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H I G H L I G H T S  

• Study metamodels include six desalination processes classified as thermal or molecular. 
• Reduced-order metamodels can accurately reproduce desalination transport processes. 
• The largest error when comparing metamodel results to published data is 9%. 
• The study grouped and prioritized inputs and outputs for all metamodel data. 
• These data structures enabled a cross-comparative framework of desalination processes.  
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A B S T R A C T   

There is an opportunity to save energy and reduce operational expenses when choosing a suitable desalination 
method aided by computational modeling. Existing models are not conducive to generalized comparisons be
tween different desalination methods. Therefore, this study developed metamodels for six desalination methods, 
grouped them into thermal and molecular transport families, and validated their predictive performance within 
9% difference from published data. This validated framework allowed comparisons of desalination methods at 
their prescribed ranges of operational conditions that they were designed for. These conditions specify feed 
salinity ranges of 1.6 to 2.4 g/kg for Capacitive Deionization and Reverse Osmosis (RO), 2.8 to 4.2 g/kg for 
Electrodialysis, 28 to 42 g/kg for Thermovapor Compression and Humidification-Dehumidification, and 37 to 55 
g/kg for Multi-Effect Distillation (MED). Despite different operational conditions, all models exhibit non-linear, 
positive correlation between energy consumption and system size in response to feed salinity and production 
rate. The framework is also employed in a cross-comparative analysis between MED and RO whose results 
suggest that energy intensity for MED is an order of magnitude greater than RO for the same operational con
ditions, but actual operational costs are comparable. Overall, the framework is ready for deployment in case 
studies of actual desalination plants.   

1. Introduction 

Different desalination processes have been developed over the years 
to increase efficiency, reduce equipment maintenance, or target water 
with higher salt contents. There are more than ten different desalination 
methods and countless system variations within each method, each one 
particularly useful for specific feed water characteristics and production 
requirements. While there have been many efforts to model each process 
individually for optimization, cross-comparison of desalination tech
nologies remains a major challenge due several factors including: the 
lack of standardization in modeling algorithms, difficulties in 

reproducing modeling approaches because of undisclosed parameters or 
equations, and models learned with data from a specific system but that 
cannot be generalized to broader operational ranges. 

The starting point towards overcoming this challenge is to correctly 
implement the models of the most common desalination technologies 
under a common framework with matching computational structures 
and parameters. The literature presents volumes of case studies and 
technological developments with scattered models. Furthermore, most 
studies do not disclose all required variables or correlations involved in 
the simulation algorithm and make the model replication and validation 
particularly challenging. Although some cases perform comparison of 
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two desalination technologies side-by-side and find equivalent metrics, 
there is still no standard framework to equalize the input domains of 
multiple desalination processes simultaneously. 

The literature reflects a lack of cohesion in modeling purposes among 
the different desalination studies. There are commonly accepted desa
lination models that are predictive in nature, but there is no common 
algorithm structure that allows for cross-comparison. The greatest 
challenge in achieving this lies in the lack of knowledge on the physics 
behind some sub-processes that take place in different desalination 
systems. Most modeling approaches resort to regression and empirical 
correlations that are valid for the specific operational conditions and 
particular system that data is measured from. This is complicated by the 
lack of disclosure of modeling equations, important parameters, or 
correlation coefficients in published literature which challenges 
collaboration among the desalination community. Further research is 
required into developing such mechanistic equations to expand the 
predictive capabilities of desalination models. On the other hand, the 
literature presents many models with different simulation objectives and 
different input-output structures, which cannot be executed in parallel 
and therefore do not allow direct comparisons of the results. It is 
important to organize model algorithms to follow similar input-outputs 
structures to impose similar constraints to the system and enable 
meaningful cross-comparison of different desalination technologies. 

Few research efforts have focused on comparison between different 
desalination technologies, and the extent to which such cross- 
comparison methodologies are implemented present great differences. 
The majority of studies enumerate and review the general operational 
ranges such as the feed concentration and product water flow rate that 
different technologies are able to process [1–6]. However, the imple
mentation of such findings is limited to general statistical models that 
might not be representative of the actual system performance at the 
required operational conditions [7]. Later research efforts recognized 
the importance in evaluating energy consumption of desalination tech
nologies and consider the high-level breakdown in heat and electricity 
requirements [8]. Comparing energy consumption is an initial step into 
finding universal parameters among desalination technologies that can 
provide meaningful insights. Finally, a few more recent studies simulate 
energy consumption from a thermodynamic law analysis [9,10]. In 
general, cross-comparison studies in the literature are limited to pair
wise comparisons between desalination methods focusing on energy and 
cost at discrete operation points [11–15]. A more robust comparison of 
different desalination systems can be conducted through an exergy 
analysis, which captures the effects of different operation conditions 
[16]. Although correct from a theoretical standpoint, reducing system 
operation to a single operation term is often not enough for practical 
decision making. Pairwise comparison approaches are valuable and can 
be an excellent complement to a holistic comparison that considers all 
involved parameters such as flow rates, concentrations, system sizes and 
performance metrics. To the best of our knowledge, a modeling frame
work that enables a holistic and direct cross-comparison between 
different desalination methods has not yet been proposed. The first step 
towards implementing such framework is to classify the different desa
lination models and establish hierarchical input-output structures that 
dictates the extent to which different desalination processes can be 
cross-compared. 

The present study proposes a framework for cross-comparison be
tween desalination technologies centered on a standard hierarchical 
structure for model inputs and outputs, consistent model computational 
structures, and standardized sets of thermophysical property correla
tions that include temperature, pressure, and salinity dependence. We 
first organize the knowledge of desalination modeling to develop met
amodels for six different desalination processes including Thermovapor 
Compression (TVC), Multi-Effect Distillation (MED), Humidification- 
Dehumidification (HDH), Reverse Osmosis (RO), Electrodialysis (ED) 
and Capacitive Deionization (CDI). Then, we deploy the proposed 
framework in a generalized comparison between the aforementioned 

desalination methods whose similar energy consumption patterns and 
responses to product flow rate and feed salt concentration suggests that 
apparent differences between desalination processes are superficial and 
that they actually share compatible transport processes. Finally, we 
apply our framework in a full cross-comparative analysis between MED 
and RO which are currently the most relevant desalination methods, and 
identify the benchmarks that developing technologies must cater to in 
the desalination market. 

2. Methodology 

The first step in developing a cross-comparison enabling simulation 
framework is to correctly implement the models available in the liter
ature. The systematized process of literature review and implementation 
is shown in Fig. 1. We used scientific publication databases like Scien
ceDirect and Google Scholar to search for the desalination method name 
plus the key words “modeling” and “desalination.” We considered peer- 
reviewed research articles, book chapters, and theses for this review. 

Most published models unfortunately do not disclose all the required 
parameters or equations, and many can only simulate a single specific 
set of operational conditions. To resolve this, we develop metamodels 
that supplement a representative model structure with sub-component 
models from different studies. The metamodel development process, 
therefore, is iterative in nature and dictates the direction of the literature 
review. The most representative model is the literature model where the 
complete modeling equations are disclosed, and reference values are 
provided. Additionally, the selection criteria for the most representative 
model prioritizes reduced-order models, which have low algorithmic 
complexity and computational intensity requirements but are still 
capable of capturing specific differences between operation conditions. 
The most representative model serves as a guide for the main code 
structure and provides numerical inputs and outputs for validation. Most 
models available in the literature unfortunately do not disclose the 
complete set of variables or equations to close the water/energy/prod
uct balance equations needed for implementation in an analytical 
framework. In the cases where equations, coefficients, or parameters are 
missing, we conducted further literature review from other references 
found in the initial search or a new targeted search for the specific un
knowns. This iterative process continued until all the initial number of 
references was reviewed and the metamodel was completed. The 
resulting metamodel is validated with the values of the most represen
tative model targeting a maximum allowable difference of 10% in the 
inputs and outputs associated to flow rate, concentration, energy in
tensity, and system sizing. If the target was not met, we returned to 
reviewing literature in search of more detailed sub-models. 

After successful validation, we standardized the computational 

Fig. 1. Meta-study research and implementation process.  
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structure and matched the hierarchical set of inputs and outputs pro
posed in this section to enable cross-comparison among different 
models. In this step, the thermophysical properties of the working fluids 
are also standardized using correlations that cover the largest validity 
ranges and consider temperatures, pressures, and salt concentrations 
when appropriate [17–23]. The resulting metamodel is an improved 
version of the original literature model re-engineered for the specific 
purpose of design and cross-comparison between different technologies. 
Finally, we use the incomplete sets of numerical inputs and outputs 
found through the literature review process, when available, to test the 
metamodel with a wider range of inputs. The unknown parameters are 
supplemented by other studies that disclose them and have the most 
similar operation conditions. This testing does not impose a maximum 
allowable difference but rather shows how generalizable the resulting 
metamodel is. 

