite end
of the following gear tooth has found a contact. For parallel shafts, the helix angle should

not exceed 20 degrees to avoid excessive end thrust.



Helical Gears

Characteristics:

The longer teeth cause helical gears to have the following differences from spur gears of

the same size:

e Tooth strength is greater because the teeth are longer than the teeth of spur gear

of equivalent pitch diameter.

e Can carry higher loads than can spur gears because of greater surface contact

on the teeth.

e Can be used to connect parallel shafts as well as non-parallel, non-intersecting

shafts.
¢ Quieter even at higher speed and are durable.
Limitations:
e Gears in mesh produce thrust forces in the axial directions.
e Expensive compared to spur gears.
BEVEL GEARS

A bevel gear is shaped like a section of a cone and primarily used to transfer power
between intersecting shafts at right angles. The teeth of a bevel gear may be straight or
spiral. Straight gear is preferred for peripheral speeds up to 1000 feet per minute; above

that they tend to be noisy.



Characteristics:

¢ Designed for the efficient transmission of power and motion between intersecting
shafts. A good example of bevel gears is seen as the main mechanism for a
hand drill. As the handle of the drill is turned in a vertical direction, the bevel

gears change the rotation of the chuck to a horizontal rotation.

e Permit a minor adjustment during assembly and allow for some displacement
due to deflection under operating loads without concentrating the load on the end
of the tooth.

MITTER GEARS

Mitter gears are identical to bevel gears with the exception that both gears always have

the same number of teeth.

Characteristics:
o They provide a steady ratio; other characteristics are similar to bevel gears.
e They are used as important parts of conveyors, elevators and kilns.
Limitations

e Gear ration is always 1 to 1 and therefore not used when an application calls for

a change of speed.



HYPOID GEARS

Hypoid gears are a modification of the spiral bevel gear with the axis offset. The
distinguishing feature of hypoid gears is that the shafts of the pinion and ring gear may

continue past each other, never having their axis intersecting.

Hypoid Gears

The major advantages of the hypoid gear design are that the pinion diameter is
increased, and it is stronger than a corresponding bevel gear pinion. The increased
diameter size of the pinion permits the use of comparatively high gear ratios and is
extremely useful for non-intersecting shaft requirements such as automotive applications

where the offset permits lowering of the drive shaft.
WORM GEARS

Worm gears are used to transmit power between two shafts that are at right angles to

each other and are non-intersecting.

Worm gears are special gears that resemble screws, and can be used to drive spur
gears or helical gears. Worm gearing is essentially a special form of helical gearing in
which the teeth have line contact and the axes of the driving and driven shafts are

usually at right angles and do not intersect.



Worm Gear

Characteristics:

Meshes are self-locking. Worm gears have an interesting feature that no other
gear set has: the worm can easily turn the gear, but the gear cannot turn the
worm. This is because the angle on the worm is so shallow that when the gear
tries to spin it, the friction between the gear and the worm holds the worm in
place. This feature is useful for machines such as conveyor systems, in which
the locking feature can act as a brake for the conveyor when the motor is not

turning.

Worm gear is always used as the input gear, i.e. the torque is applied to the input

end of the worm shaft by a driven sprocket or electric motor.

Best suited for applications where a great ratio reduction is required between the
driving and driven shafts. It is common for worm gears to have reductions of

20:1, and even up to 300:1 or greater.

Limitations:

Yield low efficiency because of high sliding velocities across the teeth, thereby

causing high friction losses.

When used in high torque applications, the friction causes the wear on the gear

teeth and erosion of the restraining surface.

RACKS (STRAIGHT GEARS)

The rack is a bar with a profile of the gear of infinite diameter, and when used with a

meshing pinion, enables the rotary to linear movement or vice versa.



Characteristics:
¢ Racks with machined ends can be joined together to make any desired length.

¢ The most well-known application of a rack is the rack and pinion steering system
used on many cars in the past. The steering wheel of a car rotates the gear that
engages the rack. The rack slides right or left, when the gear turns, depending on
the way we turn the wheel. Windshield wipers in cars are powered by a rack and

pinion mechanism.
HERRINGBONE (DOUBLE HELICAL) GEARS

Herringbone, also known as double helical gears, are used for transmitting power
between two parallel shafts. Double helical gearing offers low noise and vibration along

with zero net axial thrust.

Herringbone Gears



Characteristics:

e Conduct power and motion between non-intersecting, parallel axis that may or
may not have center groove with each group making two opposite helices. Action
is equal in force and friction on both gears and all bearings, and free from any

axial force.

e Offer reduced pulsation due to which they are highly used for specialized
extrusion and polymerization. The most common application is in heavy

machinery and power transmission.

o Applications include high capacity reduction drives like that of cement mills and

crushers.
Limitations:
¢ Manufacturing difficulty makes them costlier.

¢ Noise level of double helical gears averaged about 4dB higher than otherwise
similar single helical gears. The phenomenon is due to the axial shuttling which

occurs as the double helical pinion moves to balance out the net thrust loading.
INTERNAL GEAR

Internal gears have their teeth cut parallel to their shafts like spur gears, but they are cut
on the inside of the gear blank. The properties and teeth shape are similar as the
external gears except that the internal gears have different addendum and dedendum

values modified to prevent interference in internal meshes.

Internal Gear



Characteristics:

¢ In the meshing of two external gears, rotation goes in the opposite direction. In
the meshing of an internal gear with an external gear the rotation goes in the

same direction.

e The meshing arrangement enables a greater load carrying capacity with
improved safety (since meshing teeth are enclosed) compared to equivalent

external gears.

o Shaft axes remain parallel and enable a compact reduction with rotation in the

same sense. Internal gears are not widely available as standard.

o When they are used with the pinion, more teeth carry the load that is evenly
distributed. The even distribution decreases the pressure intensity and increases

the life of the gear.

¢ Allows compact design since the center distance is less than for external gears.

Used in planetary gears to produce large reduction ratios.

e Provides good surface endurance due to a convex profile surface working

against a concave surface.
Applications:
e Planetary gear drive of high reduction ratios, clutches, etc.
Limitations:

e Housing and bearing supports are more complicated because the external gear

nests within the internal gear.

e Low ratios are unsuitable and in many cases impossible because of

interferences.

e Fabrication is difficult and usually special tooling is required.



SUMMARY

Type Features Applications Comments Regarding
Precision

Spur Parallel Shafting. | Applicable to all | Simplest tooth elements
Adapted to high types of trains offering maximum precision.
speed and a wide First choice, recommended
applications range of velocity | for all the gear meshes,
where noise is ratios. except where very high
not a concern. speeds and loads or special

features of other types,
such as right angle drive,
cannot be avoided.

Helical Parallel Shafting. | Most applicable | Equivalent quality to spurs,
Very high speeds | to high speeds except for complication of
and loads. and loads; also helix angle. Recommended
Efficiency slightly | used whenever | for all high-speed and high-
less than spur spurs are used. load meshes. Axial thrust
mesh. component must be

accommodated.

Crossed Skewed shafting. | Relatively low Precision Rating is poor.

Helical Point contact. velocity ratio; Point contact limits capacity

High sliding
Low speeds

Light loads

low speeds and
light loads only.
Any angle skew

shafts.

and precision. Suitable for
right angle drives, if light
load. A less expensive
substitute for bevel gears.
Good lubrication essential
because of point of contact

and high sliding action.




Internal spur

Parallel shafts
High speeds

High loads

Internal drives
requiring high
speeds and high
loads; offers low
sliding and high
stress loading;
good for high
capacity, long
life. Used in
planetary gears
to produce large

reduction ratios.

Not recommended for
precision meshes because
of design, fabrication, and
inspection limitations.
Should only be used when
internal feature is

necessary.

Bevel Intersecting Suitable for 1:1 Good choice for right angle
shafts, and higher drive, particularly low ratios.
High speeds, velocity ratios However complicated both
and for right- form and fabrication limits
High loads. : .
angle meshes achievement of precision.
(and other Should be located at one of
angles) the less critical meshes of
the train.
Worm mesh Right-angle skew | High velocity Worm can be made to high
shafts, ratio precision, but worm gear
High velocity Angular meshes has inherent limitations. To
ratio be considered for average

High speeds and
loads, Low
efficiency, Most
designs

nonreversible.

High loads

precision meshes, but can
be of high precision with
care. Best choice for
combination high velocity
ratio and right-angle drive.
High sliding requires

excellent lubrication.




SECTION -2: GEARS FUNDAMENTALS & TERMINOLOGY

In this section, we will discuss the gear fundamentals, considering spur gears. It is the
most common and the simplest form, and hence the most comprehensible. The same

principles apply to spiral gears and bevel gears too.

A gear can be defined in terms of its pitch, pressure angle and number of teeth. Let’s

discuss few terms here:

Pitch Circle Diameter (d) - This is the diameter of a circle about which the gear tooth
geometry is designed or constructed. The pitch circle is the imaginary circle found at the
point where the teeth of two gears mesh. The diameter of the pitch circle is called the

pitch diameter.

Outside Diameter (OD) - The outside circle is the distance around the outer edge of the

gear’s teeth. The diameter of the outside circle is called the outside diameter.

PITCH CIRCLES &
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Root - The root is the bottom part of a gear wheel.

Pitch - Pitch is a measure of tooth spacing along the pitch circle. It is the distance
between any point on one tooth and same point on the next tooth. It is expressed in the

following forms:
Diametral Pitch (Py) is the number of teeth per inch of the pitch diameter and is also an

index of tooth size. It is given as:

Py = £
. d



Where:
e P4 = diametral pitch
e Z = number of teeth
e d = pitch circle diameter in inches

A large diametral pitch indicates a small tooth and vice versa. Another way of saying

this; larger gears have fewer teeth per inch of diametral pitch.
Important!

The use of diametral pitch is a handy reference in gear design. An important rule to
remember is that a pair of gears can only mesh correctly if and when the diametral pitch

(Pg) is the same, i.e.:

Pd - Z Gear - ZPinic}n

dEEsr dF'ini::n

Module (m) is the metric equivalent of diametral pitch, i.e. the pitch diameter (in mm)
divided by the number of teeth, but unlike diametral pitch, the higher number, the larger

the teeth. Meshing gears must have the same module:

A 1 module gear has 1 tooth for every mm of pitch circle diameter. Thus a 0.3 mod gear

having 60 teeth will have a pitch circle diameter of 18 mm (0.3 *60).

