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BASIC FUNDAMENTALS OF GEAR DRIVES 

A gear is a toothed wheel that engages another toothed mechanism to change speed or 

the direction of transmitted motion. Gears are generally used for one of four different 

reasons: 

1. To increase or decrease the speed of rotation; 

2. To change the amount of force or torque; 

3. To move rotational motion to a different axis (i.e. parallel, right angles, rotating, 

linear etc.); and 

4. To reverse the direction of rotation. 

Gears are compact, positive-engagement, power transmission elements capable of 

changing the amount of force or torque. Sports cars go fast (have speed) but cannot pull 

any weight. Big trucks can pull heavy loads (have power) but cannot go fast. Gears 

cause this. 

Gears are generally selected and manufactured using standards established by 

American Gear Manufacturers Association (AGMA) and American National Standards 

Institute (ANSI).  

This course provides an outline of gear fundamentals and is beneficial to readers who 

want to acquire knowledge about mechanics of gears. The course is divided into 6 

sections: 

Section -1 Gear Types, Characteristics and Applications 

Section -2 Gears Fundamentals 

Section -3 Power Transmission Fundamentals 

Section -4 Gear Trains 

Section -5 Gear Failure and Reliability Analysis 

Section -6 How to Specify and Select Gear Drives 

 



SECTION -1  GEAR TYPES, CHARACTERISTICS & APPLICATIONS 

The gears can be classified according to: 

1. the position of shaft axes 

2. the peripheral velocity 

3. the type of gears 

4. the teeth position 

According to the position of shaft axes: 

Gears may be classified according to the relative position of the axes of revolution. The 

axes may be: 

1. Parallel shafts where the angle between driving and driven shaft is 0 degree. 

Examples include spur gears, single and double helical gears.  

2. Intersecting shafts where there is some angle between driving and driven shaft. 

Examples include bevel and miter gear.  

3. Non-intersecting and non-parallel shafts where the shafts are not coplanar. 

Examples include the hypoid and worm gear. 

 

According to peripheral velocity: 

Gears can be classified as: 

1. Low velocity type, if their peripheral velocity lies in the range of 1 to 3 m/sec. 

2. Medium velocity type, if their peripheral velocity lies in the range of 3 to 15 

m/sec. 

3. High velocity type, if their peripheral velocity exceeds 15 m/sec. 



According to type of gears: 

Gears can be classified as external gears, internal gears, and rack and pinion.  

1. External gears mesh externally - the bigger one is called “gear” and the smaller 

one is called “pinion”.  

2. Internal gears mesh internally - the larger one is called “annular” gear and the 

smaller one is called “pinion”. 

3. Rack and pinion type – converts rotary to linear motion or vice versa. There is a 

straight line gear called “rack” on which a small rotary gear called “pinion” moves.  

According to teeth position: 

Gears are classified as straight, inclined and curved.  

1. Straight gear teeth are those where the teeth axis is parallel to the shaft axis.  

2. Inclined gear teeth are those where the teeth axis is at some angle.  

3. Curve gear teeth are curved on the rim’s surface. 

TYPE OF GEARS 

Here is a brief list of the common forms.  

 



SPUR GEARS  

Spur gears are used to transmit power between two parallel shafts. The teeth on these 

gears are cut straight and are parallel to the shafts to which they are attached.  

 

Spur Gears 

Characteristics:  

• Simplest and most economical type of gear to manufacture.  

• Speed ratios of up to 8 (in extreme cases up to 20) for one step (single reduction) 

design; up to 45 for two step design; and up to 200 for three-step design. 

Limitations:  

• Not suitable when a direction change between the two shafts is required. 

• Produce noise because the contact occurs over the full face width of the mating 

teeth instantaneously. 

HELICAL GEARS  

Helical gears resemble spur gears, but the teeth are cut at an angle rather than parallel 

to the shaft axis like on spur gears. The angle that the helical gear tooth is on is referred 

to as the helix angle. The angle of helix depends upon the condition of the shaft design 

and relative position of the shafts. To ensure that the gears run smoothly, the helix angle 

should be such that one end of the gear tooth remains in contact until the opposite end 

of the following gear tooth has found a contact. For parallel shafts, the helix angle should 

not exceed 20 degrees to avoid excessive end thrust. 



 

Helical Gears 

Characteristics:  

The longer teeth cause helical gears to have the following differences from spur gears of 

the same size: 

• Tooth strength is greater because the teeth are longer than the teeth of spur gear 

of equivalent pitch diameter. 

• Can carry higher loads than can spur gears because of greater surface contact 

on the teeth.  

• Can be used to connect parallel shafts as well as non-parallel, non-intersecting 

shafts.  

• Quieter even at higher speed and are durable.  

Limitations:  

• Gears in mesh produce thrust forces in the axial directions.  

• Expensive compared to spur gears.  

BEVEL GEARS  

A bevel gear is shaped like a section of a cone and primarily used to transfer power 

between intersecting shafts at right angles. The teeth of a bevel gear may be straight or 

spiral. Straight gear is preferred for peripheral speeds up to 1000 feet per minute; above 

that they tend to be noisy. 



 

Characteristics: 

• Designed for the efficient transmission of power and motion between intersecting 

shafts. A good example of bevel gears is seen as the main mechanism for a 

hand drill. As the handle of the drill is turned in a vertical direction, the bevel 

gears change the rotation of the chuck to a horizontal rotation.  

• Permit a minor adjustment during assembly and allow for some displacement 

due to deflection under operating loads without concentrating the load on the end 

of the tooth.  

MITTER GEARS 

Mitter gears are identical to bevel gears with the exception that both gears always have 

the same number of teeth.  

 

Characteristics: 

• They provide a steady ratio; other characteristics are similar to bevel gears. 

• They are used as important parts of conveyors, elevators and kilns.  

Limitations 

• Gear ration is always 1 to 1 and therefore not used when an application calls for 

a change of speed. 



HYPOID GEARS 

Hypoid gears are a modification of the spiral bevel gear with the axis offset. The 

distinguishing feature of hypoid gears is that the shafts of the pinion and ring gear may 

continue past each other, never having their axis intersecting. 

 

Hypoid Gears 

The major advantages of the hypoid gear design are that the pinion diameter is 

increased, and it is stronger than a corresponding bevel gear pinion. The increased 

diameter size of the pinion permits the use of comparatively high gear ratios and is 

extremely useful for non-intersecting shaft requirements such as automotive applications 

where the offset permits lowering of the drive shaft. 

WORM GEARS  

Worm gears are used to transmit power between two shafts that are at right angles to 

each other and are non-intersecting.  

Worm gears are special gears that resemble screws, and can be used to drive spur 

gears or helical gears. Worm gearing is essentially a special form of helical gearing in 

which the teeth have line contact and the axes of the driving and driven shafts are 

usually at right angles and do not intersect.  



 

Worm Gear 

Characteristics: 

• Meshes are self-locking. Worm gears have an interesting feature that no other 

gear set has: the worm can easily turn the gear, but the gear cannot turn the 

worm. This is because the angle on the worm is so shallow that when the gear 

tries to spin it, the friction between the gear and the worm holds the worm in 

place. This feature is useful for machines such as conveyor systems, in which 

the locking feature can act as a brake for the conveyor when the motor is not 

turning.  

• Worm gear is always used as the input gear, i.e. the torque is applied to the input 

end of the worm shaft by a driven sprocket or electric motor. 

• Best suited for applications where a great ratio reduction is required between the 

driving and driven shafts. It is common for worm gears to have reductions of 

20:1, and even up to 300:1 or greater.  

Limitations:  

• Yield low efficiency because of high sliding velocities across the teeth, thereby 

causing high friction losses.  

• When used in high torque applications, the friction causes the wear on the gear 

teeth and erosion of the restraining surface.  

 

RACKS (STRAIGHT GEARS)  

The rack is a bar with a profile of the gear of infinite diameter, and when used with a 

meshing pinion, enables the rotary to linear movement or vice versa.  



 

Characteristics: 

• Racks with machined ends can be joined together to make any desired length. 

• The most well-known application of a rack is the rack and pinion steering system 

used on many cars in the past. The steering wheel of a car rotates the gear that 

engages the rack. The rack slides right or left, when the gear turns, depending on 

the way we turn the wheel. Windshield wipers in cars are powered by a rack and 

pinion mechanism.  

HERRINGBONE (DOUBLE HELICAL) GEARS  

Herringbone, also known as double helical gears, are used for transmitting power 

between two parallel shafts. Double helical gearing offers low noise and vibration along 

with zero net axial thrust.  

 

Herringbone Gears 

 



Characteristics: 

• Conduct power and motion between non-intersecting, parallel axis that may or 

may not have center groove with each group making two opposite helices. Action 

is equal in force and friction on both gears and all bearings, and free from any 

axial force.  

• Offer reduced pulsation due to which they are highly used for specialized 

extrusion and polymerization. The most common application is in heavy 

machinery and power transmission. 

• Applications include high capacity reduction drives like that of cement mills and 

crushers. 

Limitations: 

• Manufacturing difficulty makes them costlier.  

• Noise level of double helical gears averaged about 4dB higher than otherwise 

similar single helical gears. The phenomenon is due to the axial shuttling which 

occurs as the double helical pinion moves to balance out the net thrust loading. 

INTERNAL GEAR 

Internal gears have their teeth cut parallel to their shafts like spur gears, but they are cut 

on the inside of the gear blank. The properties and teeth shape are similar as the 

external gears except that the internal gears have different addendum and dedendum 

values modified to prevent interference in internal meshes.  

 

Internal Gear 

 



Characteristics:  

• In the meshing of two external gears, rotation goes in the opposite direction. In 

the meshing of an internal gear with an external gear the rotation goes in the 

same direction. 

• The meshing arrangement enables a greater load carrying capacity with 

improved safety (since meshing teeth are enclosed) compared to equivalent 

external gears.  

• Shaft axes remain parallel and enable a compact reduction with rotation in the 

same sense. Internal gears are not widely available as standard. 

• When they are used with the pinion, more teeth carry the load that is evenly 

distributed. The even distribution decreases the pressure intensity and increases 

the life of the gear.  

• Allows compact design since the center distance is less than for external gears. 

Used in planetary gears to produce large reduction ratios.  

• Provides good surface endurance due to a convex profile surface working 

against a concave surface.  

Applications:  

• Planetary gear drive of high reduction ratios, clutches, etc. 

Limitations: 

• Housing and bearing supports are more complicated because the external gear 

nests within the internal gear.  

• Low ratios are unsuitable and in many cases impossible because of 

interferences.  

• Fabrication is difficult and usually special tooling is required. 

 

 

 

 



SUMMARY  

Type  Features  Applications  Comments Regarding 
Precision  

Spur  Parallel Shafting.  

Adapted to high 

speed 

applications 

where noise is 

not a concern. 

 

Applicable to all 

types of trains 

and a wide 

range of velocity 

ratios.  

