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There is an opportunity to save energy and reduce operational expenses when choosing a suitable desalination
method aided by computational modeling. Existing models are not conducive to generalized comparisons be-
tween different desalination methods. Therefore, this study developed metamodels for six desalination methods,
grouped them into thermal and molecular transport families, and validated their predictive performance within
9% difference from published data. This validated framework allowed comparisons of desalination methods at
their prescribed ranges of operational conditions that they were designed for. These conditions specify feed
salinity ranges of 1.6 to 2.4 g/kg for Capacitive Deionization and Reverse Osmosis (RO), 2.8 to 4.2 g/kg for
Electrodialysis, 28 to 42 g/kg for Thermovapor Compression and Humidification-Dehumidification, and 37 to 55
g/kg for Multi-Effect Distillation (MED). Despite different operational conditions, all models exhibit non-linear,
positive correlation between energy consumption and system size in response to feed salinity and production
rate. The framework is also employed in a cross-comparative analysis between MED and RO whose results
suggest that energy intensity for MED is an order of magnitude greater than RO for the same operational con-
ditions, but actual operational costs are comparable. Overall, the framework is ready for deployment in case
studies of actual desalination plants.

1. Introduction

Different desalination processes have been developed over the years
to increase efficiency, reduce equipment maintenance, or target water
with higher salt contents. There are more than ten different desalination
methods and countless system variations within each method, each one
particularly useful for specific feed water characteristics and production
requirements. While there have been many efforts to model each process
individually for optimization, cross-comparison of desalination tech-
nologies remains a major challenge due several factors including: the
lack of standardization in modeling algorithms, difficulties in
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reproducing modeling approaches because of undisclosed parameters or
equations, and models learned with data from a specific system but that
cannot be generalized to broader operational ranges.

The starting point towards overcoming this challenge is to correctly
implement the models of the most common desalination technologies
under a common framework with matching computational structures
and parameters. The literature presents volumes of case studies and
technological developments with scattered models. Furthermore, most
studies do not disclose all required variables or correlations involved in
the simulation algorithm and make the model replication and validation
particularly challenging. Although some cases perform comparison of
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two desalination technologies side-by-side and find equivalent metrics,
there is still no standard framework to equalize the input domains of
multiple desalination processes simultaneously.

The literature reflects a lack of cohesion in modeling purposes among
the different desalination studies. There are commonly accepted desa-
lination models that are predictive in nature, but there is no common
algorithm structure that allows for cross-comparison. The greatest
challenge in achieving this lies in the lack of knowledge on the physics
behind some sub-processes that take place in different desalination
systems. Most modeling approaches resort to regression and empirical
correlations that are valid for the specific operational conditions and
particular system that data is measured from. This is complicated by the
lack of disclosure of modeling equations, important parameters, or
correlation coefficients in published literature which challenges
collaboration among the desalination community. Further research is
required into developing such mechanistic equations to expand the
predictive capabilities of desalination models. On the other hand, the
literature presents many models with different simulation objectives and
different input-output structures, which cannot be executed in parallel
and therefore do not allow direct comparisons of the results. It is
important to organize model algorithms to follow similar input-outputs
structures to impose similar constraints to the system and enable
meaningful cross-comparison of different desalination technologies.

Few research efforts have focused on comparison between different
desalination technologies, and the extent to which such cross-
comparison methodologies are implemented present great differences.
The majority of studies enumerate and review the general operational
ranges such as the feed concentration and product water flow rate that
different technologies are able to process [1-6]. However, the imple-
mentation of such findings is limited to general statistical models that
might not be representative of the actual system performance at the
required operational conditions [7]. Later research efforts recognized
the importance in evaluating energy consumption of desalination tech-
nologies and consider the high-level breakdown in heat and electricity
requirements [8]. Comparing energy consumption is an initial step into
finding universal parameters among desalination technologies that can
provide meaningful insights. Finally, a few more recent studies simulate
energy consumption from a thermodynamic law analysis [9,10]. In
general, cross-comparison studies in the literature are limited to pair-
wise comparisons between desalination methods focusing on energy and
cost at discrete operation points [11-15]. A more robust comparison of
different desalination systems can be conducted through an exergy
analysis, which captures the effects of different operation conditions
[16]. Although correct from a theoretical standpoint, reducing system
operation to a single operation term is often not enough for practical
decision making. Pairwise comparison approaches are valuable and can
be an excellent complement to a holistic comparison that considers all
involved parameters such as flow rates, concentrations, system sizes and
performance metrics. To the best of our knowledge, a modeling frame-
work that enables a holistic and direct cross-comparison between
different desalination methods has not yet been proposed. The first step
towards implementing such framework is to classify the different desa-
lination models and establish hierarchical input-output structures that
dictates the extent to which different desalination processes can be
cross-compared.

The present study proposes a framework for cross-comparison be-
tween desalination technologies centered on a standard hierarchical
structure for model inputs and outputs, consistent model computational
structures, and standardized sets of thermophysical property correla-
tions that include temperature, pressure, and salinity dependence. We
first organize the knowledge of desalination modeling to develop met-
amodels for six different desalination processes including Thermovapor
Compression (TVC), Multi-Effect Distillation (MED), Humidification-
Dehumidification (HDH), Reverse Osmosis (RO), Electrodialysis (ED)
and Capacitive Deionization (CDI). Then, we deploy the proposed
framework in a generalized comparison between the aforementioned
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desalination methods whose similar energy consumption patterns and
responses to product flow rate and feed salt concentration suggests that
apparent differences between desalination processes are superficial and
that they actually share compatible transport processes. Finally, we
apply our framework in a full cross-comparative analysis between MED
and RO which are currently the most relevant desalination methods, and
identify the benchmarks that developing technologies must cater to in
the desalination market.

2. Methodology

The first step in developing a cross-comparison enabling simulation
framework is to correctly implement the models available in the liter-
ature. The systematized process of literature review and implementation
is shown in Fig. 1. We used scientific publication databases like Scien-
ceDirect and Google Scholar to search for the desalination method name
plus the key words “modeling” and “desalination.” We considered peer-
reviewed research articles, book chapters, and theses for this review.

Most published models unfortunately do not disclose all the required
parameters or equations, and many can only simulate a single specific
set of operational conditions. To resolve this, we develop metamodels
that supplement a representative model structure with sub-component
models from different studies. The metamodel development process,
therefore, is iterative in nature and dictates the direction of the literature
review. The most representative model is the literature model where the
complete modeling equations are disclosed, and reference values are
provided. Additionally, the selection criteria for the most representative
model prioritizes reduced-order models, which have low algorithmic
complexity and computational intensity requirements but are still
capable of capturing specific differences between operation conditions.
The most representative model serves as a guide for the main code
structure and provides numerical inputs and outputs for validation. Most
models available in the literature unfortunately do not disclose the
complete set of variables or equations to close the water/energy/prod-
uct balance equations needed for implementation in an analytical
framework. In the cases where equations, coefficients, or parameters are
missing, we conducted further literature review from other references
found in the initial search or a new targeted search for the specific un-
knowns. This iterative process continued until all the initial number of
references was reviewed and the metamodel was completed. The
resulting metamodel is validated with the values of the most represen-
tative model targeting a maximum allowable difference of 10% in the
inputs and outputs associated to flow rate, concentration, energy in-
tensity, and system sizing. If the target was not met, we returned to
reviewing literature in search of more detailed sub-models.

After successful validation, we standardized the computational

1. Literature
Review

2. Model Selection
Model meets selection
criteria?

3. Code
Implementation

Is the literature
model complete?

4. Validation
Error<10%?

5. Modifications for
Comparison

Fig. 1. Meta-study research and implementation process.
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Table 1
Number of curated references used for each developed desalination model.

Desalination process Ref. No. Selected lit. model
Thermovapor Compression (TVC) 34 [24]

Multi-Effect Distillation (MED) 28 [25]
Humidification-Dehumidification (HDH) 19 [26]

Reverse Osmosis (RO) 50 [27]
Electrodialysis (EDS) 40 [28]

Capacitive Deionization (CDI) 64 [29]

Total 235

structure and matched the hierarchical set of inputs and outputs pro-
posed in this section to enable cross-comparison among different
models. In this step, the thermophysical properties of the working fluids
are also standardized using correlations that cover the largest validity
ranges and consider temperatures, pressures, and salt concentrations
when appropriate [17-23]. The resulting metamodel is an improved
version of the original literature model re-engineered for the specific
purpose of design and cross-comparison between different technologies.
Finally, we use the incomplete sets of numerical inputs and outputs
found through the literature review process, when available, to test the
metamodel with a wider range of inputs. The unknown parameters are
supplemented by other studies that disclose them and have the most
similar operation conditions. This testing does not impose a maximum
allowable difference but rather shows how generalizable the resulting
metamodel is.

Table 1 shows the total number of studies reviewed through the
development of each metamodel presented in this paper and the selected
literature models that guided validation.

3. Results

We present the results of our research in two parts. The first part
considers metamodel development for each desalination method
including Thermovapor Compression, Multi-Effect Distillation,
Humidification-Dehumidification, Reverse Osmosis, Electrodialysis and
Capacitive Deionization. All equations necessary to model the corre-
sponding system are disclosed within each section. The relevant equa-
tions of the metamodels provided within each description are
implemented in an open-source, cloud-based application [30].

The second part elucidates on the cross-comparison enabling simu-
lation framework that controls the execution of the proposed meta-
models. The complete list of inputs and expected outputs for each model
under the proposed simulation framework are listed in Table 9 at the end
of the section. The framework is then deployed on all developed meta-
models to support that almost identical patterns can be observed in the
energy intensity response to changes in product flow rates and feed
salinity. Finally, a full cross-comparison between the most commercially
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competitive processes, Multi-Effect Distillation and Reverse Osmosis,
suggests that the cost of energy process benefits of Multi-Effect Distil-
lation must justify its considerably larger energy intensity.

3.1. Metamodels for desalination processes

All metamodels integrate submodels and thermophysical property
functions from a variety of studies to expand the validity of the model
while maintaining computational simplicity. These metamodels are
classified according to the separation process featured in each method,
which is also aligned with the type of thermophysical properties
involved in the calculations. For instance, the thermal family involves
properties such as enthalpies and latent heat, while the molecular
transport family involves properties like permeability and conductivity.
Table 2 summarizes the high-level simulation parameters validated
within 9% with the relevant parameters from the most representative
literature model. In the case of intermediate parameters for MED and
HDH, there is a maximum difference of 15% with the flashed distillate
flow rate, and 64% difference with the cooling water flow rate. For MED,
the difference is caused because the literature model assumes constant
thermophysical properties while all our metamodels incorporate tem-
perature, pressure, and salinity dependence [17-23]. The discrepancy in
HDH, on the other hand, is not clearly labeled in the published study and
is likely a simple typographical error. It must be noted however, these
parameters have minimum impact in energy consumption calculations.
All other parameters in all the developed models show excellent
agreement with literature data overall. The complete validation tables
with the selected model and additional studies are found in the paper
Appendix.

The successful validation of the metamodels with their correspond-
ing representative model from the literature demonstrates they satis-
factorily meet their intended purpose. However, the parameters shown
in Table 2 represent only one possible operation point of each desali-
nation system. Therefore, further validation is conducted with addi-
tional studies that show different operation conditions, including
product flow rates and feed water salinities. The reader is encouraged to
refer to the complete validation tables which list the complete sets of
inputs, outputs, and relevant intermediate parameters in the Appendix.
The unknown input fields in these cases are supplemented with values
from other studies. Priority is given to the studies with most similar
operation conditions for the cases where multiple options to supplement
an unknown input exist. It is expected that the additional validation
points have a larger percent difference from the metamodel because the
correlations, modeling algorithm and unknown values would differ
slightly. Nevertheless, the metamodel results show great agreement with
all independent studies.

Table 2
Validation summary of the metamodels with their corresponding most representative model literature from the literature (Full table in the Appendix).
TVC MED HDH RO EDS CDI
Selected lit. model [24] [25] [26] [27] [28] [29]
Family Thermal Molecular transport

Product flow rate, My (kg/s) 0.5787 [0%] 137.9 [0%]

Intake salinity, Cy (g/kg) 35 [0%] 46 [0%]
Intake temp. Tj, (°C) 25 [0%] 28 [0%]
Feed water flow rate, My (kg/s) 1.360 [2%] 366.9 [4%]
Brine flow rate, Mj (kg/s) 0.7811 [-] 234.4 [4%]
Product water salinity, C, (g/kg) 0[] 0 [0%]
Brine salinity, Cp (g/kg) 60.9 [2%] 72 [0%]
Specific energy, Eges (kWh/m?) 239.9 [-] 66.37 [-]

1.156 [0%] 2.087 [0%] 4.051 [0%] 6.138e-5 [-]
35 [-] 2 [0%] 3.5 [0%] 2 [0%]

25 [0%] 20 [0%] 20 [-] 25 [-]

16.87 [0%] 3.472 [-] 5.401 [-] 6.138e-5 [-]
15.48 [1%] 1.383 [-] 1.360 [-] 6.138e-5 [-]
0 [0%] 0.023 [-] 0.35 [0%] 0.70 [-]
38.2 [-] 4.99 [0%] 13.0 [3%] 2.54 [-]
486.5 [-] 0.9099 [-] 0.3688 [9%] 0.5594 [8%]

[%]: Percent difference. This value is not calculated for the parameters that are not provided explicitly in the literature model.
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3.1.1. Thermovapor Compression

A Thermovapor Compression (TVC) desalination system has three
main components: a condenser, one or more evaporators, and a ther-
moejector. For the interests of this study, we consider only a single
evaporator system although there are models in the literature that
include multiple cascading evaporators [31,32]. As shown in Fig. 2, TVC
desalination is driven by a motive steam flow rate (M) which mixes and
is ejected in the thermocompressor with an entrained water vapor flow
(M,), extracted from the vapor stream produced in the evaporator side.
The resulting mixed steam stream that supplies necessary heat in the
evaporator to separate feed water flow rate (My) into water vapor and
brine (Mp) flows by overcoming the boiling point elevation caused by
salt presence in the fluid [33]. The proposed TVC metamodel does not
consider circulation pump energy consumption as it is insignificant
when compared to the total heat input to the system. Table 3 describes
the relevant TVC metamodel equations which are solved in a forward
sequential algorithm and implemented through the proposed simulation
framework at the end of the Results section.

The steam ejector is a key component of TVC with contrasting
modeling approaches. Several desalination steam ejector models are
available in the literature, each one with different assumptions and
modeling detail. While recent studies present physical models with great
validity [34,35], they require additional inputs that are not available in
published TVC models. There are other high-level empirical models
[36,37], based on graphical operational curves [38], that are suitable for
the present application but have narrow operational ranges. We found
the most appropriate model for this study to consist of empirical cor-
relations that expand the validity range of the aforementioned opera-
tional curves while maintaining a relevant level of abstraction [39].

The ejected steam from the thermocompressor supplies heat in one
side of the evaporator to separate the saline feed water into a water
vapor and brine streams in the other side. Part of this generated water
vapor is eventually recirculated in the thermoejector, and the remaining
is condensed into the product water in the condenser. Heat transfer
coefficients (HTC's) are modeled trough empirical correlations consis-
tently used throughout the literature. El-Dessouky et al. [22] compiled
evaporator and condenser HTC's with different fouling or flow charac-
teristics. We employ the overall temperature-dependent HTC correla-
tions that combine such variations and can be found across several
desalination models with slight variations in significant digits
[24,40-42].
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The water vapor stream produced in the evaporator may have
entrained saline water droplets produced from the impact of the saline
water jets onto the evaporator tubes. A wire-mesh demister is often used
to capture such saline droplets in the flow and induces a pressure drop in
the vapor flow. The demister pressure drop is modeled through empir-
ical correlations that consider demister properties such as pad density,
thickness or wire diameter, and the vapor velocity through the demister
[22,43-45]. We found that these correlation coefficients were often
modified without explanation; therefore, we opted to use the correla-
tions from a study that provides a reference pressure drop value so that
we could verify coefficients and units [24].

These different approaches to modeling TVC systems can be due to
different research objectives in each study. For instance, some of the
early models focus on parametric analysis of a generic TVC system
[37,45], while the more recent models propose a parametric study with
updated thermoejector modeling strategies [24]. The models used in
more recent studies focused on optimization strategies for real-life
desalination plant models that feature more than a single evaporator
[32,36]. Finally a different study highlighted another use of a TVC
model in analyzing the performance of the system in response to feed
water seasonality changes [31].

