
© Simplilearn. All rights reserved.

Lesson 2: Data Wrangling and Manipulation

Machine Learning

Concepts Covered

Data exploration techniques

Data wrangling techniques

Data acquisition

Data manipulation techniques

Typecasting

Learning Objectives

Demonstrate different data wrangling techniques and their significance

Perform data manipulation in python using coercion, merging, concatenation,
and joins

Demonstrate data import and exploration using Python

By the end of this lesson, you will be able to:

Data Preprocessing

Topic 1: Data Exploration

Loading .csv File in Python

Program Data ProgramCSV File

Code

df = pandas.read_csv("/home/simpy/Datasets/BostonHousing.csv")

Path to file

Before starting with a dataset, the first step is to load the dataset. Below is the code for the
same:

Loading Data to .csv File

Program DataProgram CSV File

Code

df.to_csv("/home/simpy/Datasets/BostonHousing.csv")

Path to file

Below is the code for loading the data within an existing csv file:

Loading .xlsx File in Python

Program Data ProgramXLS File

Code

df = pandas.read_excel("/home/simpy/Datasets/BostonHousing.xlsx")

Below is the code for loading an xlsx file within python:

Program DataProgram XLS File

Loading Data to .xlsx File

Code

df.to_excel("/home/simpy/Datasets/BostonHousing.xlsx")

Below is the code for loading program data into an existing xlsx file:

Assisted Practice

Data Exploration

Problem Statement: Extract data from the given SalaryGender CSV file and store the data from
each column in a separate NumPy array.

Objective: Import the dataset (csv) in/from your Python notebook to local system.

Access: Click on the Labs tab on the left side panel of the LMS. Copy or note the username and
password that are generated. Click on the Launch Lab button. On the page that appears, enter the
username and password in the respective fields, and click Login.

Duration: 5 mins.

Data Exploration Techniques

The shape attribute returns a two-item tuple (number of rows and the
number of columns) for the data frame. For a Series, it returns a one-item
tuple.

Code

df.shape

Dimensionality Check

Type of Dataset

Slicing and Indexing

Identifying Unique
Elements

Value Extraction

Feature Mean

Feature Median

Feature Mode

Data Exploration Techniques (Contd.)

You can use the type () in python to return the type of object.

Code

type(df)

Checking the type of data frame:

Checking the type of a column (çhas) within a data frame:

Code

df['chas'].dtype

Dimensionality Check

Type of Dataset

Slicing and Indexing

Identifying Unique
Elements

Value Extraction

Feature Mean

Feature Median

Feature Mode

Data Exploration Techniques (Contd.)

You can use the : operator with the start index on left and end index on
right of it to output the corresponding slice.

Slicing a list:

Slicing a Data frame (df) using iloc indexer:

Code

df.iloc[:,1:3]

list = [1,2,3,4,5]

Code

list[1:3]

Dimensionality Check

Type of Dataset

Slicing and Indexing

Identifying Unique
Elements

Value Extraction

Feature Mean

Feature Median

Feature Mode

Using unique () on the column of interest will return a numpy array with
unique values of the column.

Extracting all unique values out of ‘’crim” column:

Code

df['crim'].unique()

Dimensionality Check

Type of Dataset

Slicing and Indexing

Identifying Unique
Elements

Value Extraction

Feature Mean

Feature Median

Feature Mode

Data Exploration Techniques (Contd.)

Using value () on the column of interest will return a numpy array with all
the values of the column.

Extracting values out of ‘’crim” column:

Code

df['crim’].values()

Dimensionality Check

Type of Dataset

Slicing and Indexing

Identifying Unique
Elements

Value Extraction

Feature Mean

Feature Median

Feature Mode

Data Exploration Techniques (Contd.)

Using mean() on the data frame will return mean of the data frame across
all the columns.

Code

df.mean()

Dimensionality Check

Type of Dataset

Slicing and Indexing

Identifying Unique
Elements

Value Extraction

Feature Mean

Feature Median

Feature Mode

Data Exploration Techniques (Contd.)