Simplest tooth elements 

offering maximum precision. 

First choice, recommended 

for all the gear meshes, 

except where very high 

speeds and loads or special 

features of other types, 

such as right angle drive, 

cannot be avoided.  

Helical  Parallel Shafting. 

Very high speeds 

and loads. 

Efficiency slightly 

less than spur 

mesh.  

 

Most applicable 

to high speeds 

and loads; also 

used whenever 

spurs are used.  

Equivalent quality to spurs, 

except for complication of 

helix angle. Recommended 

for all high-speed and high-

load meshes. Axial thrust 

component must be 

accommodated.  

Crossed  

Helical  

Skewed shafting. 

Point contact.  

High sliding  

Low speeds  

Light loads  

 

Relatively low 

velocity ratio; 

low speeds and 

light loads only. 

Any angle skew 

shafts.  

Precision Rating is poor. 

Point contact limits capacity 

and precision. Suitable for 

right angle drives, if light 

load. A less expensive 

substitute for bevel gears. 

Good lubrication essential 

because of point of contact 

and high sliding action.  



Internal spur  Parallel shafts  

High speeds  

High loads  

 

Internal drives 

requiring high 

speeds and high 

loads; offers low 

sliding and high 

stress loading; 

good for high 

capacity, long 

life. Used in 

planetary gears 

to produce large 

reduction ratios.  

Not recommended for 

precision meshes because 

of design, fabrication, and 

inspection limitations. 

Should only be used when 

internal feature is 

necessary.  

Bevel  Intersecting 

shafts,  

High speeds,  

High loads.  

 

Suitable for 1:1 

and higher 

velocity ratios 

and for right-

angle meshes 

(and other 

angles)  

Good choice for right angle 

drive, particularly low ratios. 

However complicated both 

form and fabrication limits 

achievement of precision. 

Should be located at one of 

the less critical meshes of 

the train.  

Worm mesh  Right-angle skew 

shafts,  

High velocity 

ratio,  

High speeds and 

loads, Low 

efficiency, Most 

designs 

nonreversible.  

 

High velocity 

ratio  

Angular meshes  

High loads  

Worm can be made to high 

precision, but worm gear 

has inherent limitations. To 

be considered for average 

precision meshes, but can 

be of high precision with 

care. Best choice for 

combination high velocity 

ratio and right-angle drive. 

High sliding requires 

excellent lubrication. 



SECTION -2:  GEARS FUNDAMENTALS & TERMINOLOGY 

In this section, we will discuss the gear fundamentals, considering spur gears. It is the 

most common and the simplest form, and hence the most comprehensible. The same 

principles apply to spiral gears and bevel gears too. 

A gear can be defined in terms of its pitch, pressure angle and number of teeth. Let’s 

discuss few terms here: 

Pitch Circle Diameter (d) - This is the diameter of a circle about which the gear tooth 

geometry is designed or constructed. The pitch circle is the imaginary circle found at the 

point where the teeth of two gears mesh. The diameter of the pitch circle is called the 

pitch diameter.  

Outside Diameter (OD) - The outside circle is the distance around the outer edge of the 

gear’s teeth. The diameter of the outside circle is called the outside diameter.  

 

Root - The root is the bottom part of a gear wheel. 

Pitch - Pitch is a measure of tooth spacing along the pitch circle. It is the distance 

between any point on one tooth and same point on the next tooth. It is expressed in the 

following forms: 

Diametral Pitch (Pd) is the number of teeth per inch of the pitch diameter and is also an 

index of tooth size. It is given as: 

 



Where: 

• Pd = diametral pitch  

• Z = number of teeth  

• d = pitch circle diameter in inches 

A large diametral pitch indicates a small tooth and vice versa. Another way of saying 

this; larger gears have fewer teeth per inch of diametral pitch. 

Important! 

The use of diametral pitch is a handy reference in gear design. An important rule to 

remember is that a pair of gears can only mesh correctly if and when the diametral pitch 

(Pd) is the same, i.e.: 

 

Module (m) is the metric equivalent of diametral pitch, i.e. the pitch diameter (in mm) 

divided by the number of teeth, but unlike diametral pitch, the higher number, the larger 

the teeth.  Meshing gears must have the same module: 

 

A 1 module gear has 1 tooth for every mm of pitch circle diameter. Thus a 0.3 mod gear 

having 60 teeth will have a pitch circle diameter of 18 mm (0.3 *60).  

Circular Pitch (Pc): is the distance from a point on one tooth to the corresponding poing 

on the adjacent tooth, measured along the pitch circle. Calculated in inches, the circular 

pitch equals the pitch circle circumference divided by the number of teeth: 

 

Because the circular pitch is directly proportional to the module and inversely 

proportional to the diametral pitch, meshing teeth must have the same circular pitch. 



 

Relationship between Circular Pitch and Diameteral Pitch: 

 

We have, 

 

The product of the circular pitch and the diameteral pitch is equal to pi ( ). 

Number of Teeth (N): The number of gear teeth is related to the diameteral pitch and 

the pitch circle diameter by equation Z= d x Pd . 

Tooth Size: Diameteral pitch, module and circular pitch are all indications of tooth size; 

ratios which determine the number of teeth in a gear for a given pitch diameter. In 

designing a gear set, the number of teeth in each member is of necessity. As a rule of 

thumb, teeth should be large and low in number for heavily loaded gears and small and 

numerous for smooth operation.  

Center Distance (CD) 

Center Distance is the distance between the centers of the shaft of one spur gear to the 

center of the shaft of the other spur gear. The standard center distance between two 

spur gears is one-half the sum of their pitch diameters.  



 

Pitch point: 

Pitch point is the point where gear teeth actually make contact with each other as they 

rotate. Refer to the figure below for two meshing gears. The pitch point “P” always lies at 

the line connecting the centers of two gears. 

 

EXAMPLES 

Example - 1:  

The center distance of a 4-inch pitch diameter gear running with a 2-inch pitch diameter 

pinion is 3 inches. 4" + 2" ÷ 2 = 3" CD 

Example -2:  

A gear has 18 teeth (Z) and a diametral pitch (Pd) of 8. What is its pitch diameter (d)? 

Answer:  

d = Z/Pd = 18/8 = 2¼” 



Example -3:  

A gear has a pitch diameter (d) of 3.125” (3-1/8”) and a diametral pitch (Pd) of 8. How 

many teeth (Z) does it have? 

Answer:  

Z = d x Pd = 3.125 x 8 = 25 teeth 

Example -4:  

Calculate the center-to-center spacing for the 2 gears specified below. 

Gear 1: 36 tooth, 24 Pd Drive Gear 

Gear 2: 60 tooth, 24 Pd Driven Gear 

Answer:  

Calculate the pitch diameter for each of the two gears: 

Pitch diameter of gear 1:  d1 = Z / Pd = 36/24 = 1.5” 

Pitch diameter of gear 2: d2 = Z / Pd = 60/24 = 2.5” 

Obtain center to center distance by adding the two diameters and divide by 2. 

Center to center distance = (d1 + d2) / 2= (1.5 + 2.5) /2 = 2” 

 

THE LAW OF GEARING  

The fundamental law of gearing states that the angular velocity ratio of all gears must 

remain constant throughout the gear mesh. This condition is satisfied when the common 

normal at the point of contact between the teeth passes through a fixed point on the line 

of centers, known as the pitch point. 

Law Governing Shape of the Teeth 

The figure below shows two mating gear teeth in which: 

Tooth profile 1 drives tooth profile 2 by acting at the instantaneous contact point K. 

• NM is the common normal of the two profiles. 

• N is the foot of the perpendicular from O1 to NM 

• M is the foot of the perpendicular from O2 to NM.  



 

Although the two profiles have different velocities v1 and v2 at point K, their velocities 

along NM are equal in both magnitude and direction. Otherwise the two tooth profiles 

would separate from each other. 

O1N. 1 = O2M. 2 

1/ 2 = O2M/O1N   

We notice that the intersection of the tangency NM and the line of center O1O2 is point P, 

and O1N.P = O2M.P 

Thus, the relationship between the angular velocities of the driving gear to the driven 

gear, or velocity ratio, of a pair of mating teeth is: 

 

Where, 

 Pinion Gear 
Radius r1 r2 

Diameter (inches) d1 d2 

Speed (rad/s)   



Point P is very important to the velocity ratio, and it is called the pitch point. Pitch point 

divides the line between the line of centers and its position decides the velocity ratio of 

the two teeth. The velocity ratio is equal to the inverse ratio of the diameters of pitch 

circles. This is the fundamental law of gear-tooth action. 

When the tooth profiles of gears are shaped so as to produce a constant angular-

velocity ratio during meshing, the surfaces are said to be conjugate. Pressure angle 

defines the shape of the gear tooth and is an important criterion in gear manufacturing. 

Higher pressure angle results in wider base, stronger teeth and lower tendency to 

experience tooth tip interference, but are susceptible to noise and higher bearing loads. 

Low pressure angles are quieter and smoother, have lower bearing loads and lower 

frictional forces, but are susceptible to undercutting at low number of teeth.  

Refer to the figure below: 

 

Draw radial lines from the center of each gear O1 & O2 that are perpendicular to the line 

of action MN. The normal to the line of action up to the center of gears, O1N and O2M, 

can be used to form a circle of radius rb1 & rb2 referred to as the base circles of gear 1 

and gear 2, respectively.  The base circle is inscribed within the pitch circle having radius 

r1 and r2. As is evident from the geometry of the figure, the angle between the line of 

centers (O1O2) and the line segment O1N�and O2M is the pressure angle Ф. It is also 

equal to the angle between the line of action MN and the line perpendicular to the line of 

centers (O1O2) through the pitch point P.  

The standard pressure angles are 14½°, 20° and 25°. The preferred angle in use today 

is 20º; a good compromise for power and smoothness. The increase of the pressure 



angle from 14½º to 25º results in a stronger tooth, because the tooth acting as a beam is 

wider at the base.  

 

Gear Tooth Profile for different Pressure Angles 

Important!  

It is important to note that the gears must have the same pressure angles to mesh. 14½º 

PA tooth forms will not mesh with 20º pressure angles gears and vice versa.  

Contact Ratio:  

In the above description, we have considered one gear tooth in contact for simplicity. In 

practice, more than one tooth is actually in contact during engagement and therefore the 

load is partially shared with another pair of teeth. This property is called the contact 
ratio.  A contact ratio between 1 and 2 means that part of the time two pairs of teeth are 

in contact, and during the remaining time one pair is in contact. A ratio between 2 and 3 

means 2 or 3 pairs of teeth are always in contact.   

The higher the contact ratio the more the load is shared between teeth.  It is a good 

practice to maintain a contact ratio of 1.3 to 1.8. Under no circumstances should the ratio 

drop below 1.1.  

GEAR PROFILES 

Gear profiles should satisfy the law of gearing. The profiles best suited for this law are: 

1. Involute 

2. Cyloidal 

Involute Tooth Profile  

Most modern gears use a special tooth profile called an involute. This profile has the 

very important property of maintaining a constant speed ratio between the two gears. 