Table 1 shows the total number of studies reviewed through the 
development of each metamodel presented in this paper and the selected 
literature models that guided validation. 

3. Results 

We present the results of our research in two parts. The first part 
considers metamodel development for each desalination method 
including Thermovapor Compression, Multi-Effect Distillation, 
Humidification-Dehumidification, Reverse Osmosis, Electrodialysis and 
Capacitive Deionization. All equations necessary to model the corre
sponding system are disclosed within each section. The relevant equa
tions of the metamodels provided within each description are 
implemented in an open-source, cloud-based application [30]. 

The second part elucidates on the cross-comparison enabling simu
lation framework that controls the execution of the proposed meta
models. The complete list of inputs and expected outputs for each model 
under the proposed simulation framework are listed in Table 9 at the end 
of the section. The framework is then deployed on all developed meta
models to support that almost identical patterns can be observed in the 
energy intensity response to changes in product flow rates and feed 
salinity. Finally, a full cross-comparison between the most commercially 

competitive processes, Multi-Effect Distillation and Reverse Osmosis, 
suggests that the cost of energy process benefits of Multi-Effect Distil
lation must justify its considerably larger energy intensity. 

3.1. Metamodels for desalination processes 

All metamodels integrate submodels and thermophysical property 
functions from a variety of studies to expand the validity of the model 
while maintaining computational simplicity. These metamodels are 
classified according to the separation process featured in each method, 
which is also aligned with the type of thermophysical properties 
involved in the calculations. For instance, the thermal family involves 
properties such as enthalpies and latent heat, while the molecular 
transport family involves properties like permeability and conductivity. 
Table 2 summarizes the high-level simulation parameters validated 
within 9% with the relevant parameters from the most representative 
literature model. In the case of intermediate parameters for MED and 
HDH, there is a maximum difference of 15% with the flashed distillate 
flow rate, and 64% difference with the cooling water flow rate. For MED, 
the difference is caused because the literature model assumes constant 
thermophysical properties while all our metamodels incorporate tem
perature, pressure, and salinity dependence [17–23]. The discrepancy in 
HDH, on the other hand, is not clearly labeled in the published study and 
is likely a simple typographical error. It must be noted however, these 
parameters have minimum impact in energy consumption calculations. 
All other parameters in all the developed models show excellent 
agreement with literature data overall. The complete validation tables 
with the selected model and additional studies are found in the paper 
Appendix. 

The successful validation of the metamodels with their correspond
ing representative model from the literature demonstrates they satis
factorily meet their intended purpose. However, the parameters shown 
in Table 2 represent only one possible operation point of each desali
nation system. Therefore, further validation is conducted with addi
tional studies that show different operation conditions, including 
product flow rates and feed water salinities. The reader is encouraged to 
refer to the complete validation tables which list the complete sets of 
inputs, outputs, and relevant intermediate parameters in the Appendix. 
The unknown input fields in these cases are supplemented with values 
from other studies. Priority is given to the studies with most similar 
operation conditions for the cases where multiple options to supplement 
an unknown input exist. It is expected that the additional validation 
points have a larger percent difference from the metamodel because the 
correlations, modeling algorithm and unknown values would differ 
slightly. Nevertheless, the metamodel results show great agreement with 
all independent studies. 

Table 1 
Number of curated references used for each developed desalination model.  

Desalination process Ref. No. Selected lit. model 

Thermovapor Compression (TVC)  34 [24] 
Multi-Effect Distillation (MED)  28 [25] 
Humidification-Dehumidification (HDH)  19 [26] 
Reverse Osmosis (RO)  50 [27] 
Electrodialysis (EDS)  40 [28] 
Capacitive Deionization (CDI)  64 [29] 
Total  235   

Table 2 
Validation summary of the metamodels with their corresponding most representative model literature from the literature (Full table in the Appendix).   

TVC MED HDH RO EDS CDI 

Selected lit. model [24] [25] [26] [27] [28] [29]   

Family Thermal Molecular transport 

Product flow rate, Md (kg/s) 0.5787 [0%] 137.9 [0%] 1.156 [0%] 2.087 [0%] 4.051 [0%] 6.138e-5 [-] 
Intake salinity, Cf (g/kg) 35 [0%] 46 [0%] 35 [-] 2 [0%] 3.5 [0%] 2 [0%] 
Intake temp. Tin (◦C) 25 [0%] 28 [0%] 25 [0%] 20 [0%] 20 [-] 25 [-] 
Feed water flow rate, Mf (kg/s) 1.360 [2%] 366.9 [4%] 16.87 [0%] 3.472 [-] 5.401 [-] 6.138e-5 [-] 
Brine flow rate, Mb (kg/s) 0.7811 [-] 234.4 [4%] 15.48 [1%] 1.383 [-] 1.360 [-] 6.138e-5 [-] 
Product water salinity, Cp (g/kg) 0 [-] 0 [0%] 0 [0%] 0.023 [-] 0.35 [0%] 0.70 [-] 
Brine salinity, Cb (g/kg) 60.9 [2%] 72 [0%] 38.2 [-] 4.99 [0%] 13.0 [3%] 2.54 [-] 
Specific energy, Edes (kWh/m3) 239.9 [-] 66.37 [-] 486.5 [-] 0.9099 [-] 0.3688 [9%] 0.5594 [8%] 

[%]: Percent difference. This value is not calculated for the parameters that are not provided explicitly in the literature model. 
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3.1.1. Thermovapor Compression 
A Thermovapor Compression (TVC) desalination system has three 

main components: a condenser, one or more evaporators, and a ther
moejector. For the interests of this study, we consider only a single 
evaporator system although there are models in the literature that 
include multiple cascading evaporators [31,32]. As shown in Fig. 2, TVC 
desalination is driven by a motive steam flow rate (Mp) which mixes and 
is ejected in the thermocompressor with an entrained water vapor flow 
(Me), extracted from the vapor stream produced in the evaporator side. 
The resulting mixed steam stream that supplies necessary heat in the 
evaporator to separate feed water flow rate (Mf) into water vapor and 
brine (Mb) flows by overcoming the boiling point elevation caused by 
salt presence in the fluid [33]. The proposed TVC metamodel does not 
consider circulation pump energy consumption as it is insignificant 
when compared to the total heat input to the system. Table 3 describes 
the relevant TVC metamodel equations which are solved in a forward 
sequential algorithm and implemented through the proposed simulation 
framework at the end of the Results section. 

The steam ejector is a key component of TVC with contrasting 
modeling approaches. Several desalination steam ejector models are 
available in the literature, each one with different assumptions and 
modeling detail. While recent studies present physical models with great 
validity [34,35], they require additional inputs that are not available in 
published TVC models. There are other high-level empirical models 
[36,37], based on graphical operational curves [38], that are suitable for 
the present application but have narrow operational ranges. We found 
the most appropriate model for this study to consist of empirical cor
relations that expand the validity range of the aforementioned opera
tional curves while maintaining a relevant level of abstraction [39]. 

The ejected steam from the thermocompressor supplies heat in one 
side of the evaporator to separate the saline feed water into a water 
vapor and brine streams in the other side. Part of this generated water 
vapor is eventually recirculated in the thermoejector, and the remaining 
is condensed into the product water in the condenser. Heat transfer 
coefficients (HTC's) are modeled trough empirical correlations consis
tently used throughout the literature. El-Dessouky et al. [22] compiled 
evaporator and condenser HTC's with different fouling or flow charac
teristics. We employ the overall temperature-dependent HTC correla
tions that combine such variations and can be found across several 
desalination models with slight variations in significant digits 
[24,40–42]. 

The water vapor stream produced in the evaporator may have 
entrained saline water droplets produced from the impact of the saline 
water jets onto the evaporator tubes. A wire-mesh demister is often used 
to capture such saline droplets in the flow and induces a pressure drop in 
the vapor flow. The demister pressure drop is modeled through empir
ical correlations that consider demister properties such as pad density, 
thickness or wire diameter, and the vapor velocity through the demister 
[22,43–45]. We found that these correlation coefficients were often 
modified without explanation; therefore, we opted to use the correla
tions from a study that provides a reference pressure drop value so that 
we could verify coefficients and units [24]. 

These different approaches to modeling TVC systems can be due to 
different research objectives in each study. For instance, some of the 
early models focus on parametric analysis of a generic TVC system 
[37,45], while the more recent models propose a parametric study with 
updated thermoejector modeling strategies [24]. The models used in 
more recent studies focused on optimization strategies for real-life 
desalination plant models that feature more than a single evaporator 
[32,36]. Finally a different study highlighted another use of a TVC 
model in analyzing the performance of the system in response to feed 
water seasonality changes [31]. 