Using median() on the data frame will return median values of the data
frame across all the columns.

Code

df.median()

Dimensionality Check

Type of Dataset

Slicing and Indexing

Identifying Unique
Elements

Value Extraction

Feature Mean

Feature Median

Feature Mode

Data Exploration Techniques (Contd.)

Using mode() on the data frame will return mode values of the data frame
across all the columns, rows with axis=0 and axis = 1, respectively.

Code

df.mode(axis=0)

Dimensionality Check

Type of Dataset

Slicing and Indexing

Identifying Unique
Elements

Value Extraction

Feature Mean

Feature Median

Feature Mode

Data Exploration Techniques (Contd.)

©Simplilearn. All rights reserved

Let’s now consider multiple features and understand the effect of one over other with
respect to correlation (using seaborn)

©Simplilearn. All rights reserved

Seaborn is a library for making
attractive and informative statistical

graphics in Python. It is built on top of
matplotlib and integrated with the
PyData Stack, including support for

numpy and pandas data structures, and
statistical routines.

Plotting a Heatmap with Seaborn

Code

import matplotlib.pyplot as plt

import seaborn as sns

correlations = df.corr()

sns.heatmap(data = correlations,square = True, cmap = "bwr")

plt.yticks(rotation=0)

plt.xticks(rotation=90)

Rectangular dataset (2D
dataset that can be

coerced into an ndarray)
If True, set the Axes
aspect to “equal” so

each cell will be
square-shaped

Matplotlib
colormap name or

object, or list of
colors

Below is the code for plotting a heatmap within Python:

Plotting a Heatmap with Seaborn (Contd.)

M
a

x
im

u
m

 co
rre

la
tio

n M
in

im
u

m
 c

o
rr

e
la

ti
o

n

Below is the heatmap obtained, where, approaching red colour means maximum correlation
and approaching blue means minimal correlation.

Assisted Practice

Data Exploration

Problem Statement: Suppose you are a public school administrator. Some schools in your state of Tennessee
are performing below average academically. Your superintendent under pressure from frustrated parents and
voters approached you with the task of understanding why these schools are under-performing. To improve
school performance, you need to learn more about these schools and their students, just as a business needs to
understand its own strengths and weaknesses and its customers. The data includes various demographic, school
faculty, and income variables.

Objective: Perform exploratory data analysis which includes: determining the type of the data, correlation
analysis over the same. You need to convert the data into useful information:

▪ Read the data in pandas data frame
▪ Describe the data to find more details
▪ Find the correlation between ‘reduced_lunch’ and ‘school_rating’

Access: Click on the Labs tab on the left side panel of the LMS. Copy or note the username and password that
are generated. Click on the Launch Lab button. On the page that appears, enter the username and password in
the respective fields, and click Login.

Duration: 15 mins.

Unassisted Practice
Data Exploration Duration: 15
mins.

Problem Statement: Mtcars, an automobile company in Chambersburg, United States has recorded the
production of its cars within a dataset. With respect to some of the feedback given by their customers they are
coming up with a new model. As a result of it they have to explore the current dataset to derive further insights out if
it.

Objective: Import the dataset, explore for dimensionality, type and average value of the horsepower across all the
cars. Also, identify few of mostly correlated features which would help in modification.

Note: This practice is not graded. It is only intended for you to apply the knowledge you have gained to solve real-
world problems.

Access: Click on the Labs tab on the left side panel of the LMS. Copy or note the username and password that are
generated. Click on the Launch Lab button. On the page that appears, enter the username and password in the
respective fields, and click Login

Data Import

Code

df1 = pandas.read_csv(“mtcars.csv“)

The first step is to import the data as a part of exploration.

Data Exploration

Dimensionality Check

Type of Dataset

Identifying mean value

Code

df1.shape

The shape property is usually used to get the current shape of an
array/df.

Dimensionality Check

Type of Dataset

Code

type(df1)

Data Exploration

Identifying mean value

type(), returns type of the given object.