The involute profile is the path traced by a point on a line as the line rolls without slipping 

on the circumference of a circle. It may also be defined as a path traced by the end of a 

string which is originally wrapped on a circle when the string is unwrapped from the 

circle. The circle from which the involute is derived is called the base circle. 

 

We use the word involute because the contour of gear teeth curves inward. On an 

involute gear tooth, the contact point starts closer to one gear, and as the gear spins, the 

contact point moves away from that gear and towards the other. Involute gears have the 

invaluable ability of providing conjugate action when the gears' centre distance is varied 

either deliberately or involuntarily due to manufacturing and/or mounting errors.  

Cycloidal Tooth Profile 

Cycloidal gears have a tooth shape based on the epicycloid and hypocycloid curves, 

which are the curves generated by a circle rolling around the outside and inside of 

another circle, respectively. They are not straight and their shape depends on the radius 

of the generating circle. Cycloidal gears are used in pairs and are set at an angle of 180 

degrees to balance the load. The input and output remains in constant mesh. Cycloidal 

tooth forms are used primarily in clocks for a number of reasons: 

• Less sliding friction  

• Less wear  

• Easier to achieve higher gear ratios without tooth interference 

 

 



Comparison between Involute and Cycloidal Gears 

In actual practice, the involute tooth profile is the most commonly used because of 

following advantages: 

1. The most important advantage of the involute gears is that the variations in 

center distance do not affect the angular velocity ratio. This is not true for 

cycloidal gears which require exact center distance to be maintained. 

2. In involute gears, the pressure angle remains constant throughout the 

engagement of teeth which results in smooth running. The involute system has a 

standard pressure angle which is either 20° or 14½°, whereas on a cycloidal 

system, the pressure angle varies from zero at pitch line to a maximum at the tips 

of the teeth.   

3. The face and flank of involute teeth are generated by a single curve, whereas in 

cycloidal gears, double curves (i.e. epicycloid and hypo-cycloid) are required for 

the face and flank, respectively. 

4. Cycloidal teeth have wider flanks; therefore the cycloidal gears are stronger than 

the involute gears, for the same pitch. Due to this reason, the cycloidal teeth are 

preferred especially for cast gears used in paper mill machinery and sugar mills. 

5. Cycloidal gears do not have interference. 

Though there are advantages of cycloidal gears, they are outweighed by the greater 

simplicity and flexibility of the involute gears. It is easy to manufacture since it can be 

generated from a simple cutter. 

The only disadvantage of the involute teeth is that the interference occurs with pinions 

having smaller number of teeth. This may be avoided by altering the heights of 

addendum and dedendum of the mating teeth, or the angle of obliquity of the teeth. 

GEAR TOOTH NOMENCLATURE  

The following terms are used when describing the dimensions of a gear tooth: 

1. Addendum: the distance from the top of a tooth to the pitch circle. Its value is 

equal to one module. 



2. Dedendum: the distance from the pitch circle to the bottom of the tooth space 

(root circle). It equals the addendum + the working clearance. Dedendum is 

bigger than addendum and is equal to Addendum + Clearance = m + 0.157m = 

1.157m 

3. Whole depth: The total depth of the space between adjacent teeth and is equal 

to addendum plus dedendum. Also equal to working depth plus clearance. 

4. Working depth: Working depth is the depth of engagement of two gears; that is, 

the sum of their addendums. 

5. Working Clearance: This is a radial distance from the tip of a tooth to the bottom 

of a mating tooth space when the teeth are symmetrically engaged. Its standard 

value is 0.157m. 

6. Outside diameter: The outside diameter of the gear.  

7. Base Circle diameter: The diameter on which the involute teeth profile is based.  

8. Addendum circle: A circle bounding the ends of the teeth in a right section of 

the gear.  

9. Dedendum circle: The circle bounding the spaces between the teeth in a right 

section of the gear.  

 



 

 

10. Tooth space: It is the width of space between two teeth measured on the pitch 

circle. 

11. Face of tooth: It is that part of the tooth surface which is above the pitch surface. 

12. Flank of the tooth: It is that part of the tooth surface which is lying below the 

pitch surface. 

13. Point of contact: Any point at which two tooth profiles touch each other. 

14. Path of action: The locus of successive contact points between a pair of gear 

teeth, during the phase of engagement. 

15. Line of action: The line of action is the path of action for involute gears. It is the 

straight line passing through the pitch point and tangent to both base circles. 

16. Tooth Thickness, Space Width and Backlash 

• Tooth thickness, (t) is the width of the tooth (arc distance) measured on the 

pitch circle. 

• Space width, (S) or tooth space is the arc distance between two adjacent 

teeth measured on the pitch circle. 

• Backlash, (B) is the difference between the space width and the tooth 

thickness.  

B = S – t 

Standard gears are designed with a specified amount of backlash to prevent noise and 

excessive friction and heating of the gear teeth. 



 

SPUR GEAR FORMULAS AND CALCULATIONS 

Below is a table of formulas used in calculating spur gear information based on standard 

gearing practices. The spur gear formulas here are based on the "Diametral Pitch 

system (Pd). 

 

To Get Having Rule Formula 

Diametral Pitch • The circular pitch Divide Pi (3.1416) by the 

circular pitch 
Pd = 3.1416 / CP 

Diametral Pitch 
• Pitch diameter  

• Number of teeth  

Divide the number of teeth 

by the pitch diameter 
Pd = Z / d 

Diametral Pitch 
• Outside diameter 

• Number of teeth  

Divide number of teeth + 2 

by the outside diameter 
Pd = (Z+2) / OD 

Diametral Pitch 
• Base pitch  

• Pressure angle  

Divide the base pitch by 

the cosine of the pressure 

angle then divide by 

3.1416 

Pd = (BP / CosФ) / 3.1416 

Diametral Pitch • Module Divide 25.4 by Module Pd = 25.40 / M 

Pitch Diameter 
• Number of teeth  

• Diametral pitch  

Divide the number of teeth 

by the diametral pitch 
d = Z / Pd 

Pitch Diameter 
• Number of teeth  

• Outside diameter 

Divide the product of the 

outside diameter + 

number of teeth by the 

number of teeth + 2 

d = (OD x Z) / (Z+2) 

Pitch Diameter 
• Outside diameter 

• Diametral pitch  

Subtract 2 divided by the 

diametral pitch from the 

outside diameter 

d = OD - (2/ Pd) 



Pitch Diameter 
• Addendum  

• Number of teeth  

Multiply addendum by the 

number of teeth 
d = a x Z 

Pitch Diameter 
• Base diameter  

• Pressure angle  

Divide the base diameter 

by the cosine of the 

pressure angle 

d = BD / (CosФ) 

Outside 

Diameter 

• Number of teeth  

• Diametral pitch  

Divide number of teeth + 2 

by the diametral pitch 
OD = (Z+2) / Pd 

Outside 

Diameter 

• Pitch diameter  

• Diametral pitch  

Two divided by the 

diametral pitch plus pitch 

diameter 

OD = (2 / Pd) + d 

Outside 

Diameter 

• Pitch diameter  

• Number of teeth  

Number of teeth + 2, 

divided by the quotient of 

number of teeth divided 

by the pitch diameter 

OD = (Z+2) / (Z / d) 

Outside 

Diameter 

• Number of teeth  

• Addendum  

Multiply the number of 

teeth + 2 by the 

addendum 

OD = (Z + 2) x A 

Number Of 

Teeth 

• Pitch diameter  

• Diametral pitch  

Multiply the pitch diameter 

by the diametral pitch 
Z = d x Pd 

Number Of 

Teeth 

• Outside diameter 

• Diametral pitch  

Multiply the outside 

diameter by the diametral 

pitch and subtract 2 

Z = (OD x Pd) - 2 

Thickness Of 

Tooth 
• Diametral pitch  

Divide 1.5708 by the 

diametral pitch 
t = 1.5708 / Pd 

Addendum • Diametral pitch  
Divide 1 by the diametral 

pitch 
a = 1 / Pd 

Dedendum • Diametral pitch  
Divide 1.157 (or 1.25) by 

the diametral pitch 
b = 1.157 / Pd 

Working Depth • Diametral pitch  
Divide 2 by the diametral 

pitch 
hk = 2 / Pd 

Whole Depth • Diametral pitch  
Divide 2.157 (or 2.25) by 

the diametral pitch 
ht = 2.157 / Pd 

    



Clearance • Diametral pitch  
Divide .157 (or .250) by 

the diametral pitch 
c = .157 / Pd 

Clearance • Diametral pitch  
Divide thickness of tooth 

at the pitchline by 10 
c = t / 10 

Operating 

Diametral Pitch 

• C.D. between 

both gears  

• Number of teeth 

in each  

Add the number of teeth 

in both gears and divide 

by 2 then divide by the 

center distance 

PdO = ((Z1 + Z2)/2) / C 

Center 

Distance 

• Normal diametral 

pitch  

• Number of teeth 

in both gears  

Add the number of teeth 

in both gears and divide 

by 2 then divide by the 

normal diametral pitch 

C = ((Z1 + Z2)/2) / Pnd 

Operating 

Center 

Distance 

• Operating 

diametral pitch  

• Number of teeth 

in both gears  

Add the number of teeth 

in both gears and divide 

by 2 then divide by the 

operating diametral pitch 

Co = ((Z1 + Z2)/2) / Pod 

Base Diameter 
• Pitch diameter  

• Pressure angle  

Multiply the pitch diameter 

by the cosine of the 

pressure angle 

BD = Pd x (cosФ) 

Pressure Angle 
• Base diameter  

• Pitch diameter  

Divide the base diameter 

by the pitch diameter 
cosФ = BD / d 

Pressure Angle 
• Base pitch  

• Diametral pitch  

Divide Pi by the diametral 

pitch, then divide by the 

base pitch 

cosФ = (3.1416 / Pd) / Pb 

Base Pitch 
• Diametral pitch  

• Pressure angle  

Divide the diametral pitch 

by Pi, then multiply by the 

cosine of the pressure 

angle 

Pb = (Pd / 3.1416) x (cosФ) 

 



SECTION -3  POWER TRANSMISSION FUNDAMENTALS 

Power transmission is the transfer of energy from its place of generation to a location 

where it is applied to performing useful work. Power transmission is normally 

accomplished by belts, ropes, chains, gears, couplings and friction clutches. Out of 

these, the gears are capable of transmitting force or motion without any slip and 

therefore are the most durable and rugged of all mechanical devices. In the schematic 

below, a gear transmits rotation force from prime mover (diesel engine) to another driven 

shaft (locomotive wheels).  

 

The most important feature of gears is that it produces a mechanical advantage, which is 

a measure of the force amplification. Since we do not get something for nothing, you can 

either achieve high velocity output or high force/torque output but not both. The model 

for this is the law of the lever where a smaller force acting through a greater distance 

produces the same output as the larger force on a smaller distance. 