Circular Pitch (Pc): is the distance from a point on one tooth to the corresponding poing
on the adjacent tooth, measured along the pitch circle. Calculated in inches, the circular

pitch equals the pitch circle circumference divided by the number of teeth:

Circumfrence (TTd )
Mumber of teeth (Z)

Pe =

Because the circular pitch is directly proportional to the module and inversely

proportional to the diametral pitch, meshing teeth must have the same circular pitch.
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Relationship between Circular Pitch and Diameteral Pitch:

md rd
Pz —— d SN
From Pg¢ > an Pd 3
We have,
Pd pC =TT

The product of the circular pitch and the diameteral pitch is equal to pi (TT).

Number of Teeth (N): The number of gear teeth is related to the diameteral pitch and

the pitch circle diameter by equation Z=d x Pd .

Tooth Size: Diameteral pitch, module and circular pitch are all indications of tooth size;
ratios which determine the number of teeth in a gear for a given pitch diameter. In
designing a gear set, the number of teeth in each member is of necessity. As a rule of
thumb, teeth should be large and low in number for heavily loaded gears and small and

numerous for smooth operation.
Center Distance (CD)

Center Distance is the distance between the centers of the shaft of one spur gear to the
center of the shaft of the other spur gear. The standard center distance between two

spur gears is one-half the sum of their pitch diameters.
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Pitch point:

Pitch point is the point where gear teeth actually make contact with each other as they
rotate. Refer to the figure below for two meshing gears. The pitch point “P” always lies at

the line connecting the centers of two gears.

Gears mesh at
the Pitch Circle

EXAMPLES
Example - 1:

The center distance of a 4-inch pitch diameter gear running with a 2-inch pitch diameter

pinion is 3 inches. 4" + 2"+ 2 =3"CD

Example -2:

A gear has 18 teeth (Z) and a diametral pitch (Pg4) of 8. What is its pitch diameter (d)?
Answer:

d=2Z/Pd =18/8 = 2V’



Example -3:

A gear has a pitch diameter (d) of 3.125” (3-1/8”) and a diametral pitch (P4) of 8. How

many teeth (Z) does it have?

Answer:

Z=dxPyg=23.125 x 8 = 25 teeth

Example -4:

Calculate the center-to-center spacing for the 2 gears specified below.
Gear 1: 36 tooth, 24 P4 Drive Gear

Gear 2: 60 tooth, 24 P4 Driven Gear

Answer:

Calculate the pitch diameter for each of the two gears:

Pitch diameter of gear 1: di=2Z/Pq=36/24=1.5"

Pitch diameter of gear 2: d, =Z/ P4 =60/24 = 2.5”

Obtain center to center distance by adding the two diameters and divide by 2.

Center to center distance = (d1 +d,) /2= (1.5+25)/2=2"

THE LAW OF GEARING

The fundamental law of gearing states that the angular velocity ratio of all gears must
remain constant throughout the gear mesh. This condition is satisfied when the common
normal at the point of contact between the teeth passes through a fixed point on the line

of centers, known as the pitch point.

Law Governing Shape of the Teeth

The figure below shows two mating gear teeth in which:

Tooth profile 1 drives tooth profile 2 by acting at the instantaneous contact point K.
e NM is the common normal of the two profiles.
e N is the foot of the perpendicular from O4 to NM

o M is the foot of the perpendicular from O, to NM.



Pitch

circles Point of contact

Common normal line
to point of contact

Although the two profiles have different velocities v4 and v, at point K, their velocities
along NM are equal in both magnitude and direction. Otherwise the two tooth profiles

would separate from each other.
O1N. @4 = 02M ®-
0}1/ﬂ)2 = OzM/O1N

We notice that the intersection of the tangency NM and the line of center 040, is point P,
and O1NP = OZMP

Thus, the relationship between the angular velocities of the driving gear to the driven

gear, or velocity ratio, of a pair of mating teeth is:

®f _OP _1r _ 92

®a2 OP Iy dy

Where,

Pinion Gear
Radius rs r2
Diameter (inches) d d-

Speed (rad/s) @ @,



Point P is very important to the velocity ratio, and it is called the pitch point. Pitch point
divides the line between the line of centers and its position decides the velocity ratio of
the two teeth. The velocity ratio is equal to the inverse ratio of the diameters of pitch

circles. This is the fundamental law of gear-tooth action.

When the tooth profiles of gears are shaped so as to produce a constant angular-
velocity ratio during meshing, the surfaces are said to be conjugate. Pressure angle
defines the shape of the gear tooth and is an important criterion in gear manufacturing.
Higher pressure angle results in wider base, stronger teeth and lower tendency to
experience tooth tip interference, but are susceptible to noise and higher bearing loads.
Low pressure angles are quieter and smoother, have lower bearing loads and lower

frictional forces, but are susceptible to undercutting at low number of teeth.

Refer to the figure below:

/— Pressure line/ line of action

Pressure angle O, N = fp1 =Base circle radius of Gear 1
0]

l O1P =K = Pitch circle radius of Gear 1

O, M= b2 = Base circle radius of Gear 2

Center distance

Pitch circle O,P =T, =Pitch circle radius of Gear2

Base circle

Line of action |

Draw radial lines from the center of each gear O; & O, that are perpendicular to the line
of action MN. The normal to the line of action up to the center of gears, O4N and O.M,
can be used to form a circle of radius ry1 & rp, referred to as the base circles of gear 1
and gear 2, respectively. The base circle is inscribed within the pitch circle having radius
ri and r.. As is evident from the geometry of the figure, the angle between the line of
centers (040,) and the line segment ON#and O,M is the pressure angle ®. It is also
equal to the angle between the line of action MN and the line perpendicular to the line of

centers (040,) through the pitch point P.

The standard pressure angles are 14%4°, 20° and 25°. The preferred angle in use today

is 20° a good compromise for power and smoothness. The increase of the pressure



angle from 1472° to 25° results in a stronger tooth, because the tooth acting as a beam is

wider at the base.

— -
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Base circle

Base circle "Base circle

145° 20° 25°
Gear Tooth Profile for different Pressure Angles
Important!

It is important to note that the gears must have the same pressure angles to mesh. 1474°

PA tooth forms will not mesh with 20° pressure angles gears and vice versa.
Contact Ratio:

In the above description, we have considered one gear tooth in contact for simplicity. In
practice, more than one tooth is actually in contact during engagement and therefore the
load is partially shared with another pair of teeth. This property is called the contact
ratio. A contact ratio between 1 and 2 means that part of the time two pairs of teeth are
in contact, and during the remaining time one pair is in contact. A ratio between 2 and 3

means 2 or 3 pairs of teeth are always in contact.

The higher the contact ratio the more the load is shared between teeth. It is a good
practice to maintain a contact ratio of 1.3 to 1.8. Under no circumstances should the ratio

drop below 1.1.
GEAR PROFILES
Gear profiles should satisfy the law of gearing. The profiles best suited for this law are:

1. Involute
2. Cyloidal

Involute Tooth Profile

Most modern gears use a special tooth profile called an involute. This profile has the

very important property of maintaining a constant speed ratio between the two gears.



The involute profile is the path traced by a point on a line as the line rolls without slipping
on the circumference of a circle. It may also be defined as a path traced by the end of a
string which is originally wrapped on a circle when the string is unwrapped from the

circle. The circle from which the involute is derived is called the base circle.

Base circle Involute

Wgz_/;,

We use the word involute because the contour of gear teeth curves inward. On an
involute gear tooth, the contact point starts closer to one gear, and as the gear spins, the
contact point moves away from that gear and towards the other. Involute gears have the
invaluable ability of providing conjugate action when the gears' centre distance is varied

either deliberately or involuntarily due to manufacturing and/or mounting errors.
Cycloidal Tooth Profile

Cycloidal gears have a tooth shape based on the epicycloid and hypocycloid curves,
which are the curves generated by a circle rolling around the outside and inside of
another circle, respectively. They are not straight and their shape depends on the radius
of the generating circle. Cycloidal gears are used in pairs and are set at an angle of 180
degrees to balance the load. The input and output remains in constant mesh. Cycloidal

tooth forms are used primarily in clocks for a number of reasons:

e Less sliding friction
o Lesswear

e Easier to achieve higher gear ratios without tooth interference



Comparison between Involute and Cycloidal Gears

In actual practice, the involute tooth profile is the most commonly used because of

following advantages:

1.

The most important advantage of the involute gears is that the variations in
center distance do not affect the angular velocity ratio. This is not true for

cycloidal gears which require exact center distance to be maintained.

In involute gears, the pressure angle remains constant throughout the
engagement of teeth which results in smooth running. The involute system has a
standard pressure angle which is either 20° or 14%2°, whereas on a cycloidal
system, the pressure angle varies from zero at pitch line to a maximum at the tips
of the teeth.

The face and flank of involute teeth are generated by a single curve, whereas in
cycloidal gears, double curves (i.e. epicycloid and hypo-cycloid) are required for

the face and flank, respectively.

Cycloidal teeth have wider flanks; therefore the cycloidal gears are stronger than
the involute gears, for the same pitch. Due to this reason, the cycloidal teeth are

preferred especially for cast gears used in paper mill machinery and sugar mills.

Cycloidal gears do not have interference.

Though there are advantages of cycloidal gears, they are outweighed by the greater

simplicity and flexibility of the involute gears. It is easy to manufacture since it can be

generated from a simple cutter.

The only disadvantage of the involute teeth is that the interference occurs with pinions

having smaller number of teeth. This may be avoided by altering the heights of

addendum and dedendum of the mating teeth, or the angle of obliquity of the teeth.

GEAR TOOTH NOMENCLATURE

The following terms are used when describing the dimensions of a gear tooth:

1.

Addendum: the distance from the top of a tooth to the pitch circle. Its value is

equal to one module.



Dedendum: the distance from the pitch circle to the bottom of the tooth space
(root circle). It equals the addendum + the working clearance. Dedendum is
bigger than addendum and is equal to Addendum + Clearance = m + 0.157m =
1.157m

. Whole depth: The total depth of the space between adjacent teeth and is equal

to addendum plus dedendum. Also equal to working depth plus clearance.