Data Exploration

Dimensionality Check

Type of Dataset

Code

df1[‘hp’].mean()

Identifying mean value

mean() function can be used to calculate mean/average of a given list of numbers.

Identifying Correlation Using a Heatmap

Code

import matplotlib.pyplot as plt

import seaborn as sns

correlations = df1.corr()

sns.heatmap(data = correlations,square = True, cmap = “viridis")

plt.yticks(rotation=0)

plt.xticks(rotation=90)

Heatmap function in seaborn is used to plot the correlation matrix.

Identifying Correlation Using a Heatmap

From the adjacent map, you
can clearly see that

cylinder (cyl) and
displacement (disp) are the
most correlated features.

Graphical representation of data where the individual values contained in a
matrix are represented in colors.

Data Preprocessing

Topic 2: Data Wrangling

Discovering Structuring

Cleaning

Validating
Enrichment

Different Tasks
in Data

Wrangling

The process of manually converting or mapping data from one raw format into another format is called data wrangling. This
includes munging and data visualization.

Data Wrangling

Need of Data Wrangling

Missing data, a very common problem

Presence of noisy data (erroneous data and outliers)

Inconsistent data

Develop a more accurate model

Prevent data leakage

Following are the problems that can be avoided with wrangled data:

Missing Values in a Dataset

Consider a random dataset given below, illustrating
missing values.

Missing Value Detection

Consider a dataset below, imported as df1 within Python, having some missing values.

Detecting
missing
values

Code

df1.isna().any()

Missing Value Treatment

Mean Imputation: Replace the missing value
with variable’s mean

Code

from sklearn.preprocessing import Imputer

mean_imputer =

Imputer(missing_values=np.nan,strategy='mean',axis=1)

mean_imputer = mean_imputer.fit(df1)

imputed_df = mean_imputer.transform(df1.values)

df1 = pd.DataFrame(data=imputed_df,columns=cols)

df1

Mean Imputation: Replace the missing value
with variable’s mean

Median Imputation: Replace the missing
value with variable’s median

Missing Value Treatment (Contd.)

Code

from sklearn.preprocessing import Imputer

median_imputer=Imputer(missing_values=np.nan,strategy

=‘median',axis=1)

median_imputer = median_imputer.fit(df1)

imputed_df = median_imputer.transform(df1.values)

df1 = pd.DataFrame(data=imputed_df,columns=cols)

df1

Note: Mean imputation/Median imputation is again model dependent and is valid only on numerical data.

Outlier Values in a Dataset

Note: Outliers skew the data when you are trying to do any type of average.

An outlier is a value that lies
outside the usual observation of

values.

0

1

2

3

4

5

7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0

x MIDPOINT

OUTLIER?

F
R

E
Q

U
E

N
C

Y

5.0 7.5 10.0 12.5 15.0

5

12

13

11

10

9

8

7

6

Y
3

X1

Dealing with an Outlier

Outlier Detection

Outlier Treatment

Detect any outlier in the first column of df1

Code

import seaborn as sns

sns.boxplot(x=df1['Assignment'])

Outliers:
Values < 60

Dealing with an Outlier

Outlier Detection

Outlier Treatment

Create a filter based on the boxplot obtained
and apply the filter to the data frame

Code

filter=df1['Assignment'].values>60

df1_outlier_rem=df1[filter]

df1_outlier_rem

Assisted Practice

Data Wrangling

Problem Statement: Load the load_diabetes datasets internally from sklearn and check for any missing value or
outlier data in the ‘data’ column. If any irregularities found treat them accordingly.

Objective: Perform missing value and outlier data treatment.

Access: Click on the Labs tab on the left side panel of the LMS. Copy or note the username and password that are
generated. Click on the Launch Lab button. On the page that appears, enter the username and password in the
respective fields, and click Login.

Duration: 15 mins.

Unassisted Practice

Data Wrangling Duration: 5 mins.

Problem Statement: Mtcars, the automobile company in the United States have planned to rework on optimizing
the horsepower of their cars, as most of the customers feedbacks were centred around horsepower. However, while
developing a ML model with respect to horsepower, the efficiency of the model was compromised. Irregularity might
be one of the causes.

