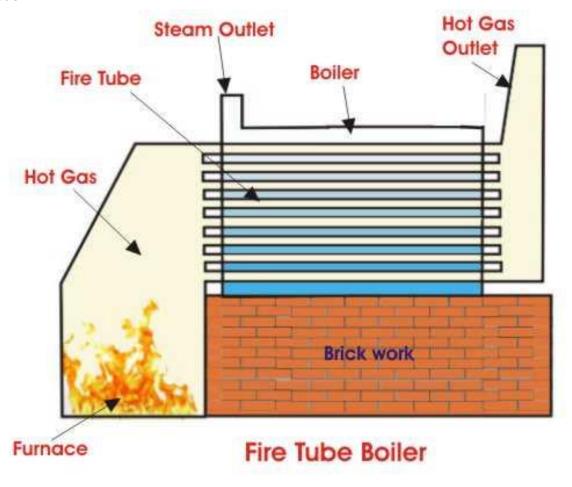
BOILER FEED WATER AND ITS TREATMENTS

Shibu G. Pillai

Chemical Engineering Department

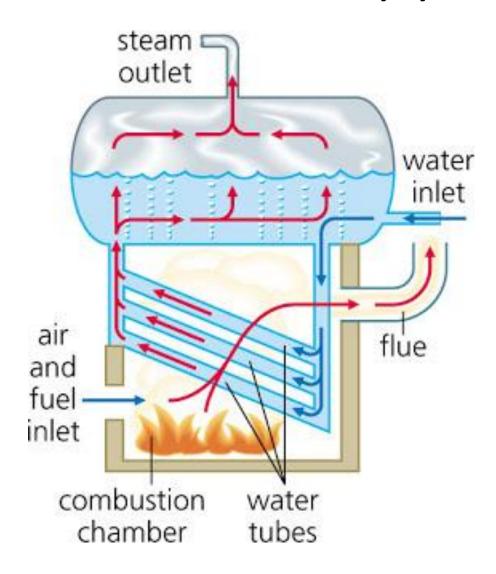
shibu.pillai@nirmauni.ac.in

Contents


- Boiler Feed water
- Major Problems in Boiler
 - Scaling
 - **Boiler corrosion**
 - Caustic embrittlement
 - Foaming & priming

Boiler Feed Water

- A boiler is a device for generating steam
- Consists of two main parts:
 - Furnace and Boiler proper
 - ☐ Furnace provides heat, usually by burning a fuel
 - ☐ Boiler proper, a device in which the heat changes, from water into steam
- The steam or hot fluid is then recirculated out of the boiler for use in various processes in heating applications


Fire-Tube Boiler

consists of a tank of water perforated with pipes. The hot gases from a coal or wood fire run through the pipes to heat the water in the tank

Water-Tube Boiler

water circulates in tubes heated externally by the fire

- Boiler receives feed water in the form of
 - Fresh water (<u>make up water</u>: purified in varying degrees or natural water in its raw state)
 - Recovered condensed water (<u>return water</u>)
- Feed-water composition therefore depends on the quality of the make-up water and the amount of condensate (return water) returned to the boiler
- Steam which is coming out from the boiler, contains liquid droplets as well as gases
- Water remaining in the liquid form at the bottom of the boiler picks up all the impurities from any form of water
- The impurities must be <u>blown down</u> by the discharge of water from the boiler to the drains

- Proper treatment of boiler feed water is an important part of operating and maintaining the boiler system
- As steam is produced, dissolved solids become concentrated and deposited inside the boiler
- This leads to poor heat transfer and reduces the efficiency of the boiler
- Dissolved gases such as oxygen, carbon dioxide will react with the metals in the boiler system and lead to boiler corrosion.
- In order to protect the boiler from these contaminants, they should be controlled or removed, through external or internal treatment

I. Scaling

- In boiler, water is continuously converted into steam
- Increasing the concentration of salts.
- Concentrates changes into loose and slimy precipitates called <u>sludge</u> and
- if these are become hard and adherent, called <u>scales</u>.
- Scales are hard deposits, which stick very firmly to the inner surface of the boiler.
- Types of the scale, depends upon the chemical composition of the concentrated water
 - Scale due to calcium and magnesium
 - Scale due to iron oxide
 - Scale due to copper
 - Scale due to silica

Effect of Scale or Sludge Formation

- The thermal conductivity of scale is very low (similar to insulating brick).
- The scale acts as an insulating layer and prevents an efficient transfer of heat through the tubes to the circulating water.
- The reduction in thermal conductivity means <u>lower boiler</u> <u>efficiency</u> which in turn leads to overheating and may result in the softening, bulging or even <u>fracturing of the boiler</u> <u>tubes</u>
- Boiler scale can also cause clogging or partial obstruction of circulating water tubes in a boiler, which again causes overheating of the tubes.
- It increases the maintenance and operating costs
- Scales also cause corrosion (serious problems in boiler operation)

Prevention of Scale or Sludge Formation

External pretreatment of feed water with water softeners, demineralizers, or reverse osmosis to remove minerals before enter into boiler

- Scale/sludge is prevented by introducing the kerosene, colloidal substances (tannins, lingo-sulphonates, polyacrylates, maleic-acrylate co-polymer, maleic-styrene co-polymer, polystyrene sulphonates)
- These colloids get coated over the scale and forming particles and are suspended in water which can easily blown-off from the boiler
- Internal treatment using chemical conditioning

carbonate conditioning phosphate conditioning calgon conditioning

into boiler feedwater to keep the scale forming materials in dissolved form

Carbonate Conditioning Process

- Sodium carbonate is added into the boiler water
- Scales react with it and form insoluble calcium carbonate

$$CaSO_4 + Na_2CO_3 \rightarrow CaCO_3 \downarrow + Na_2SO_4$$

- Used only for low pressure boilers
- In high pressure boilers the excess of sodium carbonate get converted into sodium hydroxide due to hydrolysis and causes caustic embrittlement