. Working depth: Working depth is the depth of engagement of two gears; that is,

the sum of their addendums.

. Working Clearance: This is a radial distance from the tip of a tooth to the bottom
of a mating tooth space when the teeth are symmetrically engaged. Its standard

value is 0.157m.
Outside diameter: The outside diameter of the gear.
Base Circle diameter: The diameter on which the involute teeth profile is based.

. Addendum circle: A circle bounding the ends of the teeth in a right section of

the gear.

Dedendum circle: The circle bounding the spaces between the teeth in a right

section of the gear.
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10. Tooth space: It is the width of space between two teeth measured on the pitch

circle.
11. Face of tooth: It is that part of the tooth surface which is above the pitch surface.

12. Flank of the tooth: It is that part of the tooth surface which is lying below the

pitch surface.
13. Point of contact: Any point at which two tooth profiles touch each other.

14. Path of action: The locus of successive contact points between a pair of gear

teeth, during the phase of engagement.

15. Line of action: The line of action is the path of action for involute gears. It is the

straight line passing through the pitch point and tangent to both base circles.
16. Tooth Thickness, Space Width and Backlash

o Tooth thickness, (1) is the width of the tooth (arc distance) measured on the

pitch circle.

o Space width, (S) or tooth space is the arc distance between two adjacent

teeth measured on the pitch circle.

o Backlash, (B) is the difference between the space width and the tooth

thickness.
B=S-t

Standard gears are designed with a specified amount of backlash to prevent noise and

excessive friction and heating of the gear teeth.
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SPUR GEAR FORMULAS AND CALCULATIONS

Below is a table of formulas used in calculating spur gear information based on standard

gearing practices. The spur gear formulas here are based on the "Diametral Pitch

system (Py).

To Get

Having

Rule

Formula

Diametral Pitch

The circular pitch

Divide Pi (3.1416) by the

circular pitch

Pq=3.1416/ CP

Diametral Pitch

Pitch diameter

Number of teeth

Divide the number of teeth

by the pitch diameter

Pd=Z/d

Diametral Pitch

Outside diameter

Number of teeth

Divide number of teeth + 2

by the outside diameter

Py = (Z+2)/ OD

Diametral Pitch

Base pitch

Pressure angle

Divide the base pitch by
the cosine of the pressure
angle then divide by
3.1416

P, = (BP / Cos®) / 3.1416

Diametral Pitch

Module

Divide 25.4 by Module

Pq=25.40/M

Pitch Diameter

Number of teeth

Diametral pitch

Divide the number of teeth

by the diametral pitch

d=Z/Pd

Pitch Diameter

Number of teeth

Outside diameter

Divide the product of the
outside diameter +
number of teeth by the

number of teeth + 2

d= (0D x2)/ (Z+2)

Pitch Diameter

Outside diameter

Diametral pitch

Subtract 2 divided by the
diametral pitch from the

outside diameter

d = 0D - (2/ Py)




Pitch Diameter

Addendum

Number of teeth

Multiply addendum by the

number of teeth

d=axZ

Pitch Diameter

Base diameter

Pressure angle

Divide the base diameter
by the cosine of the

pressure angle

d = BD / (Cos®)

Outside Number of teeth | Divide number of teeth + 2
: : . . . OD = (Z+2) / Py
Diameter Diametral pitch by the diametral pitch
Two divided by the
Outside Pitch diameter
diametral pitch plus pitch | OD = (2/Py) +d
Diameter Diametral pitch
diameter
Number of teeth + 2,
Outside Pitch diameter divided by the quotient of
. o OD = (2Z+2)/(Z/d)
Diameter Number of teeth | number of teeth divided
by the pitch diameter
Multiply the number of
Outside Number of teeth
teeth + 2 by the OD=(Z+2)xA
Diameter Addendum
addendum
Number Of Pitch diameter Multiply the pitch diameter 7 =dxP
=dx
Teeth Diametral pitch by the diametral pitch ’
. . Multiply the outside
Number Of Outside diameter | _
diameter by the diametral | Z = (0D x Py) - 2
Teeth Diametral pitch
pitch and subtract 2
Thickness Of _ _ Divide 1.5708 by the
Diametral pitch t=1.5708/ Py4
Tooth diametral pitch
_ _ Divide 1 by the diametral
Addendum Diametral pitch ] a=1/Py
pitch
_ _ Divide 1.157 (or 1.25) by
Dedendum Diametral pitch . . b=1.157/Py4
the diametral pitch
. . _ Divide 2 by the diametral
Working Depth Diametral pitch ) hk =2/ Py
pitch
. _ Divide 2.157 (or 2.25) by
Whole Depth Diametral pitch ht=2.157 /P4

the diametral pitch




Divide .157 (or .250) by

Clearance o Diametral pitch . _ c =.157 / P4
the diametral pitch
Divide thickness of tooth
Clearance ¢ Diametral pitch c=t/10
at the pitchline by 10
e C.D. between Add the number of teeth
Operating both gears in both gears and divide

Diametral Pitch

o Number of teeth

in each

by 2 then divide by the

center distance

Peo = ((Z1 + Z2)12)/ C

o Normal diametral

Add the number of teeth

Center pitch in both gears and divide
. . C = ((Z1+Z2)/2) | Pog
Distance e Number of teeth | by 2 then divide by the
in both gears normal diametral pitch
_ e Operating Add the number of teeth
Operating . . : -
diametral pitch in both gears and divide
Center o Co = ((Z1 + Z2)/2) | Py
_ o Number of teeth | by 2 then divide by the
Distance

in both gears

operating diametral pitch

Base Diameter

¢ Pitch diameter

e Pressure angle

Multiply the pitch diameter
by the cosine of the

pressure angle

BD = P4 x (cos®)

Pressure Angle

e Base diameter

o Pitch diameter

Divide the base diameter

by the pitch diameter

cos®=BD/d

Pressure Angle

e Base pitch

e Diametral pitch

Divide Pi by the diametral
pitch, then divide by the
base pitch

cos® = (3.1416 / Py) / Pb

Base Pitch

e Diametral pitch

e Pressure angle

Divide the diametral pitch
by Pi, then multiply by the
cosine of the pressure

angle

Pb = (P4 / 3.1416) x (cos®)




SECTION -3 POWER TRANSMISSION FUNDAMENTALS

Power transmission is the transfer of energy from its place of generation to a location
where it is applied to performing useful work. Power transmission is normally
accomplished by belts, ropes, chains, gears, couplings and friction clutches. Out of
these, the gears are capable of transmitting force or motion without any slip and
therefore are the most durable and rugged of all mechanical devices. In the schematic
below, a gear transmits rotation force from prime mover (diesel engine) to another driven

shaft (locomotive wheels).

Energy Source POWER TRANSMISSION

P P o O

Orive shatt | 4l
il 0 0
Wt Driven v
Gears — Output Metion
Wheels

(Diesel Engine)

Schematic of Diesel Locomotive

The most important feature of gears is that it produces a mechanical advantage, which is
a measure of the force amplification. Since we do not get something for nothing, you can
either achieve high velocity output or high force/torque output but not both. The model
for this is the law of the lever where a smaller force acting through a greater distance

produces the same output as the larger force on a smaller distance.

Distance (x)

Distance (2x)

I
-

Force (2 Ib)

' ’ Force (1 1b)

Torgue = Force x Distance = 2 Ib * x Torque = Force x Distance =2 Ib * x

Energy and Power Equations

Power, torque and speed are the defining mechanical variables associated with the

functional performance of rotating machinery. Let’'s do some analysis for gears:



e P =Power
e E =Energy
e W =Work
e F =Force
e T =torque
e d = distance of translational motion
e O=angle of rotational motion (in radians)
e v = velocity of translational motion
e ® = angular speed (in radians per second)
e A =change
e Pd = Pitch diameter
e Z =number of teeth on a gear
e r = Pitch circle radius
e N = number of revolutions
Power is defined as energy per unit of time or the rate at which work is performed and

thus:

AE

oo AE W
T At At

When force (F) moves a body a measured distance (Ad), the work done (W) is given by:

W (work) = Force x Distance

W=FxAd

This equation is true for linear motion but the corresponding definition of work for
rotational power transmission is given by the Torque (T) and the angular displacement

(AB). Therefore, work done for rotary motion is:

W=T A8



Rotation is perceived as a change in the angular position of a reference point on the

body over some time interval, At. The power transfer in a rotary device is therefore given

by:

At At Eq. A
The rotary motion is characterized by its angular velocity (@ ) and is defined as:

A6
®= At

Substituting the rotary definition of work into Eq. A:

P=Te Eq. 1
Let’s break Torque (T) and angular velocity (@) in friendly terms.

Torque is a measure of the tendency of a force to rotate an object about some axis. In
order to produce torque, the force must act at some distance from the axis or pivot point.
In the following diagram, the circle represents a wheel of radius r; the dot in the center

represents the axle or shaft; and the force (F) is applied tangentially at the periphery.

F
| >
|
T
|
o
The amount of torque about the gear axle is:
Torque = Force x Radius
T=Fxr Eq. 2

Substituting T (Eq. 2) to Eq. 1:

P=F*r~m Eq3



Angular velocity (@) is often referred to as rotational speed and measured in numbers of

complete revolutions per minute (rpm) or per second (rps). It is usually expressed as:

@ = 21N {N = Number of rotations  (RPM) }
60 minute Eq. 4

Substituting @ (Eq. 4) to Eq. 3:

27N

P=F=+r=
" 760 Eq.5

ANALYSIS FOR A GEAR PAIR

Consider two gears in a mesh. Gear 1 (driver) is turning counterclockwise at angular
velocity w¢ and has Z, teeth. Gear 2 (the driven gear) is turning clockwise with angular
velocity w, and has Z, teeth. The drive between the two gears is represented by plain

cylinders having diameters equal to their pitch circles.

&—O—JL\ VP

We have learnt in Section-2 that a pair of gears can only mesh correctly if and when the
diametral pitch (Pq) is the same, accordingly:

Z1_ %

i d2 Eq. 6

Py-

The driving gear pushes the driven gear, exerting a force component perpendicular to

the gear radius; and because the gear is rotating, power is transferred.