3.1.2. Multi-Effect Distillation

Multi-Effect Distillation (MED), like TVC, is based on the evaporation
of water from a feed saline stream, however, this process features several
evaporators denominated “effects” which are connected in series.
Motive steam flows into the first effect only in one side of the heat
exchanger and the other effects intake the water vapor generated in the
prior effect (i.e. steam generated in the first effect supplies heat to the
second effect, the latter into the third effect, and so on through all the
effects). Electricity consumption in pumps is neglected in the proposed
MED metamodel as it is insignificant in comparison to the heat input to
the system. Table 4 details the relevant MED metamodel equations
which are solved in a forward sequential algorithm that iterates through
each effect within the system.

There are three configurations of MED that differentiate in how the
feed saline water flows with respect to the generated vapor in each ef-
fect. Forward feed is the most extensively modeled configuration
[22,40,46], in which all the saline feed is directed to the first effect, and
the brine generated in each effect is then directed as feed into the sub-
sequent effect. This configuration, however, is not practical in the

Motive Steam

Steam Ejector ¢ --=== My, T, Py x =1

: Mixed Steam Y
| My, Ty, P, I
: e : Entrained Vapor
1 Evaporated Steam 1 M,T,P,x=1
: Mg, Tox=1 -
1 . A 5 |
: Demister ! : Condensing Steam
: | 1 M, T,P,x=1

1
: Ty By Mg, x = 1 Feed Water A 4
: — = = M » Intake Saline Water

Condenser M. +Mg,), C;, T
: /I\ /N\ /I\ ( ct cw)l frlin
I
1
1 :
: Evaporator Cooling Water
M My, Cr, Tr
— My, x=0 M,
Product Water
My, C,

Brine
My, Cy, Ty M,

Return to Steam Gen.

Fig. 2. TVC process schematic.
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Table 3
TVC metamodel key equations.
Component Equation Variables Ref.
Condenser Mcic = (My + Mey)ep(Ty — Tin) 1) M, Vapor flow rate [24]
Ae Latent heat
My Feed water flow rate
M.y, Cooling water flow rate
[ Specific heat
Ty Feed water temperature
Tin Intake water temperature
Evaporator Mu(hm — hy—0) = Mycy(Ty — T) + Makq (2) M, Mixed steam flow rate [24]
hy, Mixed steam enthalpy
hy—o Mixed steam saturation enthalpy
Ty Brine temperature
My Vapor product
Ad Latent heat
Demister APge = 9.583 x 10 g %7V 07197 L 4,1 388 3) APg, Pressure drop [24,45]
Pde Demister packing density
Ve Vapor velocity in demister
Lge Demister thickness
Thermoejector 1 (€] A Regression constants [38,39]
B C B Regression constants
M =35, <A,,C;' + F;) + E{C' Cr Cc Regression constants
1/E,
If E, > 100, 100 > E, > 10
1 5) C, Compression ratio
E, Expansion ratio
M=%, (A,,ln(C,)” +%) + %C' In(Cr) M, Mass ratio
1
/E,
If10 >E. > 2
Evaporator HTC U, = 1969.5 + 12.057T, — 8.5989 x 10 2T,% + 2.5651 x x 10~*T}> 6) U, Evaporator heat transfer coefficient [24]
Condenser HTC U, = 1719.4 + 3.2063T. + 1.5971 x 1072T.2 — 1.9918 x 10 ‘T2 (%) U, Condenser heat transfer coefficient [24,45]
T, Steam temperature at the condenser inlet
Table 4
MED metamodel key equations.
Component Equation Variables Ref.
Condenser (Meyw + MAcy(Tf — Tin) = Ma, endAd, end ® My, end Vapor flow rate from last effect [25,64]
Ad, end Latent heat
Mg Feed water flow rate
M., Cooling water flow rate
[ Specific heat
Ty Feed water temperature
Tin Intake water temperature
Evaporator Mylp = My, icp, (Ts, i — Tp) + Dy, idp, i 9 M, Steam flow rate [25,64]
Ap Steam latent heat
My, Feed water flow rate at ith effect
Cp, i Specific heat
Tp, i Brine temperature in ith effect
Ty Feed water temperature
Dy, ; Distillate produced by boiling in the ith effect
b, i Latent heat
Demister APge = 3.88178p,, 375798y, 081317 g ~1.56114147 (10) APg, Pressure drop [22,44]
Pde Demister packing density
Vie Vapor velocity
L, Packing length
d, Packing diameter
Evaporator HTC U, = 1969.5 + 12.057T, — 8.5989 x 1072T,2 + 2.5651 x 10T 11) T, Saturation temperature of steam [24,65]
U, Evaporator heat transfer coefficient
Condenser HTC U, = 1719.4 + 3.2063T, + 1.5971 x 1072T.2 — 1.9918 x 10*T.2 a12) T, Vapor temperature at condenser inlet [24,45,65]
U, Condenser heat transfer coefficient

desalination industry because it features the most complex layout [22].
In the backward feed configuration, the saline feed is directed to the last
effect, and the generated brine is passed backwards from each effect
until the first effect is reached. This implementation has a high risk of
scaling because the highest salinity of the feed stream occurs in the first
effect, which also has the highest temperature [47,48]. In addition, BF
systems require higher pumping power as the saline feed must be
pumped from lower to higher pressure effects [22,49]. Parallel feed is
the most reliable MED configuration for desalination because it allows

the highest distillate production per motive steam consumed and
generally requires less heat exchanger area [49]. In this configuration
the feed water stream is split and directed into all effects simultaneously.
We model a parallel feed MED system with no thermoejector for the
purposes of this study, as shown in Fig. 3.

Published MED models present different assumptions regarding fluid
thermophysical properties. For instance, some models assume constant
properties such as or average boiling point elevation (BPE), specific heat
capacity, and latent heat [25]. Others use a combination of constant
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Fig. 3. MED process schematic.

properties for the water vapor or saline streams and temperature
dependent correlations for the water stream [50,51]. Finally, there are
models that feature temperature-based correlations for water and water
vapor and include salinity effects for seawater thermophysical proper-
ties [40]. Like all metamodels presented in this paper, the MED meta-
model features thermophysical function libraries that include
temperature, pressure, and salinity dependence. Most saline and pure
water properties are calculated using the Thermophysical Properties of
Seawater library [17,18], and two-phase vapor-steam properties are
calculated using the XSteam library [21]. Both XSteam and the Seawater
libraries, however, could be used interchangeably at zero salinity. MED
effects generally have a decreasing pressure profile which can promote
vapor flashing as brine water is transferred from a previous effect at
higher temperature into the subsequent effect. [25,52]. In some in-
stances, MED units include flashing boxes to redirect steam for feed
preheating or to add into the steam stream that is directed into the next
effect [40,51,53]. It must be noted that flashing is not the main process
through which vapor is generated, and therefore, some studies do
neglect it [50]. Our metamodel implements flashing within each effect
according to the saturation pressure that each effect maintains.

There are further differences between literature models regarding
the modeling approach of each effect and the components within. There
are models that assume constant heat transfer coefficients and fixed heat
exchanger areas [25] while other models assume equal areas only [40].
In these calculations several studies employ the same vapor
temperature-dependent HTC correlations as the models, described in the
previous TVC section [50,54]. Within the reviewed MED models, few
consider small pressure drop caused by the demister within each effect
[54-56]. Finally, some MED models consider feed preheaters, which are
heat exchangers before one or more effects that use steam (in some cases
from an external process) to heat the feed water stream before entering
the effect [25,46,50]. The energy required in the preheaters is generally
small compared to the energy involved in water distillation but is found
in actual case study data [57,58]. Our metamodel incorporates
temperature-dependent HTC correlations commonly found in thermal
desalination models [24,40-42], and correlations for the demister
pressure drop [44]. For simplification, we assume preheating does not
factor into the system's energy intensity and overwrite the constant feed
temperature with the target preheat temperature at the desired effect.
Nevertheless, considering the energy for feed preheating in this case can
account for an increase in energy intensity of up to 20%.

These different modeling approaches have been developed to
analyze different aspects of MED desalination. Early models were used
in parametric studies of generic systems [40,55]. In the following years,
studies used MED models to conduct studies of real-life desalination
plants [50,59,60] and parametric analysis of MED systems with

thermocompression [51,56,61]. The latest modeling studies focused on
analyzing the performance of MED desalination coupled with power
cycles [53,54,62], and exploring the integration with solar energy
[52,63].

3.1.3. Humidification-Dehumidification

Humidification Dehumidification (HDH) desalination makes use of
the capacity of dry air to absorb and release moisture through psycho-
metric processes. An Open-Air Open-Water (OAOW) HDH system,
shown in Fig. 4, contains three main components including the dehu-
midifier, which fulfills a similar role to the condenser in TVC and MED
desalination, a heater, and a humidifier. Cool saline water flows into the
dehumidifier and gets preheated as hot humid air condenses in the other
side. The intake stream flow is regulated by rejecting some of the pre-
heated water as cooling water, and the remaining flows into the heater.
The feed saline water is heated using the energy released from saturated
steam inside the heater. The hot saline water is then sprayed in the
humidifier, where it mixes with dry intake air. In this component the air
absorbs moisture and exits as hot humid air into the dehumidifier, and
the remaining water is rejected as saline brine. In the dehumidifier, the
moisture from the humid air is collected as product water and the
remaining air is exhausted. Circulation pump and fan energy con-
sumption are neglected like the other thermal desalination metamodels.
Table 5 shows the relevant HDH metamodel equations which are solved
in a forward sequential algorithm through each component in the
system.

The OAOW HDH system can be modified by changing the stream in
which the heater is located or by closing and recirculating either the air
or water loop. In addition, there is an air-heated configuration where the
intake air, as opposed to the feed saline water flows through the heater.
Both water-heated and air-heated cycles have similar production rates
and energy input requirements, nevertheless, the air-heated cycle needs
a larger air flow rate compared to the water heated cycle, and thus re-
quires a larger fan and dehumidifier than the water-heated system [66].
The air loop in the system can remain open if the intake air temperature
and humidity are low enough to facilitate moisture absorption, if this is
not viable, the exhaust air can be recirculated to replace the intake air.
Fewer instances of closed-water loop systems are found in the literature;
while Closed-Air Open-Water (CAOW) and Closed-Water Open-Air
(CWOA) water-heated systems have similar production rates of desalted
water per steam consumed, recirculating saline water within the system
requires additional control mechanisms to prevent scale formation
[67-69]. Therefore, we implement the OAOW configuration for our
proposed HDH metamodel.

The HDH process deals with saline water and moist air streams
whose thermodynamic properties present different assumptions in the
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Fig. 4. HDH process schematic.

published studies. While all studies use common psychrometric property
equations for moist air, they differ in saline water thermodynamic
property calculations with increasing degrees of complexity. For
instance, there are cases that employ correlations that do not consider
the presence of salt in the fluid [70] and some that consider salt as the
only independent variable [71]. The majority of desalination models
employ either temperature and salinity dependent thermodynamic
property correlations for saline water [26,72] or correlations that
consider pressure effects in addition to temperature and salinity [66,73].
Like the other desalination processes, we incorporate thermophysical
property functions that consider temperature, pressure and concentra-
tion for saline water [17,18], and moist air property functions with
temperature, pressure and humidity dependence [23,74,75].

The literature presents different modeling approaches to the com-
ponents of a HDH system, predominantly in the humidifier. The earlier
HDH models use humidifier correlations that consider air and water
flows and temperatures, and mass transfer coefficients [76]. The vast
majority of studies use either standalone empirical correlations [70,77]
or a combined approach between energy conservation assisted by nu-
merical correlations [78,79]. And finally, one of the more recent studies
employ iterative numerical methods for modeling the humidifier [66].
Similar differences are observed for modeling the heat transfer co-
efficients in the system including constant heat transfer coefficients [26]
or the use of temperature-dependent empirical correlations [72]. We
implement humidifier sizing calculations through semi-empirical cor-
relations highlighted in the literature model as it is one of the few studies
that discloses parameters for validation [26].

The versatility of HDH desalination is reflected in the different ob-
jectives for which models have been constructed. Many studies present a
parametric analysis of a theoretical system for comparing different
system configurations or showcasing different modeling methods
[26,66,69,72,77]. However, there is a wide range of models that have
been developed to analyze and optimize real life systems, including
small experimental deployments [71,73,80]. Transient modeling ap-
proaches enable the simulation of HDH systems at variating conditions
such as feed water changes due to weather [79] or energy supply vari-
ations such as solar power [78] or waste heat from refrigeration [81].
Finally, there are also cases that employ HDH modeling for statistics-
based optimization [70].

3.1.4. Reverse Osmosis

Reverse Osmosis (RO) is the most widely used desalination method
due to its relatively low energy consumption and adaptability for large
scale production requirements. Pump energy consumption is considered
as the main energy input to drive desalination in this process. The main
component of a RO system is the membrane module, which in most cases
contains a spiral-wound membrane used to filter product water high
salinity feed. RO uses electricity as its energy source through a high-
pressure pump. When the system pump exerts enough pressure on the
feed side of the membrane to overcome the net pressure difference,
which includes the hydraulic and osmotic pressures, water is forced
through the membrane, resulting in a permeated product water and a
leftover brine stream at a higher concentration. The RO metamodel is
based on a single-pass, tapered arrangement system as shown in Fig. 5.

The RO process extracts water from a saline stream through physical
separation as opposed to phase change; therefore, the osmotic pressure
calculation becomes particularly important in modeling. Different
studies present disparate assumptions in calculating colligative proper-
ties of saline water. Most published models assume linear dependence
between osmotic pressure and salt concentration with a constant
empirical coefficient of proportionality [82-84]. These approaches are
based on van't Hoff's correlation, which involves temperature and
salinity and is widely used in RO modeling [85]. Linearization, however,
is mostly applicable to low salt content and can deviate at higher con-
centrations [86]. Other approaches consist in fitting a concentration-
dependent regression to tabulated data [87]. The proposed RO meta-
model employs a subroutine based on van't Hoff's expression in combi-
nation of other equations and approximations to expand the validity
range [88].

Table 6 shows the relevant RO metamodel equations that are solved
in a forward iterative algorithm by adding differential membrane ele-
ments to the system until the required desalination objective is achieved.

Like most RO models, our proposed metamodel employs a solution-
diffusion model that makes the water and salt fluxes proportional to the
net force and concentration difference, respectively, across the mem-
brane [89]. The proportionality constants in these equations are water
and salt permeability coefficients that depend on the specific membrane
and operation of the system. These parameters are not usually included
in membrane catalogues and therefore the approaches to implementing
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Table 5
HDH metamodel key equations.
Component Equation Variables Ref.
Dehumidifier Mg(hgo — hg3) = 13) M, Air flow rate [26]
M,,(hy1 — hyo) hgo Moist air
enthalpy
hg3 Moist air
enthalpy
M, Intake water
flow rate
hy Saline water
enthalpy
hyo Saline water
enthalpy
Humidifier My(hgs — hg1) = (14) Mg Feed water [26,77]
Miep(Twz — Tw2) flow rate
[ Specific heat
Tys Brine
temperature
Tyo Inlet water
temperature
Humidifier (15) Ly Humidifier [26,72]
(sizing) Ln = length
MprMg(Cl —Cy) C1 Demister
T GkAn packing
density
Co Vapor
velocity
L, Packing
length
d, Packing
diameter
Cs Fitting
parameter
k Mass transfer
coefficient
Ap Cross-
sectional
area
Heater M(hy, 2 — hy, 1) = (16) M, Motive steam [26]
Mpi, flow rate
p Latent heat
Dehumidifier U.=1719.4 + a7 T. Vapor [24,45,65]
HTC 3.2063T, + temperature
1.5971 x 107212 at condenser
—1.9918 x inlet
10712 U, Condenser

heat transfer
coefficient

these coefficients vary across the literature. It is common among pub-
lished models to assume constant permeability coefficients [87]. These
are often deduced from actual system measurements through regression
analysis [82,83,85], or adjusted to match results from commercial
simulation packages [84]. It is important to note that these coefficients
tend to be strongly dependent on the feedwater characteristics, system
specifications, and operational conditions, therefore these values are not

Feed Water
Mf, Cf, Pf

Intake Water
Mg, Cs, Tin, Py
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necessarily interchangeable among models.

