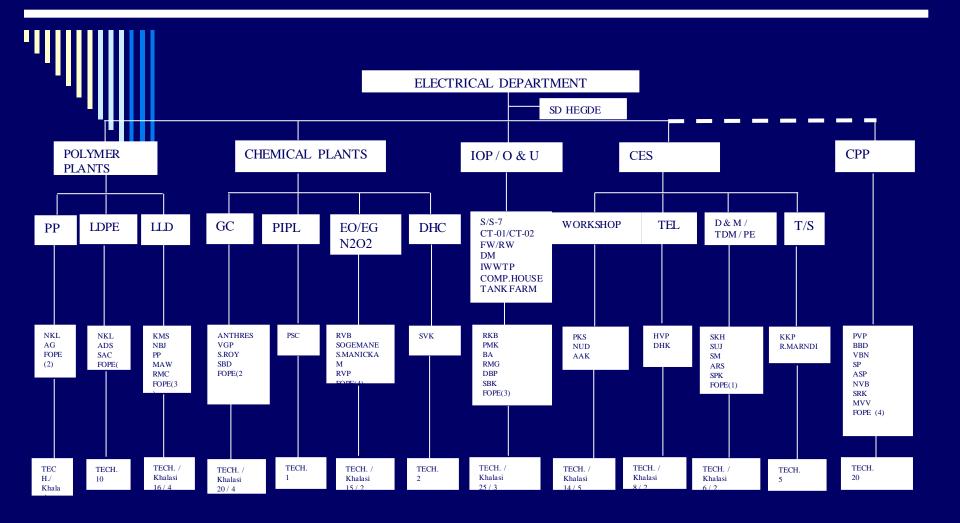
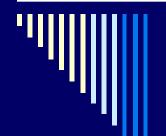


BASICS OF ELECTRICAL ENGINEERING AND MAINTENANCE PRACTICES



BY R. BHARGAVA / A. R. SHENDYE



CONTENTS

DEPARTMENTAL SETUP / ORGANOGRAM
ROLES, RESPONSIBILITY AND AREAS OF EACH SECTION
POWER SYSTEM OF MGCC
CES-E/ WORK SHOP FACILITIES
ACT AND STATUTORY APPLICABLE
EQUIPMENT AND THEIR SELECTION IN CLASSIFIED AREA
TYPES OF MAINTENANCE, SCHEDULING/PLANNING
TASK ANALYSIS, RISK MITIGATION AND ACHIEVEMENTS
INTERFACE WITH OTHER DISCILINE
ILLUMINATION
ELECTRICAL SAFETY AND AUDITS

October 12, 2022 3



MANPOWER ELECTRICAL as on 01.02.2007

HOD: SD Hegde VP(E)

PLANT	L2	L3	L4	FOPE	TECH
PP		1		2	11
LDPE	1	1	1	3	10
LLDPE		4	1	3	16
GC		3	1	2	20
GC PIPL			1		1
EOEG/ N202/ DHC	1	3	1	4	17
CPP	2	3	3	4	20
IOP	2	2	2	3	25
CES + T/S	4	5	3	1	33
TOTAL	10	22	13	22	153

01 GM and 01 Tech.is working with CMG group.

RESPONSIBILITIES (PLANT)

PLANT MAINTENANCE DEPT:

- ☐ PREVENTIVE AND PREDICTIVE MAINTENANCE PLANNING
- MAINTENANCE BUDGETING
- ☐ MAINTENANCE OF SUBSTATION AND FIELD EQUIPMENTS
 - o CABLES, TRANSFORMERS, MOTORS,
 - o HT/LT SWITCHBOARDS
 - o DG SET, BATTERY BANK
 - o PLANT LIGHTING, SERVICE BUILDING LIGHTING
- MATERIALS MANAGEMENT
- **■** SUPPORT SERVICES

RESPONSIBILITIES (CES)

ELECTRICAL REPAIR SHOP

- o REPAIR AND OVERHAUL OF MOTORS, TRANSFORMERS,
- o CABLE FAULT LOCATION
- O RELAY TESTING AND ELECTRONIC CARD REPAIRS.
- o AIR CONDITIONING [CAC, WAC, SAC],
- **O REFRIGERATORS, WATER COOLERS**
- o NON-PLANT BUILDING & STREET LIGHTING
- o CALIBRATION OF INSTRUMENTS

TROUBLESHOOTING AND DESIGN MODIFICATION

- o TROUBLESHOOTING OF SPECIAL SYSTEMS LIKE VSD,
- o MAINTENANCE OF UPS AND BATTERY CHARGERS.
- o DESIGN & MODIFICATIONS SUPPORT FOR FCO / RELIABILITY.