Pin = T1 '.'1)1



Pnut = T2 7

Assuming no frictional losses, the input and output power can be set equal to each other

as.
I:"‘in = Pout
or o T, = 0T, £q.7
O T
or _ =
(:D2 T1
Since, @ - 21N {N = Number of rotations (RPM)}
&0 minute
™ Ny T

It follows that torque and speed are inversely proportional. If a high torque is desired,
then the speed must be sacrificed. When speed increases, the torque decreases

proportionally.

We now consider the relative velocity of the two gears. The point of contact of the two
pitch surfaces shall have velocity along the common tangent. The velocity of a point on a
rotating object is given by r o. Because there is no slip, definite motion of gear 1 can be

transmitted to gear 2, therefore:
VE @ = 0,7,

Where r; and r; are pitch circle radii of gears 1 and 2, respectively.

'.'1)1 r1 = ﬂ)z r2 Eq 9
27 N 27 Ny
or t = —=0Nn
50 60
or Nyry = Nofy
Ny _
or —N2 r

Putting it in terms of diameter, r = d/2, it implies:



Ni— = N»Z=
1 2 >
or Nyd1 = Nj do Eq. 10
N d
or _1 = _2
N2 d,

It follows that speed and diameter are inversely proportional. If a high speed is desired,

then the diameter of driven gear must be lower than the driving gear.

Since, pitch circle radius of a gear is proportional to its number of teeth (Z):

or Ni{Z1 = Np 23

N2 Z Eq. 11

It follows that the velocity ratio of a pair of gears is the inverse ratio of their number of
teeth, i.e. the gear with the greater number of teeth will always revolve slower than the

gear with the smaller number of teeth.

We can now combine the torque equation (Eq. 8), dia. Equation (Eq. 10) and the velocity

equation (Eqg. 11) to get the relationship with the gear teeth ratio.

Gear ratio is defined as the ratio of diameters (teeth) of output to the input gear. When
the input gear is smaller than the output gear, the output torque is higher than the input
torque and the output speed is lower than the input speed or in other words “a higher

gear ratio equates to high torque and lower speed”.

Let’'s compare this analogy to a car engine gearbox. In top gears, one turn of the engine
crankshaft results in one turn of the drive wheels. Lower gears require more turns of the
engine to provide single turn of the drive wheels, producing more torque at the drive
wheel. For example, if the driving gear has 10 teeth and the driven gear has 20 teeth,

the gear ratio is 2 to 1. Every revolution of the driving gear will cause the driven gear to



revolve through only half a turn. Thus, if the engine is operating at 2,000 rpm, the speed
of the driven gear will be only 1,000 rpm; the speed ratio is then 2 to 1. This
arrangement doubles the torque on the shaft of the driven unit. The speed of the driven
unit, however, is only half that of the engine. On the other hand, if the driving gear has
20 teeth and the driven gear has 10 teeth, the speed ratio is 1 to 2, and the speed of the
driven gear is doubled. The rule applies equally well when an odd number of teeth is
involved. If the ratio of the teeth is 37 to 15, the speed ratio is slightly less than 2.47 to 1.
In other words, the driving gear will turn through almost two and a half revolutions while

the driven gear makes one revolution.

POWER FLOW THROUGH GEAR PAIR

With a pair of gears, power is transmitted by the force developed between contacting
teeth. According to fundamental law of gear this resultant force always acts along the
pressure line (or the line of action). To investigate how the forces are typically

transmitted between a pair of gears, refer to the figure below.

Pitch circle

Pressure line
%\\ \

b

N\

My Base circle

o r,=rCos o

O
Power Flow through a Gear Pair

(View showing tangential and radial forces on the gear)



The force transmitted along the line of action results in a torque generated at the base

circle. The torque can be calculated by:
T=Fyr Eq. 12

From the figure above, the relationship between the base circle and pitch circle radius

can be stated as:
N, = r cos®
Or
T =Fyrcos® Eq. 13
Where,
e Fyis the force action on the line of action
o & s the pressure angle
e 1, is the radius of base circle
e ris the pitch circle radius of the gear

This resultant force Fy can be resolved into two components: tangential component Fr

and radial components Fg at the pitch point.

o F1 - the tangential force component acting at the radius of the pitch circle. It
determines the magnitude of the torque and consequently the power transmitted.

The Tangential component is expressed as: Fr = Fy cos®

e Fr - the radial or normal force directed towards the center of the gear. Fr serves
to separate the shafts connected to the gears and for this reason Fgr is
sometimes referred to as the separating force. The radial component is

expressed as: Fr = Fy sin® or F; tan®

Torque exerted on the gear shaft in terms of the pitch circle radius can be found by

substituting Fr = Fy cos® in Eq. 13. The resultant expression is:

T=FTxr
Or
T=|='|'.}‘f.i

2 Eq. 14



The maximum force (Ft) is exerted along the common normal through the pitch point
which is line perpendicular to the line of centers. After determining Fr, the magnitude of

the other force components and/or their directions can be readily determined.

Recall the following relationship existing between speed, torque and power:

P=Tw
T:E
(i) ]
Since, o :2'I'I'N
60

The torque transmitted by the gear is given by:

Where,
e T = Torque transmitted gears (N- m)
e P = Power transmitted by gears (kW)
o N = Speed of rotation (RPM)
Alternatively in US units:

T=py 63000
N Eq. 15

Where,
e P =Power, HP
e T =Torque in-lbs
¢ N=RPM
Substituting Eq. 14 into Eq. 15

d _p, 63000

Frx
T 2 N

Or

F =py 53000 2




Or

126000
N d

Fr=Px

Power can also be expressed in terms of the pitch line velocity v.
P=Frv

e P =Power in watts

e Fr=force, N

e v =velocity, m/s

Or in terms of customized units

P=FTV{1m}[1HP ]_ Frv

60s | Lss0ft-bs/is | 33.000
e v =velocity in ft/min
e Fy=forceinlbs
e P =Powerin HP
The above expression can be rearranged to solve for Fr;

33,000 P
V

Fr o=

The velocity v:
v=.262 Xd XN
Where,
e d = Pitch diameter
¢ N = Revolutions per minute, RPM
Important!

If the forces transmitted between the teeth of meshing gears are transmitted along the
line of action at every point of contact, then regardless of the angular position of the
gears, the forces transmitted between the gears maintain a fixed orientation in space.

Maintaining a fixed orientation in space for the forces to be transmitted between gears



enables the power transmitted between the gears to be independent of the angular

position of the gears. This is a very desirable characteristic for gears.
Example

20-tooth, 8 pitch, 1-inch-wide, 20° pinion transmits 5 HP at 1725 rpm to a 60-tooth gear.
Determine driving force, separating force, maximum force and surface speed that would

act on mounting shafts.

Solution:
T = 63000xP

N
7= 83000X5 _ 483inp

1725
Find pitch circle
d=2
Pg

20 teeth

d= =25in

" 8 teeth/in diameter

Find transmitted force

2T
F_.==!
T 4
£ - 2x183in-b
T 25in =146 1b

Find separating force

FR = FT tan®
FR = 146 tan 20°
Fr=531b

Find maximum force

Fr
cosd

146 |b
cos20°




Fn=1551b

Find pitch line velocity or surface speed

v =.262 X D X RPM
v =0.262 x 2.5 x 1725 = 1129 ft/min
Summarizing.......

The fundamental equations for a gear pair are:

Tin @n = Towt @t~ _________ (Power equality)

oyt = i

in fout (Velocity relationship in terms of radiuses)

Oyt = Zir1

Cin A S —— (Velocity relationship in terms of number of teeth)
Tout Fout

Tin fin s (Torque relationship in terms of radiuses)

Tnut Znut

Tin Zn (Torque relationship in term of number of teeth)



SECTION -3 GEAR TRAINS

A gear train is a power transmission system made up of two or more gears. The gear to
which the force is first applied is called the driver and the final gear on the train to which
the force is transmitted is called the driven gear. Any gears between the driver and the
driven gears are called the idlers. Conventionally, the smaller gear is the Pinion and the
larger one is the Gear. In most applications, the pinion is the driver; this reduces speed

but increases torque.

= PAAR

Types of gear trains

1. Simple gear train
2. Compound gear train

3. Planetary gear train

Simple Gear Train - Simple gear trains have only one gear per shaft. The simple gear
train is used where there is a large distance to be covered between the input shaft and

the output shaft.

=

Driven or

follower Driver Driven or

follower

Driver

Compound Gear Train - In a compound gear train at least one of the shafts in the train
must hold two gears. Compound gear trains are used when large changes in speed or
power output are needed and there is only a small space between the input and output

shafts.



Compound gear

Planetary Gear Train - A planetary transmission system (or Epicyclic system as it is
also known), consists normally of a centrally pivoted sun gear, a ring gear and several
planet gears which rotate between these. This assembly concept explains the term
planetary transmission, as the planet gears rotate around the sun gear as in the

astronomical sense the planets rotate around our sun.

e ——
s -

[ AR P PNAAG R
Ring gear g u—.,,}_‘_':_;
Planetary "%

Planetary gearing or epicyclic gearing provides an efficient means to transfer high

torques utilizing a compact design.
GEAR RATIO

We have learnt in the previous section that “If two gears are in mesh, then the
product of speed (revolutions) and teeth must be conserved”. Let's check this

simple rule with a help of an example.



If you turn a gear with 6 teeth 3 times and is meshed with a second gear having 18
teeth, than the driving gear 18 teeth (6 x 3) will move through the meshed area. This
means that the 18 teeth from the second gear also move through the meshed area. If

the second gear has 18 teeth, then it only has to rotate once because 18 x 1=18.