 

Energy and Power Equations  

Power, torque and speed are the defining mechanical variables associated with the 

functional performance of rotating machinery. Let’s do some analysis for gears: 



• P = Power 

• E = Energy 

• W = Work 

• F = Force 

• T = torque 

• d = distance of translational motion  

• = angle of rotational motion (in radians) 

• v = velocity of translational motion 

•  = angular speed (in radians per second) 

• ∆ = change 

• Pd = Pitch diameter 

• Z = number of teeth on a gear 

• r = Pitch circle radius  

• N = number of revolutions 

Power is defined as energy per unit of time or the rate at which work is performed and 

thus: 

 

When force (F) moves a body a measured distance (∆d), the work done (W) is given by: 

W (work) = Force x Distance  

W = F x ∆d 

This equation is true for linear motion but the corresponding definition of work for 

rotational power transmission is given by the Torque (T) and the angular displacement 

(∆θ). Therefore, work done for rotary motion is: 

 



Rotation is perceived as a change in the angular position of a reference point on the 

body over some time interval, ∆t. The power transfer in a rotary device is therefore given 

by: 

         Eq. A 

The rotary motion is characterized by its angular velocity ( ) and is defined as: 

  

Substituting the rotary definition of work into Eq. A: 

          Eq. 1 

Let’s break Torque (T) and angular velocity ( ) in friendly terms. 

Torque is a measure of the tendency of a force to rotate an object about some axis. In 

order to produce torque, the force must act at some distance from the axis or pivot point. 

In the following diagram, the circle represents a wheel of radius r; the dot in the center 

represents the axle or shaft; and the force (F) is applied tangentially at the periphery. 

 

The amount of torque about the gear axle is: 

Torque = Force x Radius 

T = F x r          Eq. 2 

Substituting T (Eq. 2) to Eq. 1: 

          Eq. 3  



Angular velocity ( ) is often referred to as rotational speed and measured in numbers of 

complete revolutions per minute (rpm) or per second (rps). It is usually expressed as: 

    Eq. 4 

Substituting (Eq. 4) to Eq. 3: 

         Eq. 5 

ANALYSIS FOR A GEAR PAIR 

Consider two gears in a mesh. Gear 1 (driver) is turning counterclockwise at angular 

velocity ω1 and has Z1 teeth.  Gear 2 (the driven gear) is turning clockwise with angular 

velocity ω2 and has Z2 teeth. The drive between the two gears is represented by plain 

cylinders having diameters equal to their pitch circles.  

 

 

We have learnt in Section-2 that a pair of gears can only mesh correctly if and when the 

diametral pitch (Pd) is the same, accordingly:  

        Eq. 6 

The driving gear pushes the driven gear, exerting a force component perpendicular to 

the gear radius; and because the gear is rotating, power is transferred.  

 



 

Assuming no frictional losses, the input and output power can be set equal to each other 

as: 

 

         Eq. 7 

 

 

        Eq. 8 

It follows that torque and speed are inversely proportional. If a high torque is desired, 

then the speed must be sacrificed. When speed increases, the torque decreases 

proportionally. 

We now consider the relative velocity of the two gears. The point of contact of the two 

pitch surfaces shall have velocity along the common tangent. The velocity of a point on a 

rotating object is given by r ω. Because there is no slip, definite motion of gear 1 can be 

transmitted to gear 2, therefore: 

 

Where r1 and r2 are pitch circle radii of gears 1 and 2, respectively. 

        Eq. 9 

 

 

 

Putting it in terms of diameter, r = d/2, it implies: 



 

        Eq. 10 

  

It follows that speed and diameter are inversely proportional. If a high speed is desired, 

then the diameter of driven gear must be lower than the driving gear. 

Since, pitch circle radius of a gear is proportional to its number of teeth (Z): 

 

 

         Eq. 11 

It follows that the velocity ratio of a pair of gears is the inverse ratio of their number of 

teeth, i.e. the gear with the greater number of teeth will always revolve slower than the 

gear with the smaller number of teeth.  

We can now combine the torque equation (Eq. 8), dia. Equation (Eq. 10) and the velocity 

equation (Eq. 11) to get the relationship with the gear teeth ratio. 

 

Gear ratio is defined as the ratio of diameters (teeth) of output to the input gear. When 

the input gear is smaller than the output gear, the output torque is higher than the input 

torque and the output speed is lower than the input speed or in other words “a higher 

gear ratio equates to high torque and lower speed”. 

Let’s compare this analogy to a car engine gearbox. In top gears, one turn of the engine 

crankshaft results in one turn of the drive wheels. Lower gears require more turns of the 

engine to provide single turn of the drive wheels, producing more torque at the drive 

wheel. For example, if the driving gear has 10 teeth and the driven gear has 20 teeth, 

the gear ratio is 2 to 1. Every revolution of the driving gear will cause the driven gear to 



revolve through only half a turn. Thus, if the engine is operating at 2,000 rpm, the speed 

of the driven gear will be only 1,000 rpm; the speed ratio is then 2 to 1. This 

arrangement doubles the torque on the shaft of the driven unit. The speed of the driven 

unit, however, is only half that of the engine. On the other hand, if the driving gear has 

20 teeth and the driven gear has 10 teeth, the speed ratio is 1 to 2, and the speed of the 

driven gear is doubled. The rule applies equally well when an odd number of teeth is 

involved. If the ratio of the teeth is 37 to 15, the speed ratio is slightly less than 2.47 to 1. 

In other words, the driving gear will turn through almost two and a half revolutions while 

the driven gear makes one revolution. 

POWER FLOW THROUGH GEAR PAIR 

With a pair of gears, power is transmitted by the force developed between contacting 

teeth. According to fundamental law of gear this resultant force always acts along the 

pressure line (or the line of action). To investigate how the forces are typically 

transmitted between a pair of gears, refer to the figure below. 

 

Power Flow through a Gear Pair 

(View showing tangential and radial forces on the gear) 



The force transmitted along the line of action results in a torque generated at the base 

circle. The torque can be calculated by:  

T = FN rb          Eq. 12 

From the figure above, the relationship between the base circle and pitch circle radius 

can be stated as: 

rb = r cosФ 

Or 

T = FN r cosФ          Eq. 13 

Where, 

• FN is the force action on the line of action 

• Ф is the pressure angle 

• rb is the radius of base circle 

• r is the pitch circle radius of the gear 

This resultant force FN can be resolved into two components: tangential component FT 

and radial components FR at the pitch point. 

• FT - the tangential force component acting at the radius of the pitch circle. It 

determines the magnitude of the torque and consequently the power transmitted. 

The Tangential component is expressed as: FT = FN cosФ 

• FR - the radial or normal force directed towards the center of the gear. FR serves 

to separate the shafts connected to the gears and for this reason FR is 

sometimes referred to as the separating force. The radial component is 

expressed as: FR = FN sinΦ or FT tanΦ 

Torque exerted on the gear shaft in terms of the pitch circle radius can be found by 

substituting FT = FN cosФ in Eq. 13. The resultant expression is:  

T = FT x r   

Or 

          Eq. 14 



The maximum force (FT) is exerted along the common normal through the pitch point 

which is line perpendicular to the line of centers. After determining FT, the magnitude of 

the other force components and/or their directions can be readily determined. 

Recall the following relationship existing between speed, torque and power: 

 

 

 

The torque transmitted by the gear is given by: 

 

Where, 

• T = Torque transmitted gears (N- m) 

• P = Power transmitted by gears (kW) 

• N = Speed of rotation (RPM) 

Alternatively in US units: 

         Eq. 15 

Where, 

• P = Power, HP 

• T = Torque in-lbs 

• N = RPM 

Substituting Eq. 14 into Eq. 15 

 

Or 

 



Or 

 

Power can also be expressed in terms of the pitch line velocity v. 

P = FT v  

• P = Power in watts 

• FT = force, N 

• v = velocity, m/s 

Or in terms of customized units 

 

• v = velocity in ft/min 

• FT = force in lbs 

• P = Power in HP 

The above expression can be rearranged to solve for FT; 

 

The velocity v: 

v = .262 X d X N 

Where, 

• d = Pitch diameter 

• N = Revolutions per minute, RPM 

Important!  

If the forces transmitted between the teeth of meshing gears are transmitted along the 

line of action at every point of contact, then regardless of the angular position of the 

gears, the forces transmitted between the gears maintain a fixed orientation in space. 

Maintaining a fixed orientation in space for the forces to be transmitted between gears 



enables the power transmitted between the gears to be independent of the angular 

position of the gears. This is a very desirable characteristic for gears.  

Example 

20-tooth, 8 pitch, 1-inch-wide, 20° pinion transmits 5 HP at 1725 rpm to a 60-tooth gear. 

Determine driving force, separating force, maximum force and surface speed that would 

act on mounting shafts. 

Solution: 

 

 

Find pitch circle 

 

 

Find transmitted force 

 

 

Find separating force 

FR = FT tanΦ  

FR = 146 tan 20º 

 

Find maximum force 

 

 



 

Find pitch line velocity or surface speed 

v = .262 X D X RPM 

v = 0.262 x 2.5 x 1725 = 1129 ft/min 

Summarizing……. 

The fundamental equations for a gear pair are: 

   --------- (Power equality) 

   ---------- (Velocity relationship in terms of radiuses) 

  ---------- (Velocity relationship in terms of number of teeth) 

  ---------- (Torque relationship in terms of radiuses) 

  ---------- (Torque relationship in term of number of teeth) 

 



SECTION -3    GEAR TRAINS 

A gear train is a power transmission system made up of two or more gears. The gear to 

which the force is first applied is called the driver and the final gear on the train to which 

the force is transmitted is called the driven gear. Any gears between the driver and the 

driven gears are called the idlers. Conventionally, the smaller gear is the Pinion and the 

larger one is the Gear. In most applications, the pinion is the driver; this reduces speed 

but increases torque.  

 

Types of gear trains 

1. Simple gear train 

2. Compound gear train 

3. Planetary gear train 

Simple Gear Train - Simple gear trains have only one gear per shaft. The simple gear 

train is used where there is a large distance to be covered between the input shaft and 

the output shaft.  

 

Compound Gear Train - In a compound gear train at least one of the shafts in the train 

must hold two gears. Compound gear trains are used when large changes in speed or 

power output are needed and there is only a small space between the input and output 

shafts. 



 

Planetary Gear Train - A planetary transmission system (or Epicyclic system as it is 

also known), consists normally of a centrally pivoted sun gear, a ring gear and several 

planet gears which rotate between these. This assembly concept explains the term 

planetary transmission, as the planet gears rotate around the sun gear as in the 

astronomical sense the planets rotate around our sun.  

 

Planetary gearing or epicyclic gearing provides an efficient means to transfer high 

torques utilizing a compact design.  

