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Introduction

The need to clarify water

❑ Aesthetics and health

❑ Colloids – impart color and turbidity 

to water – aesthetical acceptability

❑ Microbes are colloids too
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COAGULATION & 
FLOCCULATION

◼ Removal of colloidal 

substances from water

◼ Potable water requirements

◼ health, aesthetics, economic

◼ Colloids

◼ Size of colloids - light waves

◼ Brownian motion 

◼ Stability of colloids
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What is Coagulation?
❑ Coagulation is the destabilization of colloids by addition of 

chemicals that neutralize the negative charges

❑ The chemicals are known as coagulants, usually higher valence  

cationic salts (Al3+, Fe3+ etc.) 

❑ Coagulation is essentially a chemical process
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What is Flocculation?

Flocculation is the agglomeration of destabilized particles into  

a large size particles known as flocs which can be effectively removed  

by sedimentation or flotation. 



Coagulation aim
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Why coagulation and flocculation? 
Various sizes of particles in raw water

Particle diameter (mm) Type Settling velocity

10 Pebble 0.73 m/s

1 Course sand 0.23 m/s

0.1 Fine sand 0.6 m/min

0.01 Silt 8.6 m/d

0.0001 (10 micron) Large colloids 0.3 m/y

0.000001 (1 nano) Small colloids 3 m/million y

Colloids – so small: gravity settling not possible
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Colloid Stability

------
------

Repulsion

Colloid - A Colloid - B

✓ Colloids  have a net negative surface charge

✓ Electrostatic force prevents them from agglomeration 

✓ Brownian motion keeps the colloids in suspension

H2O

Colloid 

✓ Impossible to remove colloids by gravity settling



Colloidal interaction
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Charge reduction
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◼ Colloids can be destabilized by charge 

neutralization

◼ Positively charges ions (Na+, Mg2+, Al3+, 

Fe3+ etc.) neutralize the colloidal negative 

charges and thus destabilize them. 

◼ With destabilization, colloids aggregate in 

size and start to settle

Colloid Destabilization
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Force analysis on colloids

The integral  of the 

combined forces is 

the energy barrier



Flocculation aids
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Floc formation with polymers
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Jar Tests

Determination of optimum pH

❑ The jar test – a laboratory procedure to determine the optimum pH 

and the optimum coagulant dose 

❑ A jar test simulates the coagulation and flocculation processes 

❑ Fill the jars with raw water sample 

(500 or 1000 mL) – usually 6 jars

❑ Adjust pH of the jars while mixing  

using H2SO4 or NaOH/lime

(pH: 5.0; 5.5; 6.0; 6.5; 7.0; 7.5)

❑ Add same dose of the selected

coagulant (alum or iron) to each jar  

(Coagulant dose: 5 or 10 mg/L)
Jar Test
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Jar Test set-up

❑ Rapid mix each jar at 100 to 150 rpm for 1 minute. The rapid mix  

helps to disperse the coagulant throughout each container

❑ Reduce the stirring speed to 25 to 30 rpm 

and continue mixing for 15 to 20 mins   

This slower mixing speed helps 

promote floc formation by 

enhancing particle collisions,

which lead to larger flocs 

❑ Turn off the mixers and allow 

flocs to settle for 30 to 45 mins

❑ Measure the final residual 

turbidity in each jar

❑ Plot residual turbidity against pH

Jar Tests – determining optimum pH
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Optimum pH: 6.3

Jar Tests – optimum pH
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Optimum coagulant dose

❑ Repeat all the previous steps

❑ This time adjust pH of all jars at  

optimum (6.3 found from first test) 

while mixing using H2SO4 or 

NaOH/lime

❑ Add different doses of the selected

coagulant (alum or iron) to each jar  

(Coagulant dose: 5; 7; 10; 12; 15; 20 mg/L)

❑ Rapid mix each jar at 100 to 150 rpm for 1 minute. The rapid  

mix helps to disperse the coagulant throughout each container

❑ Reduce the stirring speed to 25 to 30 rpm for 15 to 20 mins
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❑ Turn off the mixers and allow flocs to settle for 30 to 45 mins

❑ Then measure the final residual turbidity in each jar

❑ Plot residual turbidity 

against coagulant dose

Coagulant Dose mg/L

Optimum coagulant dose: 12.5 mg/L

The coagulant dose with 

the lowest residual 

turbidity will be the  

optimum coagulant dose

Optimum coagulant dose
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• Hydraulic Jump: Hydraulic Jump creates turbulence and 

thus help better mixing.