Calgon Conditioning Process

- Calgon [sodium hexametaphosphate,
 (NaPO₃)₆] is added to boiler water
- forms the sludge $[Na_4P_6O_{18}]^{2-}$ and prevents the scale formation by forming the soluble complex compounds

$$Na_{2}[Na_{4}(PO_{3})_{6}] \rightarrow 2Na^{+} + [Na_{4}P_{6}O_{18}]^{2-}$$

 $[Na_{4}P_{6}O_{18}]^{2-} + 2CaSO_{4} \rightarrow [Ca_{2}P_{6}O_{18}]^{2-} + 2Na_{2}SO_{4}$

II. Boiler Corrosion

- Destructive attack or decay of boiler material or metal by chemical or electrochemical reaction with its environment
- Main responsible for corrosion in boiler:
 - Dissolved Oxygen
 - Dissolved Carbon dioxide
 - ☐ Acids from dissolved salts

Dissolved oxygen (D.O)

- Water usually contains about 8 ml D.O/L at room temperature
- D.O in water and presence of high temperature attacks boiler material

$$2Fe + 2H_2O + O_2 \rightarrow 2Fe(OH)_2 \downarrow$$

$$4Fe(OH)_2 \downarrow + O_2 \rightarrow 2[Fe_2O_3.2H_2O] \downarrow$$
Ferrous hydroxide (Rust)

Removal of Dissolved oxygen (D.O)

- By mechanical deaeration
- Chemically, oxygen is removed by adding oxygen scavenger or absorbing chemicals in a calculating amount such as sodium sulphite or hydrazine or sodium sulphide
 - If only small quantities of oxygen is present, the addition of sodium sulphite is practical, in large quantities causes foaming
 - Hydrazine is used in large utility boilers to remove dissolved oxygen but not recommended for heating boilers because it must be closely controlled because of <u>explosive nature</u> of hydrazine and if used excess, it decomposes to produce <u>ammonia which again cause</u> <u>corrosion</u>

Dissolved carbon dioxide

 Carbon dioxide in presence of water forms carbonic acid (H₂CO₃)

$$CO_2 + H_2O \rightarrow H_2CO_3$$

 Carbon dioxide is also released inside the boiler, if water used for steam generation contains bicarbonates

$$Mg(HCO)_3 \rightarrow MgCO_3 + H_2O + CO_2$$

Slow corrosive effect on the boiler material

Removal of Dissolved Carbon Dioxide

By adding calculated amount of ammonia

$$2NH_4OH + CO_2 \rightarrow (NH_4)_2CO_3 + H_2O$$

 By mechanical deaeration process, reduces CO₂ concentration to 5-10 ppm

Acids from dissolved salts

 Water containing dissolved magnesium salts liberate acids on hydrolysis

$$MgCl_2 + 2H_2O \rightarrow Mg(OH)_2 \downarrow +2HCl$$

 The liberated acids reacts with iron (of the boiler) producing HCl again and again

III. Caustic Embrittlement

- Caustic embrittlement is a type of boiler corrosion caused by using highly alkaline water in the boiler.
- During softening process by lime-soda processes, free sodium carbonate is present
- sodium carbonate decomposes to give carbon-dioxide and sodium hydroxide (caustic)

$$Na_2CO_3 + H_2O \rightarrow 2NaOH + CO_2$$

- sodium hydroxide containing water flows into the minute hair-line cracks by capillary action
- water evaporated and the dissolved caustic soda concentration increases gradually
- caustic soda attacks the surrounding area, thereby dissolving iron of boiler as sodium ferrate
- This causes **embrittlement** of boiler parts

Prevention of Caustic Embrittlement

 By using sodium phosphate as softening agent instead of sodium carbonate

By adding tannin or lignin to boiler water

 By adding sodium sulphate to boiler water, blocks hair cracks in the boiler

By adjusting the pH of boiler water to 8.0–8.5

IV. Priming and Foaming

Priming

- When a boiler is producing steam very rapidly some particles of the water carried along with the steam. This process of '<u>Wet Steam</u>' formation is called *priming*.
- It is caused by:
 - presence of large amount of dissolved solids such as alkali sulphate and chlorides
 - sudden boiling
 - improper boiler design
 - sudden increase in steam-production rate

Disadvantage of Priming

Reduces the efficiency of boiler

Decrease the life of the machinery part

maintenance cost increases

Prevention of Priming

- By improving the designing of boiler
- By addition fitting of mechanical steam purifiers
- By maintaining low water level in the boilers.
- By using softwater.
- By decreasing the amount of dissolved salts present in the feed-water.

Foaming

- Foaming is the persistent formation of bubbles or foam in the boiler
- which do not break easily.
- It is due to the presence of oily substances in water.
- These oily substances reduce the surface tension of water in boiler

Disadvantage of Foaming

- Actual height of the water column cannot be judge
- Dissolved salts in water carried by the wet steam may damage the machinery parts especially turbine blades.
- Boiler pressure cannot be maintained

Prevention of Foaming

 By the addition of anti-foaming agents such as castor oil, Gallic acid, tannic acid etc.

 By adding compounds like sodium aluminate for removing oil from boiler water.