RESPONSIBILITIES (CES)

PLANNING AND COORDINATION

- > CO-ORDINATION WITH VENDORS FOR MAJOR SHUTDOWN
- > STATUTORY REPORTS / MIS COMPLIANCE
- > CO-ORDINATION WITH STATUTORY AUTHORITIES LIKE ELECTRICAL INSPECTOR, MSEB, LIFT INSPECTOR, ELECTRICITY DUTY INSPECTOR

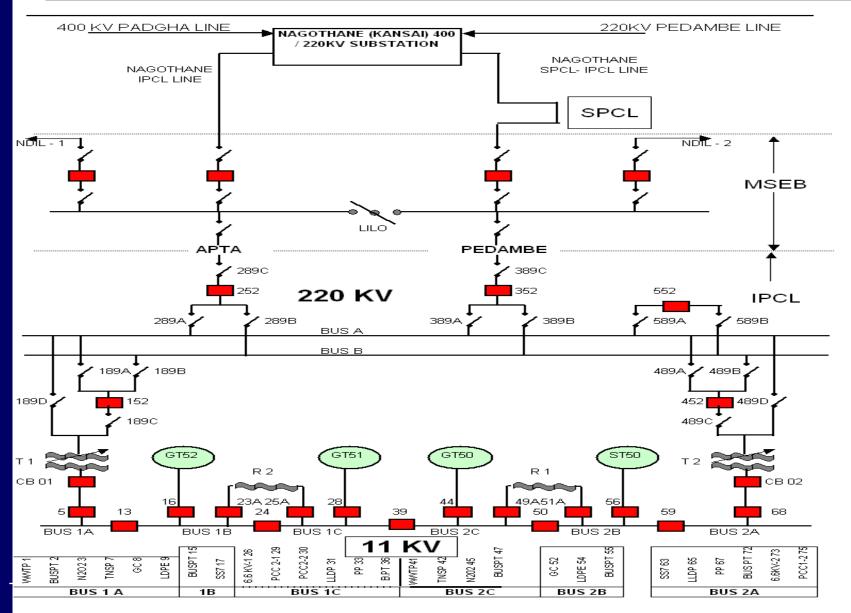
COMMUNICATION

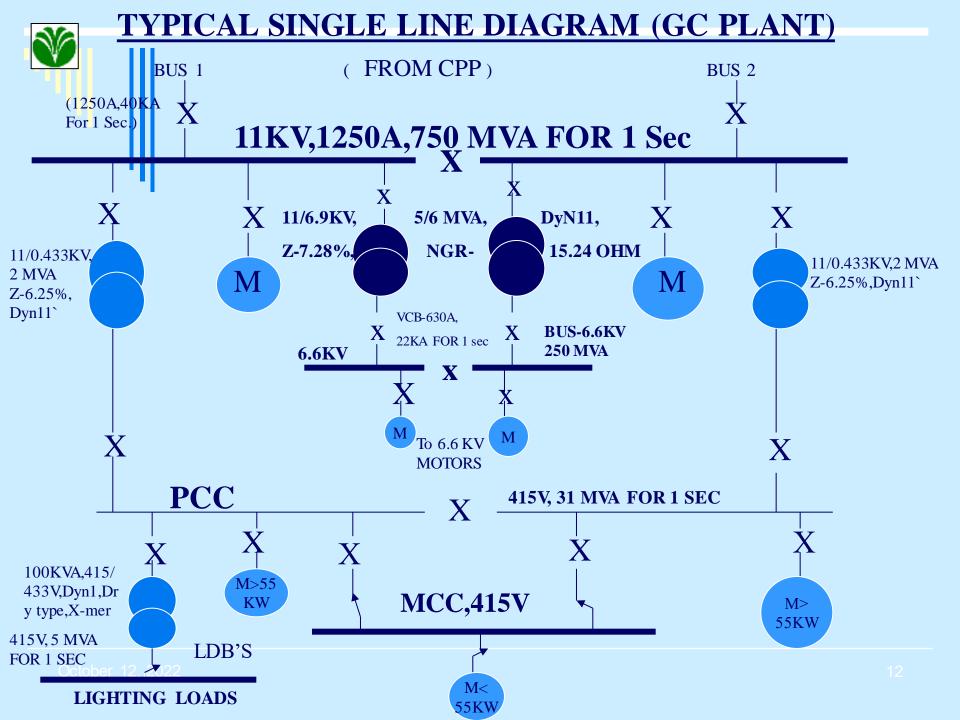
- > TELEPHONIC EXCHANGES FOR PLANT/TOWNSHIP
- > MODIFICATION IN TELEPHONE NETWORK
- > WIRELESS AND WALKIE-TALKIE SETS
- > NEUMANN COMMUNICATION
- > FIRE ALARM SYSTEMS
- > PIPELINE COMMUNICATION

ELECTRICAL POWER SYSTEM

- **IPCL-MGCC** receives electrical power from MSEB at 220 kV (2 circuits).
- This 220 kV is step down to 11 kV, which is then synchronized at our captive power plant (CPP) generation at 11 kV.
- © CPP is having 03 gas turbines of 20 MW each, Frame size 5 (AEG-KENIS, Germany make) and one steam turbine of 25 MW (AEG-KENIS) with a total generation capacity of 64 mw.
- Load flow control and monitoring is done through Electrical Control System (ECS) located at CPP. ECS system takes care of mainly:
 - Active / Reactive power control
 - Load shedding in case of Generator / prime mover failure
 - Auto changeover at HT/LT boards
 - Online monitoring and data logging

ELECTRICAL POWER SYSTEM


- There are 14 nos. of Electrical Substations (Including T/S) having 11 kV,
 6.6 kV, 415 v, 3Ø, 50 Hz supply system feeding to various loads.
- These substations are supplied with redundant 11 kV supply as Incomer-1 and Incomer-2 from CPP.
- There is manual transfer scheme provided in switchboard for transferring the load from one bus to other without affecting connected load.