The RO membrane blocks most salt ions from permeating; therefore,
a high concentration layer is formed at the interface between membrane
surface and the feed water stream. This phenomenon is called concen-
tration polarization and can have significant effects on the water and salt
fluxes through the membrane as they factor into a mass transfer coef-
ficient through the membrane [90]. Concentration polarization is usu-
ally modeled as a factor given by the ratio of the wall-permeate and
brine-permeate concentration differences through thin film theory
[89]. This poses a challenge since the actual product concentration
cannot not be known a-priori unless measured and regressed from an
actual system. There are modeling cases in the literature that concen-
tration polarization is not considered [91], or the value for product
water concentration is assumed to simplify the equations [92]. In many
cases, the models simplify the calculation by assuming a linear increase
in brine concentration with respect to the flow path length and using a
mass balance approach [83,84,87]. The RO metamodel incorporates
different empirical correlations for calculating this mass transfer coef-
ficient, which can be averaged or individually selected according to the
membrane type and system setup [27,93,94]. In the model validation we
choose the correlation that best fits the available data.

There are several analytical levels at which RO systems are modeled
in the literature. A common approach to modeling single stage systems
involves treating the flow channel as bulk [95-97]. Within this simpli-
fication there are several approaches, such as statistical-mechanical
models, that require several fitting constants from experimental data
[22,98], or solving for simultaneous equations in the simplified control
volume [84,87]. Models based on empirical correlations, however, are
only valid for the operating conditions, membrane modules, and plant
configuration used in the statistical regressions, so they do not allow for
flexibility in terms of modeling different desalination requirements or
systems. Simplifying the system might not be appropriate for large,
multi-stage systems since the effects of concentration polarization are
diminished. More detailed analytical models use finite element ap-
proximations and follow an iterative calculation process through the
discretized membrane elements [27,92]. Higher detail on fluid transport
can be studied through CFD-based models [99]. The different modeling
approaches and assumptions are tailored to specific modeling objec-
tives. For instance, many studies use RO models to conduct parametric
studies with different purposes such as exploring theoretical system
tradeoffs [91,92,95], process optimization [84], or developing case
studies with actual desalination plants [87]. In addition, RO models
have been used to study transient effects through dynamic simulations
[97]. Alternatively, numerical method-based models aim to explore
more detailed and mechanistic modeling options that do not rely on
common modeling assumptions [99].

3.1.5. Electrodialysis
Electrodialysis (EDS) is a desalination method that is still in the early
phases of large-scale commercialization. The EDS process uses an

Stage L Brine

Stage M,.C,, Py

v

Product Water
Mg, Cp, P,

Fig. 5. RO process schematic.
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Table 6
RO metamodel key equations.
Component Equation Variables Ref.
Membrane permeation Jyw = Kyl(Py — Pp) — (Bmp — mp)] (18) Jw Water flux [27,85]
Ky Water permeability
Py Feed (brine of previous element) pressure
P, Permeate pressure
B Concentration polarization factor
7y Feed (brine of previous element) osmotic pressure
7 Permeate osmotic pressure
Concentration polarization . Jw . 19 Rej Observed salt rejection [27,89,97,100]
# = Rejexp (E) ~Reg+1 kep Mass transfer coefficient
Local salt rejection Rej—1— G (20) Gy Permeate concentration [27,97]
Gy Cp Feed (brine of previous element) concentration
Mass transfer coefficient kp — 0.023 (%) (Re)05 (5025 2n fH I];:I:l(;rljlucl; ilsﬁ;;;:r [101]
kp = 2 (%) (Re)?50(5¢)1/3 @ Floe velocky [102]
Dy dH (23) h Channel thickness [103]
ky = 0.664 (E) (Re)**(56)"% (T) ’ Das Diffusivity of salt through membrane at 25 °C
6vD2 1 D g 24) Dr Diffusivity of salt at actual temperature [93]
ke = 0.808 v 25) 3(—T> 3
hl Dys
Pump P o) (P/ — Po) (25) Py Motor power [91]
m = HpurmpTmotor Qr Feed flow rate
Py Intake pressure
Npump Pump efficiency
Nmotor Motor efficiency

electrical driving force to transport salt ions across ion selective mem-
brane arrays. The lack of a thermal process and low fouling potential due
to flow reversal ability make EDS an attractive option for desalination
[104]. The process is mostly viable for low production capacity and low
salinity ranges. In this desalination process, two different saline flows, a
dilluate stream and a (saline) concentrate stream, flow into several
channels in the EDS stack. An EDS stack contains many alternating anion
and cation exchange membrane pairs, and the spaces in between are
called cells. When a voltage is applied to the stack through a pair of
electrodes located each end, negatively charged salt ions flow through
the anion permeable membranes towards the cathode and are stopped
by the cation permeable membranes. Conversely, positively charged salt
ions flow through the cation permeable membranes towards the anion
and cannot flow through the cells that contain anion permeable mem-
branes. This process results in the formation of cells with alternating
concentration where the dilluate and concentrate solutions are simul-
taneously desalted and concentrated, respectively, as shown in Fig. 6.
The main energy consumption in the system occurs through the elec-
trical input in the EDS stacks. Circulation pump energy is not considered
in this analysis as it is insignificant in comparison t the operational
conditions from the literature.

The EDS process involves ion transport within channels in the stack
as a response to an electrical force; therefore, the electrical conductivity
of the fluid is one of the most important thermophysical properties to
consider. Some studies use a linear equation between conductivity and
fluid concentration using ion conductance [28,105], while other studies

propose higher order numerical correlations [106,107]. There are also
models that include temperature effects through regression approach
[108]. It must be noted that for all the instances, the employed corre-
lations are limited to relatively low concentrations, which corroborates
the most common concentration ranges this method usually operates in.
Table 7 describes the relevant EDS metamodel equations which are
solved in a forward sequential algorithm.

The EDS process is constrained by the Limiting Current Density
(LCD), which occurs at the maximum voltage for which water molecules
begin to dissociate. Thus, if exceeded, it can result in a significant drop in
overall efficiency of the system and increasing the risk of scaling [109].

This phenomenon occurs in the dilluate channel at the interface
between the desalted stream and the membrane surface, therefore, it is
highly dependent on the boundary layer formed which involves the
specific flow and surface characteristics [110]. There are few studies
that propose models that do not consider LCD explicitly; however, its
effect is factored into their numerical correlations as a data-driven co-
efficient [105,107]. Thus, it must be noted that while there are several
approaches to LCD modeling, these solutions are valid only on a case-by-
case basis and might not be appropriate to be used interchangeably. In
some studies, LCD is calculated through a polynomial regression
[111,112]. Most EDS models in the literature, however, assume a power
law relation that involves flow velocity and salt concentration and fit the
equation to measured data from a bench system [113-115]. Some
complex analytical solutions based on boundary layer analysis have
been proposed; however, this still requiring the input of measured
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Fig. 6. EDS process schematic.
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Table 7
EDS metamodel key equations.
Component Equation Variables Ref.
Tlim Limiting current density
s Safety factor
. . . b a Regression constant .
P 2,
Limiting Current Density ijim = saCal (26) Ca Degree of desalination [28]
u Linear flow velocity
b Regression constant
Nep Number of cell pairs
Qa4 Product flow rate
Cell pairs N, = Qi 27) a Volume factor [28]
P awd*u .
w Cell width
A Cell thickness
I Stack current
Electrical current Iy = ZFQuCs (28) z Valence number [28]
{Nep F Faraday constant
¢ Current utilization factor
Lyrac Flow path length
Cp Concentrate outlet salinity
CyCr ApCa Cr Dilluate feed salinity
(ln (C Cd) + A 2FCquda Cpy Concentrate feed salinity
Stack Lorec = fo (29) . . [28]
prac Ca ACap\ . Cq Dilluate outlet salinity
((Tb +1+ A )l’i"‘ﬁé A Equivalent conductivity
p Membrane area resistance
p Area factor

parameters [116]. Our EDS metamodel calculates the LCD through a
power law relation as the literature model provides the necessary co-
efficients and exponents that are usually undisclosed in other studies
[28].

There are several differences in the computational approach between
EDS models. The majority opt for defining a control volume for either a
single EDS stack or multiple stacks in series and solving the transport
equations as a bulk process [28,107,108,117]. Others maintain the large
control volume in the EDS stacks but use numerical approaches that
require iterations for a solution to converge [106,118]. A more recent
modeling approach discretizes the EDS stack into finite elements and
applies the modeling equations through the flow channel length [119].
Considering EDS modeling equations are largely based on empirical
correlations that are tailored to specific operational conditions, it is
unlikely yet that a single modeling approach can successfully represent
other studies.

The EDS modeling approach and underlying assumptions are related
to the modeling objective in each study. There are some cases for
parametric analysis or optimization of a theoretical system [107,117],
design of an actual plant [28], or dissemination of modeling approaches
for alternate operational methods [106,120]. The latest studies propose
new modeling methods with the aim of expand operational ranges or
generalize applicability to a wider range of systems [108,119].

3.1.6. Capacitive Deionization
Capacitive Deionization (CDI) is a relatively new technology that

makes use of an electrochemical force to adsorb ions from aqueous so-
lutions [121]. A conventional CDI system consists in a cell made by two
parallel porous electrodes with a separator in between through which
saline water flows. As shown in Fig. 7, during the charging phase, a
voltage difference is applied and salt ions in the solution migrate into the
electrical double layers that are formed along the inner surfaces of the
porous electrodes [122]. Adsorbed ions are retained in the electrodes
until the applied voltage is reversed or the electrodes are shorted. This
releases the ions back into the saline water stream regenerating the
electrodes for the next cycle [123]. Thus, desalination through CDI
consists of alternating charging and discharging cycles in a CDI cell to
produce an alternating desalted water and brine stream, respectively.
There are several variations of CDI cell architecture. For cases where the
flow is parallel to the electrodes configuration, it is common to imple-
ment ion selective membranes between the flow channel and the elec-
trode, and there are also instances where the flow occurs perpendicular
and through the electrodes [122]. Although CDI technologies remain
largely experimental with a lot of theoretical work done in the field, we
believe it is important to include them in this study to explore how it
compares to benchmark operation of conventional desalination
processes.

Modeling the mechanism through which ions are retained within the
porous electrode is still a matter of ongoing research. The latest
modeling approaches consider an electrical double layer composed of a
constant ionic surface formed by the salt ions adherence to the elec-
trodes, and a diffusive layer where the electric potential decreases
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Fig. 7. CDI process schematic.
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exponentially towards the center of the flow [124]. The implementation
of electrical double layer theory in CDI is still under development, and
there are several approaches in the literature models. Reduced-order
models in the literature consider voltage drops across the whole CDI
stack through a higher analytical resolution [11,125,126]. The subse-
quent tier in analytical resolution employ bulk modeling of the fluid
without considering the boundary layer effects at the electrode interface
[127]. The majority of models found in CDI, however, employ a mech-
anistic approach to electrical double-layer modeling [128-130].

CDI desalination is inherently a dynamic process as operation al-
ternates between charging and discharging as desalination and con-
centration, respectively, There are different modeling
approaches to considering time dependence at different spatial resolu-
tions in the literature, and this is still a topic of current research. The
literature presents design models that consider time marching only by
executing the modeling algorithm at a system level through each time
step [29,130]. Within this approach, some studies propose models that
require measuring an experimental system and fitting equation param-
eters [127,128,131]. Other approaches discretize the flow channel into
differential elements and execute the modeling algorithm through
spatial iterations [129,132]. Mechanistic models employ numerical
method schemes to iterate through discretized space and time [133].

CDI desalination is still in experimental stages, so therefore most
models focus on mechanistic approaches at a fluid flow analytical scope
that would help understand ion transport and concentration changes.
The alternative approaches to modeling scope and methods cater to the
particular objectives of the study. These include parametric optimiza-
tion [130], dynamic modeling to investigate transient effects [127,134],
determining electronic resistances across the stack [131], and the study
of constant current or constant voltage operation [132,135]. On the
other hand, there are several studies where generalized models are
deployed with the purpose of modeling CDI at a system scope; for
instance, exploring options of stack coupling for energy recuperation
[129]. It is important to note that these objectives aim to advance the
knowledge in CDI desalination and there is still not a robust system-level
model although a modeling framework has been proposed [136] and
generalized models have been used to determine contributions to energy
consumption [29]. For this reason, we implement a generalized
modeling approach in our metamodel which simplifies the CDI stack
into an equivalent Randles circuit [29] where the ion exchange mem-
branes, current collectors, and solution are modeled as a resistor with
resistance Rj, and the electrodes are modeled as a charging capacitor
with fixed capacitance C and fixed resistance, Ry, connected in parallel
as shown in Fig. 8. The circuit is solved using a forward sequential al-
gorithm for every timestep during charging and discharging. The vari-
ation in salt concentration in the product stream is calculated through
the changes in R; at each timestep using the CDI metamodel equations
described in Table 8. This assumption neglects energy of the circulation
pump which is minimal in comparison to the energy input in the CDI
stack at the operation conditions from the literature.

occurs.
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Table 8
CDI metamodel key equations.

Component Equation Variables Ref.
Membranes, 1 (30) R, Equivalent [29]
Ry =s+.—— X

current kA, resistance
collectors, s Internal
and solution resistance
1 Stack length
k Electrical
conductivity at
time t
A, Electrode area
Stack operation o _ (B1)  tdgischarge Discharging [29]
discharge time
1 Leharge Charging time
feharge (ﬁ -1 RR Recovery ratio
Stack V=hL([R2+ 32 Vv Applied [29]
(charging) voltage
Ri) = hiRzexp L Applied
—t current
(}@) Ry Equivalent
electrode
resistance
t Operation
time
C Equivalent
electrode
capacitance
Stack v B (33) Vidischarge Discharge [29]
(discharging) discharge = = voltage across
—t CDI stack
Vexp (ﬁ) R, Equivalent
stack
resistance

3.2. Simulation framework

Standardizing desalination modeling algorithms involves defining
common sets of inputs and outputs for all desalination models. There is a
notion in previous studies of defining an operational range for desali-
nation processes according to the production flow rates and feed water
concentrations [2,5,6,9]. These parameters impose practical limits of
operation and therefore would be appropriate to group them as common
inputs to the models. Furthermore, these parameters represent the same
physical concept in all methods and therefore can be directly compared.
Defining which parameters can be compared and the order of relevance
in which analysis should be directed is the basis for the proposed cross-
comparison framework. Therefore, we propose a standard classification
of inputs and outputs which include the General, Family and Specific
analytical hierarchies. Such standardization resolves the computational
order discrepancies in existing models and thus enables cross-
comparison.

3.2.1. General variables

Any desalination process intakes a feed stream of saline water (My) at
a certain intake temperature (Tj) with salt concentration (Cp) and

2
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Fig. 8. Randles circuit equivalent of a MCDI system charging (left) and discharging (right).
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through an energy input extracts a product water stream (My) with
negligible salt concentration (Cy) and a brine stream flow rate (Mp) with
a higher salt concentration (Cp). Therefore, a mass balance for water can
be written as:

My =M, +M, (34)
And salt:
M;C; = MyCy+M,C, (35)

Egs. (34) and (35) hold for any desalination method.

The molecular transport desalination processes, RO, EDS, and CDI,
are driven by either an external physical or electrostatic force inputted
through a pair of electrodes or a pump. This force must be high enough
to overcome intermolecular forces, such as osmotic pressure or inter-
molecular electrostatic attractions that are higher than those of pure
water due to the presence of salt. This separation results in two liquid
streams, the product stream with a lower salt content and the brine
stream with a higher salt concentration. Thermal desalination systems,
including TVC, MED, and HDH, extract water from the saline feed
through a phase change, therefore, the product concentration can be
assumed zero and the salt balance reduces to:

M;C; = M,C, (36)

A recovery ratio (RR), which indicates the proportion of product
water flow rate (My) recovered from feed water flow rate (Mj), can be
defined for all desalination processes such that:

RR =
My

37

The parameters My, My, Mg, Cf, Cp, C4, Tin, and RR form part of the
“General” parameter hierarchy. This category corresponds to variables
that are numerically equivalent in all desalination methods and there-
fore can be directly compared with one another.