Objective: Check for missing values and outliers within the horsepower column and remove them.

Note: This practice is not graded. It is only intended for you to apply the knowledge you have gained to solve real-
world problems.

Access: Click on the Labs tab on the left side panel of the LMS. Copy or note the username and password that are
generated. Click on the Launch Lab button. On the page that appears, enter the username and password in the
respective fields, and click Login.

Check for Irregularities

Check for missing values

Code

df1['hp'].isna().any()

Check for Outliers

Outlier

Code

sns.boxplot(x=df1['hp'])

Outlier Treatment

Code

filter = df1['hp']<250

df1_out_rem = df1[filter]

sns.boxplot(x=df2_out_rem['hp'])

Outlier filtered
data

Data with hp>250 is the outlier data. Therefore, you can filter it accordingly.

Data Preprocessing

Topic 3: Data Manipulation

Functionalities of Data Object in Python

tail()

values()

groupby()

Concatenation

Merging

head()

A data object is a two-dimensional data structure, i.e., data is aligned in a tabular fashion in rows and
columns.

tail()

values()

groupby()

Concatenation

Merging

head()

Functionalities of Data Object in Python (Contd.)

Head() returns the first n rows of the data structure

Code

import pandas as pd

import numpy as np

df=pd.Series(np.arange(1,51))

print(df.head(6))

tail()

values()

groupby()

Concatenation

Merging

head()

Functionalities of Data Object in Python (Contd.)

Tail() returns the last n rows of the data structure

Code

import pandas as pd

import numpy as np

df=pd.Series(np.arange(1,51))

print(df.tail(6))

tail()

values()

groupby()

Concatenation

Merging

head()

Functionalities of Data Object in Python (Contd.)

values() returns the actual data in the series of the array

Code

import pandas as pd

import numpy as np

df=pd.Series(np.arange(1,51))

print(df.values)

tail()

values()

groupby()

Concatenation

Merging

head()

Functionalities of Data Object using Python (Contd.)

The Data Frame is grouped according to the ‘Team’ and ‘ICC_Rank’ columns

Code

import pandas as pd

world_cup={'Team':['West Indies','West

indies','India','Australia','Pakistan','Sri

Lanka','Australia','Australia','Australia','

Insia','Australia'],

'Rank':[7,7,2,1,6,4,1,1,1,2,1],

'Year':[1975,1979,1983,1987,1992,1996,1999,2003

,2007,2011,2015]}

df=pd.DataFrame(world_cup)

print(df.groupby(['Team','Rank’]).groups)

tail()

values()

groupby()

Concatenation

Merging

head()

Functionalities of Data Object in Python (Contd.)

Concatenation combines two or more data structures.

Code

import pandas

world_champions={'Team':['India','Australia','West

Indies','Pakistan','Sri Lanka’],

'ICC_rank':[2,3,7,8,4],

'World_champions_Year':[2011,2015,1979,1992,1996],

'Points':[874,787,753,673,855]}

chokers={'Team':['South Africa','New

Zealand','Zimbabwe'],'ICC_rank':[1,5,9],

'Points':[895,764,656]}

df1=pandas.DataFrame(world_champions)

df2=pandas.DataFrame(chokers)

print(pandas.concat([df1,df2],axis=1))

tail()

values()

groupby()

Concatenation

Merging

head()

Functionalities of Data Object in Python (Contd.)

The concatenated output:

tail()

values()

groupby()

Concatenation

Merging

head()

Functionalities of Data Object in Python (Contd.)

Merging is the Pandas operation that performs database joins on objects

Code

import pandas

champion_stats={'Team':['India','Australia','West

Indies','Pakistan','Sri Lanka'],

'ICC_rank':[2,3,7,8,4],

'World_champions_Year':[2011,2015,1979,1992,1996],

'Points':[874,787,753,673,855]}

match_stats={'Team':['India','Australia','West

Indies','Pakistan','Sri Lanka'],

'World_cup_played':[11,10,11,9,8],

'ODIs_played':[733,988,712,679,662]}

df1=pandas.DataFrame(champion_stats)

df2=pandas.DataFrame(match_stats)

print(df1)

print(df2)

print(pandas.merge(df1,df2,on='Team'))

tail()

values()

groupby()

Concatenation

Merging

head()

Functionalities of Data Object in Python (Contd.)