ELECTRICAL POWER SYSTEM

- Motors above 160 kW are fed through either 6.6 kV or 11 kV switchboard.
- Motors up to 55 kW are fed from 415 V MCC.
- DG sets are provided at:
 - CPP of 867 kVA for black-start purposes
 - GC of 500 kVA for emergency supply like id fan etc.
 - LDPE of 250 kVA for refrigeration at catalyst storage bunkers.

IPCL-NAGOTHANE POWER SYSTEM SINGLE LINE DIAGRAM

FACILITIES AVAILABLE AT CES(E)

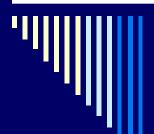
- 1 PHASE POWER ANALYSER
- AC / DC EARTH FAULT LOCATOR
- CABLE FAULT LOCATOR
- PORTABLE BATTERY CHARGER
- INFRARED THERMOGRAPHY CAMERA
- RELAY TESTING KIT
- © ELECTRONIC MOTOR CHECKER
- PRIMARY INJECTION KIT
- VACUUM TESTER
- CONTACT RESISTANCE TESTER
- CT / PT TESTING KIT
- MOTOR TEST BENCH
- OIL FILTERATION UNIT
- BDV TEST KIT

THE STATUTORY ACTS WHICH REGULATE THE USAGE OF ELECTRICITY IN INDIA

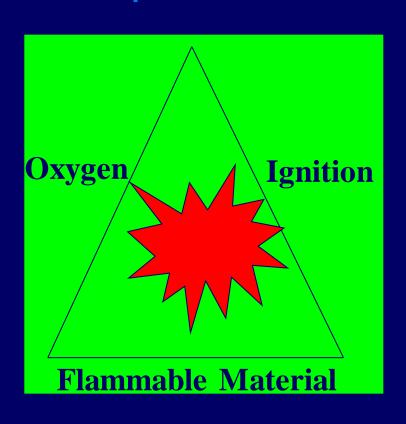
- 1. THE INDIAN ELECTRICITY ACT 2003
- 2. THE FACTORIES ACT 1948
- 3. THE MINES ACT
- 4. THE LIFTS ACT
- 5. THE BOMBAY ELECTRICITY DUTY ACT 1958
- 6. THE INDIAN ELECTRICITY RULES 1956
- ABOVE ACTS CONTAINS IMPORTANT CLAUSES GOVERNING THE INSTALLATION AND USE OF ELECTRICAL APPARATUS.
- IT IS A DUTY OF EVERY ONE TO STUDY THEM CAREFULLY AND COMPLY WITH THEM.

REMEMBER: IGNORANCE OF LAW IS NO EXCUSE

STATUTOY COMPLIANCE


Sr. No.	Statutory maintenance required	Frequency
1	Insulation resistance tests for Panels	(Megger tests twice/Year)
2	Transformer Oil testing for Dielectric (BDV), PPM, acidity	Yearly
3	DGA (for transformer above 5 MVA)	Twice/Year
4	Testing / Calibration of measuring instruments	Yearly
5	Earthpit testing	Yearly
6	Battery maintenance	
	Records to be maintained	
7	L.A./Surge Counter readings register	
8	Failure and interruption record	
9	History sheet of equipments / maintenance	
10	Register of Generating Set (Generation Figures)	CPP / GC / LDPE
11	Battery maintenance	
12	HT / LT load addition / alteration / removal	
13	Details of Training (Fire / Safety / First Aid / Ambu bag etc)	

MAJOR ELECTRICAL EQUIPMENTS


TOTAL NOS. OF HT MOTORS	80 NOS.
TOTAL NOS.OF LT MOTORS	1800 NOS APPROX.
TRANSFORMERS	79 NOS(FROM 0.5 TO 33.3 MVA)
VARIABLE SPEED DRIVES	60 NOS
UPS SYSTEMS (110V AC)	16 NOS (FROM 10 KVA TO 100 KVA)
RECTIFIERS (BATTERY CHARGERS)	25 NOS

CONTROL SUPPLY ARRANGEMENT

PLC & DCS SYSTEMS	110 VAC (UPS)
FIELD INSTRUMENTS	110 VDC (RECTIFIERS WITH BATTERY BACK UP)
CONTROL SUPPLY FOR ELECT. PANELS	220 VDC (RECTIFIERS WITH BATTERY BACK UP)
SUPPLY FOR	24 VDC – FIRE ALARM
COMMUNICATION	48 VDC – EPABX
EQUIPMENTS	60 VDC – NEUMANN
	(ALL WITH RECTIFIERS AND BATTERY BACK UP)

EQUIPMENT SELECTION IN HAZARDOUS AREA


BASIS FOR AREA CLASSIFICATION AND EQUIPMENT SELECTION

- 1) ZONE: BASED ON THE OCCURANCE OF HAZARDOUS MATERIAL
- 2) GAS GROUP: TYPE OF GAS PRESENT. IT DETERMINES THE CONSTRUCTION OF ENCLOSURE.
- 3) TEMPERATURE CLASS: IT IS
 BASED ON ALLOWABLE SURFACE
 TEMPERTURE OF ENCLOSURE