3.1.2. Multi-Effect Distillation 
Multi-Effect Distillation (MED), like TVC, is based on the evaporation 

of water from a feed saline stream, however, this process features several 
evaporators denominated “effects” which are connected in series. 
Motive steam flows into the first effect only in one side of the heat 
exchanger and the other effects intake the water vapor generated in the 
prior effect (i.e. steam generated in the first effect supplies heat to the 
second effect, the latter into the third effect, and so on through all the 
effects). Electricity consumption in pumps is neglected in the proposed 
MED metamodel as it is insignificant in comparison to the heat input to 
the system. Table 4 details the relevant MED metamodel equations 
which are solved in a forward sequential algorithm that iterates through 
each effect within the system. 

There are three configurations of MED that differentiate in how the 
feed saline water flows with respect to the generated vapor in each ef
fect. Forward feed is the most extensively modeled configuration 
[22,40,46], in which all the saline feed is directed to the first effect, and 
the brine generated in each effect is then directed as feed into the sub
sequent effect. This configuration, however, is not practical in the 

Fig. 2. TVC process schematic.  
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desalination industry because it features the most complex layout [22]. 
In the backward feed configuration, the saline feed is directed to the last 
effect, and the generated brine is passed backwards from each effect 
until the first effect is reached. This implementation has a high risk of 
scaling because the highest salinity of the feed stream occurs in the first 
effect, which also has the highest temperature [47,48]. In addition, BF 
systems require higher pumping power as the saline feed must be 
pumped from lower to higher pressure effects [22,49]. Parallel feed is 
the most reliable MED configuration for desalination because it allows 

the highest distillate production per motive steam consumed and 
generally requires less heat exchanger area [49]. In this configuration 
the feed water stream is split and directed into all effects simultaneously. 
We model a parallel feed MED system with no thermoejector for the 
purposes of this study, as shown in Fig. 3. 

Published MED models present different assumptions regarding fluid 
thermophysical properties. For instance, some models assume constant 
properties such as or average boiling point elevation (BPE), specific heat 
capacity, and latent heat [25]. Others use a combination of constant 

Table 3 
TVC metamodel key equations.  

Component Equation Variables Ref. 

Condenser Mcλc = (Mf + Mcw)cp(Tf − Tin) (1) Mc Vapor flow rate [24] 
λc Latent heat 
Mf Feed water flow rate 
Mcw Cooling water flow rate 
cp Specific heat 
Tf Feed water temperature 
Tin Intake water temperature 

Evaporator Mm(hm − hx=0) = Mfcp(Tb − Tf) + Mdλd (2) Mm Mixed steam flow rate [24] 
hm Mixed steam enthalpy 
hx=0 Mixed steam saturation enthalpy 
Tb Brine temperature 
Md Vapor product 
λd Latent heat 

Demister ΔPde = 9.583 × 10− 5ρde
1.597Vde

0.7197Lde
1.388 (3) ΔPde Pressure drop [24,45] 

ρde Demister packing density 
Vde Vapor velocity in demister 
Lde Demister thickness 

Thermoejector 

Mr =
∑3

n=0

(

AnCn
r +

Bn

En
r

)

+
Cr

Er
C⋅

⎡

⎢
⎢
⎢
⎢
⎣

1

Cr

1
/Er

⎤

⎥
⎥
⎥
⎥
⎦

If Er ≥ 100, 100 ≥ Er ≥ 10  

(4) A Regression constants [38,39] 
B Regression constants 
C Regression constants 

Mr =
∑3

n=0

(

Anln(Cr)
n +

Bn

En
r

)

+
Cr

Er
C⋅

⎡

⎢
⎢
⎢
⎢
⎣

1

ln(Cr)

1
/Er

⎤

⎥
⎥
⎥
⎥
⎦

If 10 ≥ Er ≥ 2  

(5) Cr Compression ratio 
Er Expansion ratio 
Mr Mass ratio 

Evaporator HTC Ue = 1969.5 + 12.057Tb − 8.5989 × 10− 2Tb
2 + 2.5651 × × 10− 4Tb

3 (6) Ue Evaporator heat transfer coefficient [24] 
Condenser HTC Uc = 1719.4 + 3.2063Tc + 1.5971 × 10− 2Tc

2 − 1.9918 × 10− 4Tc
3 (7) Uc Condenser heat transfer coefficient [24,45] 

Tc Steam temperature at the condenser inlet  

Table 4 
MED metamodel key equations.  

Component Equation Variables Ref. 

Condenser (Mcw + Mf)cp(Tf − Tin) = Md, endλd, end (8) Md, end Vapor flow rate from last effect [25,64] 
λd, end Latent heat 
Mf Feed water flow rate 
Mcw Cooling water flow rate 
cp Specific heat 
Tf Feed water temperature 
Tin Intake water temperature 

Evaporator Mpλp = Mf, icp, i(Tb, i − Tf) + Db, iλb, i (9) Mp Steam flow rate [25,64] 
λp Steam latent heat 
Mf, i Feed water flow rate at ith effect 
cp, i Specific heat 
Tb, i Brine temperature in ith effect 
Tf Feed water temperature 
Db, i Distillate produced by boiling in the ith effect 
λb, i Latent heat 

Demister ΔPde = 3.88178ρde
0.375798Vv

0.81317Lpdp
− 1.56114147 (10) ΔPde Pressure drop [22,44] 

ρde Demister packing density 
Vde Vapor velocity 
Lp Packing length 
dp Packing diameter 

Evaporator HTC Ue = 1969.5 + 12.057Ts − 8.5989 × 10− 2Ts
2 + 2.5651 × 10− 4Ts

3 (11) Ts Saturation temperature of steam [24,65] 
Ue Evaporator heat transfer coefficient 

Condenser HTC Uc = 1719.4 + 3.2063Tc + 1.5971 × 10− 2Tc
2 − 1.9918 × 10− 4Tc

3 (12) Tc Vapor temperature at condenser inlet [24,45,65] 
Uc Condenser heat transfer coefficient  
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properties for the water vapor or saline streams and temperature 
dependent correlations for the water stream [50,51]. Finally, there are 
models that feature temperature-based correlations for water and water 
vapor and include salinity effects for seawater thermophysical proper
ties [40]. Like all metamodels presented in this paper, the MED meta
model features thermophysical function libraries that include 
temperature, pressure, and salinity dependence. Most saline and pure 
water properties are calculated using the Thermophysical Properties of 
Seawater library [17,18], and two-phase vapor-steam properties are 
calculated using the XSteam library [21]. Both XSteam and the Seawater 
libraries, however, could be used interchangeably at zero salinity. MED 
effects generally have a decreasing pressure profile which can promote 
vapor flashing as brine water is transferred from a previous effect at 
higher temperature into the subsequent effect. [25,52]. In some in
stances, MED units include flashing boxes to redirect steam for feed 
preheating or to add into the steam stream that is directed into the next 
effect [40,51,53]. It must be noted that flashing is not the main process 
through which vapor is generated, and therefore, some studies do 
neglect it [50]. Our metamodel implements flashing within each effect 
according to the saturation pressure that each effect maintains. 

There are further differences between literature models regarding 
the modeling approach of each effect and the components within. There 
are models that assume constant heat transfer coefficients and fixed heat 
exchanger areas [25] while other models assume equal areas only [40]. 
In these calculations several studies employ the same vapor 
temperature-dependent HTC correlations as the models, described in the 
previous TVC section [50,54]. Within the reviewed MED models, few 
consider small pressure drop caused by the demister within each effect 
[54–56]. Finally, some MED models consider feed preheaters, which are 
heat exchangers before one or more effects that use steam (in some cases 
from an external process) to heat the feed water stream before entering 
the effect [25,46,50]. The energy required in the preheaters is generally 
small compared to the energy involved in water distillation but is found 
in actual case study data [57,58]. Our metamodel incorporates 
temperature-dependent HTC correlations commonly found in thermal 
desalination models [24,40–42], and correlations for the demister 
pressure drop [44]. For simplification, we assume preheating does not 
factor into the system's energy intensity and overwrite the constant feed 
temperature with the target preheat temperature at the desired effect. 
Nevertheless, considering the energy for feed preheating in this case can 
account for an increase in energy intensity of up to 20%. 

These different modeling approaches have been developed to 
analyze different aspects of MED desalination. Early models were used 
in parametric studies of generic systems [40,55]. In the following years, 
studies used MED models to conduct studies of real-life desalination 
plants [50,59,60] and parametric analysis of MED systems with 

thermocompression [51,56,61]. The latest modeling studies focused on 
analyzing the performance of MED desalination coupled with power 
cycles [53,54,62], and exploring the integration with solar energy 
[52,63]. 

