Machine Learning

Lesson 2: Data Wrangling and Manipulation

© Simplilearn. All rights reserved.

simpl_ilearn

Concepts Covered

- Data acquisition
- Data exploration techniques
- Data wrangling techniques
- Data manipulation techniques
- Typecasting

©Simplilearn. All rights reserved.

Learning Objectives

By the end of this lesson, you will be able to:

Demonstrate data import and exploration using Python

Demonstrate different data wrangling techniques and their significance

Data Preprocessing Topic 1: Data Exploration

Loading .csv File in Python

Before starting with a dataset, the first step is to load the dataset. Below is the code for the same:

©Simplilearn. All rights reserved.

Program

Path to file

Loading Data to .csv File

©Simplilearn. All rights reserved.

Loading .xlsx File in Python

©Simplilearn. All rights reserved.

Loading Data to .xlsx File

©Simplilearn. All rights reserved.

Assisted Practice

Data Exploration

©Simplifearn. All fights reserved.

Objective: Import the dataset (csv) in/from your Python notebook to local system.

Access: Click on the Labs tab on the left side panel of the LMS. Copy or note the username and password that are generated. Click on the Launch Lab button. On the page that appears, enter the username and password in the respective fields, and click Login.

Duration: 5 mins.

Data Exploration Techniques

The shape attribute returns a two-item tuple (number of rows and the number of columns) for the data frame. For a Series, it returns a one-item tuple.

©Simplilearn. All rights reserved.

©Simplilearn. All rights reserved.

©Simplilearn. All rights reserved.

Using unique () on the column of interest will return a numpy array with unique values of the column.

Extracting all unique values out of "crim" column:

df['crim'].unique()

Out[23]:	array([6.32000e-03,	2.73100e-02,	2.7290
	2.98500e-02,	8.82900e-02,	1.4455
	2.24890e-01,	1.17470e-01,	9.3780
	6.27390e-01,	1.05393e+00,	7.8420
	1.25179e+00,	8.52040e-01,	1.2324
	8.40540e-01,	6.71910e-01,	9.5577
	1.13081e+00,	1.35472e+00,	1.3879

©Simplilearn. All rights reserved.

0e-02, 3.23700e-02, 6.90500e-02, 0e-01, 2.11240e-01, 1.70040e-01, 0e-02, 6.29760e-01, 6.37960e-01, 0e-01, 8.02710e-01, 7.25800e-01, 7e+00, 9.88430e-01, 7.50260e-01, '0e-01, 7.72990e-01, 1.00245e+00, 9e+00, 1.15172e+00, 1.61282e+00,

simpl:learr

Using value () on the column of interest will return a numpy array with all the values of the column.

Extracting values out of "crim" column:

df['crim'].values()

)ut[34]:	array([6.32000e-03,	2.73100e-02,	2.7290
	2.98500e-02,	8.82900e-02,	1.4455
	2.24890e-01,	1.17470e-01,	9.3780
	6.27390e-01,	1.05393e+00,	7.8420
	1.25179e+00,	8.52040e-01,	1.2324
	8.40540e-01,	6.71910e-01,	9.5577
	1.13081e+00,	1.35472e+00,	1.3879
	6.41700e-02.	9.74400e-02.	8.0140

©Simplilearn. All rights reserved.

0e-02, 3.23700e-02, 6.90500e-02, 0e-01, 2.11240e-01, 1.70040e-01, 0e-02, 6.29760e-01, 6.37960e-01, 0e-01, 8.02710e-01, 7.25800e-01, 17e+00, 9.88430e-01, 7.50260e-01, '0e-01, 7.72990e-01, 1.00245e+00, 9e+00, 1.15172e+00, 1.61282e+00, 0e-02, 1.75050e-01, 2.76300e-02,

simpl:learr

©Simplilearn. All rights reserved.

©Simplilearn. All rights reserved.