SRA & JOB CONTRACTS

- ✓ LT MOTOR REWINDING
- ✓ STREET LIGHT MAINTENENCAE
- ✓ SRA FOR MISC. ELECTRICAL JOBS
- ✓ O&M OF CENTRAL A/C
- ✓ HT/LT BREAKER MAINTENANCE
- ✓ TELEPHONE NETWORK MAINTENANCE
- ✓ AMC FOR TELEPHONE EXCHANGE
- ✓ AMC FOR ENPL UPS SYSTEMS
- ✓ AMC FOR OTIS/OLYMPUS ELEVATORS
- ✓ SRA FOR HT CABLE TERMINATIONS/JOINTING
- ✓ SRA OF CABLE TUNNEL MAINTENANCE
- ✓ SRA FOR ELECTRONIC CARDS REPAIRS

MAINTENANCE DEFINITION

- THE MAINTENANCE IS ALL TECHNICAL AND ASSOCIATED ADMINISTRATIVE ACTIONS INTENDED TO RETAIN AN ITEM IN, OR RESTORE IT TO, A STATE IN WHICH IT CAN PERFORMITS REQUIRED FUNCTION (STATED CONDITION). (BS 3811:1984)
- THE ENGINEERING DECISIONS AND ASSOCIATED ACTIONS NECESSARY AND SUFFICIENT FOR THE OPTIMIZATION OF SPECIFIED CAPABILITIES
- [CAPABILITY IS THE ABILITY TO PERFORMA SPECIFIC ACTION WITHIN A RANGE OF PERFORMANCE LEVEL.]

(MESA-MAINTENANCE. ENGINEERING. SOCIETY OF AUSTRALIA)

October 12, 2022 20

WHAT IS TO BE MAINTAINED?

The list of Electrical equipments, location wise which needs to be maintained.

A. SUB-STATION ELECTRICAL EQUIPMENTS

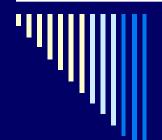
- 1. HT/LT (PCC/MCC) PANELS
- 2. TRANSFORMERS (POWER/DISTRIBUTION/LIGHTING)
- 3. LIGHTING/SERVICE BOARDS
- 4. UPS AND BATTERY CHARGERS
- 5. BATTERY BANKS
- 6. CONTROL PANELS FOR SPECIFIC EQUIPMENTS
- 7. PROCESS INTERLOCKS
- 8. ANNUNCIATION PANEL
- 9. ECS PANELS
- 10. EMERGENCY DG SETS
- 11. JUNCTION BOXES IN FIELDS

ااااااااا

WHAT IS TO BE MAINTAINED?

B.A/C PLANTAND PRESSURIZATION

- C. EMERGENCY DG SET
- D. FIELD ELECTRICAL EQUIPMENTS-
- 1. MOTORS AND LOCAL CONTROL STATIONS, MOVS
- 2. EOT CRANE
- 3. SPECIFIC EQUIPMENTS
- 4. POWER / LIGHTING PANELS
- 5. LIGHTING FIXTURES
- 6. PANELS FOR HYDROJETTING / WELDING M/C CONNECTION
- 7. SINGLE PHASE POWER POINTS
- 8. HAND LAMP CONNECTIONS
- 9. FIRE ALARM MCP
- 10. JUNCTION BOXES FOR FIRE ALARM/NEUMANN COMMUNICATION


WHAT IS TO BE MAINTAINED?

E. ELECTRICAL EQUIPMENTS IN CONTROL ROOM

- 1. PANEL FOR FIRE ALARM
- 2. PANEL FOR NEUMANN EXCHANGE
- 3. CONTROL PANELS FOR SPECIFIC EQUIPMENTS
- 4. POWER CABLE END TERMINATION IN INST. PANELS
- 5. CONTROL CABLE END TERMINATION
- 6. LIGHTING FIXTURE INCLUDING EMERGENCY LIGHTING
- 7. LIGHTING/POWER PANELS/POINTS

F. CABLING

- 1. POWER CABLES
- 2. CONTROL CABLES
- 3. END TERMINATIONS
- 4. STRAIGHT THROUGH JOINTS

MAINTENANCE-WHY?

- TO IMPROVE / ENHANCE
- > PERFORMANCE
- > LIFE OF EQUIPMENT
- > RELIABILITY
- TO SAVE TIME AND MONEY
- TO REDUCE / ELIMINATE BREAKDOWN

SOURCES OF DEFECTS

FAIIURE Collateral damage. (bearing seizure, damaged shaft)

WORKMANSHIP What they do; not what they could do. Not just skill and motivation... the system as well. (being so reactive and time-pressed so as to fail to align the pump before bringing it to line.)

DESIGN Design not fitting current use, could be poor initial design.

MATERIALS Defects in mfg, storage, handling and sourcing

OPERATIONS Normal wear & tear, operational practices

TYPES OF MAINTENANCE

PREVENTIVE MAINTENANCE

CONSISTS OF PERFORMING REGULAR MAINTENANCE ON A TIME SCHEDULE. IT IS AN EXPENSIVE ALTERNATIVE THAT SIMPLY MASKS AND DELAYS THE ROOT CAUSES OF FAILURE.