3.2.2. Family variables

The proposed framework for cross-comparison between distinct
desalination processes takes into first consideration the clear distinction
between thermal desalination processes, which use thermal energy to
induce a phase change to separate water from salt, and molecular
transport processes, which conversely use an external force to separate
water and salt through molecular dynamics. All desalination processes
have a power input (Pgs) to the system required to overcome intermo-
lecular attractions so that separation can occur. This input can be either
thermal, electrical, or mechanical energy depending on the method and
can be normalized by My to obtain an energy intensity of desalination:

P e
M,

Eges = (38)

It is important to note that electrical and thermal power cannot be
directly compared as they are region and market dependent. Therefore,
although the numerical value of Eg; describes the same parameter
within desalination, it must be considered as a Family Variable. Future
research can investigate appropriate conversion factors to complement
the direct comparison of General desalination-related operation vari-
ables such as flow rates, salinities, and end performance ratios as pre-
sented in this study.

Thermal desalination processes including TVC, MED, and HDH
desalination in this study are driven by the heat released from conden-
sation of motive steam inputted to the system at a pressure P;. This must
supply enough heat to evaporate water from the saline feed the pro-
duced vapor and must later be condensed using cooling water or brine
acting as a heat sink. The nature of this process suggests metrics for
cross-comparison that include motive steam flow rate, heat exchanger
area, and cooling water flow rate. The relevant metrics of performance
are the Gain Ratio (GR) and the Specific Cooling Water (sM_y):
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My
R = 39
G M, (39)
M.,
. = Mo
Mow =73 (40)

where M, is the motive steam flow rate, and M., is the cooling water
flow rate. The parameters Ps, Mp, GR, and sM,,, are numerically equiv-
alent only within the desalination methods corresponding to the thermal
family. Therefore, it is appropriate to cross-compare these metrics and
parameters directly only between TVC, MED, and HDH. The formal
separation of these desalination families is further corroborated by the
thermophysical properties involved in the desalination process. Thermal
desalination models employ, for instance, specific heat capacities, latent
heat of evaporation, and boiling point elevation while molecular
transport models involve other properties, such as osmotic pressure and
conductivity.

3.2.3. Specific hierarchy

The remaining parameters inherent to each desalination method
form part of the Specific Hierarchy. These variables are numerically
compatible only within the specific desalination method and cannot be
cross compared with different methods as they are not related. This
hierarchy becomes particularly useful when analyzing different opera-
tion conditions for the same desalination system. The full list of specific
parameters corresponding to each model are given in Table 9 of the
following section.

3.2.4. Cross-comparison enabling simulation framework

The proposed simulation framework imposes that cross-comparison
between different desalination technologies can only occur across
equal hierarchy levels for which the parameters have the same numer-
ical and physical meaning. It is necessary to maintain constant input-
output structures in the metamodels to enable a direct cross-
comparison at the different hierarchy levels and facilitate sequential
algorithm solution. All desalination processes can be cross-compared at
the General Hierarchy level, while only models of the same desalination
family can be cross-compared across the Family Hierarchy level. Finally,
only variations within the same desalination process can be compared
using data corresponding to the Specific Hierarchy level as it has the
same representation across technologies and thus allows for fair and
meaningful and fair comparisons. It is important, however, to consider
parameters that are incompatible for cross-comparison but could still
provide valuable insight on system operation and performance. For
instance, when comparing two different methods, there will not be
direct cross-comparison of specific variables; however, identifying them
can yield valuable information about the system that can factor into an
indirect comparison. Table 9 summarizes the inputs and outputs for each
model under the proposed analytical hierarchy structure.

4. Discussion

In the first part of this section, we deploy the proposed simulation
framework using the base representative literature model inputs in a
high-level, cross-comparative analysis. The similar energy consumption
patterns observed, even though the operational regimes are discon-
nected, justify the framework as appropriate for joining seemingly
disconnected models. The similar operation patterns throughout the six
studied desalination processes suggest that conservation laws form a
theoretical performance curve that represents ideal operation. However,
actual performance depends on system design and operating conditions,
which in this analysis, are expressed as energy intensity patterns based
on meta-analysis of the literature. The performance curves provide ev-
idence that a system can operate in sub-optimal regimes.

For the second part of this section, we apply the framework in a full
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Table 9
Input and output hierarchy for cross-comparison.
Hierarchy level Parameters
1. General Inputs: Outputs:

Parameters that are
numerically compatible
among all desalination
technologies

4

Family

Parameters that are
numerically compatible only
among desalination
technologies within the same
family

3. Specific
Parameters that are valid
only with a particular
desalination method and is
not compatible with any
other

e Target product Flow rate, My (kg/s)

o Intake Salinity, Cr (g/kg)
e Intake Temp. Ty, (°C)

Thermal desalination

Inputs

e Motive steam pressure, Ps (kPa)

Outputs

e Specific energy (thermal), Eges (kWh/m°%)

e Motive steam flow rate, M, (kg/s)

e Gain ratio, GR

e Sp. cooling water flow rate, sM,,, (kg/kg)

TVC
Inputs

Operating
temperature, T,
(9]

e Cond. area, A,
(m?
Compression
ratio, CR
Condenser
effectiveness, 7.
Outputs

e Evap. area, A,
(m?)

e Sp. Area, sA,
(m?/(kg/s))

MED
Inputs

e Top brine
temp. Tht
(9]

Last effect
brine temp.
Ty (°C)
Feed water
temp. Ty
(9]

Brine
salinity, Cp
(g/kg)
Outputs

e Cond. area,
A (m?)

e Sp. Area, sA,
(m*/(kg/s))

HDH
Inputs

Heater outlet air
temp., Thign (°C)
Hum. air inlet
temp., Tyy (°C)
Humidifier outlet
air temp., Tyo
[§9)

Condenser outlet
air temp., T,3
(9]

Hum. air inlet rel.
hum. ¢,
Humidifier outlet
air rel. hum. ¢,
Condenser outlet
air rel. hum. ¢3
Feed water flow
rate, My (kg/s)
Condenser outlet
water temp. Ty
[§O)

Cond. HT coeff.
U; (kW/m*C)
Humidifier cross-
sectional area, Ay
(m?)

Vapor mass
transfer
coefficient, k (kg/
(sm®)

Outputs

Cond. area, A,
(m?

Hum. Height, Ly
(m)

Air mass flow
rate, M, (kg/s)
Total intake
water flow rate,
M, (kg/s)

Recovery ratio, RR

Product Flow rate, My (kg/s)
Feed water flow rate, My (kg/s)
Brine flow rate, M, (kg/s)
Product water salinity, C, (g/kg)
Brine salinity, Cp (g/kg)

Molecular transport desalination

Inputs

o Target recovery ratio, RR

Outputs

o Specific energy (electrical), Eges (kWh/m®%)

RO
Inputs

e Feed pressure, Py
(bar)

Feed velocity, vf (m/
s)

Permeate pressure,
P, (bar)

Module length, I (m)
Channel width, h
(mm)

Module area, a (m?)
Module head loss, hl
(bar)

Module design
velocity, vo (m/s)
Membrane water
permeability at

25 °C, Kuzs L/(m%h.
bar)

Membrane salt
permeability at

25 °C, K25 (m/h)
Temperature
coefficient for water
transport, K, (K)
Temperature
coefficient for salt
transport, Ky (K)
Outputs

Number of stages,
Nitage
Number of modules,

N, modules

Membrane area, A,
(m?

Average water flux,
Ju (L/(mh))

EDS
Inputs

Product
Concentration, Cq4 (g/
kg)

Linear flow velocity,
u (m/s)

Cell thickness, del (m)
Cell width, w (m)
Length per stack, Ls
(m)

Anion selective
membrane resistance,
pa (Ohm.m?)

Cation selective
membrane resistance,
pc (Ohm.m?)

LCD Constant, a (A.
&m0 /keq)

LCD Constant, b
Safety factor, s
Volume factor,
Area factor, g
Current utilization
factor, ¢

Outputs

Concentrate feed
mass flow rate, My,
(kg/s)

Concentrate feed
concentration, Cp, (8/
kg)

Stack current, I (A)
Stack voltage, U (V)
Number of cell pairs,
N

Number of Stacks, Ng;

CDI
Inputs

Normalized
Current, Inorm (A/
m?)

Normalized
Capacitance, Cporm
(F/g)

Normalized Internal
resistance, S,orm
(Ohm.m?)
Normalized
electrode
resistance, Rz, norm
(Ohm.m?)
Electrode area
density, m (g/m?)
Charging step time,

teharge )

CDI Stack volume,
Veai (L)

Channel thickness, [
(mm)

Charge efficiency,

Hcharge

Discharging
efficiency, #aischarging
Max. Salt
adsorption
capacity, SAC (mg/
g)

Electrode area, A,
(m*

Outputs

e Desorption
Capacity, (%)
e Max. Voltage, (V)

cross-comparative study between MED and RO; the desalination
methods that currently have one of the largest market shares in seawater
desalination, greatest maximum production capacity per unit, and

highest technology growth trends [137]. Furthermore, we chose MED

and RO to highlight that new desalination technologies must outcom-
pete these processes in terms of operation and costs. The resulting cross-

comparative analysis highlights that MED has energy consumption that

is an order of magnitude greater than that of RO but uses a different type
of energy. Such difference is justified by the cost of energy and main-
tenance for MED which must be an order of magnitude smaller than RO

13

for it to be competitive. The results help define a technical benchmark
that upcoming desalination technologies must overcome in order to be
competitive.

4.1. Application of the analytical framework in intended operation of
desalination methods

Fig. 9 shows the distribution of My and Cy values collected from the
reviewed literature. We consider operation points from studies that
describe an actual desalination plant, model, or bench-scale system.
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Fig. 9. Distribution of operation parameters in the literature for each desalination method.

EDS and CDI in the molecular transport methods have close Cy medians
with an average of 1.74 g/kg. RO is the only molecular transport desa-
lination method with instances in the literature that spans from molec-
ular desalination to thermal desalination feed salinity ranges.

Each study does not necessarily disclose all these parameters; therefore,
the resulting median points only suggest typical operation from the
literature. The meta-analysis shows that thermal desalination methods
have a very similar Cy median with an average of 38.5 g/kg. Conversely,

Table 10

Outputs overview of cross-comparative simulations at case study operation points.
Method Mg [kg/s] Cr [g/kgl G, [g/kgl M, [kg/s] RR [-] Eges [kWh/m®] My, [kg/s] Cp [g/kg]
TVC 1.360 35 0 0.5787 0.43 239.9 0.7811 60.9
MED 366.9 46 0 137.9 0.38 66.37 234.4 72
HDH 16.87 35 0 1.156 0.069 486.5 15.48 38.2
RO 3.472 2 0.023 2.087 0.60 0.9099 1.383 4.99
EDS 5.401 3.5 0.35 4.051 0.75 0.3688 1.360 13.0
CDI 6.138 x 107° 2 0.70 6.138 x 107° 0.50 0.5594 6.138 x 107° 2.54

14
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Unsurprisingly, product salinity is negligible for the thermal processes
while the molecular transport methods typically result in concentrations
around the potable water limits of 0.6 g/kg. The distributions show that
generally MED and RO can achieve similar product flow rates from the
highest feed salinity levels while incurring in the lowest Eg;.

Table 10 shows the metamodel simulation results using the most
representative models as particular case studies from the literature.
These could be considered optimal operation conditions. Thermal
desalination methods show significantly greater energy intensity and
lower recovery ratios but higher feed salinities than the molecular
transport methods.

Fig. 10 shows the simulation points and the operation ranges from
the meta-study. The system performance is summarized by recovery
ratio and energy intensity where desirable operation is located close to
RR =1 and lowest Eg4. The molecular transport desalination methods
show on average better performance as they achieve high recoveries
with the lowest salinity values. MED and CDI exhibit typical recovery
ratios but at a higher energy intensity. TVC has smaller energy intensity
but also smaller water recovery. A limitation in this approach is that
neither RR nor Eg captures the degree of desalination in the feeds
stream, and a better metric could include Egs be normalized by (Cy —
Cp). This, however, cannot be conducted with the range values from the
meta-study as they do not correspond to a single desalination system
constrained by mass transfer and energy equations. Specific recovery
ratios, energy intensity, and other important parameters can be calcu-
lated using the metamodels for a given desalination system. Comparison
to typical operation can help decision making between desalination
methods or identify cases suboptimal operation, and simulation can
provide more valuable insights into the tradeoffs within a system.

Fig. 11 shows the resulting surfaces formed by the response of energy
intensity (Eges) to changes of £20% in My and Cy from the base case
operation described in the most representative model for each desali-
nation method. The magnitude of a representative parameter of the
system's size is represented by the diameter of the gray circles included
in each point within the surface. All desalination technologies follow a
similar sensitivity to variations My and Cy regardless of the operational
space they were designed for and independent from the physical phe-
nomena that drives salt and water separation.

The TVC surface shown in Fig. 11.A is the exception to the direct
proportionality between Cy and Eg. presented in other desalination
technologies. In this analysis, the compression ratio (CR) is always fixed
at 1.85, and the motive steam pressure (Ps) remains constant at 572 kPa
according to the reference model inputs. The motive steam flow rate

09 r ® MED
* TVC
0.8 r | ‘ ] HDH
‘ ! » RO
071 ¢ EDS
06 ) ) x CDI
o 05! |
i L
R —
04t °
0.3+
02t =
0.1
I i
0 1 1 Ol 1 1
1072 107 10° 10" 102
3
E s [KWHh/m?]

Fig. 10. Operational map: RR and energy intensity (with operation ranges
from Fig. 9)
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input to the system (M,) must be adjusted to supply the required energy
for desalination. There is a very small increase of the required M, in
response to increasing Cy. A greater Cy elevates the boiling point of the
solution; however, this additional energy demand is compensated for by
recirculating some of the produced steam as entrained steam into the
thermoejector. The saturation temperature of the entrained steam in-
creases in response to the boiling point elevation. Thus, the imple-
mentation of a thermocompressor stabilizes the energy demands of the
desalination system with respect to changes in Cy. Since the entrained
steam flow rate is adjusted to supply the required energy, the expansion
ratioand the mass ratio remain constant, and the output is always su-
perheated steam. The system size follows a similar response pattern to
changes My as larger flow rates demand larger systems to provide
enough surface area for the required heat exchange.

The implemented simulation framework imposes common design
constraints across all the desalination metamodels. There is an exception
in the HDH metamodel because, unlike the other metamodels, HDH has
My as an input with a numerical value much greater than My that remains
constant through all the calculated points in the surface. Thus, a con-
stant, large saline water stream is unnecessarily heated independent
from the specified My, resulting in a large, constant energy consumption
that becomes smaller when normalized by larger values of Mg as shown
in Fig. 11.C. The model energy consumption does not present a strong
response to changes in Cy because the additional energy required due to
the variation in the specific heat capacity is insignificant within the
studied Cy range in comparison to the energy involved in heating the
bulk flow of the specified My stream. The marker diameter is scaled
according to the dehumidifier area, which positively correlates to the
product flow rate as the other desalination technologies.

The intended operational surface for MED, RO, EDS, and CDI pre-
sents similar responses of a direct proportionality between feedwater
salt concentration and energy intensity as shown in Fig. 11.B, D, E, and
F. This agrees with the response of colligative properties: boiling point
elevation for MED, osmotic pressure for RO, and electrochemical po-
tential for EDS and CDI to changes in salt concentration. Practically,
energy intensity (Eq.s) only depends on Cs is the in these desalination
models. Conversely, Eg.; does not show a significant dependence on Mg;
instead, the product water flow rate drives the system size: condenser
area for TVC and MED, dehumidifier area for HDH, membrane area for
RO, and theoretical (not rounded) number of cell pairs for EDS and
electrode area for CDI.

Advantages in some desalination methods lie on the practical limits
to the system size, such as fouling or scaling potential, maintenance, and
space availability as well as the quality and type of energy available on
site to run the process. It is particularly evident in the molecular trans-
port processes, whose representative cases have similar Cy, My and Eges
magnitudes, that the advantages corresponding to system size are
associated to the system's capital costs. Constraints indicated by the
energy intensity of each process are associated to energy availability and
cost. For instance, the magnitudes of energy intensity become irrelevant
for the practical deployment of MED and HDH as these systems can be
optimized to run on low-grade steam. TVC, on the other hand, requires
high-grade steam which can incur higher operating costs. Finally, RO,
EDS, and CDI use electricity, which is the most refined form of energy
between these desalination methods and depending on the market and
location, could be significantly more expensive.