GEAR RATIO 

We have learnt in the previous section that “If two gears are in mesh, then the 

product of speed (revolutions) and teeth must be conserved”. Let’s check this 

simple rule with a help of an example.  



If you turn a gear with 6 teeth 3 times and is meshed with a second gear having 18 

teeth, than the driving gear 18 teeth (6 x 3) will move through the meshed area. This 

means that the 18 teeth from the second gear also move through the meshed area. If 

the second gear has 18 teeth, then it only has to rotate once because 18 x 1=18.  

Also, the second gear will be turning slower than the first because it is larger, and larger 

gears turn slower than smaller gears because they have more teeth. 

Gear Ratio for Simple Gear Train 

Consider a simple gear train shown below. Notice that the arrows show how the gears 

are turning. When the driver is turning clockwise the driven gear is anti-clockwise.  

 

Further assume driver gear #1 has 20 teeth and rotating at 100 rpm. Find the speed of 

driven gear #2 having 60 teeth.  

• N1 = 100 rpm 

• Z1 = 30 teeth 

• N2 =? 

• Z2 = 60 teeth 

Solving the equation above for N2, we have: 

N2 = (Z1/Z2) * N1 = (30/60) * 100 = 50 rpm 

Let's add a third gear to the train.  Assume gear 2 drives gear 3 and gear 3 has Z3 = 20 

teeth.  Here the driver is gear #1 and the final driven element is gear #3. Gear #2 in 

between is called the idler gear. Find the speed of driven gear #3?   



 

Well, since gears 2 and 3 are in mesh, our conservation law says that: 

N2 * Z2 = N3 * Z3 

We could do the arithmetic (N3 = (Z2/Z3) * N2 = (60/20) * 50 = 150 rpm) to find N3.  Or, we 

could note that, since both N1*Z1 and N3*Z3 are equal to N2*Z2, they must be equal to 

each other. 

N1 * Z1 = N3 * Z3 

So, 

N3 = (Z1/Z3) * N1 = (30/20) * 100 = 150 rpm. 

What does this prove? 

“An idler gear between a driver and driven gear has NO effect on the overall gear 

ratio, regardless of how many teeth it has”. 

(Note that Z2 never entered into our computation in the last equation.) 

Suppose now that we add a fourth gear with Z4 = 40 teeth to our developing gear train.   

 

Its speed must be N4 = (Z3/Z4) * N3 = (20/40) * 150 = 75 rpm. Again, by using the 

conservation principle, we have: 

N4 = (Z1/Z4) * N1 = (30/40) * 100 = 75 rpm. 



We can continue like this indefinitely, but the two fundamental learning objectives here 

are: 

1. The number of teeth on the intermediate gears does not affect the overall velocity 

ratio, which is governed purely by the number of teeth on the first and last gear. 

2. If the train contains an odd number of gears, the output gear will rotate in the 

same direction as the input gear, but if the train contains an even number of 

gears, the output gear will rotate opposite that of the input gear. If it is desired 

that the two gears and shafts rotate in the same direction, a third idler gear must 

be inserted between the driving gear and the driven gear. The idler revolves in a 

direction opposite that of the driving gear. 

Major Caveat: 

Note that everything said to this point assumes a simple gear train where each of the 

gears in the gear train is on its own, separate shaft.  Sometimes gears are 'ganged' by 

keying or otherwise welding them together and both gears turn as a unit on the same 

shaft.  This arrangement is known as compound gear train and it complicates the 

computation of the gear ratio, to some extent.    

Compound Gear Train 

The figure below shows a set of compound gears with the two gears, 2 and 3, mounted 

on the middle shaft b. Both of these gears will turn at the same speed because they are 

fastened together, i.e. Nb = N2 = N3 

 

When gear 1 and gear 2 are in mesh: 

N1 * Z1 = N2 * Z2 

It’s still true that: 

N1 * Z1 = Nb * Z2  



Nb = (Z1/Z2) * N1 

If gears 3 and 4 are in mesh: 

Nb * Z3 = N4 * Z4 

Therefore, 

N4 = (Z3/Z4) * Nb = (Z3/Z4)*(Z1/Z2) * N1 

So the end-to-end gear ratio is (Z1*Z3)/ (Z2*Z4) and it does depend on the intermediate 

gears; unlike the previous case when each gear could turn on its own separate axis.  

Note that the resultant gear ratio is just the product of the two separate gear ratios: 

(Z1/Z2)*(Z3/Z4). 

 

Example: 

In the figure below, Gears B and C represent a compound gear and have the following 

details: 

 

Gear A  - 120 teeth 

Gear B - 40 teeth 

Gear C - 80 teeth 

Gear D -  20 teeth 

What is the output in revs/min at D, and what is the direction of rotation if Gear A rotates 

in a clockwise direction at 30 revs/min? 

Solution: 



When answering a question like this, split it into two parts. Treat Gears A and B as the 

first part of the question. Treat Gears C and D as the second part. 

Gear ratio AB = driven/driving = 40/120 = 1/3 

Gear ratio CD = driven /driving = 20/80 = 1/4 

Since the driving Gear A rotates 30 RPM and the Gear B is smaller than Gear A, we can 

conclude that the RPMs for Gear B is 30*3 = 90 RPM 

Since Gears B and C represent a compound gear, they have the same rotational speed. 

Therefore, Gear D speed is obtained by multiplying 4 to Gear C speed of 90 RPM. 

Thus, Gear D moves at 90*4 = 360 rev/min 

OR 

1/3 x ¼ = 1/12 

Since Gear A moves at 30 RPM and Gear D is smaller, we multiply by 12:  

30 x 12 = 360 RPM 

 

Example: 

Calculate the gear ratio for the compound chain shown below. If the input gear rotates 

clockwise, in which direction does the output rotate? 

 

Gear A has 20 teeth 

Gear B has 100 teeth 

Gear C has 40 teeth 

Gear D has 100 teeth 

Gear E has 10 teeth 



Gear F has 100 teeth 

Solution: 

The driving teeth are A, C and E 

The driven teeth are B, D and F 

Gear ratio = (100 x 100 x 100) / (20 x 40 x 10) = 125 

Alternatively we can say there are three simple gear trains as follows: 

First gear GR = 100 / 20 = 5 

Second chain GR = 100 / 40 = 2.5 

Third chain GR = 100 / 10 = 10 

The overall ratio = 5 x 2.5 x 10 = 125 

Each chain reverses the direction of rotation so if A is clockwise, B and C rotate anti-

clockwise, so D and E rotate clockwise. The output gear F hence rotates anti-clockwise. 

More complex compound gear trains can achieve high and low gear ratios in a restricted 

space by coupling large and small gears on the same axle. In this way gear ratios of 

adjacent gears can be multiplied through the gear train. 

Example: 

Suppose we look at a standard four-speed car gearbox with a reverse gear. 

 

The following table shows the number of teeth for each gear: 



Gear 1 2 3 4 5 6 7 8 9 10 

 N 12 15 25 20 38 35 25 30 12 12 

 

The table below shows the speed ratio (SR) calculations for each gear selection 

possible. 

Selection Gear Train SR Formula SR Formula SR Value 

1st Gear 

 

1,5,7,3 
  

3.16 

2nd Gear 

 

1,5,8,4 
  

2.11 

3rd Gear 

 

1,5,6,2 
  

1.36 

4th Gear 

 

1 locked with 2 None None 1.00 

Reverse 

 

1,5, 9,10,4 
  

-3.16 

 
 
 

EPICYCLIC GEAR TRAIN   

In epicyclic gear train, the axis of rotation of one or more of the wheels is carried on an 

arm which is free to revolve about the axis of rotation of one of the other wheels in the 

train. The diagram shows a Gear B on the end of an arm A. Gear B meshes with Gear C 

and revolves around it when the arm is rotated. B is called the planet gear and C the 

sun. 



 

Now let’s see what happens when the planet gear orbits the sun gear. 

 

Observe point p and you will see that Gear B also revolves once on its own axis. Any 

object orbiting around a center must rotate once. Now consider that B is free to rotate on 

its shaft and meshes with C. Suppose the arm is held stationary and Gear C is rotated 

once. B spins about its own center and the number of revolutions it makes is the ratio 

NC/ NB. B will rotate by this number for every complete revolution of C.  

Now consider that C is unable to rotate and the Arm A is revolved once. Gear B will 

revolve 1 + (NC / NB) because of the orbit. It is the extra rotation that causes confusion. 

One way to get around this is to imagine that the whole system is revolved once. Then 

identify the gear that is fixed and revolve it back one revolution. Work out the revolutions 

of the other gears and add them up. The following tabular method makes it easy. 

Method 1 

Suppose Gear C is fixed and the Arm A makes one revolution. Determine how many 

revolutions the planet Gear B makes. 

Step 1 is to revolve everything once about the centre. 



Step 2 is to identify that C should be fixed and rotate it backwards one revolution 

keeping the arm fixed as it should only do one revolution in total. Work out the 

revolutions for B. 

Step 3 is to simply add them up and find that the total revs of C is zero and the arm is 1. 

Step Action A  B C 

1 Revolve all 

once 

1 1 1 

2 Revolve C by -1 

rev 

0 + NC / NB -1 

3 Add 1 1 + NC / NB 0 

The number of revolutions made by B is (1+ tC /tB). Note that if C revolves -1, then the 

direction of B is opposite so + tC / tB 

Example:  

A simple epicyclic gear has a fixed sun gear with 100 teeth and a planet gear with 50 

teeth. If the arm is revolved once, how many times does the planet gear revolve? 

Solution: 

Step Action A  B C 

1 Revolve all 

once 

1 1 1 

2 Revolve C by -1 

rev 

0 + 100 / 50 -1 

3 Add 1 3 0 

The design considered so far has no identifiable input and output. We need a design that 

puts an input and output shaft on the same axis. This can be done in several ways. 

 



 

 

The arm is the input and Gear D is the output. Gear C is a fixed internal gear and is 

normally part of the outer casing of the gear box. There are normally four planet gears 

and the arm takes the form of a cage carrying the shafts of the planet gears. Note that 

the planet gear and the internal gear both rotate in the same direction. 

 

Method 2 

In this case the sun Gear D is fixed and the internal Gear C is made into the output. 



 

 

Example:  

An epicyclic gear box has a fixed sun Gear D and the internal Gear C is the output with 

300 teeth. The planet Gears B have 30 teeth. The input is the arm/cage A. Calculate the 

number of teeth on the sun gear and the ratio of the gear box. 

Solution: 

Nc = ND + 2 NB 

300 = ND + 2 x 30 

ND = 300 – 60 = 240 

Identify that Gear D is fixed and the arm must do one revolution, so it must be D that is 

rotated back one revolution holding he arm stationary. 

Step Action A  B C D 

1 Revolve all 

once 

1 1 1 1 

2 Revolve D by 

-1 rev 

0 240 / 30 240/300 -1 

3 Add 1 9 1.8 0 



The ratio A/C is then 1:1.8 and this is the gear ratio. Note that the solution would be the 

same if the input and output are reversed but the ratio would be 1.8. 