•Mechanical mixing

• In-line flash mixing

Inflow

Chemical 

feeding

Chemical 

feeding

Inflow

Back mix impeller                       flat-blade impeller

Coagulant
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http://www.math.rug.nl/~veldman/menger/uz.mpg
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Inflow

Chemical 

feeding

Inflow

Chemical 

feeding
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❑ Relative coagulating power      

Na+ = 1;                Mg2+ = 30 

Al3+ > 1000;        Fe3+ > 1000

❑ Typical coagulants

Aluminum sulfate: Al2(SO4)3.14 H2O 

Iron salt- Ferric sulfate:     Fe2(SO4)3

Iron salt- Ferric chloride:   Fe2Cl3

Polyaluminum chloride (PAC): Al2(OH)3Cl3 
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Aluminum Chemistry

1 mole of alum consumes 6 moles of bicarbonate (HCO3
-)

Al2(SO4)3.14 H2O + 6HCO3
-  2Al(OH)3+ 6CO2 + 14H2O + 3SO4

-2

If alkalinity is not enough, pH will reduce greatly  

Lime or sodium carbonate may be needed to neutralize the acid.

(Optimum pH: 5.5 – 6.5)

With alum addition, what happens to water pH?

Al2(SO4)3.14 H2O   2Al(OH)3+ 8H2O + 3H2SO4
-2



Al3+ species as a function of pH
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Alkalinity calculation

Al2(SO4)3.14 H2O + 6HCO3
-  2Al(OH)3+ 6CO2 + 14H2O + 3SO4

-2

594 mg 366 mg

If 200 mg/L of alum to be added to achieve complete coagulation. 

How much alkalinity is consumed in mg/L as CaCO3?

594 mg alum consumes 366 mg HCO3
-

200 mg alum will consume (366/594) x 200 mg HCO3
-

= 123 mg HCO3
-

Alkalinity in mg/L as CaCO3 = 123 x (50/61)

= 101 mg/L as CaCO3
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Iron Chemistry

FeCl3+ 3HCO3
-  Fe(OH)3+ 3CO2 + 3Cl-

With iron salt addition, what happens to water pH?

(Wider pH range of: 4 – 9; Best pH  range of 4.5 – 5.5)

1 mole of FeCl3 consumes 3 moles of bicarbonate (HCO3
-)

If alkalinity is not enough, pH will reduce greatly due to hydrochloric 

acid formation. Lime or sodium carbonate may be needed to neutralize 

the acid. Lime is the cheapest.

If 200 mg/L of ferric chloride is added for coagulation, how 

much alkalinity is consumed in mg/L as CaCO3?

Exercise: Alkalinity calculation



Fe species as a function of pH
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COAGULANT AIDS

Other substances than 

coagulants used:
- Clay minerals

- Silicates

- Polymers

Polymers are often

either anionic or 

cationic to aid 

coagulation.