4.1.1. Modeling regimes

The scalability of both the actual desalination methods and the
corresponding models play a key role in dictating which can handle
specific My and Cy ranges and therefore pose limitations in their
deployment. The MED and RO processes are modular, as system size can
be easily increased by adding an additional effect or stage to increase the
heat transfer or membrane area, respectively, and adjusting the corre-
sponding operation conditions to satisfy production requirements.
Furthermore, these metamodels do not rely on numerical correlations
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Fig. 11. Surface plots at 20% from the design point for different desalination methods, all plots are optimized to minimize system size. (A): TVC — base case (Mg =
0.5787 kg/s, C = 35 g/kg) [24], (B) MED - base case (Mg = 137.9 kg/s, Cr = 46 g/kg) [25], (C) HDH - base case (Mg = 1.156 kg/s, Cr = 35 g/kg) [26], (D) RO — base
case (Mg = 2.087 kg/s, Cr = 2.0 g/kg) [27], (E) EDS — base case (Mg = 4.051 kg/s, Cf = 3.5 g/kg) [28], (F) CDI - base case (Mg = 6.138 x 107° kg/s, Cr=20g/

kg) [29].

that constrict them to a specific operational point. The other meta-
models, on the other hand, present limitations in the validity of the
correlations used to model key components such as the thermoejector in
TVC, the humidifier in HDH, the limiting current density in EDS, and the
equivalent resistances in CDI. It must be noted that most of these cor-
relations are regressed from measured data valid for the specific
component at the specific operational conditions and extrapolating to
different Cy and Mg ranges might not be appropriate.

The operational regime plots in Fig. 11 include a +£20% deviation
from the intended operational point that the literature model is designed
for. It is important to highlight that even with this expanded operational
ranges, the desalination models present no overlap in My. Specifically,
the smallest range corresponds to CDI, which is found as a bench scale
system with a My ranging from 4.9 x 107> to 7.4 x 107> kg/s. Then,
there is a large gap of four orders of magnitude for the M, ranges where
most of the models for small scale systems operate without any inter-
section. TVC ranges from 0.46 to 0.69 kg/s, HDH from 0.92 to 1.39 kg/s,
followed in increasing order by RO with an My range from 1.66 to 2.49
kg/s and EDS with a range from 3.24 to 4.86 kg/s. Finally, the opera-
tional range for MED is an order of magnitude greater ranging from 110
to 159 kg/s. On the other hand, the simulations present significant
overlap in C;. CDI and RO have complete intersection of C; values
ranging from 1.6 to 2.4 g/kg. This is followed by EDS with a Cf range
from 0.29 to 4.2 g/kg. TVC and HDH have a complete intersection of Cr
ranging from 28 to 42 g/kg. Finally, the MED simulations have partial
intersection of about 37% with TVC and HDH because it ranges from
36.8 to 55.2 g/kg.

It is important to emphasize that these ranges specify the operational
ranges for the representative literature models and not the possible
operational range for each desalination method. Further research within
each desalination method is required to find more accurate correlations
that are applicable in wider operational ranges to minimize the
modeling range gaps. All desalination models exhibit similar responses
to variations of Cr and My and are observed despite the completely
different operational ranges that each simulation case presents.
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Therefore, the second part of this analysis deploys the proposed simu-
lation framework and evaluates performance of the desalination
methods within similar operational ranges. The models for CDI and EDS
remain highly experimental while TVC and HDH are intended for very
low production rates imposed by practical constraints that are not
inherent to the desalination process. MED and RO are the most scalable
technologies for both actual systems and theoretical modeling. Given
that these two technologies are the predominant desalination processes
in the desalination market, analyzing their performance at low, middle,
and high Crand Mg ranges would set an appropriate benchmark in both
modeling capabilities and desalination efficiency that other technolo-
gies would compete with.

4.2. Cross-comparative simulation in common operational spaces

The first step for a fair assessment of MED and RO desalination
performance is defining common operational conditions for deploying
the developed simulation framework. The notion of classifying models
according to a Low, Normal, and High production capacity has been
previously documented among the thermal desalination processes [6].
We deploy the metamodels usingCy values of 2, 18, 35, and 50 g/kg for
this study, which correspond to the limit for conventional irrigation,
brackish water, sea water and brine processing, respectively. At each
salinity level, we simulate product water flow rates of 2.3, 70, 138, and
1157 kg/s which correspond to common ranges for bench scale systems,
industrial processing, municipal and large-scale systems, respectively.
The feed water temperature is maintained at 24 °C for all the simula-
tions. For each RO simulation case, the model attempts the maximum
recovery ratio RR while minimizing feed pressure P;. On the other hand,
the MED simulations maintain a constant P; at 31.2 kPa while mini-
mizing the required steam flowrate M. Brine salt concentration Cp is
fixed at 72 g/kg for all operational MED regimes. This limit corresponds
to the maximum solubility limit of CaSO4 at common parallel feed MED
operating temperatures [138]. At each [C, My] regime (16 total), vari-
ations of £5% and +10% in both Cyand My (total of 25 simulations per
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Table 11
Cross-comparative simulation results.
MED RO
Mglkg/s]  Crlg/kgl My lkg/sl  Cplg/kgl  Gplg/kgl  RRI-1  Ege o [kWh/m®’]  Mylkg/s]  GCylg/kgl  Cplg/kgl  RRI-1  Eaes o [KWh/m®]
2.3 2 0.065 72 0 0.97 68.5 0.14 45 0.05 0.95 3.3
18 0.76 72 0 0.76 70.7 0.73 86 0.25 0.78 4.5
35 2.2 72 0 0.53 75.2 2.0 90 0.53 0.57 6.5
50 5.7 72 0 0.32 86.5 4.0 90 0.90 0.39 1.2
70 2 2.0 72 0 0.97 68.5 4.2 42 0.05 0.95 3.3
18 23 72 0 0.76 70.7 27 86 0.32 0.77 4.5
35 67 72 0 0.53 75.2 59 88 0.53 0.57 6.5
50 175 72 0 0.32 86.5 126 90 0.90 0.39 1.2
138 2 3.9 72 0 0.97 68.5 8.5 43 0.09 1.0 3.3
18 46 72 0 0.76 70.7 45 89 0.26 0.78 4.5
35 132 72 0 0.56 75.2 120 89 0.53 0.57 6.5
50 343 72 0 0.32 86.5 241 89 0.90 0.39 1.5
1157 2 33 72 0 0.97 68.5 76 47 0.13 1.0 3.3
18 382 72 0 0.77 70.7 348 83 0.25 0.78 4.5
35 1109 72 0 0.53 75.2 963 88 0.52 0.57 6.5
50 2888 72 0 0.32 86.5 1951 81 0.89 0.38 3.3

[Cr,M4] pair) to account for variations that can occur in actual opera-
tion. Table 11 shows the results of the cross-comparative simulation,
[Cf, My] pair results are averaged in this analysis.

4.2.1. General hierarchy

Following the proposed cross-comparative framework, we first
analyze the parameters within the General Hierarchy. The variables My,
Cs, and Ty, are fixed for MED and RO simulations within the same
operational space. The motive steam pressure (Ps) remains constant for
all MED simulations, and the motive steam flow rate (M) is optimized to
supply enough heat for evaporation.

Fig. 12 shows the fitted linear regression recovery ratio for different
feed water salt concentrations and different product flow requirements.
The metamodels consistently find an optimum system performance for
most of the simulation cases. The RO metamodel shows a small nu-
merical instability at 2 g/kg feed salinity and 1157 kg/s resulting from
the mass transfer coefficient calculation at those opposing extreme
values. Future research would be required to produce general, unified
mass transfer coefficient correlations. The results show that optimized
MED and RO systems can achieve similar RR at low salinities. At higher
concentrations, however, RO consistently shows higher RR values than
MED with the largest difference being 10% at 50 g/kg. For both MED
and RO, the system can extract less water as feed higher salinity in-
creases while incurring in greater energy intensity.

1.1 T T T T T T T

L MED ]
RR=—0.012*Cf+ 1.0 RO

RR =-0.014* Cf+ 1.0

0.4

1 1 1 1 1 1 1 1 1 1
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C, [g/kg]

Fig. 12. Recovery ratio for RO at different feed salinities.
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The average RR for all Mg scenarios can be approximated an inverse
linear relationship to Cy which define optimal mass transfer capabilities.
Ideal recovery can be described as a linear relationship with slopes of
—0.012 and —0.014 for RO and MED, respectively, and an intercept of
1.0. In the case of MED, greater feed water concentrations lead to higher
boiling point elevation. The operating temperatures of the system,
however, are constrained by the temperature of motive steam and thus
RR decreases for higher Cy. Conversely in the case of RO, this tradeoff
occurs because greater concentrations lead to higher osmotic pressure to
overcome by the high-pressure pump. Operating pressure is constrained
by the maximum allowable pressure in the membrane module to prevent
membrane rupture. The total drop in recovery ratio from the lowest to
highest Cy values is about 60% for RO and almost 70% for MED. The
regressed intercept is 1.0 suggesting that, theoretically, zero salinity
levels would make full recovery possible.

Both MED and RO have a similar response of M to changes in Crat all
the studied My regimes. A direct proportionality is maintained for which
the greater Crresults in larger brine production. At the Mg range between
2.3 and 138 kg/s, MED and RO have comparable brine production for all
Cy values. However, at higher production rates of 1157 kg/s this simi-
larity only holds up to 35 g/kg feed concentration. At the higher C
ranges, MED shows significantly higher M, values that can be about to
50% greater than the magnitude of M in RO. This is an important dif-
ference to consider as brine disposal can have negative environmental
effects and result in expensive treatment processes.

Brine concentration in MED is constant at 72 g/kg as it is imposed in
the system design as a safe maximum salinity limit to prevent fouling.
On the other hand, RO presents lower Cj, values for lower concentrations
up to brackish water ranges. The operation conditions for MED and RO
are dictated by solubility limits of salt to prevent fouling or scaling. From
a modeling standpoint, brine concentration in MED can be defined a
priori based on solubility limits of salts in the feed water stream [138].
RO, on the other hand, requires iterative simulations because solubility
limits occur at membrane interface where concentration polarization
takes place [139]. The resulting brine concentrations in RO are not
consistently proportional to the magnitude of My because the model
employs an iterative procedure involving discrete increments of mem-
brane area. For RO cases of greater salinity, the discharged brine can
have concentrations close to 90 g/kg. This could be problematic as
increased concentrations lead to precipitation and therefore localized
fouling [48]. Furthermore, disposal of brine at greater concentrations
increases the risk of pollution and could be subject to regulation
depending on the location.

The final parameter of interest within the general hierarchy is the
product salt concentration Cp. It is expected to have no salt concentra-
tion in MED as it employs a distillation process with demisters that
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prevent entrained saline droplets from combining with the produced
water vapor. However, salt ions can permeate the membrane in RO and
result in a flow with non-negligible C,. MED, as expected, results in
negligible product concentrations independent of My or Cy. RO, on the
other hand, presents product concentrations ranging from 0.05 g/kg up
to 0.90 g/kg at feed concentrations of 2 g/kg and 50 g/kg, respectively.

The General Output analysis results also suggest it is important to
consider what the product water will be used for after desalination.
While MED consistently results in water with negligible salt content, the
RO permeate product can have salt concentrations up to 0.90 g/kg at
high Cy. As a reference point, the World Health Organization defines
palatable concentration limits for human consumption as follows:
0.2-0.3 g/kg for chloride, 0.2 g/kg for sodium, and 0.6 g/kg for total
dissolved solids [140]. If the product water is used as municipal water, it
must go through a post-desalination process regardless of what desali-
nation method is used, however, the MED process will consistently
produce water with negligible salt content as opposed to RO which could
involve additional desalination.

4.2.2. Family hierarchy

MED and RO correspond to the thermal and molecular transport
desalination families, respectively, and therefore, their family parame-
ters cannot be directly cross-compared. However, it is important to
consider them independently to understand potential tradeoffs associ-
ated to each system.

Fig. 13 shows the relation between mean Eg,s across the studied My
ranges and Cy. All curves are superimposed for each desalination method
indicating that Pg4es and My are directly correlated with a 1:1 ratio. Ege; is
the main point for cross-comparison in other studies whose analysis is
usually restricted to sea water salinity ranges between 35 and 42 g/kg.
The results closely match the energy consumption found at these con-
centrations for both MED and RO [12,13,141]. Furthermore, the results
lie within the generalized ranges of 73 kWh/m® and 2-4 kWh/m?® for
MED and RO, respectively, determined in a previously conducted life
cycle assessment analysis [142]. The change in Ege is positively corre-
lated to Cy for both technologies. This can be expected from the increase
in boiling point elevation and osmotic pressure that result from
increasing feed concentration in MED and RO, respectively. It is
important to note that Eg in both methods has a similar gradient with
respect to Cy at low concentrations; however, while energy intensity in
RO remains linear with a constant gradient, the gradient for MED starts
increasing after roughly 25 g/kg thus, deviating from a linear relation.

Overall, E4.s remains between 51 and 13 times larger for MED than
RO. This difference is attributed to the greater energy requirements
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Fig. 13. Energy intensity (E4s) averaged across the studied My ranges in
response to changes in feed water concentration.
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involved in phase change which is inherent to the MED process. Despite
the fact MED consistently shows a larger energy intensity, it must be
noted that unlike RO, the process can run on low-grade energy. This
could make the cost irrelevant if heat from a different process is avail-
able at a lower cost. For instance, in the MENA region, the average
operating cost for RO can be about 4.6 times greater than MED, pre-
sumably due to low oil prices; however, the average total costs for both
methods is relatively similar with differences of 0.04 $/m> [143]. The
difference in the cost of energy is further extended for indirect solar
desalination plants where the cost of water produced through RO can be
up to about 13 times greater than MED even though the associated
specific energy for desalination for RO can be between one and two
orders of magnitude lower than that for MED [2]. RO presents a higher
risk of fouling as it involves a permeation process, and therefore, pre-
processing and maintenance can contribute to greater costs of desali-
nation at higher feed salt concentrations and production rates. About
14% of the operating cost can be attributed to chemicals and post
treatment [144] and pretreatment while structural and administrative
tasks can add to 46% of the total cost [145]. The large discrepancies in
energy consumption and total water cost further support the need of a
methodological approach to benchmarking and cross-comparison as
opposed to restricting the analysis to energy consumption alone.

Table 12 shows the remaining Family Hierarchy parameters for
MED. It is evident that to achieve greater product flow rates, the system
must generate more water vapor and therefore incur larger energy re-
quirements with motive steam for evaporation independently of the
value of Cy. Within a fixed My, there is a consistent positive correlation
between M, and Cy as increased salt concentration leads to a greater
boiling point elevation and therefore larger energy requirements for
evaporation.

The gain ratio (GR) for MED decreases as Cybecomes greater in all My
ranges. From an energetic standpoint, the results show that the MED
system becomes slightly less efficient as Cy increases, independent from
Mg, since less product water can be produced by unit of motive steam
used. There is about a 20% drop in GR between the lowest and highest Cr
values.

Like GR, the specific cooling water (sM.,,), is independent of My and
decreases with a total drop of about 40%. This highlights the fact that
the MED is driven by evaporation and that the system must operate at
higher temperatures because the boiling point is elevated with the
presence of salt. The larger temperature differences between steam in
the last effect and the intake cooling water improve heat transfer and
reduce the requirements for cooling water. This would suggest that the
MED process is optimized for larger salt concentrations, regardless of the
required production.