3.1.3. Humidification-Dehumidification 
Humidification Dehumidification (HDH) desalination makes use of 

the capacity of dry air to absorb and release moisture through psycho
metric processes. An Open-Air Open-Water (OAOW) HDH system, 
shown in Fig. 4, contains three main components including the dehu
midifier, which fulfills a similar role to the condenser in TVC and MED 
desalination, a heater, and a humidifier. Cool saline water flows into the 
dehumidifier and gets preheated as hot humid air condenses in the other 
side. The intake stream flow is regulated by rejecting some of the pre
heated water as cooling water, and the remaining flows into the heater. 
The feed saline water is heated using the energy released from saturated 
steam inside the heater. The hot saline water is then sprayed in the 
humidifier, where it mixes with dry intake air. In this component the air 
absorbs moisture and exits as hot humid air into the dehumidifier, and 
the remaining water is rejected as saline brine. In the dehumidifier, the 
moisture from the humid air is collected as product water and the 
remaining air is exhausted. Circulation pump and fan energy con
sumption are neglected like the other thermal desalination metamodels. 
Table 5 shows the relevant HDH metamodel equations which are solved 
in a forward sequential algorithm through each component in the 
system. 

The OAOW HDH system can be modified by changing the stream in 
which the heater is located or by closing and recirculating either the air 
or water loop. In addition, there is an air-heated configuration where the 
intake air, as opposed to the feed saline water flows through the heater. 
Both water-heated and air-heated cycles have similar production rates 
and energy input requirements, nevertheless, the air-heated cycle needs 
a larger air flow rate compared to the water heated cycle, and thus re
quires a larger fan and dehumidifier than the water-heated system [66]. 
The air loop in the system can remain open if the intake air temperature 
and humidity are low enough to facilitate moisture absorption, if this is 
not viable, the exhaust air can be recirculated to replace the intake air. 
Fewer instances of closed-water loop systems are found in the literature; 
while Closed-Air Open-Water (CAOW) and Closed-Water Open-Air 
(CWOA) water-heated systems have similar production rates of desalted 
water per steam consumed, recirculating saline water within the system 
requires additional control mechanisms to prevent scale formation 
[67–69]. Therefore, we implement the OAOW configuration for our 
proposed HDH metamodel. 

The HDH process deals with saline water and moist air streams 
whose thermodynamic properties present different assumptions in the 

Fig. 3. MED process schematic.  
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published studies. While all studies use common psychrometric property 
equations for moist air, they differ in saline water thermodynamic 
property calculations with increasing degrees of complexity. For 
instance, there are cases that employ correlations that do not consider 
the presence of salt in the fluid [70] and some that consider salt as the 
only independent variable [71]. The majority of desalination models 
employ either temperature and salinity dependent thermodynamic 
property correlations for saline water [26,72] or correlations that 
consider pressure effects in addition to temperature and salinity [66,73]. 
Like the other desalination processes, we incorporate thermophysical 
property functions that consider temperature, pressure and concentra
tion for saline water [17,18], and moist air property functions with 
temperature, pressure and humidity dependence [23,74,75]. 

The literature presents different modeling approaches to the com
ponents of a HDH system, predominantly in the humidifier. The earlier 
HDH models use humidifier correlations that consider air and water 
flows and temperatures, and mass transfer coefficients [76]. The vast 
majority of studies use either standalone empirical correlations [70,77] 
or a combined approach between energy conservation assisted by nu
merical correlations [78,79]. And finally, one of the more recent studies 
employ iterative numerical methods for modeling the humidifier [66]. 
Similar differences are observed for modeling the heat transfer co
efficients in the system including constant heat transfer coefficients [26] 
or the use of temperature-dependent empirical correlations [72]. We 
implement humidifier sizing calculations through semi-empirical cor
relations highlighted in the literature model as it is one of the few studies 
that discloses parameters for validation [26]. 

The versatility of HDH desalination is reflected in the different ob
jectives for which models have been constructed. Many studies present a 
parametric analysis of a theoretical system for comparing different 
system configurations or showcasing different modeling methods 
[26,66,69,72,77]. However, there is a wide range of models that have 
been developed to analyze and optimize real life systems, including 
small experimental deployments [71,73,80]. Transient modeling ap
proaches enable the simulation of HDH systems at variating conditions 
such as feed water changes due to weather [79] or energy supply vari
ations such as solar power [78] or waste heat from refrigeration [81]. 
Finally, there are also cases that employ HDH modeling for statistics- 
based optimization [70]. 

3.1.4. Reverse Osmosis 
Reverse Osmosis (RO) is the most widely used desalination method 

due to its relatively low energy consumption and adaptability for large 
scale production requirements. Pump energy consumption is considered 
as the main energy input to drive desalination in this process. The main 
component of a RO system is the membrane module, which in most cases 
contains a spiral-wound membrane used to filter product water high 
salinity feed. RO uses electricity as its energy source through a high- 
pressure pump. When the system pump exerts enough pressure on the 
feed side of the membrane to overcome the net pressure difference, 
which includes the hydraulic and osmotic pressures, water is forced 
through the membrane, resulting in a permeated product water and a 
leftover brine stream at a higher concentration. The RO metamodel is 
based on a single-pass, tapered arrangement system as shown in Fig. 5. 

The RO process extracts water from a saline stream through physical 
separation as opposed to phase change; therefore, the osmotic pressure 
calculation becomes particularly important in modeling. Different 
studies present disparate assumptions in calculating colligative proper
ties of saline water. Most published models assume linear dependence 
between osmotic pressure and salt concentration with a constant 
empirical coefficient of proportionality [82–84]. These approaches are 
based on van't Hoff's correlation, which involves temperature and 
salinity and is widely used in RO modeling [85]. Linearization, however, 
is mostly applicable to low salt content and can deviate at higher con
centrations [86]. Other approaches consist in fitting a concentration- 
dependent regression to tabulated data [87]. The proposed RO meta
model employs a subroutine based on van't Hoff's expression in combi
nation of other equations and approximations to expand the validity 
range [88]. 

Table 6 shows the relevant RO metamodel equations that are solved 
in a forward iterative algorithm by adding differential membrane ele
ments to the system until the required desalination objective is achieved. 

Like most RO models, our proposed metamodel employs a solution- 
diffusion model that makes the water and salt fluxes proportional to the 
net force and concentration difference, respectively, across the mem
brane [89]. The proportionality constants in these equations are water 
and salt permeability coefficients that depend on the specific membrane 
and operation of the system. These parameters are not usually included 
in membrane catalogues and therefore the approaches to implementing 

Fig. 4. HDH process schematic.  
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these coefficients vary across the literature. It is common among pub
lished models to assume constant permeability coefficients [87]. These 
are often deduced from actual system measurements through regression 
analysis [82,83,85], or adjusted to match results from commercial 
simulation packages [84]. It is important to note that these coefficients 
tend to be strongly dependent on the feedwater characteristics, system 
specifications, and operational conditions, therefore these values are not 

necessarily interchangeable among models. 
The RO membrane blocks most salt ions from permeating; therefore, 

a high concentration layer is formed at the interface between membrane 
surface and the feed water stream. This phenomenon is called concen
tration polarization and can have significant effects on the water and salt 
fluxes through the membrane as they factor into a mass transfer coef
ficient through the membrane [90]. Concentration polarization is usu
ally modeled as a factor given by the ratio of the wall-permeate and 
brine-permeate concentration differences through thin film theory 
[89]. This poses a challenge since the actual product concentration 
cannot not be known a-priori unless measured and regressed from an 
actual system. There are modeling cases in the literature that concen
tration polarization is not considered [91], or the value for product 
water concentration is assumed to simplify the equations [92]. In many 
cases, the models simplify the calculation by assuming a linear increase 
in brine concentration with respect to the flow path length and using a 
mass balance approach [83,84,87]. The RO metamodel incorporates 
different empirical correlations for calculating this mass transfer coef
ficient, which can be averaged or individually selected according to the 
membrane type and system setup [27,93,94]. In the model validation we 
choose the correlation that best fits the available data. 

There are several analytical levels at which RO systems are modeled 
in the literature. A common approach to modeling single stage systems 
involves treating the flow channel as bulk [95–97]. Within this simpli
fication there are several approaches, such as statistical-mechanical 
models, that require several fitting constants from experimental data 
[22,98], or solving for simultaneous equations in the simplified control 
volume [84,87]. Models based on empirical correlations, however, are 
only valid for the operating conditions, membrane modules, and plant 
configuration used in the statistical regressions, so they do not allow for 
flexibility in terms of modeling different desalination requirements or 
systems. Simplifying the system might not be appropriate for large, 
multi-stage systems since the effects of concentration polarization are 
diminished. More detailed analytical models use finite element ap
proximations and follow an iterative calculation process through the 
discretized membrane elements [27,92]. Higher detail on fluid transport 
can be studied through CFD-based models [99]. The different modeling 
approaches and assumptions are tailored to specific modeling objec
tives. For instance, many studies use RO models to conduct parametric 
studies with different purposes such as exploring theoretical system 
tradeoffs [91,92,95], process optimization [84], or developing case 
studies with actual desalination plants [87]. In addition, RO models 
have been used to study transient effects through dynamic simulations 
[97]. Alternatively, numerical method-based models aim to explore 
more detailed and mechanistic modeling options that do not rely on 
common modeling assumptions [99]. 