Also, the second gear will be turning slower than the first because it is larger, and larger

gears turn slower than smaller gears because they have more teeth.
Gear Ratio for Simple Gear Train

Consider a simple gear train shown below. Notice that the arrows show how the gears

are turning. When the driver is turning clockwise the driven gear is anti-clockwise.

demg

-0

Driver Driven

Gear #1

Gear #2

Further assume driver gear #1 has 20 teeth and rotating at 100 rpm. Find the speed of

driven gear #2 having 60 teeth.

e N;=100rpm

e Z,=230teeth

e Ny=?

e 7, =060 teeth
Solving the equation above for N,, we have:
N, = (Z4/Z3) * N4y = (30/60) * 100 = 50 rpm

Let's add a third gear to the train. Assume gear 2 drives gear 3 and gear 3 has Z; = 20
teeth. Here the driver is gear #1 and the final driven element is gear #3. Gear #2 in

between is called the idler gear. Find the speed of driven gear #37



Driven

Driver

Gear #3

Gear #2

Well, since gears 2 and 3 are in mesh, our conservation law says that:
Ny *Z;=N3*Z3

We could do the arithmetic (N3 = (Z2/Z3) * N, = (60/20) * 50 = 150 rpm) to find N3. Or, we

could note that, since both N,*Z; and N3;*Z3; are equal to N,*Z,, they must be equal to

each other.
N1 * Z1 = N3 * Z3
So,

N3 = (Z4/Z3) * N4 = (30/20) * 100 = 150 rpm.
What does this prove?

“An idler gear between a driver and driven gear has NO effect on the overall gear

ratio, regardless of how many teeth it has”.
(Note that Z; never entered into our computation in the last equation.)

Suppose now that we add a fourth gear with Z, = 40 teeth to our developing gear train.

Drwven

Gear #3 Gear #4

Gear #1

Gear #2

Its speed must be Ny = (Z3/Z4) * N3 = (20/40) * 150 = 75 rpm. Again, by using the

conservation principle, we have:

N, = (Z4/Zs) * Ny = (30/40) * 100 = 75 rpm.



We can continue like this indefinitely, but the two fundamental learning objectives here

are:

1. The number of teeth on the intermediate gears does not affect the overall velocity

ratio, which is governed purely by the number of teeth on the first and last gear.

2. If the train contains an odd number of gears, the output gear will rotate in the
same direction as the input gear, but if the train contains an even number of
gears, the output gear will rotate opposite that of the input gear. If it is desired
that the two gears and shafts rotate in the same direction, a third idler gear must
be inserted between the driving gear and the driven gear. The idler revolves in a

direction opposite that of the driving gear.
Major Caveat:

Note that everything said to this point assumes a simple gear train where each of the
gears in the gear train is on its own, separate shaft. Sometimes gears are 'ganged' by
keying or otherwise welding them together and both gears turn as a unit on the same
shaft. This arrangement is known as compound gear train and it complicates the

computation of the gear ratio, to some extent.
Compound Gear Train

The figure below shows a set of compound gears with the two gears, 2 and 3, mounted
on the middle shaft b. Both of these gears will turn at the same speed because they are

fastened together, i.e. N, = N2 = N3

Shaft b

\
Gear1 Gear?2 Gear3 Gear4

When gear 1 and gear 2 are in mesh:
N1 * Z1 = N2 * Zz
It's still true that:

N1*Z1=Nb*22



Nb = (Z4/Z2) * N4

If gears 3 and 4 are in mesh:

Np *Z3 =Ny * Z4

Therefore,

Ny = (Zs/Z4) * Ny = (Za/Z4)*(Z1/Z3) * N4

So the end-to-end gear ratio is (Z*Z3)/ (Z,*Z4) and it does depend on the intermediate
gears; unlike the previous case when each gear could turn on its own separate axis.
Note that the resultant gear ratio is just the product of the two separate gear ratios:
(Z41Z2)"(Z5lZ4).

Example:

In the figure below, Gears B and C represent a compound gear and have the following

details:

Gear A - 120 teeth
Gear B - 40 teeth
Gear C - 80 teeth
Gear D - 20 teeth

What is the output in revs/min at D, and what is the direction of rotation if Gear A rotates

in a clockwise direction at 30 revs/min?

Solution:



When answering a question like this, split it into two parts. Treat Gears A and B as the

first part of the question. Treat Gears C and D as the second part.
Gear ratio AB = driven/driving = 40/120 = 1/3
Gear ratio CD = driven /driving = 20/80 = 1/4

Since the driving Gear A rotates 30 RPM and the Gear B is smaller than Gear A, we can
conclude that the RPMs for Gear B is 30*3 = 90 RPM

Since Gears B and C represent a compound gear, they have the same rotational speed.

Therefore, Gear D speed is obtained by multiplying 4 to Gear C speed of 90 RPM.
Thus, Gear D moves at 90*4 = 360 rev/min

OR

113 x Ya=1/12

Since Gear A moves at 30 RPM and Gear D is smaller, we multiply by 12:

30 x 12 =360 RPM

Example:

Calculate the gear ratio for the compound chain shown below. If the input gear rotates

clockwise, in which direction does the output rotate?

D | Output

Gear A has 20 teeth

Gear B has 100 teeth

Gear C has 40 teeth

Gear D has 100 teeth

Gear E has 10 teeth



Gear F has 100 teeth

Solution:

The driving teeth are A, C and E

The driven teeth are B, D and F

Gear ratio = (100 x 100 x 100) / (20 x 40 x 10) = 125

Alternatively we can say there are three simple gear trains as follows:
Firstgear GR=100/20=5

Second chain GR=100/40=2.5

Third chain GR =100/10 =10

The overall ratio =5x2.5x 10 =125

Each chain reverses the direction of rotation so if A is clockwise, B and C rotate anti-

clockwise, so D and E rotate clockwise. The output gear F hence rotates anti-clockwise.

More complex compound gear trains can achieve high and low gear ratios in a restricted
space by coupling large and small gears on the same axle. In this way gear ratios of

adjacent gears can be multiplied through the gear train.
Example:

Suppose we look at a standard four-speed car gearbox with a reverse gear.

3
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The following table shows the number of teeth for each gear:



Gear 1 2 3 4 5 6 7 8 9 10

The table below shows the speed ratio (SR) calculations for each gear selection

possible.
Selection Gear Train SR Formula SR Formula SR Value
1% Gear 1,5,7,3 MNsx N3 38 x 25 3.16
N1xN7 12 x 25
2" Gear 1,5,8,4 Nsx Ny 38 x 20 2.11
NyxMNg 12 x 30
3" Gear 1,5,6,2 N5 x N2 38x 15 1.36
N1xNg 12 x 35
4" Gear 1 locked with 2 | None None 1.00
Reverse 1,5,9,104 Nsx Ngx N10 38x 12 x12 -3.16
N¢x Ngx N10 12x 12 x12

EPICYCLIC GEAR TRAIN

In epicyclic gear train, the axis of rotation of one or more of the wheels is carried on an
arm which is free to revolve about the axis of rotation of one of the other wheels in the
train. The diagram shows a Gear B on the end of an arm A. Gear B meshes with Gear C
and revolves around it when the arm is rotated. B is called the planet gear and C the

sun.
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Now let’'s see what happens when the planet gear orbits the sun gear.

8
i |

Observe point p and you will see that Gear B also revolves once on its own axis. Any
object orbiting around a center must rotate once. Now consider that B is free to rotate on
its shaft and meshes with C. Suppose the arm is held stationary and Gear C is rotated
once. B spins about its own center and the number of revolutions it makes is the ratio

Nc/ Ng. B will rotate by this number for every complete revolution of C.

Now consider that C is unable to rotate and the Arm A is revolved once. Gear B will
revolve 1 + (Nc / Ng) because of the orbit. It is the extra rotation that causes confusion.
One way to get around this is to imagine that the whole system is revolved once. Then
identify the gear that is fixed and revolve it back one revolution. Work out the revolutions

of the other gears and add them up. The following tabular method makes it easy.
Method 1

Suppose Gear C is fixed and the Arm A makes one revolution. Determine how many

revolutions the planet Gear B makes.

Step 1 is to revolve everything once about the centre.



Step 2 is to identify that C should be fixed and rotate it backwards one revolution

keeping the arm fixed as it should only do one revolution in total. Work out the

revolutions for B.

Step 3 is to simply add them up and find that the total revs of C is zero and the arm is 1.

Step Action A B C

1 Revolve all 1 1 1
once

2 Revolve Cby -1 |0 + Nc/ Ng -1
rev

3 Add 1 1+ Nc/Ng 0

The number of revolutions made by B is (1+ tc /tg). Note that if C revolves -1, then the

direction of B is opposite so + t¢ / tg

Example:

A simple epicyclic gear has a fixed sun gear with 100 teeth and a planet gear with 50

teeth. If the arm is revolved once, how many times does the planet gear revolve?

Solution:
Step Action A B C
1 Revolve all 1 1 1
once
2 Revolve Cby -1 |0 +100/50 -1
rev
3 Add 1 3 0

The design considered so far has no identifiable input and output. We need a design that

puts an input and output shaft on the same axis. This can be done in several ways.




- Arm

The arm is the input and Gear D is the output. Gear C is a fixed internal gear and is
normally part of the outer casing of the gear box. There are normally four planet gears
and the arm takes the form of a cage carrying the shafts of the planet gears. Note that

the planet gear and the internal gear both rotate in the same direction.

T T T~

Internal Gear External Gear
{Same Direction) (Reverse Direction)

Method 2

In this case the sun Gear D is fixed and the internal Gear C is made into the output.



Example:

- Arm

An epicyclic gear box has a fixed sun Gear D and the internal Gear C is the output with

300 teeth. The planet Gears B have 30 teeth. The input is the arm/cage A. Calculate the

number of teeth on the sun gear and the ratio of the gear box.

Solution:

NC=ND+2NB

300 =Np+2x30

Np = 300 — 60 = 240

Identify that Gear D is fixed and the arm must do one revolution, so it must be D that is

rotated back one revolution holding he arm stationary.

Step Action A B C D

1 Revolve all 1 1 1 1
once

2 Revolve Dby |0 240/ 30 240/300 -1
-1 rev

3 Add 1 9 1.8 0




The ratio A/C is then 1:1.8 and this is the gear ratio. Note that the solution would be the

same if the input and output are reversed but the ratio would be 1.8.
Method 3

In this design a compound Gear C and D is introduced. Gear B is fixed and Gears C
rotate upon it and around it. Gears C are rigidly attached to gears D and they all rotate at

the same speed. Gears D mesh with the output Gear E.

D =)
— —- 1A+ Arm
E B
e Sy
Output Input
p| [c[—1]

Example:

An epicylic gear box is shown above. Gear C has 100 teeth, B has 50, D has 50 and E

has 100. Calculate the ratio of the gear box.
Solution

Identify that Gear B is fixed and that A must do one revolution, so it must be B that is

rotated back one revolution holding A stationary.