Method 3 

In this design a compound Gear C and D is introduced. Gear B is fixed and Gears C 

rotate upon it and around it. Gears C are rigidly attached to gears D and they all rotate at 

the same speed. Gears D mesh with the output Gear E. 

 

Example:  

An epicylic gear box is shown above. Gear C has 100 teeth, B has 50, D has 50 and E 

has 100. Calculate the ratio of the gear box. 

Solution 

Identify that Gear B is fixed and that A must do one revolution, so it must be B that is 

rotated back one revolution holding A stationary. 

Step Action A  B C/D E 

1 Revolve all 

once 

1 1 1 1 

2 Revolve B by 

-1 rev 

0 -1 ½ -¼ 

3 Add 1 0 1½ ¾ 

The ratio A/E is then ¾:1 or 3:4 



Note that the input and output may be reversed but the solution would be the same with 

a ratio of 4:3 instead of 3:4. 

 

 



SECTION – 5:  GEAR FAILURE & RELIABILITY ANALYSIS 

The gears are subjected to high cyclic or alternating stresses. There are three common 

modes of tooth failure: 

1. Pitting is a fatigue phenomenon and occurs as a result of repeated stress cycles 

which lead to surface and subsurface cracks. 

2. Bending fatigue leading to tooth breakage. It is caused by the root bending 

stress imposed by the transmitted load. In some cases pitting or wear may 

weaken the tooth to the extent that breakage occurs. 

3. Scuffing is a form of surface damage on the tooth flanks, which occurs when the 

lubricant film fails allowing metal to metal contact.  

Bending Stress Calculation 

Gear overload or cyclic stressing of the gear tooth at the root beyond the endurance limit 

of the material causes bending fatigue and eventually a crack originating in the root 

section of the gear tooth and then the tearing away of the tooth or part of the tooth.  

The bending stress calculation is predicted by Lewis equation, which is crucial in 

determining the tooth width. The equation considers the gear tooth to be a cantilevered 

beam and uses the bending of cantilever beam to simulate the bending stress acting on 

the gear.  

 



The figure above shows a cantilever of cross-sectional dimensions b and t, having a 

length L and a force (load) FT, uniformly distributed across the face width b. The 

maximum bending stress at the base of the gear tooth is given by: 

     Eq. 16 

Where 

• S is the maximum bending stress at the base of the gear tooth, (psi) 

• M = Maximum bending moment = Ft * L 

• c = Half thickness of the tooth (t) = t / 2 

• I = Moment inertia = bt3/12 

• FT = Tangential load acting at the tooth 

• L = Length of the tooth 

• t = Gear tooth thickness at base 

• b = Width of gear face. 

The maximum stress in a gear tooth occurs at point R as shown in the figure above. 

Using the similarity of triangles, we can write: 

 

 

 

This implies: 



 

Substituting L in equation Eq. 16 above, we find 

       Eq.17 

Multiplying the numerator and denominator in Eq. 17 by the diametral pitch, Pd 

 

Or 

 

Where, Y is the form factor and is a function of the pressure angle and number of teeth. 

 

The value of Y is available as in the form of a table or graph.  

Outline Factor (Y) for use with Diametral Pitch 

No. of 

Teeth 

14½º PA 

Involute 

20º PA 

Involute 

No. of 

Teeth 

14½º PA 

Involute 

20º PA 

Involute 

No. 
of 
Teeth 

14½º 
PA 
Involute 

20º PA 
Involute

10 .176 .201 20 .283 .320 40 .336 .389 

11 .192 .226 21 .289 .326 45 .340 .399 

12 .210 .245 22 .292 .330 50 .346 .408 

13 .223 .264 23 .296 .333 60 .355 .421 

14 .235 .276 24 .302 .337 70 .360 .429 

15 .245 .289 25 .305 .340 80 .363 .436 

16 .255 .295 26 .308 .344 90 .366 .442 



17 .264 .302 28 .314 .352 100 .375 .446 

18 .270 .308 30 .318 .358 150 .378 .458 

19 .277 .314 35 .327 .373 Rack .390 .484 

 

Using the Lewis equation, one can determine the value of the tooth width, b, by 

substituting the maximum allowable stress value of material as follows:  

 

Average (S) values in pounds per square inch 

Material S (kpsi) 

Steel (Normalized, 140 Bhn) 19 - 25 

Steel, Q & T, 180 Bhn 

Steel, Q & T, 300 Bhn 

Steel, Q & T, 400 Bhn 

25 – 33 

36 – 47 

42 - 56 

Steel (Case carburized) 55 - 65 

Steel (Nitrided) 34 -45 

Cast Iron (AGMA Grade 30, 175 Bhn) 

Cast Iron (AGMA Grade 40, 200 Bhn) 

8.5 

13 

Bronze (AGMA 2C, Sand cast 40 ksi) 5.7 

Nonmetallic Nylon 6000 

 

In design of gears, the pinion is made harder than the gear. Why? 

The Lewis equation indicates that the tooth bending stresses vary (1) directly with load 

FT, (2) inversely with tooth width b, (3) directly as a diametral pitch or inversely with the 



tooth size (note that gear teeth size varies inversely with diametral pitch), and (4) 

inversely with tooth shape factor Y. 

 

It can be observed that ‘Pd’ and ‘b’ are the same for pinion as well as for gear in a gear 

pair. When different materials are used, the product Y and S decides the weaker 

between the pinion and gear.  

The Lewis form factor Y is dependent on the number of teeth and therefore Y will always 

be less for pinion compared to gear. Therefore, when the same material is used for 

pinion and gear, the pinion is always weaker than the gear. Pinions should therefore be 

made approximately 40 BHN harder than their mating wheel to even out the life of the 

two parts with respect to fatigue and wear. 

Limitations of Lewis Equation 

Lewis equation considers only the static loading and doesn’t take into account the 

dynamics of meshing teeth. It assumes that at any time only one pair of teeth is in 

contact and takes the total load. The effect of stress concentration or the effect of radial 

component (FR), which induces compressive stresses, is neglected. Further, it assumes 

that the tangential component (FT) is uniformly distributed over the face width of the gear 

(note that this is only possible when the gears are rigid and accurately machined). 

The Lewis stress formula must therefore be modified to account for the varying 

situations like stress concentration and geometry of the tooth. 

A More Realistic Approach - AGMA Strength Equation 

The AGMA approach, while based on the idealized Lewis equation, involves an 

extensive list of empirical adjustment factors to account for the influence of various 

manufacturing, assembly, geometric, loading, and material variability’s. While 

incorporating all of these factors, the Lewis strength equation will be modified as follows: 

 

Where: 

• Sb bending stress, (psi) 



• Ka application factor 

• Ks size factor 

• Km load distribution factor 

• Kv dynamic load factor or velocity factor 

• Pd is the diametral pitch 

• J geometry factor 

Note!  

Dynamic factor Kv has been redefined as the reciprocal of that used in previous AGMA 

standards. It is now greater than 1.0. In earlier AGMA standards it was less than 1.0. 

Care must be taken in referring to work done prior to this change in the standards. 

Application Factor, Ka, accounts for non-uniform transmitted loads. It allows for the 

non-uniformity of input and/or output torque inherent in the machinery connected to the 

gears. Some of the pertinent application influences include type of load, type of prime 

mover, acceleration rates, vibration, shock, and momentary overloads. Suggested 

factors are tabulated below: 

Suggested Application Factors Ka for Reduction Gears 

Driving Machinery Driven Machinery 

Uniform  
Electric 
motor, 
Steam 
turbine 
Gas turbine 

Light 
Shocks  
Multi-
cylinder 
combustion 
engine 

Heavy 
Shocks  
Single 
cylinder 
combustion 
engine 

Uniform Generator, Belt conveyor, 

Light Elevator, Electric 

hoist, Machine tool feed 

drive, Ventilator, Turbo-

blower, Turbo-compressor, 

Mixer (constant density) 

1 1.25 1.5 



Medium 

Shocks 

Machine tool main drive, 

Heavy elevator, Crane 

turning gears, Mine 

ventilator, Mixer (variable 

density), Multi-cylinder, 

Piston pump, Feed pump 

1.25 1.5 1.75 

Heavy 

Shocks 

Press, Shear, Rolling mill 

drive, Heavy centrifuge, 

Heavy feed pump, Pug mill, 

Power shovel, Rotary 

drilling apparatus, Briquette 

press 

1.75 2 2.25 

Size Factor, Ks - reflects the influence of non-homogeneous materials. The size factor 

Ks corrects the stress calculation to account for the known fact that larger parts are more 

prone to fail.  

• Usually “1” is used. 

• For large teeth, 1.25 to 1.5 would be used. 

Load Distribution or Mount Factor, Km is intended to account for distribution of load 

across face.  

Load Distribution Factors Km for Spur and Helical Gears 

Face width, b, (inches) 

<2 6 9 16 

Condition of support 

Spur Helical Spur Helical Spur Helical Spur Helical 

Accurate mounting, low 

bearing clearances, 

minimum elastic 

deflection, precision 

gears 

1.3 1.2 1.4 1.3 1.5 1.4 1.8 1.7 



Less rigid mountings, 

less accurate gears, 

contact across full face 

1.7 1.6 1.8 1.7 

Accurate and mounting 

such that less than full 

face contact exists 

1.6 1.5 

Over 2.0 

2.0 2.0 

 

Dynamic Effect (Kv) is intended to correct for the effects of the speed of rotation and 

the degree of precision on gear accuracy. Barth first expressed the velocity factor in 

terms of the current AGMA standards; they are represented as: 

 

 

Where, v is the pitch-line velocity, in feet per minute.  

 

 

These equations form the basis for the AGMA approach to the bending strength of gear 

teeth. They are in general use for estimating the capacity of gear drives when life and 

reliability are not important considerations. The equations can be useful in obtaining a 

preliminary estimate of gear sizes needed for various applications. 

Geometry Factor, J is a modification of the form factor Y to account for three more 

influences: stress concentration, load sharing between the teeth, and changing the load 

application point to the highest point of single-tooth contact. This factor depends on the 

shape of the tooth and the distance from the tooth root to the highest point of single-

tooth contact. The value of spur gears with 20 pressure angle and full-depth teeth is 

found from the graph below: 



 

The transmitted tooth load FT is equal to the torque divided by the pitch radius for spur 

and helical gears. 

Gears Reliability 

The previous paragraphs have provided an insight into the specific characteristics and 

failure modes of the gears. The performance and the useful life of a machine is also 

governed by the reliability of gears. The gears manufactured to high standards of 

American Gear Manufacturer’s Association (AGMA) provide extreme reliability. 