PREDICTIVE MAINTENANCE

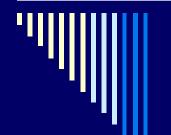
CONSISTS OF APPLYING EARLY WARNING TECHNIQUES TO DETECT SMALL AMOUNT OF DAMAGE BEFORE THEY LEAD TO CATASTROPHIC FAILURE. EXPENSIVE REPAIRS REMAIN IMMINENT.

PROACTIVE MAINTENANCE

FOCUSES ON IDENTIFYING THE ROOT CAUSE OF FAILURE AFFECTING THE SYSTEM. PROPERLY APPLIED, IT COMMISSIONS CORRECTIVE ACTION TO ELIMINATE THEIRS BEFORE DAMAGE HAS OCCURRED.

WHILE PREDICTIVE AND PREVENTIVE MAINTENANCE ARE EFFECTIVE TO A CERTAIN DEGREE, BUT DO NOT FOCUS ON DETECTING THE ROOT CAUSE OF FAILURE. AND TRUE EXPENDITURE CONTROL, THEREFORE PROACTIVE APPROACH IS REQUIRED.

TYPES OF MAINTENANCE


BREAKDOWN MAINTENANCE

BASED ON A "RUN TO FAILURE" PHILOSOPHY. OFTEN RESULTS IN MAINTENANCE EXPENDITURES EXCEEDING ANNUAL PROFIT.

RELIABILITY CENTERED MAINTENANCE (RCM)

FIX THE PROCESS, NOT JUST THE PROBLEM. TO GET OTHER DEPARTMENTS TO ADJUST, TO WORK OUT NEW, MORE PRODUCTIVE ARRANGEMENT THAT SOMETIME CROSS TRADITIONAL BOUNDARIES OR SHIFT TERRITORIES OR RESPONSIBILITIES AND GET DIFFERENT DEPARTMENTS OR FUNCTIONAL GROUPS TO EVEN ACCEPT EACH OTHERS IDEA.

October 12, 2022 27

PREVENTIVE MAINTENANCE SCHEDULED/PLANNED

- RELAY TESTING
- **■** EARTHING BONDING TESTING
- MOTOR PREVENTIVE MAINTENANCE
- □ UPS / BATTERY CHARGER MAINTENANCE ETC.

CHANCE BASED MAINTENANCE

SINGLE LINE EQUIPMENT AND CRITICAL EQUIPMENT WHICH NORMALLY CAN NOT BE RELEASED FOR MAINTENANCE.

October 12, 2022 28

PREVENTIVE MAINTENANCE

CHANCE BASED MAINTENANCE

RELAY TESTING (SINGLE LINE EQUIPMENTS)

EARTHING / BONDING CHECKING

PANEL MAINTENANCE

TRANSFORMER OVERHAULING

OVERHAULING / PM OF CRITICAL MOTORS AND SINGLE LINE EQUIPMENT

BATTERY BANK MAINTENANCE

UPS AND BATTERY CHARGER MAINTENANCE

MAINTENANCE OF COMMUNICATION SYSTEM ETC.

CONDITION MONITORING

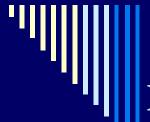
THE CONTINUOUS OR PERIODIC MEASUREMENT AND INTERPRETATION OF DATA TO INDICATE THE CONDITION OF AN ITEM TO DETERMINE THE NEED FOR MAINTENANCE.

(BS 3811: 1984)

THE PREVENTIVE MAINTENANCE INITIATED AS A RESULT OF KNOWLEDGE OF THE CONDITION OF AN ITEM FROM ROUTINE OR CONTINUOUS MONITORING.

(BS 3811: 1984)

CONDITIONING MONITORING


- THERMOGRAPHY OF ALL HT/LT CRITICAL PANELS, EQUIPMENTS ONCE EVERY 4 MONTHS.
- TEMPERATURE MONITORING BY THERMOHUNTER ON REGULAR BASIS.
- MOTOR CURRENT SIGNATURE ANALYSIS OF ALL CRITICAL HT/LT MOTORS EVERY SIX MONTHS.
- □ VIBRATION MONITORING OF ALL ROTATING EQUIPMENTS (MONTHLY/BIMONTHLY)
- TRANSFORMER OIL TESTING BDV ONCE IN A YEAR AND (CHEMICAL/DGA) ONCE IN TWO YEARS.

Contd...

CONDITIONING MONITORING

- CONTACT RESISTANCE AND TIMING MEASUREMENT OF HT BREAKERS BASED ON CHANCE MAINTENANCE.
- □ PHYSICAL CHECKING OF ALL HT/LT CABLE JOINTS IN TUNNEL/OVERHEAD TRAYS ON REGULAR BASIS.
- □ IR VALUE OF TRANSFORMERS, MOTORS BASED ON CHANCE MAINTENANCE.
- TAN DELTA TESTING
- CT/PT TESTING

PREDICTIVE MAINTENANCE

DIAGNOSTIC TESTING

- **BDV, DGA/ CHEMICAL TESTS ON TRANSFORMER OIL**
- **MILLIVOLT DROP TESTS ON BREAKERS/ CONTACTORS CONTACT**
- **VACUUM TEST ON VACUUM BOTTLE OF VCB**
- **4 TAN-DELTA & CAPACITANCE TEST FOR MOTORS, TRANSFORMERS, CABLES.**
- **MCSA TEST ON RUNNING MOTORS**
- **PARTIAL DISCHARGE TEST, RATIO, POLARITY AND KNEE POINT VOLTAGE TESTS ON CT& PT.**
- **CONTACT RESISTANCE TESTS FOR THE JOINTS/TERMINATIONS.**
- **4** THERMOGRAPHIC SURVEY FOR HT/LT PANELS