Using mode() on the data frame will return mode values of the data frame across all the columns, rows with axis=0 and axis = 1, respectively.

df.mode(axis=0)

Out[40]:															
		crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	b	Istat	medv
	0	0.01501	0.0	18.1	0.0	0.538	5.713	100.0	3.4952	24.0	666.0	20.2	396.9	6.36	50.0
	1	14.33370	NaN	NaN	NaN	NaN	6.127	NaN	NaN	NaN	NaN	NaN	NaN	7.79	NaN
	2	NaN	NaN	NaN	NaN	NaN	6.167	NaN	NaN	NaN	NaN	NaN	NaN	8.05	NaN
	3	NaN	NaN	NaN	NaN	NaN	6.229	NaN	NaN	NaN	NaN	NaN	NaN	14.10	NaN
	4	NaN	NaN	NaN	NaN	NaN	6.405	NaN	NaN	NaN	NaN	NaN	NaN	18.13	NaN
	5	NaN	NaN	NaN	NaN	NaN	6.417	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

©Simplilearn. All rights reserved.

©Simplilearn. All rights reserved

Contraction Contraction Contraction Contraction

Seaborn is a library for making attractive and informative statistical graphics in Python. It is built on top of matplotlib and integrated with the PyData Stack, including support for numpy and pandas data structures, and statistical routines.

Plotting a Heatmap with Seaborn

simpl:learr

Plotting a Heatmap with Seaborn (Contd.)

Below is the heatmap obtained, where, approaching red colour means maximum correlation and approaching blue means minimal correlation.

Out[33]: (array([0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 13.5]), <a list of 14 Text xticklabel objects>)

Maximum correlation

©Simplilearn. All rights reserved.

Minimum correlation

Assisted Practice

Data Exploration

Objective: Perform exploratory data analysis which includes: determining the type of the data, correlation analysis over the same. You need to convert the data into useful information:

- Read the data in pandas data frame
- Describe the data to find more details
- Find the correlation between 'reduced_lunch' and 'school_rating'

Access: Click on the Labs tab on the left side panel of the LMS. Copy or note the username and password that are generated. Click on the Launch Lab button. On the page that appears, enter the username and password in the respective fields, and click Login.

Simplifearn. All fights reserved.

Duration: 15 mins.

Unassisted Practice Data Exploration mins.

©Simplifearn. All fights reserved.

Problem Statement: Mtcars, an automobile company in Chambersburg, United States has recorded the production of its cars within a dataset. With respect to some of the feedback given by their customers they are coming up with a new model. As a result of it they have to explore the current dataset to derive further insights out if it.

Objective: Import the dataset, explore for dimensionality, type and average value of the horsepower across all the cars. Also, identify few of mostly correlated features which would help in modification.

Note: This practice is not graded. It is only intended for you to apply the knowledge you have gained to solve realworld problems.

Access: Click on the Labs tab on the left side panel of the LMS. Copy or note the username and password that are generated. Click on the Launch Lab button. On the page that appears, enter the username and password in the respective fields, and click Login

Duration: 15

Data Import

The first step is to import the data as a part of exploration.

df1 = pandas.read_csv("mtcars.csv")