The merged object
contains all the columns

of the data frames
merged

Different Types of Joins

Left Join Right Join Inner Join Full Outer Join

Joins are used to combine records from two or more tables in a database. Below
are the four most commonly used joins:

Left Join

Code

import pandas

world_champions={'Team':['India','Australia','West

Indies','Pakistan','Sri Lanka'],

'ICC_rank':[2,3,7,8,4],

'World_champions_Year':[2011,2015,1979,1992,1996],

'Points':[874,787,753,673,855]}

chokers={'Team':['South Africa','New

Zealand','Zimbabwe'],

'ICC_rank':[1,5,9],'Points':[895,764,656]}

df1=pandas.DataFrame(world_champions)

df2=pandas.DataFrame(chokers)

print(pandas.merge(df1,df2,on='Team',how='left'))

Returns all rows from
the left table, even if
there are no matches in
the right table

Left Join

Right Join

Code

import pandas

world_champions={'Team':['India','Australia','West

Indies','Pakistan','Sri Lanka'],

'ICC_rank':[2,3,7,8,4],

'World_champions_Year':[2011,2015,1979,1992,1996],

'Points':[874,787,753,673,855]}

chokers={'Team':['South Africa','New

Zealand','Zimbabwe'],'ICC_rank':[1,5,9],'Points':[89

5,764,656]}

df1=pandas.DataFrame(world_champions)

df2=pandas.DataFrame(chokers)

print(pandas.merge(df1,df2,on='Team',how=‘right'))

Preserves the unmatched
rows from the second
(right) table, joining them
with a NULL in the shape
of the first (left) table

Right Join

Inner Join

Code

import pandas

world_champions={'Team':['India','Australia','West

Indies','Pakistan','Sri Lanka'],

'ICC_rank':[2,3,7,8,4],

'World_champions_Year':[2011,2015,1979,1992,1996],

'Points':[874,787,753,673,855]}

chokers={'Team':['South Africa','New

Zealand','Zimbabwe'],'ICC_rank':[1,5,9],'Points':[89

5,764,656]}

df1=pandas.DataFrame(world_champions)

df2=pandas.DataFrame(chokers)

print(pandas.merge(df1,df2,on='Team',how=‘inner'))

Selects all rows from
both participating tables
if there is a match
between the columns

Inner Join

Full Outer Join

Code

import pandas

world_champions={'Team':['India','Australia','West

Indies','Pakistan','Sri Lanka'],

'ICC_rank':[2,3,7,8,4],

'World_champions_Year':[2011,2015,1979,1992,1996],

'Points':[874,787,753,673,855]}

chokers={'Team':['South Africa',’New

Zealand','Zimbabwe'],'ICC_rank':[1,5,9],'Points':[89

5,764,656]}

df1=pandas.DataFrame(world_champions)

df2=pandas.DataFrame(chokers)

print(pandas.merge(df1,df2,on='Team',how=‘outer'))

Returns all records when
there is a match in either
left (table1) or right
(table2) table records

Full Outer Join

Typecasting

It converts the data type of an object to the required data
type.

Int()
Returns an integer object
from any number or string.

string()
Returns string from any

numeric object or converts
any number to string

float()
Returns a floating-point

number from a number or a
string

Typecasting Using Int, float and string()

Code

int(12.32)

Code

int(‘43’)

Code

float(23)

Code

float('21.43

')

Code

int(12.32)

Few typecasted data types

Assisted Practice

Data Manipulation

Problem Statement: As a macroeconomic analyst at the Organization for Economic Cooperation and Development
(OECD), your job is to collect relevant data for analysis. It looks like you have three countries in the north_america data
frame and one country in the south_america data frame. As these are in two separate plots, it's hard to compare the
average labor hours between North America and South America. If all the countries were into the same data frame, it
would be much easier to do this comparison.