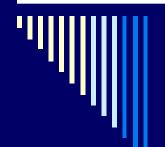
October 12, 2022 33

PREDICTIVE MAINTENANCE

HISTORY/TREND MONITORING

BASED ON THE HISTORY AND TREND DECISION IS TAKEN TO CARRY OUT MAINTENANCE ACTIVITY

MTBF- MEAN TIME BETWEEN FAILURE IS ONE OF THE CRITERIA TO DECIDE MAINTENANCE ACTIVITY.

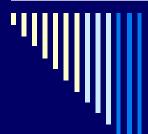

October 12, 2022 34

PROACTIVE MAINTENANCE

IMPROVES EQUIPMENT RELIABILITY

- ☐ INCREASES MEAN TIME BETWEEN FAILURE.
- IDENTIFIES IMPROPER OPERATING CONDITIONS.
- DEVELOPS MORE EFFECTIVE EQUIPMENT SPECIFICATIONS.
- ALLOWS FOR ROOT CAUSE FAILURE ANALYSIS.
- ☐ AUTOMATICALLY PROVIDES PREDICTIVE MAINTENANCE CAPABILITIES.

PROACTIVE MAINTENANCE


- **❖** FCO DESIGN AND MODIFICATIONS JOBS
- **❖** FIR FAR SYSTEM
- **❖ RELIABILITY IMPROVEMENT PLANS**

RELIABILITY CENTERED MAINTENANCE

- FORM A CROSS-FUNCTIONAL TEAM TO SOLVE THE PROBLEM.
- WIDEN YOUR VIEWS TO UNDERSTAND THE CAUSE OF PROBLEM.
- USE BRAINSTORMING SESSION AND 5-WHY PRINCIPLES TO ARRIVE AT ROOT CAUSE.
- USE P-D-C-A CYCLE TO SOLVE THE PROBLEM.

October 12, 2022

TASK ANALYSIS AND RISK MITIGATION

- IT AIMS AT REDUCING / ELIMINATING RISKS CAUSING PRODUCTION LOSS BY WAY OF JOINT STUDY OF THE TASK BEING UNDERTAKEN.
- PROVIDES ALTERNATIVE / STANDBY TO OVERCOME RISK / REDUCE PRODUCTION LOSS

Contd...

||||TASK ANALYSIS AND RISK MITIGATION

UPS Control supply provision to OTI of Transformer T1 and Installation of New calibrated WTI

	· 'IIII				
Step No.	Activity	Impact	Precautions	Remarks	Time duration
1	CPP - Elect to take ELO on Transformer T1. For which ELO on breaker 152, CPP 11 KV breaker 5, Isolator 189 C is required.	1)Supply from transformer T1 will not be available and Incomer 1 will not be available. 2)With only T2 available, import requirement (during exigency) will be met by T2	1)ELO procedure to be followed for lockout on T1. 2) ELO activity under direct supervision of CPP Elect shift engineer.	1)Supply to CPP 11 KV Incomer 2 (Panel 68) will be available from transformer T2 and no activity is planned on this transformer T2. 2) Max import thru T2 possible is 25 MVA, which is higher than import requirement in case of 1 generator tripping and also the CD with MSEDCL. Hence NC can run with T2	45 Min
2	Connection of UPS supply cable to MCB of Transformer T1 at DB located in s/yard celler.		Ensuring MCB is switched OFF.	To be supervised by BA.	30 Min
3	Removal of WTI and installation of new calibrated WTI.	Under control	Under control	To be supervised by BA.	4 Hrs

IIIITASK ANALYSIS AND RISK MITIGATION

UPS Control supply provision to OTI of Transformer T1 and Installation of New calibrated WTI

Step No.	Activity	Impact	Precautions	Remarks	Time duration
4	Connection of UPS supply cable at Elmex in OTI / WTI marshaling box and extension of UPS control supply to OTI & WTI controllers.		Under control	To be supervised by BA.	30 Min
5	Switching ON of UPS supply MCB to Transformer T1 and observing the temperature readings on controllers.	Under control	Under control	To be supervised by BA.	1 Hrs
6	Lifting of ELO and charging of Transformer T1.	Under control	Under control		45 Min
7	1) Total shutdown time required on transformer T1 is 8 Hrs. 2) During all the above activity Transformer T2 will be available to CPP.			Information Refer remarks in step 1	
				Total time required	8 Hrs

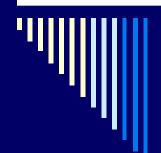
ACHIEVEMENTS

- IMPLEMENTATION OF LOCKOUT-TAG OUT (LOTO) SYSTEM WITH ALL NECESSARY MODIFICATIONS IN HT/LT PANEL.
- MODIFICATION IN ALL HT PANELS FOR THERMOGRAPHIC SURVEY
- REPLACED PLANT AND TOWNSHIP EXCHANGES WITH NEW AVAYA EXCHANGE TO IMPROVE COMMUNICATIONS.
- SEGREGATION OF BATTERY BANKS IN ALL UPS SYSTEMS
- NEW NEUMANN PPPLANT PUBLICADDRESS SYSTEM COMMISSIONED
- AMR SYSTEM IN TOWNSHIP INSTALLED.