Out[35]:modelmpgcyldisphpdratwtqsecvsamgearcarb0Mazda RX421.06160.01103.902.62016.4601441Mazda RX4 Wag21.06160.01103.902.87517.0201442Datsun 71022.84108.0933.852.32018.611031443Hornet 4 Drive21.46258.01103.083.21519.44103314Hornet Sportabout18.78360.01753.153.44017.020033335Valiant18.16225.01052.763.46020.2210333336Duster 36014.38360.01453.153.40015.8400333														
0 Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 1 Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 2 Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 4 2 Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 3 Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 4 Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 1 6 Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 <th>Out[35]:</th> <th></th> <th>model</th> <th>mpa</th> <th>cvl</th> <th>disp</th> <th>hp</th> <th>drat</th> <th>wt</th> <th>asec</th> <th>VS</th> <th>am</th> <th>gear</th> <th>carb</th>	Out[35]:		model	mpa	cvl	disp	hp	drat	wt	asec	VS	am	gear	carb
0 Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 1 Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 2 Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 3 Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 1 4 1 1 4 1 1 1 4 1	_			pa	- J .	anab				4000			900	Jan
1 Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 2 Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 3 Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 4 Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 5 Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 6 Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 7 Merc 240D 24.4 146.7 62 3.69 3.190 20.00 1 0 4 2 8 Merc 230 22.8 4 140.8 95 3.92 3.40		0	Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
2 Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 3 Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 4 Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 1 5 Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 6 Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 7 Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 8 Merc 230 22.8 4 140.8 95 3.92 3.400 18.30 1 0 4 2 9 Merc 280 19.2 6 167.6 123 3.92		1	Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
3 Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 4 Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 5 Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 6 Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 7 Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 8 Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 9 Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4		2	Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
4 Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 5 Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 6 Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 7 Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 8 Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 9 Merc 280 19.2 6 167.6 123 3.92 3.400 18.30 1 0 4 4 9 Merc 280 19.2 6 167.6 123 3.92 3.400 18.30 1 0 4 <		3	Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
5 Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 6 Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 7 Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 8 Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 9 Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4		4	Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
6 Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 7 Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 8 Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 9 Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4		5	Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
7 Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 8 Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 9 Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4		6	Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
8 Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 9 Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4		7	Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2
9 Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4		8	Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
		9	Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4

©Simplilearn. All rights reserved.

Data Exploration

©Simplilearn. All rights reserved.

of	an	

Data Exploration

©Simplilearn. All rights reserved.

Data Exploration

©Simplilearn. All rights reserved.

Identifying Correlation Using a Heatmap

©Simplilearn. All rights reserved.

Identifying Correlation Using a Heatmap

Graphical representation of data where the individual values contained in a matrix are represented in colors.

Out[45]: (array([0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5]), <a list of 11 Text xticklabel objects>)

©Simplilearn. All rights reserved.

From the adjacent map, you can clearly see that cylinder (cyl) and displacement (disp) are the most correlated features.

Data Preprocessing Topic 2: Data Wrangling

Data Wrangling

The process of manually converting or mapping data from one raw format into another format is called data wrangling. This includes munging and data visualization.

Need of Data Wrangling

Missing Values in a Dataset

Consider	a random m	dataset hissing v	given be alues.	elow, il	lustratin	Ig		
							Missingval	ues
							/ \	11
PassengerId	Survived	Pclass	Sex	Age	SibSp	Parch	ricket	Fare
1	0	3	male	22	1	0	A/5 21171	7.5
2	1	1	female	38	1	8	PC 17599	71.2.3
3	1	3	female	26	0	0	STON/02. 3101282	7.925
4	1	1	female	35	1	0	113803	53.1
5	0	3	male	35	0	0	373450	8.05
6	0	3	male	-	0	0	330877	8.4583
								2.2

©Simplilearn. All rights reserved.

simpl_ilearn

Missing Value Detection

Consider a dataset below, imported as df1 within Python, having some missing values.

	Prefix	Assignment	Tutorial	Midterm	TakeHome	Final
0	5	57.14	34.09	64.38	51.48	52.50
1	8	95.05	105.49	67.50	99.07	68.33
2	8	83.70	83.17	30.00	63.15	48.89
3	7	81.22	96.06	49.38	105.93	80.56
4	8	91.32	93.64	95.00	107.41	73.89
5	7	95.00	92.58	93.12	97.78	68.06
6	8	95.05	102.99	56.25	99.07	50.00
7	7	72.85	86.85	60.00	NaN	56.11
8	8	84.26	93.10	47.50	18.52	50.83

16]:	Prefix	False
	Assignment	False
	Tutorial	False
	Midterm	False
	TakeHome	True
	Final	False
	dtype: bool	