Polymers also 

reinforce flocs
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FLOCCULATION

Flocculation - agglomeration of colloids by collisions to form separable flocs

Examples  - milk, blood, seawater

Mechanisms - perikinetic, collisions from Brownian motion

- orthokinetic, induced collisions through stirring

Orthokinetic flocculation
Velocity gradient, relative movement between colloids in a fluid body              

RMS velocity gradient

Camp No.  Gt Typical 2x 104 - 105
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Typical layout of a water treatment plant
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Topics of Discussion

◼ The place of flocculation within a water    
treatment process

◼ The use of coagulation and flocculation 
in the water industry

◼ Softening

◼ Separation of flocs by settling 

and flotation 
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http://www.even.tamuk.edu/pipeline/academics/processes1/particle contact mechanisms/sld001.htm
http://www.even.tamuk.edu/pipeline/academics/processes1/particle contact mechanisms/sld012.htm
http://www.even.tamuk.edu/pipeline/academics/processes1/particle contact mechanisms/sld014.htm
http://www.even.tamuk.edu/pipeline/academics/processes1/particle contact mechanisms/sld027.htm
http://www.even.tamuk.edu/pipeline/academics/processes1/particle contact mechanisms/index.htm
http://www.even.tamuk.edu/pipeline/academics/processes1/particle contact mechanisms/tsld013.htm
http://www.even.tamuk.edu/pipeline/academics/processes1/particle contact mechanisms/sld001.htm
http://www.even.tamuk.edu/pipeline/academics/processes1/particle contact mechanisms/sld012.htm
http://www.even.tamuk.edu/pipeline/academics/processes1/particle contact mechanisms/sld014.htm
http://www.even.tamuk.edu/pipeline/academics/processes1/particle contact mechanisms/sld027.htm
http://www.even.tamuk.edu/pipeline/academics/processes1/particle contact mechanisms/index.htm
http://www.even.tamuk.edu/pipeline/academics/processes1/particle contact mechanisms/tsld013.htm
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Transport Mechanisms

• Brownian motion: for relatively small particles 

which follow random motion and collide with 

other particles (perikinetic motion)

• Differential settling: Particles with different

settling velocities in the vertical alignment collide

when one overtakes the other (orthokinetic motion)

Design of Flocculator (Slow & Gentle mixing)

Flocculators are designed mainly to provide enough interparticle

contacts to achieve particles agglomeration so that they can be 

effectively removed by sedimentation or flotation
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Cross flow Flocculator (sectional view)

Plan (top view)

L

H

W

Mechanical Flocculator 
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Hydraulic Flocculation

• Horizontally baffled tank

Plan view (horizontal flow)

• Vertically baffled tank

L
Isometric View (vertical flow)

L

W

H

The water flows horizontally. 

The baffle walls help to create 

turbulence and thus facilitate mixing

The water flows vertically. The baffle 

walls help to create turbulence and thus 

facilitate mixing
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http://www.environmental-center.com/magazine/iwa/jws/art4.pdf

Hydraulic Flocculation



2/14/2023 water treatment 42

Hydraulic flocculators
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Hydraulic flocculators: simple technology
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Hydraulic Flocculation: Pipe
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Hydraulic Flocculation: Pipe
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Hydraulic Flocculation:Large stirrers
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Mechanical flocculators

http://www.myersequipment.com/_vti_bin/shtml.exe/horizontal.html/map
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Mecahnical flocculators

http://www.myersequipment.com/_vti_bin/shtml.exe/vertical.html/map
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Mechanical flocculators

http://www.myersequipment.com/_vti_bin/shtml.exe/walking.html/map


Another mechanical 
flocculator
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Differential settling flocculation

http://www.even.tamuk.edu/pipeline/academics/processes1/particle contact mechanisms/sld001.htm
http://www.even.tamuk.edu/pipeline/academics/processes1/particle contact mechanisms/sld025.htm
http://www.even.tamuk.edu/pipeline/academics/processes1/particle contact mechanisms/sld027.htm
http://www.even.tamuk.edu/pipeline/academics/processes1/particle contact mechanisms/sld027.htm
http://www.even.tamuk.edu/pipeline/academics/processes1/particle contact mechanisms/index.htm
http://www.even.tamuk.edu/pipeline/academics/processes1/particle contact mechanisms/tsld026.htm
http://www.even.tamuk.edu/pipeline/academics/processes1/particle contact mechanisms/sld001.htm
http://www.even.tamuk.edu/pipeline/academics/processes1/particle contact mechanisms/sld025.htm
http://www.even.tamuk.edu/pipeline/academics/processes1/particle contact mechanisms/sld027.htm
http://www.even.tamuk.edu/pipeline/academics/processes1/particle contact mechanisms/sld027.htm
http://www.even.tamuk.edu/pipeline/academics/processes1/particle contact mechanisms/index.htm
http://www.even.tamuk.edu/pipeline/academics/processes1/particle contact mechanisms/tsld026.htm
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Flocculators integrated with settling
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Flocculators integrated with settling
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Flocculators both sides of settling
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Flocculator perforated wall (in background)
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Velocity Gradient: relative velocity of the two fluid particles/distance