FORWARD PATH

- UPGRADATION OF ECS
- REPLACEMENT OF OLD TLL UPS AT N2O2, OSBL, PIPELINE

October 12, 2022



INTERFACING WITH OTHER DISCIPLINES

- >INTERFACE WITH OPERATION
- >INTERFACE WITH MECHANICAL
- >INTERFACE WITH INSTRUMENTS

CASE:

PUMP MOTOR TRIPPING ON OVERLOAD PUMP MOTOR NOT STARTING

ILLUMINATION

- 1) SAFE AREA LIGHTING
- 2) LIGHTING IN CLASSIFIED AREA (IS 2206)

ILLUMINATION REQUIREMENT

SR. NO.	TYPE OF AREA	LUX LEVEL
1	OUTDOOR AREAS, YARDS, ROADS, PARKING AREAS	20
2	CONTROL PANELS	150
3	TRANSFORMER BAY, BATTERY ROOM, BLOWERS, SWITCHYARDS	100
4	STAIR CASE, STORE ROOMS, CORRIDOR GENERAL LIGHTING	100
5	CABLE CELLAR / BASEMENTS, CORRIDORS AND LIFT CARS	70
6	CONFERENCE ROOMS, GENERAL AND EXECUTIVE OFFICES	300
7	ENTRANCE HALL AND RECEPTION AREAS	150
8	GARAGE IN TOWNSHIP	70
9	CONVEYERS	50
10	ROUGH WORK AREAS, FOR E.G. FRAME ASSEMBLY, ASSEMBLY OF HEAVY MACHINES	150

ILLUMINATION REQUIREMENT

SR. NO.	TYPE OF AREA	LUX LEVEL
11	REACTOR AREAS, BOILERS, GALLERIES ETC.	150
12	BOILER HOUSE AND TURBINE HOUSE	100
13	BOILER PLATFORMS	50
14	BURNER PLATFORMS	110
15	OIL STORAGE TANKS, PLATFORMS, BOILER & TURBINE DECKS	50
16	CHEMICAL AND GENERAL LABORATORY	300
17	SHEET METAL WORKS SUCH AS PRESSING, PUNCHING, SHEARING, STAMPING, SPINNING, FOLDING	200
18	CONDENSERS, DE-AERATOR FLOOR, EVAPORATOR FLOOR, HEATER FLOOR	55
19	CONTROL ROOMS:	200 TO 300
20.	VERTICAL CONTROL PANELS	200 TO 300
21.	CONTROL DESKS	300

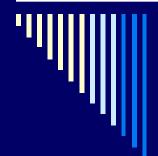
ELECTRICAL SAFETY

HOW SHOCK OCCURS

ELECTRICITY TRAVELS WHEN THERE IS A CLOSED CIRCUIT & ITS NORMAL ROUTE IS THROUGH A CONDUCTOR.

ELECTRIC SHOCK OCCURS IN THREE WAY.

WHEN PERSON COMES IN CONTACT WITH BOTH LIVE WIRES


WHEN PERSON COMES IN CONTACT WITH ONE LIVE WIRE AND HE IS STANDING ON GROUND

WHEN PERSON USING TOOLS OR MACHINE WHICH IS HAVING FAULTY INSULATION AND STANDING ON GROUND

SEVERITY OF SHOCK

OTHER INJURIES ARE INDIRECT OR SECONDARY NATURE SUCH AS

- ➤ INVOLUNTARY MUSCLE REACTION FROM ELECTRICAL SHOCK CAN CAUSE BONE FRACTURE OR EVEN DEATH DUE TO FALLING FROM HEIGHT.
- WHEN SHORT CIRCUIT OCCURS THERE ARE CHANCES OF FIRE OR EXPLOSION WHICH MAY LEAD SEVERE DAMAGE OR FATALITY.

EFFECT OF CURRENT ON HUMAN BODY

50 HZ AC PASSING THROUGH BODY FOR 1 SECOND, THROUGH THE ROUTE LEFT HAND TO BOTH FEET TO EARTH.

CURRENT	EFFECT
UPTO 1 MA	NO SENSATION
1 MA TO 8 MA	SENSATION - BUT NOT PAINFUL
8 MA TO 15 MA	PAINFUL SHOCK
15 MA TO 20 MA	MUSCULAR CONTROL LOST
20 MA TO 50 MA	SEVERE MUSCULAR CONTRACTION
50 MA TO 200 MA	VENTRICULAR FIBRILLATION POSSIBLE DEATH
ABOVE 200 MA	SEVERE BURNS SEVERE VENTRICULAR FIBRILLATION HEART ARREST

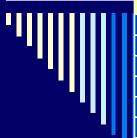
PREVENTING ELECTRICAL HAZARD

- INSULATION
- GROUNDING / EARTHING
- CIRCUIT PROTECTION DEVICES
- □ ELCB
- USE OF STANDARD ELECTRICAL APPLIANCES.
- PROPER AND REGULAR MAINTENANCE.
- USE OF ELECTRICAL EQUIPMENT WITH ADEQUATE RATING AND AREA CLASSIFIED.
- GUARDING
- SAFE WORK PRACTICES
- □ TRAINING