3.1.5. Electrodialysis 
Electrodialysis (EDS) is a desalination method that is still in the early 

phases of large-scale commercialization. The EDS process uses an 

Table 5 
HDH metamodel key equations.  

Component Equation Variables Ref. 

Dehumidifier Ma(ha2 − ha3) =
Mw(hw1 − hw0) 

(13) Ma Air flow rate [26] 
ha2 Moist air 

enthalpy 
ha3 Moist air 

enthalpy 
Mw Intake water 

flow rate 
hw1 Saline water 

enthalpy 
hw0 Saline water 

enthalpy 
Humidifier Ma(ha2 − ha1) =

Mfcp(Tw3 − Tw2) 
(14) Mf Feed water 

flow rate 
[26,77] 

cp Specific heat 
Tw3 Brine 

temperature 
Tw2 Inlet water 

temperature 
Humidifier 

(sizing) Lh =

Mf cpM2
a(C1 − C2)

CskAh  

(15) Lh Humidifier 
length 

[26,72] 

C1 Demister 
packing 
density 

C2 Vapor 
velocity 

Lp Packing 
length 

dp Packing 
diameter 

Cs Fitting 
parameter 

k Mass transfer 
coefficient 

Ah Cross- 
sectional 
area 

Heater Mf(hw, 2 − hw, 1) =
Mpλp 

(16) Mp Motive steam 
flow rate 

[26] 

λp Latent heat 
Dehumidifier 

HTC 
Uc = 1719.4 +
3.2063Tc +

1.5971 × 10− 2Tc
2 

− 1.9918 ×
10− 4Tc

3 

(17) Tc Vapor 
temperature 
at condenser 
inlet 

[24,45,65] 

Uc Condenser 
heat transfer 
coefficient  

Fig. 5. RO process schematic.  
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electrical driving force to transport salt ions across ion selective mem
brane arrays. The lack of a thermal process and low fouling potential due 
to flow reversal ability make EDS an attractive option for desalination 
[104]. The process is mostly viable for low production capacity and low 
salinity ranges. In this desalination process, two different saline flows, a 
dilluate stream and a (saline) concentrate stream, flow into several 
channels in the EDS stack. An EDS stack contains many alternating anion 
and cation exchange membrane pairs, and the spaces in between are 
called cells. When a voltage is applied to the stack through a pair of 
electrodes located each end, negatively charged salt ions flow through 
the anion permeable membranes towards the cathode and are stopped 
by the cation permeable membranes. Conversely, positively charged salt 
ions flow through the cation permeable membranes towards the anion 
and cannot flow through the cells that contain anion permeable mem
branes. This process results in the formation of cells with alternating 
concentration where the dilluate and concentrate solutions are simul
taneously desalted and concentrated, respectively, as shown in Fig. 6. 
The main energy consumption in the system occurs through the elec
trical input in the EDS stacks. Circulation pump energy is not considered 
in this analysis as it is insignificant in comparison t the operational 
conditions from the literature. 

The EDS process involves ion transport within channels in the stack 
as a response to an electrical force; therefore, the electrical conductivity 
of the fluid is one of the most important thermophysical properties to 
consider. Some studies use a linear equation between conductivity and 
fluid concentration using ion conductance [28,105], while other studies 

propose higher order numerical correlations [106,107]. There are also 
models that include temperature effects through regression approach 
[108]. It must be noted that for all the instances, the employed corre
lations are limited to relatively low concentrations, which corroborates 
the most common concentration ranges this method usually operates in. 
Table 7 describes the relevant EDS metamodel equations which are 
solved in a forward sequential algorithm. 

The EDS process is constrained by the Limiting Current Density 
(LCD), which occurs at the maximum voltage for which water molecules 
begin to dissociate. Thus, if exceeded, it can result in a significant drop in 
overall efficiency of the system and increasing the risk of scaling [109]. 

This phenomenon occurs in the dilluate channel at the interface 
between the desalted stream and the membrane surface, therefore, it is 
highly dependent on the boundary layer formed which involves the 
specific flow and surface characteristics [110]. There are few studies 
that propose models that do not consider LCD explicitly; however, its 
effect is factored into their numerical correlations as a data-driven co
efficient [105,107]. Thus, it must be noted that while there are several 
approaches to LCD modeling, these solutions are valid only on a case-by- 
case basis and might not be appropriate to be used interchangeably. In 
some studies, LCD is calculated through a polynomial regression 
[111,112]. Most EDS models in the literature, however, assume a power 
law relation that involves flow velocity and salt concentration and fit the 
equation to measured data from a bench system [113–115]. Some 
complex analytical solutions based on boundary layer analysis have 
been proposed; however, this still requiring the input of measured 

Table 6 
RO metamodel key equations.  

Component Equation Variables Ref. 

Membrane permeation Jw = Kw[(Pb − Pp) − (βπb − πp)] (18) Jw Water flux [27,85] 
Kw Water permeability 
Pb Feed (brine of previous element) pressure 
Pp Permeate pressure 
β Concentration polarization factor 
πb Feed (brine of previous element) osmotic pressure 
πp Permeate osmotic pressure 

Concentration polarization 
β = Rejexp

(
Jw

kcp

)

− Rej+ 1  
(19) Rej Observed salt rejection [27,89,97,100] 

kcp Mass transfer coefficient 
Local salt rejection Rej = 1 −

Cp

Cf  

(20) Cp Permeate concentration [27,97] 
Cb Feed (brine of previous element) concentration 

Mass transfer coefficient 
kcp = 0.023

(
DT

dH

)

(Re)0.875(Sc)0.25  (21) dH Hydraulic diameter [101] 
λ Empirical multiplier 

kcp = λ
(

DT

dH

)

(Re)0.50(Sc)1/3  (22) v Flow velocity [102] 
l Element length 

kcp = 0.664
(

DT

dH

)

(Re)0.5(Sc)0.33
(

dH
L

)
0.5  (23) h Channel thickness [103] 

D25 Diffusivity of salt through membrane at 25 ◦C 

kcp = 0.808
(

6vD2
25

hl

)1
3
(

DT

D25

)2
3  

(24) DT Diffusivity of salt at actual temperature [93] 

Pump 
Pm =

Qf
(
Pf − P0

)

ηpumpηmotor  

(25) Pm Motor power [91] 
Qf Feed flow rate 
P0 Intake pressure 
ηpump Pump efficiency 
ηmotor Motor efficiency  

Fig. 6. EDS process schematic.  
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parameters [116]. Our EDS metamodel calculates the LCD through a 
power law relation as the literature model provides the necessary co
efficients and exponents that are usually undisclosed in other studies 
[28]. 

There are several differences in the computational approach between 
EDS models. The majority opt for defining a control volume for either a 
single EDS stack or multiple stacks in series and solving the transport 
equations as a bulk process [28,107,108,117]. Others maintain the large 
control volume in the EDS stacks but use numerical approaches that 
require iterations for a solution to converge [106,118]. A more recent 
modeling approach discretizes the EDS stack into finite elements and 
applies the modeling equations through the flow channel length [119]. 
Considering EDS modeling equations are largely based on empirical 
correlations that are tailored to specific operational conditions, it is 
unlikely yet that a single modeling approach can successfully represent 
other studies. 

The EDS modeling approach and underlying assumptions are related 
to the modeling objective in each study. There are some cases for 
parametric analysis or optimization of a theoretical system [107,117], 
design of an actual plant [28], or dissemination of modeling approaches 
for alternate operational methods [106,120]. The latest studies propose 
new modeling methods with the aim of expand operational ranges or 
generalize applicability to a wider range of systems [108,119]. 