Step Action A B C/D E

1 Revolve all 1 1 1 1
once

2 Revolve Bby |0 -1 VZ: -Va
-1 rev

3 Add 1 0 1% Ya

The ratio A/E is then %4:1 or 3:4



Note that the input and output may be reversed but the solution would be the same with

a ratio of 4:3 instead of 3:4.



SECTION -5 GEAR FAILURE & RELIABILITY ANALYSIS

The gears are subjected to high cyclic or alternating stresses. There are three common

modes of tooth failure:

1. Pitting is a fatigue phenomenon and occurs as a result of repeated stress cycles

which lead to surface and subsurface cracks.

2. Bending fatigue leading to tooth breakage. It is caused by the root bending
stress imposed by the transmitted load. In some cases pitting or wear may

weaken the tooth to the extent that breakage occurs.

3. Scuffing is a form of surface damage on the tooth flanks, which occurs when the

lubricant film fails allowing metal to metal contact.
Bending Stress Calculation

Gear overload or cyclic stressing of the gear tooth at the root beyond the endurance limit
of the material causes bending fatigue and eventually a crack originating in the root

section of the gear tooth and then the tearing away of the tooth or part of the tooth.

The bending stress calculation is predicted by Lewis equation, which is crucial in
determining the tooth width. The equation considers the gear tooth to be a cantilevered

beam and uses the bending of cantilever beam to simulate the bending stress acting on

the gear.
For = ———— = | F
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Gear Tooth as Cantilever



The figure above shows a cantilever of cross-sectional dimensions b and t, having a
length L and a force (load) F+, uniformly distributed across the face width b. The

maximum bending stress at the base of the gear tooth is given by:

Me (FrL) Y2 6 FrlL
il 3 2
b t9 b t
12 Eq. 16
Where

¢ S is the maximum bending stress at the base of the gear tooth, (psi)
¢ M = Maximum bending moment = Ft* L

e ¢ = Half thickness of the tooth (1) =1/2

e | =Moment inertia = bt*/12

e Fr=Tangential load acting at the tooth

e L = Length of the tooth

e t= Gear tooth thickness at base

e b = Width of gear face.

The maximum stress in a gear tooth occurs at point R as shown in the figure above.
Using the similarity of triangles, we can write:

t}rg L

x t,

This implies:



Substituting L in equation Eq. 16 above, we find

bt

6F, 2
24)(

3F
2 bx

Eq.17

Multiplying the numerator and denominator in Eq. 17 by the diametral pitch, P4

3F

Or

T _
2 bx

S

Where, Y is the form factor and is a function of the pressure angle and number of teeth.

3T Pa
2bx Py

The value of Y is available as in the form of a table or graph.

Outline Factor (Y) for use with Diametral Pitch

No. of 14:° PA | 20° PA No. of 142° PA | 20° PA l:fo. ;,i:/zo I2n0\jollju'?e
Teeth Involute Involute Teeth Involute Involute Teeth | Involute

10 176 .201 20 .283 .320 40 .336 .389

11 192 .226 21 .289 .326 45 .340 .399

12 210 245 22 292 .330 50 .346 408

13 223 .264 23 .296 .333 60 .355 421

14 .235 276 24 .302 337 70 .360 429

15 .245 .289 25 .305 .340 80 .363 436

16 .255 295 26 .308 .344 90 .366 442




17 .264 .302 28 314 .352 100 375 446
18 270 .308 30 .318 .358 150 378 458
19 277 314 35 327 373 Rack | .390 484

Using the Lewis equation, one can determine the value of the tooth width, b, by

substituting the maximum allowable stress value of material as follows:

S

Average (S) values in pounds per square inch

Material S (kpsi)
Steel (Normalized, 140 Bhn) 19-25
Steel, Q & T, 180 Bhn 25-33
Steel, Q & T, 300 Bhn 36 — 47
Steel, Q & T, 400 Bhn 42 - 56
Steel (Case carburized) 55-65
Steel (Nitrided) 34 -45
Cast Iron (AGMA Grade 30, 175 Bhn) 8.5
Cast Iron (AGMA Grade 40, 200 Bhn) 13
Bronze (AGMA 2C, Sand cast 40 ksi) 5.7
Nonmetallic Nylon 6000

In design of gears, the pinion is made harder than the gear. Why?

The Lewis equation indicates that the tooth bending stresses vary (1) directly with load

Fr, (2) inversely with tooth width b, (3) directly as a diametral pitch or inversely with the




tooth size (note that gear teeth size varies inversely with diametral pitch), and (4)

inversely with tooth shape factor Y.

F
o [77] [2
b Y
It can be observed that ‘Pd’ and ‘b’ are the same for pinion as well as for gear in a gear

pair. When different materials are used, the product Y and S decides the weaker

between the pinion and gear.

The Lewis form factor Y is dependent on the number of teeth and therefore Y will always
be less for pinion compared to gear. Therefore, when the same material is used for
pinion and gear, the pinion is always weaker than the gear. Pinions should therefore be
made approximately 40 BHN harder than their mating wheel to even out the life of the

two parts with respect to fatigue and wear.
Limitations of Lewis Equation

Lewis equation considers only the static loading and doesn’t take into account the
dynamics of meshing teeth. It assumes that at any time only one pair of teeth is in
contact and takes the total load. The effect of stress concentration or the effect of radial
component (Fr), which induces compressive stresses, is neglected. Further, it assumes
that the tangential component (F+) is uniformly distributed over the face width of the gear

(note that this is only possible when the gears are rigid and accurately machined).

The Lewis stress formula must therefore be modified to account for the varying

situations like stress concentration and geometry of the tooth.
A More Realistic Approach - AGMA Strength Equation

The AGMA approach, while based on the idealized Lewis equation, involves an
extensive list of empirical adjustment factors to account for the influence of various
manufacturing, assembly, geometric, loading, and material variability’s. While

incorporating all of these factors, the Lewis strength equation will be modified as follows:

SEIRIE

Where:

e Sb bending stress, (psi)



¢ Ka application factor
e Ks size factor
e Km load distribution factor
e Kv dynamic load factor or velocity factor
e P4is the diametral pitch
o J geometry factor
Note!

Dynamic factor Kv has been redefined as the reciprocal of that used in previous AGMA
standards. It is now greater than 1.0. In earlier AGMA standards it was less than 1.0.

Care must be taken in referring to work done prior to this change in the standards.

Application Factor, Ka, accounts for non-uniform transmitted loads. It allows for the
non-uniformity of input and/or output torque inherent in the machinery connected to the
gears. Some of the pertinent application influences include type of load, type of prime
mover, acceleration rates, vibration, shock, and momentary overloads. Suggested

factors are tabulated below:

Suggested Application Factors Ka for Reduction Gears

Driven Machinery Driving Machinery
Uniform Light Heavy
Electric Shocks Shocks
motor, Multi- Single
Steam cylinder cylinder
turbine combustion | combustion
Gas turbine | engine engine
Uniform Generator, Belt conveyor,
Light Elevator, Electric
hoist, Machine tool feed
1 1.25 1.5
drive, Ventilator, Turbo-
blower, Turbo-compressor,
Mixer (constant density)




Medium Machine tool main drive,
Shocks Heavy elevator, Crane
turning gears, Mine
ventilator, Mixer (variable
density), Multi-cylinder,
Piston pump, Feed pump

1.25

1.5

1.75

press

Heavy Press, Shear, Rolling mill
Shocks drive, Heavy centrifuge,

Heavy feed pump, Pug mill,
Power shovel, Rotary

drilling apparatus, Briquette

1.75

2.25

Size Factor, Ks - reflects the influence of non-homogeneous materials. The size factor

Ks corrects the stress calculation to account for the known fact that larger parts are more

prone to fail.

e Usually “1” is used.

o Forlarge teeth, 1.25 to 1.5 would be used.

Load Distribution or Mount Factor, Km is intended to account for distribution of load

across face.

Load Distribution Factors K, for Spur and Helical Gears

Condition of support

Face width, b, (inches)

<2 6 9 16
Spur | Helical | Spur Helical | Spur Helical | Spur Helical
Accurate mounting, low | 1.3 1.2 1.4 1.3 1.5 14 1.8 1.7

bearing clearances,
minimum elastic
deflection, precision

gears




Less rigid mountings, 1.6 1.5 1.7 1.6 1.8 1.7 2.0
less accurate gears,

contact across full face

Accurate and mounting Over 2.0
such that less than full

face contact exists

Dynamic Effect (Kv) is intended to correct for the effects of the speed of rotation and
the degree of precision on gear accuracy. Barth first expressed the velocity factor in

terms of the current AGMA standards; they are represented as:

600 + v
Kv = i
500 (Castiron, cast profile)
_ 1200 +v (Cut or milled profile)
1200

Where, v is the pitch-line velocity, in feet per minute.

50 +/V

Ky= ————— (Hobbed or shaped profile)
50

78 +Jv

Ky = (Shaved or ground profile)
78

These equations form the basis for the AGMA approach to the bending strength of gear
teeth. They are in general use for estimating the capacity of gear drives when life and
reliability are not important considerations. The equations can be useful in obtaining a

preliminary estimate of gear sizes needed for various applications.

Geometry Factor, J is a modification of the form factor Y to account for three more
influences: stress concentration, load sharing between the teeth, and changing the load
application point to the highest point of single-tooth contact. This factor depends on the
shape of the tooth and the distance from the tooth root to the highest point of single-
tooth contact. The value of spur gears with 20 pressure angle and full-depth teeth is

found from the graph below:
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The transmitted tooth load Ft is equal to the torque divided by the pitch radius for spur

and helical gears.
Gears Reliability

The previous paragraphs have provided an insight into the specific characteristics and
failure modes of the gears. The performance and the useful life of a machine is also
governed by the reliability of gears. The gears manufactured to high standards of

American Gear Manufacturer’s Association (AGMA) provide extreme reliability.

Under normal circumstances, reliability is evaluated as part of the reliability factor (Kg)
which accounts for the effect of the normal statistical distribution of failures found in
material testing. Gear teeth designed to AGMA standards are based upon a statistical
probability of fewer than one failure in 100. If your experience show that Kg of 1.25 has
given satisfactory service in the past with normal maintenance, the identical gear drive
should be used on new purchases. If, on the other hand, you have a new, yet-to-be-
proved application, a more appropriate reliability factor may be one failure in 1,000 or
even one in 10,000.