The Family Hierarchy can give a notion of the performance of the

Table 12
Thermal family hierarchy results.
MED
Mg [kg/s] Cr [g/kgl M, [kg/s] GR [-] sM., [g/kg]
2.3 2 0.25 9.3 2.9
18 0.25 9.0 2.8
35 0.27 8.5 2.5
50 0.31 7.5 1.7
70 2 7.5 9.3 2.9
18 7.7 9.0 2.8
35 8.2 8.5 2.5
50 9.5 7.5 1.7
138 2 15 9.3 2.9
18 15 9.0 2.8
35 16 8.5 2.5
50 19 7.5 1.7
1157 2 124 9.3 2.9
18 128 9.1 2.8
35 136 8.5 2.5
50 156 7.5 1.7
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desalination process and the tradeoffs associated with each method, but
it cannot yield comparative conclusions as MED and RO come from
different desalination families. The resulting GR from MED indicates
that at the system produces about 9.3 times the mass flow rate of motive
steam and reduces to about 7.3 with increasing Cy. This occurs due to the
increasing energy required to overcome the higher intermolecular
attraction between salt ions and water molecules resulting from higher
feed salinities. Greater My flow requirements and higher Cy consistently
result in greater motive steam demand. It is important to note that MED
can work with low-grade steam and thus be combined with an existing
process. Steam availability can constrain the production flow rates
achieved through MED. An external steam generator can supply the full
or partial steam load, but this results in additional operating costs. This
Family parameter analysis highlights a tradeoff in MED where greater C¢
results in lower GR, or increased steam demands per product water flow
rate, but also results in a deceasing sM,,, and therefore less discharged
cooling water. With respect to MED, this hierarchy yields valuable
insight on the limitations imposed by energy availability and water
supply and discharge.

4.2.3. Specific hierarchy

The Specific Hierarchy is redundant in this analysis since the studied
systems are completely different, and therefore, the parameters cannot
be cross compared. Nevertheless, a brief independent assessment of the
resulting representative system size in response to changes in feed
salinity can be important to consider. As shown in Table 13, the repre-
sentative system size is expressed in the condenser area (A.) in the case
of MED and the total membra area (A;,) in the case of RO. In both
desalination methods, the larger the production requirements require a
larger system. Furthermore, for most cases the system size is also posi-
tively correlated to Cy. At 2 g/kg and with a product flow rate of 1157
kg/s, the membrane area for RO is larger and deviates from the trend.
This occurs because the model considers such large flow rate as many
parallel pressure vessels, therefore increasing one module in series, since
adding a membrane module is equivalent to a discrete increase in system
area, actually results in a larger total area than required for the desired
Mj. It must be noted that the condenser area in MED is the effective area
in the tube bundles of the heat exchanger while the system area in RO is
the total surface area of the spiral-wound membrane modules. Gener-
ally, RO systems are more flexible in terms of size as membrane modules
can be added to an existing system with relative ease as opposed to a
condenser in MED which would require replacing the entire component.

4.3. Limitations

Although the presented simulations support the viability for

Table 13
Relevant specific family hierarchy results.
MED RO

M, [kg/s] Cr [g/kg] A [m?] Ay [m*]
2.3 2 37 53

18 41 55

35 49 96

50 63 155

70 2 1138 1653

18 1262 1694

35 1481 2934

50 1915 4684

138 2 2242 3218

18 2486 3314

35 2918 5779

50 3772 9304

1157 2 18,821 128,411

18 20,873 28,015

35 24,499 48,353

50 31,671 78,113
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integrating different desalination methods into the proposed frame-
work, the major limitation remains at the validity ranges for intake
product flow rate (My) and intake salinity (Cy) of the representative
models. Most of the constructed models, including TVC, MED, HDH, and
RO, are validated within a 10% difference of their corresponding liter-
ature model and show excellent agreement with more than 24 inde-
pendent publications in total. However, models such as EDS or CDI that
rely on empirical correlations and coefficients that are valid only for the
specific system and operating conditions have a much narrower opera-
tional range that does not completely intersect with the other models.
Therefore, the proposed framework can only be deployed at these
reduced ranges potentially showing incomplete results. Bench scale
systems will need future modeling upgrades to represent electric energy
consumption for a commercial system that could potentially include not
only the electric energy for electrodes but also for circulation pumps.
More appropriate general models for these desalination processes are a
subject of ongoing research and updating the existing models can solve
this limitation. The hierarchical parameter classification framework
presented in this paper provides a clear structure to easily incorporate
published models which can either expand the capabilities of the current
metamodels or incorporate new models for novel desalination methods.

The present study focuses on specific energy consumption and the
associated operational cost as a key parameter for cross-comparison. We
suggest that the type of energy associated to MED and RO justifies the
current market share panorama based on the costs of steam and elec-
tricity generation. It is possible that inadequate operation and mainte-
nance are more expensive than energy itself in an actual facility. This is a
view of energy which is an important piece of the puzzle, but there are
many other aspects of desalination technologies which are out of the
scope of this work. Additional studies, such as a full lifecycle analysis
can provide insights into levelized cost calculations and therefore better
conclusions about the financials associated to each desalination process.

5. Conclusions

This work aims to evaluate technologically possible operation con-
ditions for different desalination technologies, which set targets to
achieve or exceeds in the development of new desalination systems. This
study developed reduced-order desalination metamodels and a frame-
work to conduct a cross-comparative analysis by classifying input and
output parameters according to an analytical hierarchy. The meta-
models show excellent agreement with published data as the results
have a maximum 9% error when compared to the results of models in
the existing literature. The proposed framework compares the general
outputs of (a) Thermovapor Compression (TVC), Multi-Effect Distilla-
tion (MED), Humidification-Dehumidification (HDH) in the thermal
family of desalination methods, and (b) Reverse Osmosis (RO), Elec-
trodialysis (EDS), and Capacitive Deionization (CDI) in the molecular
transport family of desalination methods, at different operational con-
dition ranges. The study provided a detailed comparative analysis be-
tween the most popular desalination technologies, MED and RO.

The first part of this study used the developed framework for a
comparison between the studied desalination methods and their corre-
sponding operational points from the most representative model in the
literature. The results highlight the importance of system scalability in
catering towards wider ranges of salt concentrations and production
flow rates. The simulation results at the operational conditions pre-
sented in the literature for each representative model highlights the lack
of overlap in product flow rate ranges that the models can simulate,
which makes cross-comparison more challenging as some correlations
cannot be used beyond the intended operational range. Indeed, there are
instances where operation ranges are reported in the literature, but the
number of undisclosed parameters makes their implementation difficult.
Future research would be required to expand modeling capabilities of
the presented metamodels by linking additional modeling correlations.
Nevertheless, integrating the current metamodels into a single
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simulation frame is appropriate as the existing models exhibit partial
overlaps in feed water salt concentration and show similar sensitivity to
feed salinity independent from product flow rate. Specifically, the
operation points from the most representative literature models employ
a salinity range of 1.6 to 2.4 g/kg for both Capacitive Deionization and
Reverse Osmosis, a range of 28 to 42 g/kg for Thermovapor Compres-
sion and Humidification-Dehumidification desalination, and a range of
37 to 55 g/kg for Multi-Effect Distillation, and there is a common in-
crease in energy intensity for each increase in feed salinity. The pre-
sented comparative analysis suggests this relationship is consistent for
MED and RO when testing wider operation ranges.

From a modeling perspective, small scale, or newer desalination
methods such as TVC, HDH, EDS, and CDI, do not yet offer the required
system scalability reflected in ranges for which correlations hold valid,
to compete with the established MED and RO processes. This is partic-
ularly evidenced in the humidifier calculations for HDH, the limiting
current density in EDS, and the ion adsorption in CDI. All of these critical
parameters are estimated with empirical relations that are specific to the
system and operating conditions and are not generalizable to larger
system scales and other operational regimes. MED and RO are con-
structed in a modular form for either evaporator effects or membrane
units governed by less constrained equations that can be easily added to
expand capacity and therefore cover the largest operational spaces.
Until new developments within the other desalination processes allow
such scalability, the commercial competitiveness of TVC, HDH, EDS and
CDI would be limited to the specific conditions of low production flow
rates and in the case of the molecular transport processes, low salt
concentrations that are found in the literature. Further research is
required within each desalination method to enable generalized pre-
dictive modeling to facilitate adoption and fair cross-comparison in the
long term.

The second part of the study uses the simulation framework in a
cross-comparative analysis between MED and RO, which are the most
widely used desalination technologies in the current market. We find
that recovery ratio can be expressed as an ideal operation line that can
be used to assess how far from ideal operation a system is. These func-
tions give targets for existing facility managers to understand if their
technology is optimally designed or operated. The first concluding
remark from this analysis points at the wide operational regimes in the
conducted simulations. The operational space considered in product
water flow rates ranges from bench to large scale production, and feed
salinity levels concentrations range from irrigation to brine. The ability
to cover such a large range of operational regimes is the first objective
that experimental desalination technologies need to reach to become
competitive in the marketplace. The conducted comparative analysis
identified the tradeoffs, strengths, and weaknesses that each system has
through a systematic review of General-, Family-, and System-level pa-
rameters. This can also be used to identify potential niche opportunities
that experimental desalination methods could target. For all ranges,
energy intensity is an order of magnitude larger for MED than RO. This
difference results from the greater energy requirements involved in
phase change in the MED process and can be equalized by the higher cost
of electricity compared to low grade steam. Furthermore, at high feed
salinities MED shows 50% greater brine production values than RO,
whose discharged brine can have concentrations close to 90 g/kg, while
MED restricts brine concentration at 72 g/kg. In addition, MED product
concentration is consistently negligible as opposed to RO for which
product concentration ranges from about 0.1 g/kg to 0.9 g/kg for feed
concentrations of 2 g/kg and 50 g/kg, respectively. Therefore, although
MED incurs a larger energy intensity, the lower energy costs and greater
controllability of brine and product streams justify such a difference. For
actual desalination plants, the thermodynamic differences between MED
and RO result in similar utility costs due to the variation in the costs of
thermal and electrical energy. Furthermore, besides energy availability
and costs, other considerations in selecting the type of desalination plant
involve available space for the plant, system lifetime, and local
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regulations regarding brine disposal, including temperature, quantity,
and salinity.

In conclusion, energy intensity alone or isolated model parameters
are not appropriate for determining the viability of desalination pro-
cesses. Instead, an inclusive approach relating model inputs and outputs
across the same analytical hierarchy clearly outlines the energetic
tradeoffs that a desalination system presents. Taking this into account,
the best desalination method is the one that fulfills the operational re-
quirements while recognizing energy availability and its costs. Practical
constraints, such as the available space for the desalination facility and
the disposal of the brine, also play a major role in establishing the most
suitable desalination system. Overall, this study developed an analytical
framework to desalination modeling because it allowed for systemic
comparisons among all desalination methods.

CRediT authorship contribution statement

Sebastian A. Romo: Conceptualization, Methodology, Software,
Validation, Formal analysis, Investigation, Data Curation, Writing —
Original Draft, Writing — Review & Editing, Visualization. Nicholas
Mattise: Conceptualization, Methodology, Software, Data Curation,
Writing — Review & Editing. Jelena Srebric: Conceptualization, Re-
sources, Writing — Review & Editing, Visualization, Supervision, Project
administration, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

Funding: This work was supported by the U.S. Department of Energy
Office of Energy Efficiency and Renewable Energy [DE-EE0008402].

The authors gratefully acknowledge Dr. Bahaman Abbasi (Oregon
State University, USA) for the fruitful discussion during concept devel-
opment phase of this study.

Appendix A. Supplementary data

Supplementary data to this article includes metamodel validation
with literature model data and meta-study data. Metamodel source code
available online at: https://desal.city.umd.edu. Supplementary data to
this article can be found online at https://doi.org/10.1016/j.desal.20
21.115474.

References
[1] D. Brogioli, F.La Mantia, N.Y. Yip, Thermodynamic analysis and energy efficiency
of thermal desalination processes, Desalination 428 (July 2017) (Feb. 2018)
29-39, https://doi.org/10.1016/j.desal.2017.11.010.
M.T. Ali, H.E.S. Fath, P.R. Armstrong, A comprehensive techno-economical
review of indirect solar desalination, Renew. Sust. Energ. Rev. 15 (8) (Oct. 2011)
4187-4199, https://doi.org/10.1016/j.rser.2011.05.012.
K.V. Reddy, N. Ghaffour, Overview of the cost of desalinated water and costing
methodologies, Desalination 205 (1-3) (Feb. 2007) 340-353, https://doi.org/
10.1016/j.desal.2006.03.558.
S. Ahmadvand, B. Abbasi, B. Azarfar, M. Elhashimi, X. Zhang, B. Abbasi, Looking
beyond energy efficiency: an applied review of water desalination technologies
and an introduction to capillary-driven desalination, Water 11 (4) (Apr. 2019)
696, https://doi.org/10.3390/w11040696.
A. Al-Karaghouli, L.L. Kazmerski, Energy consumption and water production cost
of conventional and renewable-energy-powered desalination processes, Renew.
Sust. Energ. Rev. 24 (Aug. 2013) 343-356, https://doi.org/10.1016/j.
rser.2012.12.064.
Y. Ghalavand, M.S. Hatamipour, A. Rahimi, A review on energy consumption of
desalination processes, Desalin. Water Treat. 54 (6) (Mar. 2014) 1-16, https://
doi.org/10.1080/19443994.2014.892837.

[2]

[3]

[4]

[5

[6



S.A. Romo et al.

[71

[8]

91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Z. Wang, Y. Wang, G. Xu, J. Ren, Sustainable desalination process selection:
decision support framework under hybrid information, Desalination 465
(January) (Sep. 2019) 44-57, https://doi.org/10.1016/j.desal.2019.04.022.

R. Semiat, Energy issues in desalination processes, Environ. Sci. Technol. 42 (22)
(Nov. 2008) 8193-8201, https://doi.org/10.1021/es801330u.

T. Altmann, J. Robert, A. Bouma, J. Swaminathan, J.H. Lienhard, Primary energy
and exergy of desalination technologies in a power-water cogeneration scheme,
Appl. Energy 252 (January) (Oct. 2019) 113319, https://doi.org/10.1016/j.
apenergy.2019.113319.

G.P. Thiel, EZW. Tow, L.D. Banchik, H.W. Chung, J.H. Lienhard, Energy
consumption in desalinating produced water from shale oil and gas extraction,
Desalination 366 (Jun. 2015) 94-112, https://doi.org/10.1016/j.
desal.2014.12.038.

M. Qin, et al., Comparison of energy consumption in desalination by capacitive
deionization and reverse osmosis, Desalination 455 (January) (2019) 100-114,
https://doi.org/10.1016/j.desal.2019.01.003.

S. Loutatidou, H.A. Arafat, Techno-economic analysis of MED and RO
desalination powered by low-enthalpy geothermal energy, Desalination 365
(2015) 277-292, https://doi.org/10.1016/j.desal.2015.03.010.

M. Methnani, Influence of fuel costs on seawater desalination options,
Desalination 205 (1-3) (2007) 332-339, https://doi.org/10.1016/].
desal.2006.02.058.

N.C. Wright, A.G. Winter, Justification for community-scale photovoltaic-
powered electrodialysis desalination systems for inland rural villages in India,
Desalination 352 (2014) 82-91, https://doi.org/10.1016/j.desal.2014.07.035.
R. Zhao, S. Porada, P.M. Biesheuvel, A. van der Wal, Energy consumption in
membrane capacitive deionization for different water recoveries and flow rates,
and comparison with reverse osmosis, Desalination 330 (Dec. 2013) 35-41,
https://doi.org/10.1016/j.desal.2013.08.017.

K. Mistry, J. Lienhard, Generalized least energy of separation for desalination and
other chemical separation processes, Entropy 15 (12) (May 2013) 2046-2080,
https://doi.org/10.3390/e15062046.

M.H. Sharqawy, J.H. Lienhard, S.M. Zubair, Thermophysical properties of
seawater: a review of existing correlations and data, Desalin. Water Treat. 16
(1-3) (Apr. 2010) 354-380, https://doi.org/10.5004/dwt.2010.1079.

K.G. Nayar, M.H. Sharqawy, L.D. Banchik, J.H. Lienhard, Thermophysical
properties of seawater: a review and new correlations that include pressure
dependence, Desalination 390 (2016) 1-24, https://doi.org/10.1016/j.
desal.2016.02.024.

1. Foxboro, in: “Conductivity Ordering Guide,” Price Sheet. Invensys Foxboro,
Foxboro, Massachusetts, 1999, pp. 1-2.

H. Ucok, I. Ershaghi, G.R. Olhoeft, Electrical resistivity of geothermal brines,

J. Pet. Technol. 32 (04) (Apr. 1980) 717-727, https://doi.org/10.2118/7878-PA.
M. Holmgren, X Steam, Thermodynamic properties of water and steam [Online].
Available:, in: MATLAB Central File Exchange, 2007 https://www.mathworks.
com/matlabcentral/fileexchange/9817-x-steam-thermodynamic-properties-of-w
ater-and-steam.