3.1.6. Capacitive Deionization 
Capacitive Deionization (CDI) is a relatively new technology that 

makes use of an electrochemical force to adsorb ions from aqueous so
lutions [121]. A conventional CDI system consists in a cell made by two 
parallel porous electrodes with a separator in between through which 
saline water flows. As shown in Fig. 7, during the charging phase, a 
voltage difference is applied and salt ions in the solution migrate into the 
electrical double layers that are formed along the inner surfaces of the 
porous electrodes [122]. Adsorbed ions are retained in the electrodes 
until the applied voltage is reversed or the electrodes are shorted. This 
releases the ions back into the saline water stream regenerating the 
electrodes for the next cycle [123]. Thus, desalination through CDI 
consists of alternating charging and discharging cycles in a CDI cell to 
produce an alternating desalted water and brine stream, respectively. 
There are several variations of CDI cell architecture. For cases where the 
flow is parallel to the electrodes configuration, it is common to imple
ment ion selective membranes between the flow channel and the elec
trode, and there are also instances where the flow occurs perpendicular 
and through the electrodes [122]. Although CDI technologies remain 
largely experimental with a lot of theoretical work done in the field, we 
believe it is important to include them in this study to explore how it 
compares to benchmark operation of conventional desalination 
processes. 

Modeling the mechanism through which ions are retained within the 
porous electrode is still a matter of ongoing research. The latest 
modeling approaches consider an electrical double layer composed of a 
constant ionic surface formed by the salt ions adherence to the elec
trodes, and a diffusive layer where the electric potential decreases 

Table 7 
EDS metamodel key equations.  

Component Equation Variables Ref. 

Limiting Current Density ilim = saCΔub (26) 

ilim Limiting current density 

[28] 

s Safety factor 
a Regression constant 
CΔ Degree of desalination 
u Linear flow velocity 
b Regression constant 

Cell pairs Ncp =
Qd

αwΔ*u  
(27) 

Ncp Number of cell pairs 

[28] 
Qd Product flow rate 
α Volume factor 
w Cell width 
Δ Cell thickness 

Electrical current Ist =
zFQdCΔ

ζNcp  
(28) 

Ist Stack current 

[28] 
z Valence number 
F Faraday constant 
ζ Current utilization factor 

Stack Lprac =

(

ln
(

CbCf

CfbCd

)

+
ΛρCΔ

Δ

)

zFCduΔα
(

Cd

Cb
+ 1 +

ΛCdρ
Δ

)

ilimβζ  
(29) 

Lprac Flow path length 

[28] 

Cb Concentrate outlet salinity 
Cf Dilluate feed salinity 
Cfb Concentrate feed salinity 
Cd Dilluate outlet salinity 
Λ Equivalent conductivity 
ρ Membrane area resistance 
β Area factor  

Fig. 7. CDI process schematic.  
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exponentially towards the center of the flow [124]. The implementation 
of electrical double layer theory in CDI is still under development, and 
there are several approaches in the literature models. Reduced-order 
models in the literature consider voltage drops across the whole CDI 
stack through a higher analytical resolution [11,125,126]. The subse
quent tier in analytical resolution employ bulk modeling of the fluid 
without considering the boundary layer effects at the electrode interface 
[127]. The majority of models found in CDI, however, employ a mech
anistic approach to electrical double-layer modeling [128–130]. 

CDI desalination is inherently a dynamic process as operation al
ternates between charging and discharging as desalination and con
centration, respectively, occurs. There are different modeling 
approaches to considering time dependence at different spatial resolu
tions in the literature, and this is still a topic of current research. The 
literature presents design models that consider time marching only by 
executing the modeling algorithm at a system level through each time 
step [29,130]. Within this approach, some studies propose models that 
require measuring an experimental system and fitting equation param
eters [127,128,131]. Other approaches discretize the flow channel into 
differential elements and execute the modeling algorithm through 
spatial iterations [129,132]. Mechanistic models employ numerical 
method schemes to iterate through discretized space and time [133]. 

CDI desalination is still in experimental stages, so therefore most 
models focus on mechanistic approaches at a fluid flow analytical scope 
that would help understand ion transport and concentration changes. 
The alternative approaches to modeling scope and methods cater to the 
particular objectives of the study. These include parametric optimiza
tion [130], dynamic modeling to investigate transient effects [127,134], 
determining electronic resistances across the stack [131], and the study 
of constant current or constant voltage operation [132,135]. On the 
other hand, there are several studies where generalized models are 
deployed with the purpose of modeling CDI at a system scope; for 
instance, exploring options of stack coupling for energy recuperation 
[129]. It is important to note that these objectives aim to advance the 
knowledge in CDI desalination and there is still not a robust system-level 
model although a modeling framework has been proposed [136] and 
generalized models have been used to determine contributions to energy 
consumption [29]. For this reason, we implement a generalized 
modeling approach in our metamodel which simplifies the CDI stack 
into an equivalent Randles circuit [29] where the ion exchange mem
branes, current collectors, and solution are modeled as a resistor with 
resistance R1, and the electrodes are modeled as a charging capacitor 
with fixed capacitance C and fixed resistance, R2, connected in parallel 
as shown in Fig. 8. The circuit is solved using a forward sequential al
gorithm for every timestep during charging and discharging. The vari
ation in salt concentration in the product stream is calculated through 
the changes in R1 at each timestep using the CDI metamodel equations 
described in Table 8. This assumption neglects energy of the circulation 
pump which is minimal in comparison to the energy input in the CDI 
stack at the operation conditions from the literature. 

3.2. Simulation framework 

Standardizing desalination modeling algorithms involves defining 
common sets of inputs and outputs for all desalination models. There is a 
notion in previous studies of defining an operational range for desali
nation processes according to the production flow rates and feed water 
concentrations [2,5,6,9]. These parameters impose practical limits of 
operation and therefore would be appropriate to group them as common 
inputs to the models. Furthermore, these parameters represent the same 
physical concept in all methods and therefore can be directly compared. 
Defining which parameters can be compared and the order of relevance 
in which analysis should be directed is the basis for the proposed cross- 
comparison framework. Therefore, we propose a standard classification 
of inputs and outputs which include the General, Family and Specific 
analytical hierarchies. Such standardization resolves the computational 
order discrepancies in existing models and thus enables cross- 
comparison. 

3.2.1. General variables 
Any desalination process intakes a feed stream of saline water (Mf) at 

a certain intake temperature (Tin) with salt concentration (Cf) and 

Fig. 8. Randles circuit equivalent of a MCDI system charging (left) and discharging (right).  

Table 8 
CDI metamodel key equations.  

Component Equation Variables Ref. 

Membranes, 
current 
collectors, 
and solution 

R1 = s+
l

kAe  

(30) R1 Equivalent 
resistance 

[29] 

s Internal 
resistance 

l Stack length 
k Electrical 

conductivity at 
time t 

Ae Electrode area 
Stack operation 

tdischarge =

tcharge

(
1

RR
− 1

)

(31) tdischarge Discharging 
time 

[29] 

tcharge Charging time 
RR Recovery ratio 

Stack 
(charging) 

V = I1(R2 +

R1) − I1R2exp 
(

− t
R2C

)

(32) V Applied 
voltage 

[29] 

I1 Applied 
current 

R2 Equivalent 
electrode 
resistance 

t Operation 
time 

C Equivalent 
electrode 
capacitance 

Stack 
(discharging) Vdischarge = −

Vexp
(
− t
RtC

)

(33) Vdischarge Discharge 
voltage across 
CDI stack 

[29] 

Rt Equivalent 
stack 
resistance  
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through an energy input extracts a product water stream (Md) with 
negligible salt concentration (Cd) and a brine stream flow rate (Mb) with 
a higher salt concentration (Cb). Therefore, a mass balance for water can 
be written as: 

Mf = Md +Mb (34) 

And salt: 

Mf Cf = MdCd +MbCb (35) 

Eqs. (34) and (35) hold for any desalination method. 
The molecular transport desalination processes, RO, EDS, and CDI, 

are driven by either an external physical or electrostatic force inputted 
through a pair of electrodes or a pump. This force must be high enough 
to overcome intermolecular forces, such as osmotic pressure or inter
molecular electrostatic attractions that are higher than those of pure 
water due to the presence of salt. This separation results in two liquid 
streams, the product stream with a lower salt content and the brine 
stream with a higher salt concentration. Thermal desalination systems, 
including TVC, MED, and HDH, extract water from the saline feed 
through a phase change, therefore, the product concentration can be 
assumed zero and the salt balance reduces to: 

Mf Cf = MbCb (36) 

A recovery ratio (RR), which indicates the proportion of product 
water flow rate (Md) recovered from feed water flow rate (Mf), can be 
defined for all desalination processes such that: 

RR =
Md

Mf
(37) 

The parameters Mf, Mb, Md, Cf, Cb, Cd, Tin, and RR form part of the 
“General” parameter hierarchy. This category corresponds to variables 
that are numerically equivalent in all desalination methods and there
fore can be directly compared with one another. 