For any given load (L), the life and survival rate (reliability) may be correlated through:
L = S «life factor (K\) / reliability factor (Kg)

Where:



e L =load
e S = maximum allowable stress for the property of steel

o Kgr = the reliability factor, caters for survival rates other than 99%. Since the
survival contours are essentially parallel to one another on a logarithmic scale,

then simple multiplication factors enable load correlation, as indicated in the table

below:
RELIABILITY FACTOR % Survival Kr
fewer than one failure in 10,000 99.99 1.50
fewer than one failure in 1,000 99.9 1.25
fewer than one failure in 100 99 1.00
fewer than one failure in 10 90 0.85

e K_ = the life factor (K. for bending, C, for pitting) caters for lives other than 10’
cycles. Since the load-life diagrams for all the steels considered are of the same
shape essentially, normalizing by the allowable stress will result in a unique K.

(or Cy) vs. life curve for all steels.

GEAR MATERIALS

When specifying gear materials, properties such as resistance to wear, good fatigue
strength as well as a low coefficient of friction are desirable. Alloy steels are most
commonly used in manufacture of gears. They offer high strength and a wide range of
heat treatment properties. The material composition below indicates how properties vary

with commonly used alloy materials:

1. Nickel - Increases hardness and strength.

2. Chromium - Increases hardness and strength but the loss of ductility is greater.
It refines the grain and imparts a greater depth of hardness. It has high degree of

wear resistance.



Manganese - It gives greater strength and a high degree of toughness than

chromium.

Vanadium - The hardness penetration is greatest. The loss of ductility is also

more than any other alloys.
Molybdenum - Increases strength without affecting the ductility.

Chrome - Nickel Steels - The combination of the two alloying elements,
chromium and nickel, adds the beneficial qualities of both. Gears made from 300
series stainless steel, containing 18% chromium and 8% nickel, are essentially
nonmagnetic and cannot be hardened by heat treatment. They are
recommended for low torque applications as their mechanical properties and

resistance is low.

The steel gears are usually heat treated in order to combine properly the toughness and

tooth hardness. It is NOT essential for both pinion and wheel gears to be of the same

material. As the smaller gear will have to rotate more turns than the larger gear, it is

more prone to wear and fatigue. It is common, therefore, to choose a material with

improved properties for the pinion to give a gear pair with a near matching strength and

durability.

Simplified Rules of Thumb for Design of Gears

The face width of spur gears should be 3 to 5 times the circular pitch.

If possible, the ratio of face width to pitch diameter should be kept small (<2) for
less sensitivity to misalignment and uneven load distribution due to load-sensitive

deflections.

Increasing the face width will decrease wear and fatigue, but the dynamic load

will increase.

A coarser tooth (smaller diametral pitch) will improve the fatigue performance but
not the wear performance. For a given tooth design, only a harder material will

improve the wear.
Larger pitch diameters have lower tangential forces and lower dynamic loadings.

Decreasing the tooth error decreases the dynamic loading.



SECTION- 6 HOW TO SPECIFY & SELECT GEAR DRIVES

The choice of a gear drive depends on the application, its environment and the physical
constraints of the system. The gearbox geometry is defined by four parameters which

are determined by the characteristics of the driving and driven machinery:

Horsepower transmitted
Speed of the driving gear

Ratio required (reduction or increasing)

W~

Arrangement of shafting

Gears can either be obtained as standard components from a manufacturer's catalogue
or alternatively specially designed and manufactured. Gear catalogues tend to display
only geometric and materials data of stock gears rather than specific operational
information. This is because functional behavior will vary with an application and it is not
feasible to give comprehensive data covering all operational conditions within a

catalogue. The operational factors for deciding the type of the gear are:

Shaft orientation
Operating environment
Speed ratio

Nature of load

Service factor

Gear drive rating

Overhung load

© N o o bk 0D~

Gear lubrication

©

Gear materials and heat treatment
10. Efficiency

11. Noise considerations

12. Maximum speed

13. Power transmission capacity

14. Costs

All must be carefully evaluated to make the right decision.



Shaft Orientation:

Various shaft arrangements are possible. Use:

o Spur & Helical Gears, when the shafts are parallel

o Bevel Gears, when the shafts intersect at right angles, and

¢ Worm & Worm Gears, when the axes of the shaft are perpendicular and not
intersecting.

e As a special case, when the axes of the two shafts are neither intersecting nor

perpendicular, crossed helical gears are employed.

Operating Environment:

Check your application and the operating environment.

Contact seals should be used on input and output shafts when the unit operates in dusty
environments or where water is splashed around the unit. In atmospheres laden with
abrasive dust or in areas hosed down with water under pressure, two contact seals may
be required on each shaft. Typically, an enclosure around the gears with oil lubrication is
the preferred design, but grease-lubricated open gears can be used in relatively clean

environments.

Moisture or high humidity is another concern. A key instance of this is a food processing
environment requiring washdowns. In such cases, consider reducers with special epoxy

coatings, external shaft seals, and stainless steel shaft extensions and hardware.

Speed Ratio:

You arrive at the specific gear ration by dividing the motor full-load speed to the
revolutions per minute (RPM) of the driven equipment. Theoretically, there is no limit to
the speed ratio that can be designed into a single reduction gearbox, but there is an
approximate ratio for each type of gear above where the materials are not being used

economically. These ratios are:



Type Normal Ratio Range

Spur 1:1 to 6:1
Straight Bevel 3:2to 5:1
Spiral Bevel 3:2to4:1
Worm 5:1to 75:1

Hypoid 10:1 to 200:1
Helical 3:2to 10:1

Cycloid 10:1 to 100:1

Important!

For high speed reduction, two-stage or three-stage construction should be used.

For applications with variable frequency drives, exact gear ratios become less
important. In such cases, it is best to select the manufacturer’s standard ratios,
which is less expensive. Variable or multi-speed applications, however, require
special considerations to provide adequate splash lubrication at the slowest

speed, without excessive heating or churning at the higher speed.

Nature of load:

A gear drive is one part of a power system which has certain load characteristics

peculiar to the specific application. The operating characteristics fall into two load

categories: constant torque or constant horsepower.

Constant torque occurs when load demand varies proportionally with a change in
speed. Examples are conveyors, stokers, and reciprocating compressors. Gear
drives are basically constant torque machines requiring no selection
modifications.

Constant horsepower implies load demand is constant regardless of speed.

Examples are lathes, boring mills, radial drill presses, etc. The gear drive must



be selected for the slowest speed at which the motor will deliver its rated

horsepower capacity.

The type of load on the gear drive also depends on the operational characteristics of the
prime mover. Electric motors and turbines produce relatively smooth operation, whereas

an internal combustion engine does not afford so smooth a load.

Service factor (SF):

Service factors are used to take into consideration intangible operating conditions such

as misalignments, vibrations, transient loads and shocks.

The actual horsepower is multiplied by the service factor to obtain an equivalent
horsepower, and the gear unit selected must have a rating equal to or greater than the
equivalent horsepower. Typically, this service rating is determined by multiplying the
required horsepower by the appropriate service factor based on the equipment, duty
cycle, and type of prime mover. A SF value between 1.25 and 2.0 is typically chosen and

then multiplied by the motor nameplate power to establish that required by the driven

equipment.
Type of Load Service Factors
Intermittent or 8 -10hrs per day Continuous 24hrs
3hrs per day per day
Uniform 0.80 1.00 1.25
Light shock 1.00 1.25 1.50
Medium shock 1.25 1.50 1.80
Heavy shock 1.50 1.80 2.00
Important!

Unless otherwise designated, assume manufacturer’s ratings are based on an AGMA-

defined service factor of 1.0, meaning continuous operation for 10 hours per day or less



with no recurring shock loads. If conditions differ from this, input horsepower and torque
ratings must be adjusted for specific applications. A higher SF, or larger gear drive size,
should be selected when peak running loads are substantially greater than normal

operating loads.

Gear Drive Rating:

The function of power transmission gear drive is to reliably transmit torque and rotary
motion between a prime mover and a driven piece of equipment at acceptable levels of
noise, vibration and temperature. For every gear drive there is a mechanical rating and

thermal rating.

¢ Mechanical Rating — The mechanical rating indicates the load the gear drive
can transmit based on stress and wear considerations. The relationship between
gear life and load is related to the service factor (SF); for example, if SF is

increased by 30 percent, the gear tooth life will increase 10 times.

e Thermal Rating — The thermal rating specifies the power that can be transmitted
continuously for 3 hours or more without exceeding a specified temperature rise
above ambient. Typically, enclosed drives operate at a temperature rise of 70 to
100°F above ambient temperature. The maximum acceptable oil-sump
temperature is 200°F per AGMA. Exceeding these guidelines can shorten the life.
Be sure to provide adequate air space around for heat dissipation, or adjust the
oil viscosity where temperatures vary widely. For low-temperature operation, the
oil should have a pour-point lower than that of the extreme minimum temperature
encountered. Also, the oil may require pre-heating under extremely cold starting

conditions.

Overhung Load:

This is a force applied at right angles to a shaft beyond the shaft’'s outermost bearing.
Too much overhung load can cause bearing or shaft failure. Unless otherwise stated, a
gearbox manufacturer's overhung load maximums are rated with no shaft attachments
such as sheaves or sprockets. The American Gear Manufacturers Association provides

factors, commonly called “K” factors, for various shaft attachments by which the



manufacturer's maximum should be reduced. Overhung load can be eased by locating a
sheave or sprocket as close to the reducer bearing as possible. In cases of extreme

overhung load, an additional outboard bearing may be required.

The following formula can be used to calculate overhung load (OHL):

OHL (pounds) =T x K/R

Where,

e T= Torque (inch-pound)
o K = load factor constant equals 1.00 for a chain and sprocket, 1.25 for a gear,
and 1.5 for a pulley and a v-belt.

¢ R =Radius of gear

Gear Lubrication:

The purpose of the gearbox lubrication system is to provide an oil film at the contacting
surfaces of working components and absorb heat generated in the gearbox so that
component temperatures are not excessive. The majority of the oil flow is required for

the cooling function.