H.T. El-Dessouky, H.M. Ettouney, Fundamentals of Salt Water Desalination, 1st
ed., Elsevier Science Ltd, 2002.

A. Picard, R.S. Davis, M. Glaser, K. Fujii, Revised formula for the density of moist
air (CIPM-2007), Metrologia 45 (2) (Apr. 2008) 149-155, https://doi.org/
10.1088/0026-1394/45/2/004.

J.G. Ji, R.Z. Wang, L.X. Li, H. Ni, Simulation and analysis of a single-effect
thermal vapor-compression desalination system at variable operation conditions,
Chem. Eng. Technol. 30 (12) (2007) 1633-1641, https://doi.org/10.1002/
ceat.200700303.

M.A. Darwish, F. Al-Juwayhel, H.K. Abdulraheim, Multi-effect boiling systems
from an energy viewpoint, Desalination 194 (1-3) (2006) 22-39, https://doi.org/
10.1016/j.desal.2005.08.029.

H. Ettouney, Design and analysis of humidification dehumidification desalination
process, Desalination 183 (1-3) (2005) 341-352, https://doi.org/10.1016/j.
desal.2005.03.039.

J. Zhang, Computational Modeling and Evaluation of Reverse Osmosis, Stanford
University, 2015.

H.J. Lee, F. Sarfert, H. Strathmann, S.H. Moon, Designing of an electrodialysis
desalination plant, Desalination 142 (3) (2002) 267-286, https://doi.org/
10.1016/50011-9164(02)00208-4.

M. Qin, Comparison of energy consumption in desalination by capacitive
deionization and reverse osmosis, Desalination 455 (November 2018) (2019)
100-114, https://doi.org/10.1016/j.desal.2019.01.003.

S.A. Romo, N.W. Mattise, J. Srebric, DESAL, in: City@UMD & The University of
Maryland, College Park, 2021. https://desal.city.umd.edu/.

W. EI-Mudir, Performance evaluation of a small size TVC desalination plant,
Desalination 165 (2004) 269-279, https://doi.org/10.1016/j.
desal.2004.06.031.

N.M. Al-Najem, M.A. Darwish, F.A. Youssef, Thermovapor compression desalters:
energy and availability — analysis of single- and multi-effect systems,
Desalination 110 (3) (Sep. 1997) 223-238, https://doi.org/10.1016/50011-9164
(97)00101-X.

S. Shen, S. Zhou, Y. Yang, L. Yang, X. Liu, Study of steam parameters on the
performance of a TVC-MED desalination plant, Desalin. Water Treat. 33 (1-3)
(Sep. 2011) 300-308, https://doi.org/10.5004/dwt.2011.2653.

S.M.A.N.R. Abadi, R. Kouhikamali, CFD-aided mathematical modeling of thermal
vapor compressors in multiple effects distillation units, Appl. Math. Model. 40
(15-16) (2016) 6850-6868, https://doi.org/10.1016/j.apm.2016.02.032.

21

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

Desalination 525 (2022) 115474

A.M. Bonanos, Physical modeling of thermo-compressor for desalination
applications, Desalination 412 (2017) 13-19, https://doi.org/10.1016/j.
desal.2017.03.004.

A.O.Bin Amer, Development and optimization of ME-TVC desalination system,
Desalination 249 (3) (Dec. 2009) 1315-1331, https://doi.org/10.1016/j.
desal.2009.06.026.

H. El-Dessouky, Modelling and simulation of the thermal vapour compression
desalination process, in: Nuclear Desalination of Sea Water, 1997, pp. 315-338.
https://inis.iaea.org/search/search.aspx?orig q=RN:29023185.

R.R.B. Power, Steam Jet Ejectors for the Process Industries, Second Edi, McGraw-
Hill Inc, New York, 1994.

A.S. Hassan, M.A. Darwish, Performance of thermal vapor compression,
Desalination 335 (1) (2014) 41-46. http://www.scopus.com/inward/record.url?
eid=2-s2.0-84891656599&partner]D=40&md5=f6bb7d386d150da22dbd809b
3ec3caba.

H. El-Dessouky, I. Alatiqi, S. Bingulac, H. Ettouney, Steady-state analysis of the
multiple effect evaporation desalination process, Chem. Eng. Technol. 21 (5)
(1998) 437-451, https://doi.org/10.1002/(SICI)1521-4125(199805)21:5<437::
AID-CEAT437>3.0.CO;2-D.

M.A. Darwish, Thermal analysis of vapor compression desalination system,
Desalination 69 (3) (Jan. 1988) 275-295, https://doi.org/10.1016/0011-9164
(88)80030-4.

M.A. Sharaf, A.S. Nafey, L. Garcia-Rodriguez, Thermo-economic analysis of solar
thermal power cycles assisted MED-VC (multi effect distillation-vapor
compression) desalination processes, Energy 36 (5) (2011) 2753-2764, https://
doi.org/10.1016/j.energy.2011.02.015.

F. Al-Juwayhel, H. El-Dessouky, H. Ettouney, Analysis of single-effect evaporator
desalination systems combined with vapor compression heat pumps, Desalination
114 (3) (1997) 253-275, https://doi.org/10.1016/50011-9164(98)00017-4.
H.T. El-Dessouky, .M. Alatiqi, H.M. Ettouney, N.S. Al-Deffeeri, Performance of
wire mesh mist eliminator, Chem. Eng. Process. Process Intensif. 39 (2) (2000)
129-139, https://doi.org/10.1016/50255-2701(99)00033-1.

H. El-Dessouky, H. Ettouney, Single-effect thermal vapor-compression
desalination process: thermal analysis, Heat Transf. Eng. 20 (2) (1999) 52-68,
https://doi.org/10.1080/014576399271583.

K.H. Mistry, M.A. Antar, J.H. V Lienhard, An improved model for multiple effect
distillation, Desalin. Water Treat. 51 (4-6) (Jan. 2013) 807-821, https://doi.org/
10.1080/19443994.2012.703383.

M. Alahmad, Factors affecting scale formation in sea water environments — an
experimental approach, Chem. Eng. Technol. 31 (1) (Jan. 2008) 149-156,
https://doi.org/10.1002/ceat.200700062.

M. Al-Ahmad, F.A. Aleem, Scale formation and fouling problems and their
predicted reflection on the performance of desalination plants in Saudi Arabia,
Desalination 96 (1-3) (Jun. 1994) 409-419, https://doi.org/10.1016/0011-9164
(94)85190-5.

M.A. Darwish, H.K. Abdulrahim, Feed water arrangements in a multi-effect
desalting system, Desalination 228 (1-3) (2008) 30-54, https://doi.org/10.1016/
j-desal.2007.05.039.

P. Palenzuela, A.S. Hassan, G. Zaragoza, D.C. Alarcon-Padilla, Steady state model
for multi-effect distillation case study: plataforma solar de Almeria MED pilot
plant, Desalination 337 (1) (2014) 31-42, https://doi.org/10.1016/j.
desal.2013.12.029.

F.N. Alasfour, M.A. Darwish, A.O. Bin Amer, Thermal analysis of ME-TVC+MEE
desalination systems, Desalination 174 (1) (2005) 39-61, https://doi.org/
10.1016/j.desal.2004.08.039.

S. Casimiro, J. Cardoso, C. Ioakimidis, J. Farinha Mendes, C. Mineo, A. Cipollina,
MED parallel system powered by concentrating solar power (CSP). Model and
case study: Trapani, Sicily, Desalin. Water Treat. 55 (12) (2015) 3253-3266,
https://doi.org/10.1080/19443994.2014.940222.

M. Shakouri, H. Ghadamian, R. Sheikholeslami, Optimal model for multi effect
desalination system integrated with gas turbine, Desalination 260 (1-3) (2010)
254-263, https://doi.org/10.1016/j.desal.2010.03.032.

B. Ortega-Delgado, P. Palenzuela, D.C. Alarcén-Padilla, Parametric study of a
multi-effect distillation plant with thermal vapor compression for its integration
into a rankine cycle power block, Desalination 394 (2016) 18-29, https://doi.
org/10.1016/j.desal.2016.04.020.

H.T. El-Dessouky, H.M. Ettouney, Multiple-effect evaporation desalination
systems: thermal analysis, Desalination 125 (1-3) (1999) 259-276, https://doi.
org/10.1016/50011-9164(99)00147-2.

M. Ameri, S.S. Mohammadi, M. Hosseini, M. Seifi, Effect of design parameters on
multi-effect desalinationsystem specifications, Desalination 245 (1-3) (Sep. 2009)
266-283, https://doi.org/10.1016/j.desal.2008.07.012.

A. Cipollina, G. Micale, L. Rizzuti, A critical assessment of desalination operations
in Sicily, Desalination 182 (1-3) (2005) 1-12, https://doi.org/10.1016/j.
desal.2005.03.004.

C. Temstet, G. Canton, J. Laborie, A. Durante, A large high-performance MED
plant in Sicily, Desalination 105 (1-2) (1996) 109-114, https://doi.org/10.1016/
0011-9164(96)00064-1.

D. Zhao, J. Xue, S. Li, H. Sun, Q. Dong Zhang, Theoretical analyses of thermal and
economical aspects of multi-effect distillation desalination dealing with high-
salinity wastewater, Desalination 273 (2-3) (2011) 292-298, https://doi.org/
10.1016/j.desal.2011.01.048.

M.M. Ashour, Steady state analysis of the Tripoli west LT-HT-MED plant,
Desalination 152 (1-3) (2003) 191-194, https://doi.org/10.1016/50011-9164
(02)01062-7.



S.A. Romo et al.

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

P. Sharan, S. Bandyopadhyay, Integration of thermo-vapor compressor with
multiple-effect evaporator, Appl. Energy 184 (2016) 560-573, https://doi.org/
10.1016/j.apenergy.2016.10.037.

V. Dvornikov, Seawater multi-effect distillation energized by a combustion
turbine, Desalination 127 (3) (2000) 261-269, https://doi.org/10.1016/S0011-
9164(00)00015-1.

M.A. Sharaf, A.S. Nafey, L. Garcia-Rodriguez, Exergy and thermo-economic
analyses of a combined solar organic cycle with multi effect distillation (MED)
desalination process, Desalination 272 (1-3) (2011) 135-147, https://doi.org/
10.1016/j.desal.2011.01.006.

M.A. Darwish, F.Al Juwayhel, H. Kamal, Multi-effect boiling system meb: an
energy viewpoint, in: Sustainable Development of Energy, Water and
Environment Systems vol. 194, Jun. 2007, pp. 351-372, https://doi.org/
10.1142/9789812771285_0032, no. 1-3.

M.A. Sharaf, Design and Simulation of Solar Desalination Systems, Suez Canal
University, 2011.

M.H. Sharqawy, M.A. Antar, S.M. Zubair, A.M. Elbashir, Optimum thermal design
of humidification dehumidification desalination systems, Desalination 349
(2014) 10-21, https://doi.org/10.1016/j.desal.2014.06.016.

M. Khedr, Techno-economic investigation of an air humidification-
dehumidification desalination process, Chem. Eng. Technol. 16 (4) (Aug. 1993)
270-274, https://doi.org/10.1002/ceat.270160410.

G. Al-Enezi, H. Ettouney, N. Fawzy, Low temperature humidification
dehumidification desalination process, Energy Convers. Manag. 47 (4) (Mar.
2006) 470-484, https://doi.org/10.1016/j.enconman.2005.04.010.

G.P. Narayan, M.H. Sharqawy, J.H. V Lienhard, S.M. Zubair, Thermodynamic
analysis of humidification dehumidification desalination cycles, Desalin. Water
Treat. 16 (1-3) (2010) 339-353, https://doi.org/10.5004/dwt.2010.1078.

S. Farsad, A. Behzadmehr, Analysis of a solar desalination unit with
humidification-dehumidification cycle using DoE method, Desalination 278 (1-3)
(2011) 70-76, https://doi.org/10.1016/j.desal.2011.05.008.

S. Dehghani, A. Date, A. Akbarzadeh, An experimental study of brine
recirculation in humidification-dehumidification desalination of seawater, Case
Stud. Therm. Eng. 14 (December) (2018) 2019, https://doi.org/10.1016/].
csite.2019.100463.

M. Al-Sahali, H.M. Ettouney, Humidification dehumidification desalination
process: design and performance evaluation, Chem. Eng. J. 143 (1-3) (2008)
257-264, https://doi.org/10.1016/j.cej.2008.04.030.

S.M. Zubair, M.A. Antar, S.M. Elmutasim, D.U. Lawal, Performance evaluation of
humidification-dehumidification (HDH) desalination systems with and without
heat recovery options: an experimental and theoretical investigation,
Desalination 436 (October 2017) (2018) 161-175, https://doi.org/10.1016/j.
desal.2018.02.018.

P.T. Tsilingiris, Thermophysical and transport properties of humid air at
temperature range between 0 and 100 °C, Energy Convers. Manag. 49 (5) (2008)
1098-1110, https://doi.org/10.1016/j.enconman.2007.09.015.

SFitz, AirProperties [Online]. Available:, in: GitHube, 2021 https://github.com/s
jfitz/AirProperties.

M.M. Farid, S. Parekh, J.R. Selman, S. Al-Hallaj, Solar desalination with a
humidification-dehumidification cycle: mathematical modeling of the unit,
Desalination 151 (2) (2003) 153-164, https://doi.org/10.1016/50011-9164(02)
00994-3.

S. Farsad, A. Behzadmehr, S.M.H. Sarvari, Numerical analysis of solar
desalination using humidification—dehumidification cycle, Desalin. Water Treat.
19 (1-3) (2010) 294-300, https://doi.org/10.5004/dwt.2010.1487.

M.H. Hamed, A.E. Kabeel, Z.M. Omara, S.W. Sharshir, Mathematical and
experimental investigation of a solar humidification-dehumidification
desalination unit, Desalination 358 (2015) 9-17, https://doi.org/10.1016/j.
desal.2014.12.005.

G. Franchini, A. Perdichizzi, Modeling of a solar driven HD (humidification-
dehumidification) desalination system, Energy Procedia 45 (2014) 588-597,
https://doi.org/10.1016/j.egypro.2014.01.063.

E.H. Amer, H. Kotb, G.H. Mostafa, A.R. El-Ghalban, Theoretical and experimental
investigation of humidification-dehumidification desalination unit, Desalination
249 (3) (2009) 949-959, https://doi.org/10.1016/j.desal.2009.06.063.

R. Santosh, G. Kumaresan, S. Selvaraj, T. Arunkumar, R. Velraj, Investigation of
humidification-dehumidification desalination system through waste heat
recovery from household air conditioning unit, Desalination 467 (May) (2019)
1-11, https://doi.org/10.1016/j.desal.2019.05.016.

K.G. Tay, L. Song, A more effective method for fouling characterization in a full-
scale reverse osmosis process, Desalination 177 (1-3) (Jun. 2005) 95-107,
https://doi.org/10.1016/j.desal.2004.11.017.

S.A. Avlonitis, M. Pappas, K. Moutesidis, A unified model for the detailed
investigation of membrane modules and RO plants performance, Desalination
203 (1-3) (2007) 218-228, https://doi.org/10.1016/j.desal.2006.04.009.

H.J. Oh, T.M. Hwang, S. Lee, A simplified simulation model of RO systems for
seawater desalination, Desalination 238 (1-3) (2009) 128-139, https://doi.org/
10.1016/j.desal.2008.01.043.

V. Geraldes, N.E. Pereira, M.N. De Pinho, Simulation and optimization of
medium-sized seawater reverse osmosis processes with spiral-wound modules,
Ind. Eng. Chem. Res. 44 (6) (2005) 1897-1905, https://doi.org/10.1021/
ie049357s.

M. Khraisheh, et al., Osmotic pressure estimation using the pitzer equation for
forward osmosis modelling, Environ. Technol. 41 (19) (Aug. 2020) 2533-2545,
https://doi.org/10.1080/09593330.2019.1575476.