G = dv/dy = 1.0/0.1 = 10 s-1

Mixing and Power

➢ The degree of mixing is measured by Velocity Gradient (G)

➢ Higher G value,  intenser  mixing  

0
.1

 m

1 m/s

In mixer design,  the following equation is useful

G= velocity gradient, s-1;

P = Power input, W

V = Tank volume, m3;         

ý = Dynamic viscosity, (Pa.s)
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➢ G value for coagulation: 700 to 1000 S-1; 3000 to 5000 S-1 for

Mixing time: 30 to 60 S in-line blender; 1-2 sec

➢ G value for flocculation: 20 to 80 S-1;  

Mixing time: 20 to 60 min 

In the flocculator design, Gt (also known Camp No.); a product 

of  G and t is commonly used as a design parameter

Typical Gt for flocculation is 2 x 104 - 105

Large G and small T gives small but dense floc

Small G and large T gives big but light flocs

We need big as well as dense flocs 

which can be obtained by designing 

flocculator with different G values 1 2 3G1:40 G2:30 G3:20
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Power Calculation  

What horsepower level do we need to supply to a flocculation 

basin to provide a G value of 100s-1 and a Gt of 100,000 for 10 

MGD flow? (Given: ý = 0.89 x 10-3 Pa.s; 1 hp = 745.7 watts) 

Solution:

Retention time, t = Gt/G = 100,000/100 = 1000 secs

Volume of Flocculation basin, V = (0.438 m3/sec) x (1000 sec) 

= 438 m3

P    = G2 V x ý
= 1002 x 438 x 0.89 x10-3  = 3900 W 

= 3900/746      = 5.2 hp
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WATER TREATMENT ENERGY CALCULATIONS

F = ma. In a gravity field, F = mg
Force in N, where a N is the force to accelerate 1kg @1m/s2

Force to move h, Potential energy = Fh = mgh
Dimensions MLT-2L, kgm2s-2 = Nm or J

Force moving at a certain speed, introduces time dimension

Dimensions here are MT-1, L/s (1L=1kg)

Rate of energy usage, or power, P = mgh/t
Dimensions are now ML2T-3, or kgm2s-3 = J/s or W.

Power (W) to pump water to h, flow rate in L/s (or kg/s)

W = kg/s x h x 9.8 m/s2

kW, divide by 1000 HP, divide by 746



2/14/2023 water treatment 62

Viscosity of water is a measure of its resistance to flow 

The cgs unit is the Poise, 1 gcm-1s-1.                                       

Water viscosity is c. 1cP = 0.01P = 0.001 Pa.s

Pa = N/m2 or kgms-2m-2, so Pa.s = kgms-2m-2s  = kgm-1s-1

This could also have been derived from going from     

gcm-1s-1, multiplying by 100/1000.

Therefore 1cP = 0.001kgm-1s-1

VISCOSITY MEASUREMENT
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Calculation of Velocity Gradient

Calculate the velocity gradient in a flocculator, where 

the required energy is 1 J/L.  Flow rate is 4ML/d, 

retention time = 20 min

Volume, V  =  4000/(24 x 60/20) = 55.5 m3

Flow rate = 4000 x 1000 =  46.3 L/s

24 x 60 x 60

_____            _________________

G  =  P/Vý =  1 x 46.3/0.001x55.5

=   28 s-1
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Calculate height required for hydraulic flocculator

Calculate the head difference in water through a 

hydraulic flocculator, where the required energy 

input is 1 J/L and the flow rate is 4 ML/d.