October 12, 2022

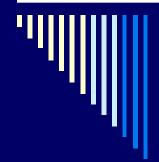
ELECTRICAL AUDIT SYSTEM

- > SYSTEM ESTABLISHED IN YEAR 2005
- > 13 TYPES OF AUDITS ACROSS 14 AREAS/SUBSTATION
- > VARIOUS FREQUENCIES FOR THE AUDITS VIZ. MONTHLY, QUARTERLY, HALF YEARLY, YEARLY
- > SELFAUDITS, CROSS AUDITS AND AUDIT BY NOMINATED COMMITTEE
- WIDE PARTICIPATION AT VARIOUS LEVELS IN AUDITORS ROLE



ELECTRICAL AUDIT SYSTEM

- > INVOLVED 14 AUDITORS FOR SELFAUDITS, 12 AUDITORS FOR THE CROSS AUDITS AND 04 AUDITORS FOR COMMITTEE AUDIT
- > COMPLETED TOTAL 557 AUDITS IN 2005 COMPLETED FIRST REVIEW OF THE SYSTEM IN YEAR 2006.
- FINE TUNING OF THE AUDIT SYSTEM WAS DONE.
- NUMBER OF AUDITS REDUCED TO 379 WITHOUT COMPRISING THE QUALITY.
- THE CHECKLISTS WERE REVIEWED TO INCREASE THE EFFECTIVENESS OF THE AUDIT SYSTEM.


		AUDIT PLAN FOR	YEAR 2007		
SR	AUDIT				
NO	CODE	DISCRIPTION	FREQUENCY	TYPE	RESPONSIBILITY
1	EA-01	SYSTEM COMPLIANCE AUDIT	QUARTRLY	CROSS	
		FACILITIES (SPECIAL - EQPT. /			
2	EA-03	MACHINES / INTRUMENTS / TOOLS)	QUARTERLY	CROSS	
					NOMINATED BY
3	EA-04	ELECT INSTALLATION AUDIT	YEARLY	COMMITTEE	HOD(E)
4	EA-05	PREMANSOON AUDIT	YEARLY	CROSS	REFER MATRIX
5	EA-06	VERMIN PROOFING AUDIT	YEARLY	CROSS	REFER MATRIX
6	EA-07	CONTRACTORS SITE FACILITY AUDIT	QUARTERLY	SELF	
7	EA-08	ELECTRICAL CONTRACTORS AUDIT	YEARLY	SELF	HOS CES(e)
				DIST	
8	EA-09	SAFETY DISTRICT AUDIT	QUARTRLY	OWNER	SDH(TELECOM)
		AIR CONDITIONING & PRESURISATION			
9	EA-10	EQPT PERFORMANCE AUDIT	MONTHLY	SELF	HOS(ers)
		AIR CONDITIONING & PRESURISATION			
10	EA-11	SYSTEM PERFORMANCE AUDIT	HALF YRLY	SELF	HOS(ers)
					NOMINATED BY
11	EA-12	SUBSTATION HOUSEKEEPING AUDIT	HALF YRLY	COMMITTEE	HOD(E)
		GREASE STORAGE & GREASE GUN			
12	EA-13	AUDIT	QUARTRLY	SELF	HOS(PLANTS)
		MINI-TOWNSHIP ELECT/CIVIL			
13	EA-14	INSTALLTIONS AUDIT	QUARTRLY	SELF	HOS(T/S)

Ш

October 12,

	BSC SELF SAFETY CHECKLIST SCHEDULES						
	File No.	Checklist	Frequency				
	1	Master list of checklist format					
	2	Internal Audit compliance	Monthly				
	3	Hazardous Area Equipment Checking	Yearly				
	4	First Aid Box	Fortnightly				
	5	Tool Box Talk	Weekly				
		Inspection of guards	Quarterly				
	7	Illumination Level	Yearly				
		Inspection Of Cylinders	Quarterly				
	9	Portable Ladder	Quarterly				
		Facility Audit	Quarterly				
		Electrically Operated Lifting Tools	Quarterly				
		Manually Operated Lifting Tools	Half yearly				
		Rubber Mat, Rubber Hand Gloves	Quarterly				
		MCP Testing	Quarterly				
		Inspection of Forklift	Monthly				
		Portable Elect. Equipment	Half yearly				
		ELCB	Half yearly				
		Equipment Earthing	Half yearly				
		Conveying lines earthing/bonding checking	Quartley				
		Earth Pit/Grid testing	Yearly				
		Hand Tools	Quarterly				
		Battery Bank Maintenance	Monthly				
		Battery Room Checking	Monthly				
	30	Verminproofing checking	Quarterly				
		Safety belts/lifeline belts	Quarterly				
		Physical inspection of building	Half yearly				
		Monitoring of Lighting load	Half yearly(plant)				
		Monitoring of Lighting load	Quarterly(non-plar				
	54	Monitoting of running hours of critical motors	Half yearly				
4	22	ACB trolley checking	Yearly				
20	22	VCB trolley checking	Yearly				

THANK YOU