22

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

Desalination 525 (2022) 115474

T. Kaghazchi, M. Mehri, M.T. Ravanchi, A. Kargari, A mathematical modeling of
two industrial seawater desalination plants in the Persian Gulf region,
Desalination 252 (1-3) (2010) 135-142, https://doi.org/10.1016/j.
desal.2009.10.012.

K.G. Nayar, Feasibility study of an electrodialysis system for in-home water
desalination in urban India, Dev. Eng. 2 (December 2016) (2016) 38-46, https://
doi.org/10.1016/j.deveng.2016.12.001.

M. Qasim, M. Badrelzaman, N.N. Darwish, N.A. Darwish, N. Hilal, Reverse
osmosis desalination: a state-of-the-art review, Desalination 459 (December
2018) (Jun. 2019) 59-104, https://doi.org/10.1016/j.desal.2019.02.008.

E.-S. Jang, Influence of concentration polarization and thermodynamic non-
ideality on salt transport in reverse osmosis membranes, J. Membr. Sci. 572
(October 2018) (Feb. 2019) 668-675, https://doi.org/10.1016/].
memsci.2018.11.006.

A.O. Sharif, et al., A new theoretical approach to estimate the specific energy
consumption of reverse osmosis and other pressure-driven liquid-phase
membrane processes, Desalin. Water Treat. 3 (1-3) (2009) 111-119, https://doi.
org/10.5004/dwt.2009.295.

A. Altaee, Computational model for estimating reverse osmosis system design and
performance: part-one binary feed solution, Desalination 291 (2012) 101-105,
https://doi.org/10.1016/j.desal.2012.01.028.

X. Jin, A. Jawor, S. Kim, E.M.V. Hoek, Effects of feed water temperature on
separation performance and organic fouling of brackish water RO membranes,
Desalination 239 (1-3) (2009) 346-359, https://doi.org/10.1016/j.
desal.2008.03.026.

J.C. Crittenden, R.R. Trussell, D.W. Hand, K.J. Howe, G. Tchobanoglous, Reverse
osmosis, in: MWH’s Water Treatment - Principles and Design, 3rd ed., John Wiley
& Sons, 2012, pp. 1335-1414.

R.S. El-Emam, I. Dincer, Thermodynamic and thermoeconomic analyses of
seawater reverse osmosis desalination plant with energy recovery, Energy 64
(Jan. 2014) 154-163, https://doi.org/10.1016/j.energy.2013.11.037.

N.M. Mazlan, D. Peshev, A.G. Livingston, Energy consumption for desalination —
a comparison of forward osmosis with reverse osmosis, and the potential for
perfect membranes, Desalination 377 (Jan. 2016) 138-151, https://doi.org/
10.1016/j.desal.2015.08.011.

A. Joseph, V. Damodaran, Dynamic simulation of the reverse osmosis process for
seawater using LabVIEW and an analysis of the process performance, Comput.
Chem. Eng. 121 (2019) 294-305, https://doi.org/10.1016/j.
compchemeng.2018.11.001.

V. Haluch, E.F. Zanoelo, C.J.L. Hermes, Experimental evaluation and semi-
empirical modeling of a small-capacity reverse osmosis desalination unit, Chem.
Eng. Res. Des. 122 (Jun. 2017) 243-253, https://doi.org/10.1016/j.
cherd.2017.04.006.

D.E. Wiley, D.F. Fletcher, Techniques for computational fluid dynamics modelling
of flow in membrane channels, J. Memb. Sci. 211 (1) (2003) 127-137, https://
doi.org/10.1016/S0376-7388(02)00412-X.

M. Ben Boudinar, W.T. Hanbury, S. Avlonitis, Numerical simulation and
optimisation of spiral-wound modules, Desalination 86 (3) (1992) 273-290,
https://doi.org/10.1016/0011-9164(92)80038-B.

G. Schock, A. Miquel, Mass transfer and pressure loss in spiral wound modules,
Desalination 64 (Jan. 1987) 339-352, https://doi.org/10.1016/0011-9164(87)
90107-X.

B.J. Marinas, R.I. Urama, Modeling concentration-polarization in reverse osmosis
spiral-wound elements, J. Environ. Eng. 122 (4) (Apr. 1996) 292-298, https://
doi.org/10.1061/(ASCE)0733-9372(1996)122:4(292).

M. Shakaib, S.M.F. Hasani, M. Mahmood, CFD modeling for flow and mass
transfer in spacer-obstructed membrane feed channels, J. Memb. Sci. 326 (2)
(Jan. 2009) 270-284, https://doi.org/10.1016/j.memsci.2008.09.052.

F. Valero, A. Barcelo, R. Arbos, Electrodialysis technology - theory and
applications, no. 3, in: M. Schorr (Ed.), Desalination, Trends and Technologies
vol. 189, InTech, 2011, pp. 1521-1535.

T. Mohammadi, A. Moheb, M. Sadrzadeh, A. Razmi, Modeling of metal ion
removal from wastewater by electrodialysis, Sep. Purif. Technol. 41 (1) (2005)
73-82, https://doi.org/10.1016/j.seppur.2004.04.007.

J.M. Ortiz, et al., Brackish water desalination by electrodialysis: batch
recirculation operation modeling, J. Membr. Sci. 252 (1-2) (2005) 65-75,
https://doi.org/10.1016/j.memsci.2004.11.021.

M. Sadrzadeh, A. Kaviani, T. Mohammadi, Mathematical modeling of
desalination by electrodialysis, Desalination 206 (1-3) (2007) 538-546, https://
doi.org/10.1016/j.desal.2006.04.062.

L. Karimi, A. Ghassemi, An empirical/theoretical model with dimensionless
numbers to predict the performance of electrodialysis systems on the basis of
operating conditions, Water Res. 98 (2016) 270-279, https://doi.org/10.1016/j.
watres.2016.04.014.

M. La Cerva, et al., Determination of limiting current density and current
efficiency in electrodialysis units, Desalination 445 (July) (2018) 138-148,
https://doi.org/10.1016/j.desal.2018.07.028.

A. Campione, L. Gurreri, M. Ciofalo, G. Micale, A. Tamburini, A. Cipollina,
Electrodialysis for water desalination: a critical assessment of recent
developments on process fundamentals, models and applications, Desalination
434 (October 2017) (2018) 121-160, https://doi.org/10.1016/j.
desal.2017.12.044.

M.Ben Sik Ali, A. Mnif, B. Hamrouni, Modelling of the limiting current density of
an electrodialysis process by response surface methodology, Ionics (Kiel) 24 (2)
(2018) 617-628, https://doi.org/10.1007/s11581-017-2214-7.



S.A. Romo et al.

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

V. Geraldes, M.D. Afonso, Limiting current density in the electrodialysis of multi-
ionic solutions, J. Membr. Sci. 360 (1-2) (2010) 499-508, https://doi.org/
10.1016/j.memsci.2010.05.054.

R. Valerdi-Pérez, J. Ibanez-Mengual, Current—voltage curves for an
electrodialysis reversal pilot plant: determination of limiting currents,
Desalination 141 (1) (Dec. 2001) 23-37, https://doi.org/10.1016/50011-9164
(01)00386-1.

Y. Tanaka, Limiting current density of an ion-exchange membrane and of an
electrodialyzer, J. Membr. Sci. 266 (1-2) (2005) 6-17, https://doi.org/10.1016/j.
memsci.2005.05.005.

H.J. Lee, H. Strathmann, S.H. Moon, Determination of the limiting current density
in electrodialysis desalination as an empirical function of linear velocity,
Desalination 190 (1-3) (2006) 43-50, https://doi.org/10.1016/j.
desal.2005.08.004.

A. Nakayama, Y. Sano, X. Bai, K. Tado, A boundary layer analysis for
determination of the limiting current density in an electrodialysis desalination,
Desalination 404 (2017) 41-49, https://doi.org/10.1016/j.desal.2016.10.013.
K.M. Chehayeb, D.M. Farhat, K.G. Nayar, J.H. Lienhard, Optimal design and
operation of electrodialysis for brackish-water desalination and for high-salinity
brine concentration, Desalination 420 (March) (Oct. 2017) 167-182, https://doi.
org/10.1016/j.desal.2017.07.003.

Y. Gong, X.L. Wang, L.X. Yu, Process simulation of desalination by electrodialysis
of an aqueous solution containing a neutral solute, Desalination 172 (2) (2005)
157-172, https://doi.org/10.1016/j.desal.2004.06.200.

N.C. Wright, S.R. Shah, S.E. Amrose, A.G. Winter, A robust model of brackish
water electrodialysis desalination with experimental comparison at different size
scales, Desalination 443 (April) (2018) 27-43, https://doi.org/10.1016/j.
desal.2018.04.018.

Y. Tanaka, A computer simulation of feed and bleed ion exchange membrane
electrodialysis for desalination of saline water, Desalination 254 (1-3) (May
2010) 99-107, https://doi.org/10.1016/j.desal.2009.12.008.

Y. Oren, Capacitive deionization (CDI) for desalination and water treatment -
past, present and future (a review), Desalination 228 (1-3) (2008) 10-29, https://
doi.org/10.1016/j.desal.2007.08.005.

M.E. Suss, S. Porada, X. Sun, P.M. Biesheuvel, J. Yoon, V. Presser, Water
desalination via capacitive deionization: what is it and what can we expect from
it? Energy Environ. Sci. 8 (8) (2015) 2296-2319, https://doi.org/10.1039/
c5ee00519a.

J.E. Dykstra, J. Dijkstra, A. van der Wal, H.V.M. Hamelers, S. Porada, On-line
method to study dynamics of ion adsorption from mixtures of salts in capacitive
deionization, Desalination 390 (Jul. 2016) 47-52, https://doi.org/10.1016/j.
desal.2016.04.001.

J. Oladunni, J.H. Zain, A. Hai, F. Banat, G. Bharath, E. Alhseinat,

A comprehensive review on recently developed carbon based nanocomposites for
capacitive deionization: from theory to practice, Sep. Purif. Technol. 207 (March)
(2018) 291-320, https://doi.org/10.1016/j.seppur.2018.06.046.

M. Qin, Corrigendum to ‘Comparison of energy consumption in desalination by
capacitive deionization and reverse osmosis’ [DES 455 (2019) 100-114],
Desalination 461 (April) (Jul. 2019) 55, https://doi.org/10.1016/j.
desal.2019.03.016.

M. Qin, et al., Response to comments on ‘comparison of energy consumption in
desalination by capacitive deionization and reverse osmosis’, Desalination 462
(April) (Jul. 2019) 48-55, https://doi.org/10.1016/j.desal.2019.04.004.

M.E. Suss, et al., Capacitive desalination with flow-through electrodes, Energy
Environ. Sci. 5 (11) (2012) 9511-9519, https://doi.org/10.1039/c2ee21498a.
E.N. Guyes, A.N. Shocron, A. Simanovski, P.M. Biesheuvel, M.E. Suss, A one-
dimensional model for water desalination by flow-through electrode capacitive

23

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

Desalination 525 (2022) 115474

deionization, Desalination 415 (2017) 8-13, https://doi.org/10.1016/j.
desal.2017.03.013.

A. Rommerskirchen, B. Ohs, K.A. Hepp, R. Femmer, M. Wessling, Modeling
continuous flow-electrode capacitive deionization processes with ion-exchange
membranes, J. Membr. Sci. 546 (October 2017) (2018) 188-196, https://doi.org/
10.1016/j.memsci.2017.10.026.

M.W. Saleem, W.S. Kim, Parameter-based performance evaluation and
optimization of a capacitive deionization desalination process, Desalination 437
(February) (2018) 133-143, https://doi.org/10.1016/j.desal.2018.02.023.

J.E. Dykstra, R. Zhao, P.M. Biesheuvel, A. Van der Wal, Resistance identification
and rational process design in capacitive deionization, Water Res. 88 (2016)
358-370, https://doi.org/10.1016/j.watres.2015.10.006.

R. Zhao, P.M. Biesheuvel, A. Van Der Wal, Energy consumption and constant
current operation in membrane capacitive deionization, Energy Environ. Sci. 5
(11) (2012) 9520-9527, https://doi.org/10.1039/c2ee21737f.

C.A.R. Perez, O.N. Demirer, R.L. Clifton, R.M. Naylor, C.H. Hidrovo, Macro
analysis of the electro-adsorption process in low concentration NaCl solutions for
water desalination applications, J. Electrochem. Soc. 160 (3) (Jan. 2013)
E13-E21, https://doi.org/10.1149/2.025303jes.

J.E. Dykstra, J. Dijkstra, A. Van der Wal, H.V.M. Hamelers, S. Porada,
SUPPLEMENT on-line method to study dynamics of ion adsorption from mixtures
of salts in capacitive deionization, Desalination 390 (2016) 47-52, https://doi.
org/10.1016/j.desal.2016.04.001.

J.E. Dykstra, S. Porada, A. van der Wal, P.M. Biesheuvel, Supplementary
information energy consumption in capacitive deionization — constant current
versus constant voltage operation, Water Res. 143 (2018) 367-375, https://doi.
org/10.1016/j.watres.2018.06.034.

L. Wang, S. Lin, Theoretical framework for designing a desalination plant based
on membrane capacitive deionization, Water Res. 158 (2019) 359-369, https://
doi.org/10.1016/j.watres.2019.03.076.

S. Lin, Seawater desalination technology and engineering in China: a review,
Desalination 498 (October 2020) (2021) 114728, https://doi.org/10.1016/].
desal.2020.114728.

H.T. El-Dessouky, H.M. Ettouney, F. Mandani, Performance of parallel feed
multiple effect evaporation system for seawater desalination, Appl. Therm. Eng.
20 (17) (Dec. 2000) 1679-1706, https://doi.org/10.1016/51359-4311(99)
00098-8.

D. Hasson, A. Drak, R. Semiat, Inception of CaSO4 scaling on RO membranes at
various water recovery levels, Desalination 139 (1-3) (Sep. 2001) 73-81, https://
doi.org/10.1016/50011-9164(01)00296-X.

W. H. Organization, Guidelines for Drinking-water Quality: Fourth Edition
Incorporating the First Addendum, Fourth Edi, 2017. Geneva.

M.Wakil Shahzad, M. Burhan, H.Soo Son, S.Jin Oh, K.Choon Ng, Desalination
processes evaluation at common platform: a universal performance ratio (UPR)
method, Appl. Therm. Eng. 134 (October 2017) (Apr. 2018) 62-67, https://doi.
org/10.1016/j.applthermaleng.2018.01.098.

G. Raluy, L. Serra, J. Uche, Life cycle assessment of MSF, MED and RO
desalination technologies, Energy 31 (13) (2006) 2361-2372, https://doi.org/
10.1016/j.energy.2006.02.005.

J. Eke, A. Yusuf, A. Giwa, A. Sodiq, The global status of desalination: an
assessment of current desalination technologies, plants and capacity, Desalination
495 (March) (Dec. 2020) 114633, https://doi.org/10.1016/j.desal.2020.114633.
Y. Dreizin, Ashkelon seawater desalination project - off-taker’s self costs, supplied
water costs, total costs and benefits, Desalination 190 (1-3) (2006) 104-116,
https://doi.org/10.1016/j.desal.2005.08.006.

R.Valladares Linares, Life cycle cost of a hybrid forward osmosis — low pressure
reverse osmosis system for seawater desalination and wastewater recovery, Water
Res. 88 (7) (Jan. 2016) 225-234, https://doi.org/10.1016/j.watres.2015.10.017.



	Desalination metamodels and a framework for cross-comparative performance simulations
	1 Introduction
	2 Methodology
	3 Results
	3.1 Metamodels for desalination processes
	3.1.1 Thermovapor Compression
	3.1.2 Multi-Effect Distillation
	3.1.3 Humidification-Dehumidification
	3.1.4 Reverse Osmosis
	3.1.5 Electrodialysis
	3.1.6 Capacitive Deionization

	3.2 Simulation framework
	3.2.1 General variables
	3.2.2 Family variables
	3.2.3 Specific hierarchy
	3.2.4 Cross-comparison enabling simulation framework


	4 Discussion
	4.1 Application of the analytical framework in intended operation of desalination methods
	4.1.1 Modeling regimes

	4.2 Cross-comparative simulation in common operational spaces
	4.2.1 General hierarchy
	4.2.2 Family hierarchy
	4.2.3 Specific hierarchy

	4.3 Limitations

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A Supplementary data
	References