Missing Value Treatment

Mean Imputation: Replace the missing value with variable's mean

from sklearn.preprocessing import Imputer mean imputer = Imputer(missing values=np.nan,strategy='mean',axis=1) mean imputer = mean imputer.fit(df1) imputed df = mean imputer.transform(df1.values) df1 = pd.DataFrame(data=imputed df, columns=cols) df1

Out[75]:		Prefix	Assignment	Tutorial	Midterm	TakeHome	Final
	0	5.0	57.14	34.09	64.38	51.480	52.50
	1	8.0	95.05	105.49	67.50	99.070	68.33

Missing Value Treatment (Contd.)

©Simplilearn. All rights reserved.

median imputer=Imputer(missing values=np.nan, strategy

Tutorial	Midterm	TakeHome	Final
34.09	64.38	51.480	52.50
105.49	67.50	99.070	68.33
Outlier Values in a Dataset

©Simplilearn. All rights reserved.

An outlier is a value that lies outside the usual observation of values.

Dealing with an Outlier

Dealing with an Outlier

95.05

72.85

8.0

7.0

6

7

utorial	Midterm	TakeHome	Final
105.49	67.50	99.070	68.33
83.17	30.00	63.150	48.89
96.06	49.38	105.930	80.56
93.64	95.00	107.410	73.89
92.58	93.12	97.780	68.06
102.99	56.25	99.070	50.00
86.85	60.00	56.562	56.11

Assisted Practice

Data Wrangling

©Simplifearn. All fights reserved.

Objective: Perform missing value and outlier data treatment.

Access: Click on the Labs tab on the left side panel of the LMS. Copy or note the username and password that are generated. Click on the Launch Lab button. On the page that appears, enter the username and password in the respective fields, and click Login.

Duration: 15 mins.

Unassisted Practice

Data Wrangling

©Simplifearn. All hights reserved

Objective: Check for missing values and outliers within the horsepower column and remove them.

Note: This practice is not graded. It is only intended for you to apply the knowledge you have gained to solve realworld problems.

Access: Click on the Labs tab on the left side panel of the LMS. Copy or note the username and password that are generated. Click on the Launch Lab button. On the page that appears, enter the username and password in the respective fields, and click Login.

Duration: 5 mins.

Check for Irregularities

©Simplilearn. All rights reserved.

Outlier Treatment

Data with hp>250 is the outlier data. Therefore, you can filter it accordingly.

Out[120]: <matplotlib.axes._subplots.AxesSubplot at 0x232d52d6470>

©Simplilearn. All rights reserved.

Data Preprocessing Topic 3: Data Manipulation

Functionalities of Data Object in Python

A data object is a two-dimensional data structure, i.e., data is aligned in a tabular fashion in rows and columns.

©Simplilearn. All rights reserved.

©Simplilearn. All rights reserved.

©Simplilearn. All rights reserved.

©Simplilearn. All rights reserved.

- - -	L))										
.4 9	15 40	16 41	17 42	18 43	19 44	20 45	21 46	22 47	23 48	24 49	25 50]	

Code import pandas as pd world cup={'Team':['West Indies','West indies', 'India', 'Australia', 'Pakistan', 'Sri Lanka', 'Australia', 'Australia', 'Australia', ' Insia', 'Australia'], 'Rank': [7,7,2,1,6,4,1,1,1,2,1], 'Year': [1975, 1979, 1983, 1987, 1992, 1996, 1999, 2003 ,2007,2011,2015]} df=pd.DataFrame(world cup) print(df.groupby(['Team', 'Rank']).groups)

{('Australia', 1): Int64Index([3, 6, 7, 8, 10], dtype='int64'), ('India', 2): Int64Index([2], dtype='int64'), ('Insia', 2): Int 64Index([9], dtype='int64'), ('Pakistan', 6): Int64Index([4], dtype='int64'), ('Sri Lanka', 4): Int64Index([5], dtype='int64'), ('West Indies', 7): Int64Index([0], dtype='int64'), ('West indies', 7): Int64Index([1], dtype='int64')}