As stated in the previous paragraph, AGMA thermal ratings are based on a maximum oil
sump temperature of 200°F. In turbo-machinery applications, the thermal rating is
usually less than the mechanical rating and an external cooling system is required.
When designing a lubrication system, the initial step is to estimate the oil flow to the

components and the gearbox efficiency.
The temperature rise across the gearbox can then be calculated:
At=Q/m Cp
Where:
e At = Temperature rise, °F
e m = Flow, Lbs/min (Note: 1 GPM = 7.5 Lbs/min)
e Q= Heat, BTU/min (Note: Q = HP x 42.4)

e Cp = Specific Heat = .5 BTU/Lb, °F



For example, a gearbox transmitting 1000 HP with 98% efficiency will reject 20 HP or
848 BTU/min of heat to the oil. If the gearbox flow is 20 GPM or 150 Lbs/min, the
temperature rise across the gearbox will be 11°F. Typical operating temperatures for
turbo-machinery gearboxes are around 130°F with a rise of 30°F. These values are for

mineral oils; synthetic oils may operate at higher temperature levels.

The choice of lubricant depends on operating conditions:

e At peripheral speeds up to 3500 fpm, it is preferable to use a lubricant with a low
viscosity to avoid excessive churning of the fluid and to facilitate splash

lubrication.

o For very high gear forces, lubricants with a greater viscosity are used, and for

faster gear speeds a pressurized feed system may be necessary.

Most turbo-machinery gearboxes utilize an AGMA type 1 or 2 lubricant.

The amount of oil flow supplied to a gear mesh is generally based on experience and

experimental data. A rule of thumb sometimes used is .02 Lbs/min/HP.

Important!

Gear drives are best driven at input speeds common in industrial electric motors,
typically 1200, 1800 or 2500 RPM. This provides sufficient “splash” for the reducer’s
lubrication system, but not so much as to cause oil “churning.” For input speeds under
900 RPM or above 3000 RPM, consult the manufacturer. Alternative lubricants may be

suggested. Note for peripheral speeds less than 100 fpm grease will suffice.

Gear Materials and Heat Treatment:

Proper choice of gear material is probably the most important factor in the successful

operation of a gear set. The material for any gear is selected based on:

o The working condition, i.e. power, speed and torque to be transmitted;
o Working environment, i.e., temperature, vibration, chemical, etc.
e Ease of manufacture; and

e Overall cost of material and manufacture.



In choosing a gear material the tooth hardness and type of heat treatment to achieve

that hardness must be considered.

Gears, case hardened by “Carburizing”, provide the best metallurgical characteristics
combining good case structure with reasonable ductility. Carburizing produces the
"strongest" gear providing bending and pitting fatigue resistance and an excellent wear
surface. A disadvantage of carburizing is that gear teeth distort during the heat treatment
and, in order to obtain high precision, grinding after hardening is required. Surface
hardness attained by carburizing is in the order of Rc 55-62. For critical applications Rc
60 minimum should be specified. The best carburizing steel to achieve high load
carrying capacity is SAE 9310 (AMS 6260 or AMS 6265). Other carburizing steels used
include SAE 8620, 4620, 4320 and 3310.

The “Nitriding” process is used to case harden gears when distortion must be held to a
minimum. Often the gears are finish cut and then nitrided, eliminating the grinding
requirement. Nitrided gears do not have the bending and pitting fatigue resistance of
carburized gears but do provide a hard, wear resistant case. With nitriding steel such as
AMS 6475 (nitralloy N) or AMS 6470 (nitralloy 135), case hardnesses of RC 65-70 can
be achieved. Steels such as SAE 4140 and 4340 are nitrided to hardnesses of 320 to
380 BHN.

Through hardened gears in turbo-machinery, units are generally in the 300-400 BHN
hardness range. Typical through hardening steels are SAE 4140 and 4340.

Often, combinations of pinion and gear materials and heat treatments are used. For
instance, if the gear is very large it may not be practical to harden, and the gear set

might consist of a carburized and ground pinion driving a through hardened gear.

Efficiency:
The losses in a gear transmission system can be divided into two categories:

1. Load losses: which are proportional to the load transmitted, and are mainly due

to tooth’s friction.

2. No-load losses: which are constant for a given operating speed and

temperature, and to the churning of the lubricant, oil seal friction, etc.



The tooth losses of helical, spur and bevel gears are small, since their tooth actions are
predominantly rolling. The no-load losses can vary from a small proportion to as much
as 80% depending on the gear peripheral speeds and the types of bearings used. A
good practical guide to the efficiency of this class of gear, mounted in an anti-friction
bearing and lubricated with oil, is to allow 1% loss per gear mesh when transmitting full
load. On the other hand, at part load, the efficiency will be lower since the fixed no-load

losses are a higher percentage of the smaller total load.

Worm gear tooth action, on the other hand, is predominantly sliding. Therefore, the tooth
losses are higher comparing with helical, spur, and bevel gears. They depend mainly on
the load angle of the worm and the coefficient of friction at the contact, which varies

widely with speed.

Gear Efficiency Comparison Table

Type Norgaar:gliatlo Efficiency Range
Spur 1:1to 6:1 94-98%
Straight Bevel 3:2to 5:1 93-97%
Spiral Bevel 3:2to0 4:1 95-99%
Worm 5:1to 75:1 50-90%
Helical 3:2t0 10:1 94-98%
Hypoid 10:1 to 200:1 80-95%

Noise Considerations:

The most significant factor for noise level is the total contact ratio. Gear noise may be
reduced by increasing either the profile or face contact ratio. Studies indicate that high-
contact-ratio spur gears (with a 58 percent increase in profile contact ratio) showed an
average noise reduction of about 2 dB over standard gears. The same applies to helical

and other gear types.

The other factors are the speed and the gear tooth profile. The involute tooth profile is

typically quieter than their non-involute counterparts.
Maximum Speed:

A high speed unit is defined as operating with a pinion speed of 3600 revolutions per
minute and higher, or pitch line velocities of 5000 feet per minute and higher (V = .262 *

Pitch diameter * Revolutions per minute).



Speed limits are generally based on a maximum pitch line velocity and sliding velocity in
case of worm gears. Approximate maximum pitch line speeds for various types of high

precision gears are:

e Spur =20,000 fpm

e Helical = 40,000 fpm

e Straight Bevel = 10,000 fpm
e Spiral Bevel = 25,000 fpm

e Worm = 14,000 fpm

Standard catalog gear units are listed to approximately 20,000 feet per minute.
Applications exceeding this speed must be considered special and exceptional care

must be taken in their design and manufacture.

Many of the speed limitations are concerned with the acceptable noise level and what is
acceptable on one application may be unacceptable for the other. Therefore, the figures

should not be taken as strict rules.

Note - The noise increases sharply with the increase in peripheral speed and to a lesser

extent with the increase in tooth load.
Power Transmission Capacity:

Power capacity of gears is limited by resistance to two forms of failure: 1) one being
tooth’s surface fatigue, (pitting), which sometimes is referred to as wear rating, and 2)
the other one is the tooth’s bending fatigue, which is referred to as strength rating.
Current manufacturing capacity, known materials, and method of lubrication limit the
maximum power that can be transmitted through gears of different types. Approximate

maximum powers are:
e Spur Gear = 25,000 HP
e Helical Gear = 25,000 HP
e Spiral bevel = 2,950 HP

¢ Worm Gear = 1,000 HP



These values vary with ratio and are only intended to give practical guidance on what is

available commercially.

Costs:

Spur gears are the cheapest. They are not only easy to manufacture but there
exists a number of methods to manufacture them.

Single reduction worm gear units of high-speed ratio have significantly higher
power losses than other types, but set against this are the low initial cost, high
reliability due to the small number of components, and the low noise level.

Helical gear units have low power losses, but have higher initial cost, often
requiring two or three reduction stages against it making it slightly less reliable

with a higher noise level.

Generally gear costs increase with module size (i.e. tooth size and hence gear
diameter) and gear type (due to manufacturing complexity). Typically a helical
gear with a metric module of, say, 3 will be about two to three times more

expensive than one, with the same number of teeth, with a module of 2.

Also, spur gears will be less expensive than comparably sized helical gears, and
in turn, helical gears will cost less than internal, double helical and skew helical

gear types.

Important!

Larger diameter gears have larger bore sizes and so require larger shafts and possibly

bearings also; this adds further to the overall cost.

CODES & STANDARDS

Gears can either be obtained as standard components from a manufacturer's catalogue

or alternatively specially designed and manufactured. American gear manufacturer’s
association manuals, AGMA 2001-C95 or AGMA-2101-C95 provide guidelines to the

selection of gears. Other relevant standards are:

ISO 6336-1 to 5:1996

British BS 4582

German DIN 867 & 3963



Summary

In transmitting rotary motion from one shaft to another, gears provide a positive ratio
type of drive. Gears are of several categories and can be combined in a multitude of
ways, some of which are meshing circular spur gears, rack and pinion spur gears, and
worm gears. Helical and herringbone gears utilize curved teeth for efficient, high-
capacity power transmission. Worm gears, driven by worms, transmit motion between

non-intersecting right-angle axes.

When two gears are connected, they rotate in opposite directions. The only way that the
input and output shafts of a gear pair can be made to rotate in the same sense is by
interposition of an odd number of intermediate gears. Such a gear train is called a simple
train. If there is no power flow through the shaft of an intermediate gear, then it is an idler
gear. The gear that does the driving is known as the driver and the other is known as the
driven gear. If two gears have the same number of teeth, then one turn of driver gear
causes the driven gear to turn once. When the driver gear is smaller than the driven
gear, then the speed is reduced and this amplifies the torque in proportion to their teeth

numbers. The pinion is the smallest gear and the larger gear is called the gear wheel.

The shape of the gear teeth is important in order to produce a smooth transfer of the
motion. When the teeth action is such that the driving tooth moving at constant angular
velocity produces a proportional constant velocity of the driven tooth, the action is
termed a conjugate action. The teeth shape universally selected for the gear teeth is the

involute profile.

One essential point for the proper meshing of the gears is that the size of the teeth on
the pinion should be the same as the size of the teeth on the wheel. The module must
be common to both gears. Pitch circles contact one another at the pitch point and the
pinion's pitch line velocity must be identical to the wheels pitch line velocity. At the pitch
point, it develops a tangential component of action-reaction due to contact between the

gears.