Under normal circumstances, reliability is evaluated as part of the reliability factor (KR) 

which accounts for the effect of the normal statistical distribution of failures found in 

material testing. Gear teeth designed to AGMA standards are based upon a statistical 

probability of fewer than one failure in 100. If your experience show that KR of 1.25 has 

given satisfactory service in the past with normal maintenance, the identical gear drive 

should be used on new purchases. If, on the other hand, you have a new, yet-to-be-

proved application, a more appropriate reliability factor may be one failure in 1,000 or 

even one in 10,000. 

For any given load (L), the life and survival rate (reliability) may be correlated through: 

L   =   S * life factor (KL) / reliability factor (KR)  

Where:  



• L = load 

• S = maximum allowable stress for the property of steel 

• KR = the reliability factor, caters for survival rates other than 99%. Since the 

survival contours are essentially parallel to one another on a logarithmic scale, 

then simple multiplication factors enable load correlation, as indicated in the table 

below:  

RELIABILITY FACTOR  % Survival KR  

fewer than one failure in 10,000  99.99  1.50 

fewer than one failure in 1,000  99.9  1.25 

fewer than one failure in 100  99  1.00 

fewer than one failure in 10  90  0.85 

 

• KL = the life factor (KL for bending, CL for pitting) caters for lives other than 107 

cycles. Since the load-life diagrams for all the steels considered are of the same 

shape essentially, normalizing by the allowable stress will result in a unique KL 

(or CL) vs. life curve for all steels.  

GEAR MATERIALS 

When specifying gear materials, properties such as resistance to wear, good fatigue 

strength as well as a low coefficient of friction are desirable. Alloy steels are most 

commonly used in manufacture of gears. They offer high strength and a wide range of 

heat treatment properties. The material composition below indicates how properties vary 

with commonly used alloy materials:  

1. Nickel - Increases hardness and strength.  

2. Chromium - Increases hardness and strength but the loss of ductility is greater. 

It refines the grain and imparts a greater depth of hardness. It has high degree of 

wear resistance.  



3. Manganese - It gives greater strength and a high degree of toughness than 

chromium.  

4. Vanadium - The hardness penetration is greatest. The loss of ductility is also 

more than any other alloys.  

5. Molybdenum - Increases strength without affecting the ductility.  

6. Chrome - Nickel Steels - The combination of the two alloying elements, 

chromium and nickel, adds the beneficial qualities of both. Gears made from 300 

series stainless steel, containing 18% chromium and 8% nickel, are essentially 

nonmagnetic and cannot be hardened by heat treatment. They are 

recommended for low torque applications as their mechanical properties and 

resistance is low. 

The steel gears are usually heat treated in order to combine properly the toughness and 

tooth hardness. It is NOT essential for both pinion and wheel gears to be of the same 

material. As the smaller gear will have to rotate more turns than the larger gear, it is 

more prone to wear and fatigue. It is common, therefore, to choose a material with 

improved properties for the pinion to give a gear pair with a near matching strength and 

durability. 

Simplified Rules of Thumb for Design of Gears 

• The face width of spur gears should be 3 to 5 times the circular pitch. 

• If possible, the ratio of face width to pitch diameter should be kept small (<2) for 

less sensitivity to misalignment and uneven load distribution due to load-sensitive 

deflections. 

• Increasing the face width will decrease wear and fatigue, but the dynamic load 

will increase. 

• A coarser tooth (smaller diametral pitch) will improve the fatigue performance but 

not the wear performance. For a given tooth design, only a harder material will 

improve the wear. 

• Larger pitch diameters have lower tangential forces and lower dynamic loadings. 

• Decreasing the tooth error decreases the dynamic loading. 



SECTION- 6  HOW TO SPECIFY & SELECT GEAR DRIVES 

The choice of a gear drive depends on the application, its environment and the physical 

constraints of the system. The gearbox geometry is defined by four parameters which 

are determined by the characteristics of the driving and driven machinery:  

1. Horsepower transmitted 

2. Speed of the driving gear 

3. Ratio required (reduction or increasing) 

4. Arrangement of shafting 

Gears can either be obtained as standard components from a manufacturer's catalogue 

or alternatively specially designed and manufactured. Gear catalogues tend to display 

only geometric and materials data of stock gears rather than specific operational 

information. This is because functional behavior will vary with an application and it is not 

feasible to give comprehensive data covering all operational conditions within a 

catalogue. The operational factors for deciding the type of the gear are: 

1. Shaft orientation 

2. Operating environment  

3. Speed ratio 

4. Nature of load 

5. Service factor 

6. Gear drive rating 

7. Overhung load 

8. Gear lubrication 

9. Gear materials and heat treatment 

10. Efficiency 

11. Noise considerations 

12. Maximum speed 

13. Power transmission capacity 

14. Costs  

All must be carefully evaluated to make the right decision. 

 



Shaft Orientation: 

Various shaft arrangements are possible. Use: 

• Spur & Helical Gears, when the shafts are parallel 

• Bevel Gears, when the shafts intersect at right angles, and 

• Worm & Worm Gears, when the axes of the shaft are perpendicular and not 

intersecting. 

• As a special case, when the axes of the two shafts are neither intersecting nor 

perpendicular, crossed helical gears are employed. 

Operating Environment: 

Check your application and the operating environment. 

Contact seals should be used on input and output shafts when the unit operates in dusty 

environments or where water is splashed around the unit. In atmospheres laden with 

abrasive dust or in areas hosed down with water under pressure, two contact seals may 

be required on each shaft. Typically, an enclosure around the gears with oil lubrication is 

the preferred design, but grease-lubricated open gears can be used in relatively clean 

environments. 

Moisture or high humidity is another concern. A key instance of this is a food processing 

environment requiring washdowns. In such cases, consider reducers with special epoxy 

coatings, external shaft seals, and stainless steel shaft extensions and hardware. 

Speed Ratio: 

You arrive at the specific gear ration by dividing the motor full-load speed to the 

revolutions per minute (RPM) of the driven equipment. Theoretically, there is no limit to 

the speed ratio that can be designed into a single reduction gearbox, but there is an 

approximate ratio for each type of gear above where the materials are not being used 

economically. These ratios are: 

 



Type Normal Ratio Range 

Spur 1:1 to 6:1 

Straight Bevel 3:2 to 5:1 

Spiral Bevel 3:2 to 4:1 

Worm 5:1 to 75:1 

Hypoid 10:1 to 200:1 

Helical 3:2 to 10:1 

Cycloid 10:1 to 100:1 

Important! 

• For high speed reduction, two-stage or three-stage construction should be used. 

• For applications with variable frequency drives, exact gear ratios become less 

important. In such cases, it is best to select the manufacturer’s standard ratios, 

which is less expensive. Variable or multi-speed applications, however, require 

special considerations to provide adequate splash lubrication at the slowest 

speed, without excessive heating or churning at the higher speed. 

Nature of load: 

A gear drive is one part of a power system which has certain load characteristics 

peculiar to the specific application. The operating characteristics fall into two load 

categories: constant torque or constant horsepower.  

• Constant torque occurs when load demand varies proportionally with a change in 

speed. Examples are conveyors, stokers, and reciprocating compressors. Gear 

drives are basically constant torque machines requiring no selection 

modifications. 

• Constant horsepower implies load demand is constant regardless of speed. 

Examples are lathes, boring mills, radial drill presses, etc. The gear drive must 



be selected for the slowest speed at which the motor will deliver its rated 

horsepower capacity. 

The type of load on the gear drive also depends on the operational characteristics of the 

prime mover. Electric motors and turbines produce relatively smooth operation, whereas 

an internal combustion engine does not afford so smooth a load. 

Service factor (SF): 

Service factors are used to take into consideration intangible operating conditions such 

as misalignments, vibrations, transient loads and shocks. 

The actual horsepower is multiplied by the service factor to obtain an equivalent 

horsepower, and the gear unit selected must have a rating equal to or greater than the 

equivalent horsepower. Typically, this service rating is determined by multiplying the 

required horsepower by the appropriate service factor based on the equipment, duty 

cycle, and type of prime mover. A SF value between 1.25 and 2.0 is typically chosen and 

then multiplied by the motor nameplate power to establish that required by the driven 

equipment.  

Service Factors Type of Load 

Intermittent or 
3hrs per day 

8 -10hrs per day Continuous 24hrs 
per day 

Uniform 0.80 1.00 1.25 

Light shock 1.00 1.25 1.50 

Medium shock 1.25 1.50 1.80 

Heavy shock 1.50 1.80 2.00 

Important! 

Unless otherwise designated, assume manufacturer’s ratings are based on an AGMA-

defined service factor of 1.0, meaning continuous operation for 10 hours per day or less 



with no recurring shock loads. If conditions differ from this, input horsepower and torque 

ratings must be adjusted for specific applications. A higher SF, or larger gear drive size, 

should be selected when peak running loads are substantially greater than normal 

operating loads.  

Gear Drive Rating: 

The function of power transmission gear drive is to reliably transmit torque and rotary 

motion between a prime mover and a driven piece of equipment at acceptable levels of 

noise, vibration and temperature. For every gear drive there is a mechanical rating and 

thermal rating.  

• Mechanical Rating – The mechanical rating indicates the load the gear drive 

can transmit based on stress and wear considerations. The relationship between 

gear life and load is related to the service factor (SF); for example, if SF is 

increased by 30 percent, the gear tooth life will increase 10 times. 

• Thermal Rating – The thermal rating specifies the power that can be transmitted 

continuously for 3 hours or more without exceeding a specified temperature rise 

above ambient. Typically, enclosed drives operate at a temperature rise of 70 to 

100ºF above ambient temperature. The maximum acceptable oil-sump 

temperature is 200ºF per AGMA. Exceeding these guidelines can shorten the life. 

Be sure to provide adequate air space around for heat dissipation, or adjust the 

oil viscosity where temperatures vary widely. For low-temperature operation, the 

oil should have a pour-point lower than that of the extreme minimum temperature 

encountered. Also, the oil may require pre-heating under extremely cold starting 

conditions. 

Overhung Load: 

This is a force applied at right angles to a shaft beyond the shaft’s outermost bearing. 

Too much overhung load can cause bearing or shaft failure. Unless otherwise stated, a 

gearbox manufacturer’s overhung load maximums are rated with no shaft attachments 

such as sheaves or sprockets. The American Gear Manufacturers Association provides 

factors, commonly called “K” factors, for various shaft attachments by which the 



manufacturer’s maximum should be reduced. Overhung load can be eased by locating a 

sheave or sprocket as close to the reducer bearing as possible. In cases of extreme 

overhung load, an additional outboard bearing may be required. 

The following formula can be used to calculate overhung load (OHL): 

OHL (pounds) = T x K / R  

Where,  

• T= Torque (inch-pound) 

• K = load factor constant equals 1.00 for a chain and sprocket, 1.25 for a gear, 

and 1.5 for a pulley and a v-belt. 

• R = Radius of gear 

Gear Lubrication: 

The purpose of the gearbox lubrication system is to provide an oil film at the contacting 

surfaces of working components and absorb heat generated in the gearbox so that 

component temperatures are not excessive. The majority of the oil flow is required for 

the cooling function.  