The Data Frame is grouped according to the 'Team' and 'ICC_Rank' columns

Concatenation combines two or more data structures.


```
import pandas
world champions={'Team':['India', 'Australia', 'West
Indies', 'Pakistan', 'Sri Lanka'],
'ICC rank': [2,3,7,8,4],
'World champions Year': [2011,2015,1979,1992,1996],
           'Points':[874,787,753,673,855]}
chokers={'Team':['South Africa','New
Zealand', 'Zimbabwe'], 'ICC rank': [1,5,9],
'Points': [895,764,656] }
df1=pandas.DataFrame(world champions)
df2=pandas.DataFrame(chokers)
print(pandas.concat([df1,df2],axis=1))
```

©Simplilearn. All rights reserved.

The concatenated output:

	ICC_rank	Points	Team	World_champions_Year	ICC_rank	Points	Ν
0	2	874	India	2011	1.0	895.0	
1	3	787	Australia	2015	5.0	764.0	
2	7	753	West Indies	1979	9.0	656.0	
3	8	673	Pakistan	1992	NaN	NaN	
4	4	855	Sri Lanka	1996	NaN	NaN	
9	Te South Afr	eam ica					
Ĩ	New Zeala	and					
2	Zimbal	bwe					
3	I	NaN					
4		NaN					

©Simplilearn. All rights reserved.

Merging is the Pandas operation that performs database joins on objects


```
import pandas
champion stats={'Team':['India', 'Australia', 'West
Indies', 'Pakistan', 'Sri Lanka'],
            'ICC rank': [2,3,7,8,4],
'World champions Year': [2011,2015,1979,1992,1996],
            'Points': [874, 787, 753, 673, 855] }
match stats={'Team':['India', 'Australia', 'West
Indies', 'Pakistan', 'Sri Lanka'],
              'World cup played': [11,10,11,9,8],
              'ODIs played': [733,988,712,679,662] }
df1=pandas.DataFrame(champion stats)
df2=pandas.DataFrame(match stats)
print(df1)
print(df2)
print(pandas.merge(df1, df2, on='Team'))
```


simpl:learr

	ICC_rank	Points	Team	World_champions_Year	ODIs_played \
0	2	874	India	2011	733
1	3	787	Australia	2015	988
2	7	753	West Indies	1979	712
3	8	673	Pakistan	1992	679
4	4	855	Sri Lanka	1996	662
	World_cup	_played			
0		11			
1		10			
2		11			
3		9			
4		8			

©Simplilearn. All rights reserved.

Different Types of Joins

Joins are used to combine records from two or more tables in a database. Below are the four most commonly used joins:

©Simplilearn. All rights reserved.

Full Outer Join

simpl_ilearn

Left Join

Left Join

Returns all rows from the **left** table, even if there are no matches in the right table

import pandas world champions={'Team':['India', 'Australia', 'West Indies', 'Pakistan', 'Sri Lanka'], 'ICC rank': [2,3,7,8,4], 'World champions Year': [2011,2015,1979,1992,1996], 'Points': [874,787,753,673,855] } chokers={'Team':['South Africa', 'New Zealand', 'Zimbabwe'], 'ICC rank': [1,5,9], 'Points': [895,764,656] } df1=pandas.DataFrame(world champions) df2=pandas.DataFrame(chokers) print(pandas.merge(df1, df2, on='Team', how='left'))

	ICC_rank_x	Points_x	Team	World_champions_Year	ICC_rank_y \
0	2	874	India	2011	NaN
1	3	787	Australia	2015	NaN
2	7	753	West Indies	1979	NaN
3	8	673	Pakistan	1992	NaN
4	4	855	Sri Lanka	1996	NaN
0 1 2 3 4	Points_y NaN NaN NaN NaN NaN				