3.2.2. Family variables 
The proposed framework for cross-comparison between distinct 

desalination processes takes into first consideration the clear distinction 
between thermal desalination processes, which use thermal energy to 
induce a phase change to separate water from salt, and molecular 
transport processes, which conversely use an external force to separate 
water and salt through molecular dynamics. All desalination processes 
have a power input (Pdes) to the system required to overcome intermo
lecular attractions so that separation can occur. This input can be either 
thermal, electrical, or mechanical energy depending on the method and 
can be normalized by Md to obtain an energy intensity of desalination: 

Edes =
Pdes

Md
(38)  

It is important to note that electrical and thermal power cannot be 
directly compared as they are region and market dependent. Therefore, 
although the numerical value of Edes describes the same parameter 
within desalination, it must be considered as a Family Variable. Future 
research can investigate appropriate conversion factors to complement 
the direct comparison of General desalination-related operation vari
ables such as flow rates, salinities, and end performance ratios as pre
sented in this study. 

Thermal desalination processes including TVC, MED, and HDH 
desalination in this study are driven by the heat released from conden
sation of motive steam inputted to the system at a pressure Ps. This must 
supply enough heat to evaporate water from the saline feed the pro
duced vapor and must later be condensed using cooling water or brine 
acting as a heat sink. The nature of this process suggests metrics for 
cross-comparison that include motive steam flow rate, heat exchanger 
area, and cooling water flow rate. The relevant metrics of performance 
are the Gain Ratio (GR) and the Specific Cooling Water (sMcw): 

GR =
Md

Mp
(39)  

sMcw =
Mcw

Md
(40)  

where Mp is the motive steam flow rate, and Mcw is the cooling water 
flow rate. The parameters Ps, Mp, GR, and sMcw are numerically equiv
alent only within the desalination methods corresponding to the thermal 
family. Therefore, it is appropriate to cross-compare these metrics and 
parameters directly only between TVC, MED, and HDH. The formal 
separation of these desalination families is further corroborated by the 
thermophysical properties involved in the desalination process. Thermal 
desalination models employ, for instance, specific heat capacities, latent 
heat of evaporation, and boiling point elevation while molecular 
transport models involve other properties, such as osmotic pressure and 
conductivity. 

3.2.3. Specific hierarchy 
The remaining parameters inherent to each desalination method 

form part of the Specific Hierarchy. These variables are numerically 
compatible only within the specific desalination method and cannot be 
cross compared with different methods as they are not related. This 
hierarchy becomes particularly useful when analyzing different opera
tion conditions for the same desalination system. The full list of specific 
parameters corresponding to each model are given in Table 9 of the 
following section. 

3.2.4. Cross-comparison enabling simulation framework 
The proposed simulation framework imposes that cross-comparison 

between different desalination technologies can only occur across 
equal hierarchy levels for which the parameters have the same numer
ical and physical meaning. It is necessary to maintain constant input- 
output structures in the metamodels to enable a direct cross- 
comparison at the different hierarchy levels and facilitate sequential 
algorithm solution. All desalination processes can be cross-compared at 
the General Hierarchy level, while only models of the same desalination 
family can be cross-compared across the Family Hierarchy level. Finally, 
only variations within the same desalination process can be compared 
using data corresponding to the Specific Hierarchy level as it has the 
same representation across technologies and thus allows for fair and 
meaningful and fair comparisons. It is important, however, to consider 
parameters that are incompatible for cross-comparison but could still 
provide valuable insight on system operation and performance. For 
instance, when comparing two different methods, there will not be 
direct cross-comparison of specific variables; however, identifying them 
can yield valuable information about the system that can factor into an 
indirect comparison. Table 9 summarizes the inputs and outputs for each 
model under the proposed analytical hierarchy structure. 

4. Discussion 

In the first part of this section, we deploy the proposed simulation 
framework using the base representative literature model inputs in a 
high-level, cross-comparative analysis. The similar energy consumption 
patterns observed, even though the operational regimes are discon
nected, justify the framework as appropriate for joining seemingly 
disconnected models. The similar operation patterns throughout the six 
studied desalination processes suggest that conservation laws form a 
theoretical performance curve that represents ideal operation. However, 
actual performance depends on system design and operating conditions, 
which in this analysis, are expressed as energy intensity patterns based 
on meta-analysis of the literature. The performance curves provide ev
idence that a system can operate in sub-optimal regimes. 

For the second part of this section, we apply the framework in a full 
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cross-comparative study between MED and RO; the desalination 
methods that currently have one of the largest market shares in seawater 
desalination, greatest maximum production capacity per unit, and 
highest technology growth trends [137]. Furthermore, we chose MED 
and RO to highlight that new desalination technologies must outcom
pete these processes in terms of operation and costs. The resulting cross- 
comparative analysis highlights that MED has energy consumption that 
is an order of magnitude greater than that of RO but uses a different type 
of energy. Such difference is justified by the cost of energy and main
tenance for MED which must be an order of magnitude smaller than RO 

for it to be competitive. The results help define a technical benchmark 
that upcoming desalination technologies must overcome in order to be 
competitive. 

4.1. Application of the analytical framework in intended operation of 
desalination methods 

Fig. 9 shows the distribution of Md and Cf values collected from the 
reviewed literature. We consider operation points from studies that 
describe an actual desalination plant, model, or bench-scale system. 

Table 9 
Input and output hierarchy for cross-comparison.  

Hierarchy level Parameters 

1. General 
Parameters that are 
numerically compatible 
among all desalination 
technologies 

Inputs:   

• Target product Flow rate, Md (kg/s)  
• Intake Salinity, Cf (g/kg)  
• Intake Temp. Tin (◦C) 

Outputs:   

• Product Flow rate, Md (kg/s)  
• Feed water flow rate, Mf (kg/s)  
• Brine flow rate, Mb (kg/s)  
• Product water salinity, Cp (g/kg)  
• Brine salinity, Cb (g/kg)  
• Recovery ratio, RR 

2. Family 
Parameters that are 
numerically compatible only 
among desalination 
technologies within the same 
family 

Thermal desalination Molecular transport desalination 
Inputs   

• Motive steam pressure, Ps (kPa) 
Outputs   

• Specific energy (thermal), Edes (kWh/m3)  
• Motive steam flow rate, Mp (kg/s)  
• Gain ratio, GR  
• Sp. cooling water flow rate, sMcw (kg/kg) 

Inputs   

• Target recovery ratio, RR 
Outputs   

• Specific energy (electrical), Edes (kWh/m3) 

3. Specific 
Parameters that are valid 
only with a particular 
desalination method and is 
not compatible with any 
other 

TVC MED HDH RO EDS CDI 
Inputs   

• Operating 
temperature, Tv 

(◦C)  
• Cond. area, Ac 

(m2)  
• Compression 

ratio, CR  
• Condenser 

effectiveness, ηc 

Outputs   

• Evap. area, Ae 

(m2)  
• Sp. Area, sA, 

(m2/(kg/s)) 

Inputs   

• Top brine 
temp. Tbt 
(◦C)  

• Last effect 
brine temp. 
Tb (◦C)  

• Feed water 
temp. Tf 

(◦C)  
• Brine 

salinity, Cb 

(g/kg) 
Outputs   

• Cond. area, 
Ac (m2)  

• Sp. Area, sA, 
(m2/(kg/s)) 

Inputs   

• Heater outlet air 
temp., Thigh (◦C)  

• Hum. air inlet 
temp., Ta1 (◦C)  

• Humidifier outlet 
air temp., Ta2 

(◦C)  
• Condenser outlet 

air temp., Ta3 

(◦C)  
• Hum. air inlet rel. 

hum. φ1  

• Humidifier outlet 
air rel. hum. φ2  

• Condenser outlet 
air rel. hum. φ3  

• Feed water flow 
rate, Mf (kg/s)  

• Condenser outlet 
water temp. Tw1 

(◦C)  
• Cond. HT coeff. 