As stated in the previous paragraph, AGMA thermal ratings are based on a maximum oil 

sump temperature of 200ºF. In turbo-machinery applications, the thermal rating is 

usually less than the mechanical rating and an external cooling system is required. 

When designing a lubrication system, the initial step is to estimate the oil flow to the 

components and the gearbox efficiency.  

The temperature rise across the gearbox can then be calculated: 

∆t= Q/m Cp 

Where:  

• ∆t = Temperature rise, ºF 

• m = Flow, Lbs/min (Note: 1 GPM = 7.5 Lbs/min) 

• Q = Heat, BTU/min (Note: Q = HP x 42.4) 

• Cp = Specific Heat = .5 BTU/Lb, ºF 



For example, a gearbox transmitting 1000 HP with 98% efficiency will reject 20 HP or 

848 BTU/min of heat to the oil. If the gearbox flow is 20 GPM or 150 Lbs/min, the 

temperature rise across the gearbox will be 11°F. Typical operating temperatures for 

turbo-machinery gearboxes are around 130°F with a rise of 30°F. These values are for 

mineral oils; synthetic oils may operate at higher temperature levels.  

The choice of lubricant depends on operating conditions:  

• At peripheral speeds up to 3500 fpm, it is preferable to use a lubricant with a low 

viscosity to avoid excessive churning of the fluid and to facilitate splash 

lubrication.  

• For very high gear forces, lubricants with a greater viscosity are used, and for 

faster gear speeds a pressurized feed system may be necessary. 

Most turbo-machinery gearboxes utilize an AGMA type 1 or 2 lubricant.  

The amount of oil flow supplied to a gear mesh is generally based on experience and 

experimental data. A rule of thumb sometimes used is .02 Lbs/min/HP.  

Important! 

Gear drives are best driven at input speeds common in industrial electric motors, 

typically 1200, 1800 or 2500 RPM. This provides sufficient “splash” for the reducer’s 

lubrication system, but not so much as to cause oil “churning.” For input speeds under 

900 RPM or above 3000 RPM, consult the manufacturer. Alternative lubricants may be 

suggested. Note for peripheral speeds less than 100 fpm grease will suffice.  

Gear Materials and Heat Treatment: 

Proper choice of gear material is probably the most important factor in the successful 

operation of a gear set. The material for any gear is selected based on: 

• The working condition, i.e. power, speed and torque to be transmitted; 

• Working environment, i.e., temperature, vibration, chemical, etc. 

• Ease of manufacture; and 

• Overall cost of material and manufacture. 



In choosing a gear material the tooth hardness and type of heat treatment to achieve 

that hardness must be considered. 

Gears, case hardened by “Carburizing”, provide the best metallurgical characteristics 

combining good case structure with reasonable ductility. Carburizing produces the 

"strongest" gear providing bending and pitting fatigue resistance and an excellent wear 

surface. A disadvantage of carburizing is that gear teeth distort during the heat treatment 

and, in order to obtain high precision, grinding after hardening is required. Surface 

hardness attained by carburizing is in the order of Rc 55-62. For critical applications Rc 

60 minimum should be specified. The best carburizing steel to achieve high load 

carrying capacity is SAE 9310 (AMS 6260 or AMS 6265). Other carburizing steels used 

include SAE 8620, 4620, 4320 and 3310. 

The “Nitriding” process is used to case harden gears when distortion must be held to a 

minimum. Often the gears are finish cut and then nitrided, eliminating the grinding 

requirement. Nitrided gears do not have the bending and pitting fatigue resistance of 

carburized gears but do provide a hard, wear resistant case. With nitriding steel such as 

AMS 6475 (nitralloy N) or AMS 6470 (nitralloy 135), case hardnesses of RC 65-70 can 

be achieved. Steels such as SAE 4140 and 4340 are nitrided to hardnesses of 320 to 

380 BHN. 

Through hardened gears in turbo-machinery, units are generally in the 300-400 BHN 

hardness range. Typical through hardening steels are SAE 4140 and 4340. 

Often, combinations of pinion and gear materials and heat treatments are used. For 

instance, if the gear is very large it may not be practical to harden, and the gear set 

might consist of a carburized and ground pinion driving a through hardened gear.  

Efficiency: 

The losses in a gear transmission system can be divided into two categories: 

1. Load losses: which are proportional to the load transmitted, and are mainly due 

to tooth’s friction. 

2. No-load losses: which are constant for a given operating speed and 

temperature, and to the churning of the lubricant, oil seal friction, etc. 



The tooth losses of helical, spur and bevel gears are small, since their tooth actions are 

predominantly rolling. The no-load losses can vary from a small proportion to as much 

as 80% depending on the gear peripheral speeds and the types of bearings used. A 

good practical guide to the efficiency of this class of gear, mounted in an anti-friction 

bearing and lubricated with oil, is to allow 1% loss per gear mesh when transmitting full 

load. On the other hand, at part load, the efficiency will be lower since the fixed no-load 

losses are a higher percentage of the smaller total load. 

Worm gear tooth action, on the other hand, is predominantly sliding. Therefore, the tooth 

losses are higher comparing with helical, spur, and bevel gears. They depend mainly on 

the load angle of the worm and the coefficient of friction at the contact, which varies 

widely with speed. 

Gear Efficiency Comparison Table 

Type Normal Ratio 
Range Efficiency Range 

Spur 1:1 to 6:1 94-98% 
Straight Bevel 3:2 to 5:1 93-97% 
Spiral Bevel 3:2 to 4:1 95-99% 

Worm 5:1 to 75:1 50-90% 
Helical 3:2 to 10:1 94-98% 
Hypoid 10:1 to 200:1 80-95% 

 

Noise Considerations:  

The most significant factor for noise level is the total contact ratio. Gear noise may be 

reduced by increasing either the profile or face contact ratio. Studies indicate that high-

contact-ratio spur gears (with a 58 percent increase in profile contact ratio) showed an 

average noise reduction of about 2 dB over standard gears. The same applies to helical 

and other gear types. 

The other factors are the speed and the gear tooth profile. The involute tooth profile is 

typically quieter than their non-involute counterparts. 

Maximum Speed: 

A high speed unit is defined as operating with a pinion speed of 3600 revolutions per 

minute and higher, or pitch line velocities of 5000 feet per minute and higher (V = .262 * 

Pitch diameter * Revolutions per minute).  



Speed limits are generally based on a maximum pitch line velocity and sliding velocity in 

case of worm gears.  Approximate maximum pitch line speeds for various types of high 

precision gears are: 

• Spur = 20,000 fpm 

• Helical = 40,000 fpm 

• Straight Bevel = 10,000 fpm 

• Spiral Bevel = 25,000 fpm 

• Worm = 14,000 fpm 

Standard catalog gear units are listed to approximately 20,000 feet per minute. 

Applications exceeding this speed must be considered special and exceptional care 

must be taken in their design and manufacture. 

Many of the speed limitations are concerned with the acceptable noise level and what is 

acceptable on one application may be unacceptable for the other. Therefore, the figures 

should not be taken as strict rules. 

Note - The noise increases sharply with the increase in peripheral speed and to a lesser 

extent with the increase in tooth load. 

Power Transmission Capacity: 

Power capacity of gears is limited by resistance to two forms of failure: 1) one being 

tooth’s surface fatigue, (pitting), which sometimes is referred to as wear rating, and 2) 

the other one is the tooth’s bending fatigue, which is referred to as strength rating. 

Current manufacturing capacity, known materials, and method of lubrication limit the 

maximum power that can be transmitted through gears of different types. Approximate 

maximum powers are: 

• Spur Gear = 25,000 HP 

• Helical Gear = 25,000 HP 

• Spiral bevel = 2,950 HP 

• Worm Gear = 1,000 HP 



These values vary with ratio and are only intended to give practical guidance on what is 

available commercially. 

Costs: 

• Spur gears are the cheapest. They are not only easy to manufacture but there 

exists a number of methods to manufacture them.  

• Single reduction worm gear units of high-speed ratio have significantly higher 

power losses than other types, but set against this are the low initial cost, high 

reliability due to the small number of components, and the low noise level.  

• Helical gear units have low power losses, but have higher initial cost, often 

requiring two or three reduction stages against it making it slightly less reliable 

with a higher noise level. 

• Generally gear costs increase with module size (i.e. tooth size and hence gear 

diameter) and gear type (due to manufacturing complexity). Typically a helical 

gear with a metric module of, say, 3 will be about two to three times more 

expensive than one, with the same number of teeth, with a module of 2.  

• Also, spur gears will be less expensive than comparably sized helical gears, and 

in turn, helical gears will cost less than internal, double helical and skew helical 

gear types.  

Important!  

Larger diameter gears have larger bore sizes and so require larger shafts and possibly 

bearings also; this adds further to the overall cost.  

 

CODES & STANDARDS  

Gears can either be obtained as standard components from a manufacturer's catalogue 

or alternatively specially designed and manufactured. American gear manufacturer’s 

association manuals, AGMA 2001-C95 or AGMA-2101-C95 provide guidelines to the 

selection of gears. Other relevant standards are: 

• ISO 6336-1 to 5:1996 

• British BS 4582 

• German DIN 867 & 3963 



Summary 

In transmitting rotary motion from one shaft to another, gears provide a positive ratio 

type of drive. Gears are of several categories and can be combined in a multitude of 

ways, some of which are meshing circular spur gears, rack and pinion spur gears, and 

worm gears. Helical and herringbone gears utilize curved teeth for efficient, high-

capacity power transmission. Worm gears, driven by worms, transmit motion between 

non-intersecting right-angle axes.  

When two gears are connected, they rotate in opposite directions. The only way that the 

input and output shafts of a gear pair can be made to rotate in the same sense is by 

interposition of an odd number of intermediate gears. Such a gear train is called a simple 

train. If there is no power flow through the shaft of an intermediate gear, then it is an idler 

gear. The gear that does the driving is known as the driver and the other is known as the 

driven gear. If two gears have the same number of teeth, then one turn of driver gear 

causes the driven gear to turn once. When the driver gear is smaller than the driven 

gear, then the speed is reduced and this amplifies the torque in proportion to their teeth 

numbers. The pinion is the smallest gear and the larger gear is called the gear wheel.  

The shape of the gear teeth is important in order to produce a smooth transfer of the 

motion. When the teeth action is such that the driving tooth moving at constant angular 

velocity produces a proportional constant velocity of the driven tooth, the action is 

termed a conjugate action. The teeth shape universally selected for the gear teeth is the 

involute profile.  

One essential point for the proper meshing of the gears is that the size of the teeth on 

the pinion should be the same as the size of the teeth on the wheel. The module must 

be common to both gears. Pitch circles contact one another at the pitch point and the 

pinion's pitch line velocity must be identical to the wheels pitch line velocity. At the pitch 

point, it develops a tangential component of action-reaction due to contact between the 

gears. 

 