Objective: Demonstrate concatenation.

Access: Click on the Labs tab on the left side panel of the LMS. Copy or note the username and password that are
generated. Click on the Launch Lab button. On the page that appears, enter the username and password in the
respective fields, and click Login.

Duration: 10 mins.

Unassisted Practice

Data Manipulation Duration: 10 mins.

Problem Statement: SFO Public Department - referred to as SFO has captured all the salary data of its employees
from year 2011-2014. Now in 2018 the organization is facing some financial crisis. As a first step HR wants to
rationalize employee cost to save payroll budget. You have to do data manipulation and answer the below questions:

1. How much total salary cost has increased from year 2011 to 2014?
2. Who was the top earning employee across all the years?

Objective: Perform data manipulation and visualization techniques

Note: This practice is not graded. It is only intended for you to apply the knowledge you have gained to solve real-
world problems.

Access: Click on the Labs tab on the left side panel of the LMS. Copy or note the username and password that are
generated. Click on the Launch Lab button. On the page that appears, enter the username and password in the
respective fields, and click Login.

Answer 1

Code

salary = pd.read_csv('Salaries.csv')

mean_year =

salary.groupby('Year').mean()['TotalPayBenefits']

print (mean_year)

Check the mean salary cost per year and see how it has increased per
year.

Answer 2

Code

top_sal =

salary.groupby('EmployeeName').sum()['TotalPayBenefi

ts']

print((top_sal.sort_values(axis=0)))

Group the total salary with respect to employee name:

Key Takeaways

Demonstrate data import and exploration using Python

Demonstrate different data wrangling techniques and their significance

Perform data manipulation in python using coercion, merging,
concatenation, and joins

Now, you are able to:

Knowledge
Check

©Simplilearn. All rights reserved

Knowledge
Check

a.

b.

c.

d.

Which of the following plots can be used to detect an outlier?
1

Boxplot

Histogram

Scatter plot

All of the above

The correct answer is

a.

b.

c.

d.

Knowledge
Check

Which of the following plots can be used to detect an outlier?

All the above plots can be used to detect an outlier.

d . All of the above

1

Boxplot

Histogram

Scatter plot

All of the above

Knowledge
Check

a.

b.

c.

d.

What is the output of the below Python code?
import numpy as np percentiles = [98, 76.37, 55.55, 69, 88]

first_subject = np.array(percentiles) print first_subject.dtype2

float32

float

int32

float64

The correct answer is

a.

b.

c.

d.

Knowledge
Check

What is the output of the below Python code?
import numpy as np

percentiles = [98, 76.37, 55.55, 69, 88]

first_subject = np.array(percentiles)

print first_subject.dtype

Float64’s can represent numbers much more accurately than other floats and has more storage capacity.

d. float64

2

float32

float

int32

float64

Lesson-End Project

Problem Statement: From the raw data below create a data frame:

'first_name': ['Jason', 'Molly', 'Tina', 'Jake', 'Amy'], 'last_name': ['Miller', 'Jacobson', ".", 'Milner', 'Cooze'],
'age': [42, 52, 36, 24, 73], 'preTestScore': [4, 24, 31, ".", "."],'postTestScore': ["25,000", "94,000", 57, 62, 70]

Objective: Perform data processing on raw data:

▪ Save the data frame into a csv file as project.csv
▪ Read the project.csv and print the data frame
▪ Read the project.csv without column heading
▪ Read the project.csv and make the index columns as 'First Name’ and 'Last Name'
▪ Print the data frame in a Boolean form as True or False. True for Null/ NaN values and false for

non-null values
▪ Read the data frame by skipping first 3 rows and print the data frame

Access: Click the Labs tab in the left side panel of the LMS. Copy or note the username and password that are
generated. Click the Launch Lab button. On the page that appears, enter the username and password in the
respective fields and click Login.

Duration: 20 mins.

Thank You

© Simplilearn. All rights reserved.