©Simplilearn. All rights reserved.

simpl:learr

Right Join

Right Join

Preserves the unmatched rows from the second (right) table, joining them with a NULL in the shape of the first (left) table

import pandas world champions={'Team':['India', 'Australia', 'West Indies', 'Pakistan', 'Sri Lanka'], 'ICC rank': [2,3,7,8,4], 'World champions Year': [2011,2015,1979,1992,1996], 'Points':[874,787,753,673,855]} chokers={'Team':['South Africa', 'New Zealand', 'Zimbabwe'], 'ICC rank': [1,5,9], 'Points': [89 5,764,656]} df1=pandas.DataFrame(world champions) df2=pandas.DataFrame(chokers) print(pandas.merge(df1, df2, on='Team', how='right'))

0 1 2	ICC_rank_x NaN NaN NaN	Points_x NaN NaN NaN	Team South Africa New Zealand Zimbabwe	World_champions_Year NaN NaN NaN	ICC_rank_y \ 1 5 9
0 1 2	Points_y 895 764 656				

©Simplilearn. All rights reserved.

simpl;learr

Inner Join

Inner Join

Selects all rows from both participating tables if there is a match between the columns

Empty DataFrame Columns: [ICC_rank_x, Points_x, Team, World_champions_Year, ICC_rank_y, Points_y] Index: []

Full Outer Join

Full Outer Join

Returns all records when there is a match in either left (table1) or right (table2) table records


```
import pandas
world champions={'Team':['India', 'Australia', 'West
Indies', 'Pakistan', 'Sri Lanka'],
           'ICC rank': [2,3,7,8,4],
'World champions Year': [2011,2015,1979,1992,1996],
           'Points':[874,787,753,673,855]}
chokers={'Team':['South Africa','New
Zealand', 'Zimbabwe'], 'ICC rank': [1,5,9], 'Points': [89
5,764,656]}
df1=pandas.DataFrame(world champions)
df2=pandas.DataFrame(chokers)
print(pandas.merge(df1,df2,on='Team',how='outer'))
```

	ICC_rank_x	Points_x	Team	World_champions_Year	ICC_rank_y \
0	2.0	874.0	India	2011.0	NaN
1	3.0	787.0	Australia	2015.0	NaN
2	7.0	753.0	West Indies	1979.0	NaN
3	8.0	673.0	Pakistan	1992.0	NaN
4	4.0	855.0	Sri Lanka	1996.0	NaN
5	NaN	NaN	South Africa	NaN	1.0
6	NaN	NaN	New Zealand	NaN	5.0
7	NaN	NaN	Zimbabwe	NaN	9.0
	Points v				
0	NaN				
1	NaN				
2	NaN				
3	NaN				
4	NaN				
5	895.0				
6	764.0				
7	656.0				

©Simplilearn. All rights reserved.

Typecasting

It converts the data type of an object to the required data type.

string() Returns string from any numeric object or converts any number to string

float()

Returns a floating-point number from a number or a string

©Simplilearn. All rights reserved.

simpl_ilearn

Returns an integer object from any number or string.

Int()

Typecasting Using Int, float and string()

©Simplilearn. All rights reserved.

Out[125]: '21'

Assisted Practice

Data Manipulation

©Simplifearn. All hights reserved

Objective: Demonstrate concatenation.

Access: Click on the Labs tab on the left side panel of the LMS. Copy or note the username and password that are generated. Click on the Launch Lab button. On the page that appears, enter the username and password in the respective fields, and click Login.

Duration: 10 mins.

Unassisted Practice

Data Manipulation

©Smplilearn. All fights reserved

Problem Statement: SFO Public Department - referred to as SFO has captured all the salary data of its employees from year 2011-2014. Now in 2018 the organization is facing some financial crisis. As a first step HR wants to rationalize employee cost to save payroll budget. You have to do data manipulation and answer the below questions:
1. How much total salary cost has increased from year 2011 to 2014?
2. Who was the top earning employee across all the years?