Power            =    energy/time   

1 J x L/s   =    kg/s  x 9.8  x  h 

Therefore, h  =    1/9.8 m  

=    0.102m
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Calculate Camp No

Calculate the Camp No for the hydraulic 

flocculator in the previous example

Camp No  =  G.t

=  28 x 20 x 60

=  33,000

(within the boundaries of 20,000 – 200,000)
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Where F = drag force, N

CD = dimensionless drag coefficient for plates moving faces normal to direction of motion

A = cross-sectional area of the paddles, m2

 = relative velocity between paddles and fluid, m/s

 = density, 1000 kg/m3

The power input can be computed as the product of drag force and velocity:

P = F = CDAþ3/2

If this is substituted in the equation for G, the mean velocity gradient G becomes

G2 = P/ýV = CDAþ3/ 2ýV

CDA
2

2

F   =     CDAþ2/2

PADDLE FLOCCULATORS



2/14/2023 water treatment 67

What you need to know

◼ How to determine the velocity 

gradient and volume, chemical  

and energy requirements for 

flocculation

◼ Be able to size settling tanks on 

the basis of particle settling rates 

and identify important zones in 

the settling tank

◼ Softening calculations
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Disinfection Byproducts: A Reference Resource
Disinfection byproducts are formed when disinfectants used in water treatment plants react with bromide and/or natural 

organic matter (i.e., decaying vegetation) present in the source water. Different disinfectants produce different types or amounts 

of disinfection byproducts. Disinfection byproducts for which regulations have been established have been identified in drinking

water, including trihalomethanes, haloacetic acids, bromate, and chlorite. ------------------------

Trihalomethanes (THM) are a group of four chemicals that are formed along with other disinfection byproducts when chlorine or 

other disinfectants used to control microbial contaminants in drinking water react with naturally occurring organic and inorganic 

matter in water. The trihalomethanes are chloroform, bromodichloromethane, dibromochloromethane, and bromoform. EPA has 

published the Stage 1 Disinfectants/Disinfection Byproducts Rule to regulate total trihalomethanes (TTHM) at a maximum 

allowable annual average level of 80 parts per billion. This standard replaced the current standard of a maximum allowable 

annual average level of 100 parts per billion in December 2001 for large surface water public water systems. The standard 

became effective for the first time in December 2003 for small surface water and all ground water systems. ------------------------

Haloacetic Acids (HAA5) are a group of chemicals that are formed along with other disinfection byproducts when chlorine or 

other disinfectants used to control microbial contaminants in drinking water react with naturally occurring organic and inorganic 

matter in water. The regulated haloacetic acids, known as HAA5, are: monochloroacetic acid, dichloroacetic acid, trichloroacetic

acid, monobromoacetic acid, and dibromoacetic acid. EPA has published the Stage 1 Disinfectants/Disinfection Byproducts Rule 

to regulate HAA5 at 60 parts per billion annual average. This standard became effective for large surface water public water 

systems in December 2001 and for small surface water and all ground water public water systems in December 2003. -------------

Bromate is a chemical that is formed when ozone used to disinfect drinking water reacts with naturally occurring bromide found 

in source water. EPA has established the Stage 1 Disinfectants/Disinfection Byproducts Rule to regulate bromate at annual 

average of 10 parts per billion in drinking water. This standard will become effective for large public water systems by December 

2001 and for small surface water and all ground public water systems in December 2003. ------------------------

Chlorite is a byproduct formed when chlorine dioxide is used to disinfect water. EPA has published the Stage1 

Disinfectants/Disinfection Byproducts Rule to regulate chlorite at a monthly average level of 1 part per million in drinking water. 

This standard became effective for large surface water public water systems in December 2001 and for small surface water and 

all ground water public water systems in December 2003
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