Note: This practice is not graded. It is only intended for you to apply the knowledge you have gained to solve realworld problems.

Access: Click on the Labs tab on the left side panel of the LMS. Copy or note the username and password that are generated. Click on the Launch Lab button. On the page that appears, enter the username and password in the respective fields, and click Login.

Duration: 10 mins.

Answer 1

Year			
2011	71743.819645		
2012	100551.886807		
2013	101440.519714		
2014	100261.438668		
Name:	TotalPayBenefits,	dtype:	float64

simpl_ilearn

Answer 2

Group the total salary with respect to employee name:

top_sal =
salary.groupby('EmployeeName').sum()['TotalPayBenefi
ts']
print((top_sal.sort_values(axis=0)))

EmployeeName	
Joe Lopez	-618.13
David P Kucia	-33.89
Mark E Laherty	-8.20
Timothy E Gibson	-2.73
Mark W Mcclure	0.00
PAULETTE ADAMS	0.00
KAUKAB MOHSIN	0.00
JOSEPHINE MCCREARY	0.00
Charlene D Mccully	0.00
JOE BROWN JR	0.30

©Simplilearn. All rights reserved.

simpl_ilearn

Key Takeaways

Now, you are able to:

Demonstrate data import and exploration using Python

Demonstrate different data wrangling techniques and their significance

Perform data manipulation in python using coercion, merging, concatenation, and joins

©Simplilearn. All rights reserved.

©Simplilearn. All rights reserved

simpl_ilearn

Knowledge Check	Which of the following plots can be used to detect an outlier?
1	

- a. Boxplot
- b. Histogram
- C. Scatter plot
- d. All of the above

Knowledge Check	Which of the following plots can be used to detect an outlier?
1	

- a. Boxplot
- b. Histogram
- C. Scatter plot
- d. All of the above

The correct answer is **d** . All of the above

All the above plots can be used to detect an outlier.

©Simplilearn. All rights reserved.

Knowledge Check	What is the output of the below Python code?
2	<pre>first_subject = np.array(percentiles) print first_</pre>

- a. float32
- b. float
- **c.** int32
- d. float64

5, 69, 88] __subject.dtype

Knowledge Check	What is the output of the below Python code? import numpy as np
CIICON	percentiles = [98, 76.37, 55.55, 69, 88]
2	first_subject = np.array(percentiles)
	<pre>print first_subject.dtype</pre>

- a. float32
- b. float
- С. int32
- d. float64

The correct answer is d. float64

Float64's can represent numbers much more accurately than other floats and has more storage capacity.

©Simplilearn. All rights reserved.

Lesson-End Project

©Simplifearn. All hights reserved.

Problem Statement: From the raw data below create a data frame: 'first_name': ['Jason', 'Molly', 'Tina', 'Jake', 'Amy'], 'last_name': ['Miller', 'Jacobson', ".", 'Milner', 'Cooze'], 'age': [42, 52, 36, 24, 73], 'preTestScore': [4, 24, 31, ".", "."],'postTestScore': ["25,000", "94,000", 57, 62, 70]

Objective: Perform data processing on raw data:

- Save the data frame into a csv file as project.csv
- Read the project.csv and print the data frame
- Read the project.csv without column heading
- Read the project.csv and make the index columns as 'First Name' and 'Last Name'
- Print the data frame in a Boolean form as True or False. True for Null/ NaN values and false for non-null values
- Read the data frame by skipping first 3 rows and print the data frame

Access: Click the Labs tab in the left side panel of the LMS. Copy or note the username and password that are generated. Click the Launch Lab button. On the page that appears, enter the username and password in the respective fields and click Login.

Duration: 20 mins.

t Name' Values and false for

Thank You

© Simplilearn. All rights reserved.

simpl_ilearn