Uc (kW/m2◦C)  
• Humidifier cross- 

sectional area, Ah 

(m2)  
• Vapor mass 

transfer 
coefficient, k (kg/ 
(sm3)) 

Outputs   

• Cond. area, Ac 

(m2)  
• Hum. Height, Lh 

(m)  
• Air mass flow 

rate, Ma (kg/s)  
• Total intake 

water flow rate, 
Mw (kg/s) 

Inputs   

• Feed pressure, Pf 

(bar)  
• Feed velocity, vf (m/ 

s)  
• Permeate pressure, 

Pp (bar)  
• Module length, l (m)  
• Channel width, h 

(mm)  
• Module area, a (m2)  
• Module head loss, hl 

(bar)  
• Module design 

velocity, v0 (m/s)  
• Membrane water 

permeability at 
25 ◦C, Kw25 L/(m2.h. 
bar)  

• Membrane salt 
permeability at 
25 ◦C, Ks25 (m/h)  

• Temperature 
coefficient for water 
transport, Kwt (K)  

• Temperature 
coefficient for salt 
transport, Kst (K) 

Outputs   

• Number of stages, 
Nstage  

• Number of modules, 
Nmodules  

• Membrane area, Am 

(m2)  
• Average water flux, 

Jw (L/(m2h)) 

Inputs   

• Product 
Concentration, Cd (g/ 
kg)  

• Linear flow velocity, 
u (m/s)  

• Cell thickness, del (m)  
• Cell width, w (m)  
• Length per stack, Lst 

(m)  
• Anion selective 

membrane resistance, 
ρa (Ohm.m2)  

• Cation selective 
membrane resistance, 
ρc (Ohm.m2)  

• LCD Constant, a (A. 
sbm(1-b)/keq)  

• LCD Constant, b  
• Safety factor, s  
• Volume factor, α  
• Area factor, β  
• Current utilization 

factor, ζ 
Outputs   

• Concentrate feed 
mass flow rate, Mfb 

(kg/s)  
• Concentrate feed 

concentration, Cfb (g/ 
kg)  

• Stack current, Ist (A)  
• Stack voltage, Ust (V)  
• Number of cell pairs, 

Ncp  

• Number of Stacks, Nst 

Inputs   

• Normalized 
Current, Inorm (A/ 
m2)  

• Normalized 
Capacitance, Cnorm 

(F/g)  
• Normalized Internal 

resistance, snorm 

(Ohm.m2)  
• Normalized 

electrode 
resistance, R2, norm 

(Ohm.m2)  
• Electrode area 

density, m (g/m2)  
• Charging step time, 

tcharge (s)  
• CDI Stack volume, 

Vcdi (L)  
• Channel thickness, l 

(mm)  
• Charge efficiency, 

ηcharge  

• Discharging 
efficiency, ηdischarging  

• Max. Salt 
adsorption 
capacity, SAC (mg/ 
g)  

• Electrode area, Ae 

(m2) 
Outputs   

• Desorption 
Capacity, (%)  

• Max. Voltage, (V)  
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Each study does not necessarily disclose all these parameters; therefore, 
the resulting median points only suggest typical operation from the 
literature. The meta-analysis shows that thermal desalination methods 
have a very similar Cf median with an average of 38.5 g/kg. Conversely, 

EDS and CDI in the molecular transport methods have close Cf medians 
with an average of 1.74 g/kg. RO is the only molecular transport desa
lination method with instances in the literature that spans from molec
ular desalination to thermal desalination feed salinity ranges. 
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Fig. 9. Distribution of operation parameters in the literature for each desalination method.  

Table 10 
Outputs overview of cross-comparative simulations at case study operation points.  

Method Mf [kg/s] Cf [g/kg] Cp [g/kg] Md [kg/s] RR [− ] Edes [kWh/m3] Mb [kg/s] Cb [g/kg] 

TVC 1.360  35  0 0.5787  0.43  239.9 0.7811  60.9 
MED 366.9  46  0 137.9  0.38  66.37 234.4  72 
HDH 16.87  35  0 1.156  0.069  486.5 15.48  38.2 
RO 3.472  2  0.023 2.087  0.60  0.9099 1.383  4.99 
EDS 5.401  3.5  0.35 4.051  0.75  0.3688 1.360  13.0 
CDI 6.138 × 10− 5  2  0.70 6.138 × 10− 5  0.50  0.5594 6.138 × 10− 5  2.54  
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Unsurprisingly, product salinity is negligible for the thermal processes 
while the molecular transport methods typically result in concentrations 
around the potable water limits of 0.6 g/kg. The distributions show that 
generally MED and RO can achieve similar product flow rates from the 
highest feed salinity levels while incurring in the lowest Edes. 

Table 10 shows the metamodel simulation results using the most 
representative models as particular case studies from the literature. 
These could be considered optimal operation conditions. Thermal 
desalination methods show significantly greater energy intensity and 
lower recovery ratios but higher feed salinities than the molecular 
transport methods. 

Fig. 10 shows the simulation points and the operation ranges from 
the meta-study. The system performance is summarized by recovery 
ratio and energy intensity where desirable operation is located close to 
RR = 1 and lowest Edes. The molecular transport desalination methods 
show on average better performance as they achieve high recoveries 
with the lowest salinity values. MED and CDI exhibit typical recovery 
ratios but at a higher energy intensity. TVC has smaller energy intensity 
but also smaller water recovery. A limitation in this approach is that 
neither RR nor Edes captures the degree of desalination in the feeds 
stream, and a better metric could include Edes be normalized by (Cf −

CP). This, however, cannot be conducted with the range values from the 
meta-study as they do not correspond to a single desalination system 
constrained by mass transfer and energy equations. Specific recovery 
ratios, energy intensity, and other important parameters can be calcu
lated using the metamodels for a given desalination system. Comparison 
to typical operation can help decision making between desalination 
methods or identify cases suboptimal operation, and simulation can 
provide more valuable insights into the tradeoffs within a system. 

Fig. 11 shows the resulting surfaces formed by the response of energy 
intensity (Edes) to changes of ±20% in Md and Cf from the base case 
operation described in the most representative model for each desali
nation method. The magnitude of a representative parameter of the 
system's size is represented by the diameter of the gray circles included 
in each point within the surface. All desalination technologies follow a 
similar sensitivity to variations Md and Cf regardless of the operational 
space they were designed for and independent from the physical phe
nomena that drives salt and water separation. 

The TVC surface shown in Fig. 11.A is the exception to the direct 
proportionality between Cf and Edes presented in other desalination 
technologies. In this analysis, the compression ratio (CR) is always fixed 
at 1.85, and the motive steam pressure (Ps) remains constant at 572 kPa 
according to the reference model inputs. The motive steam flow rate 

input to the system (Mp) must be adjusted to supply the required energy 
for desalination. There is a very small increase of the required Mp in 
response to increasing Cf. A greater Cf elevates the boiling point of the 
solution; however, this additional energy demand is compensated for by 
recirculating some of the produced steam as entrained steam into the 
thermoejector. The saturation temperature of the entrained steam in
creases in response to the boiling point elevation. Thus, the imple
mentation of a thermocompressor stabilizes the energy demands of the 
desalination system with respect to changes in Cf. Since the entrained 
steam flow rate is adjusted to supply the required energy, the expansion 
ratioand the mass ratio remain constant, and the output is always su
perheated steam. The system size follows a similar response pattern to 
changes Md as larger flow rates demand larger systems to provide 
enough surface area for the required heat exchange. 

The implemented simulation framework imposes common design 
constraints across all the desalination metamodels. There is an exception 
in the HDH metamodel because, unlike the other metamodels, HDH has 
Mf as an input with a numerical value much greater than Md that remains 
constant through all the calculated points in the surface. Thus, a con
stant, large saline water stream is unnecessarily heated independent 
from the specified Md, resulting in a large, constant energy consumption 
that becomes smaller when normalized by larger values of Md as shown 
in Fig. 11.C. The model energy consumption does not present a strong 
response to changes in Cf because the additional energy required due to 
the variation in the specific heat capacity is insignificant within the 
studied Cf range in comparison to the energy involved in heating the 
bulk flow of the specified Mf stream. The marker diameter is scaled 
according to the dehumidifier area, which positively correlates to the 
product flow rate as the other desalination technologies. 

The intended operational surface for MED, RO, EDS, and CDI pre
sents similar responses of a direct proportionality between feedwater 
salt concentration and energy intensity as shown in Fig. 11.B, D, E, and 
F. This agrees with the response of colligative properties: boiling point 
elevation for MED, osmotic pressure for RO, and electrochemical po
tential for EDS and CDI to changes in salt concentration. Practically, 
energy intensity (Edes) only depends on Cf is the in these desalination 
models. Conversely, Edes does not show a significant dependence on Md; 
instead, the product water flow rate drives the system size: condenser 
area for TVC and MED, dehumidifier area for HDH, membrane area for 
RO, and theoretical (not rounded) number of cell pairs for EDS and 
electrode area for CDI. 

Advantages in some desalination methods lie on the practical limits 
to the system size, such as fouling or scaling potential, maintenance, and 
space availability as well as the quality and type of energy available on 
site to run the process. It is particularly evident in the molecular trans
port processes, whose representative cases have similar Cf, Md and Edes 
magnitudes, that the advantages corresponding to system size are 
associated to the system's capital costs. Constraints indicated by the 
energy intensity of each process are associated to energy availability and 
cost. For instance, the magnitudes of energy intensity become irrelevant 
for the practical deployment of MED and HDH as these systems can be 
optimized to run on low-grade steam. TVC, on the other hand, requires 
high-grade steam which can incur higher operating costs. Finally, RO, 
EDS, and CDI use electricity, which is the most refined form of energy 
between these desalination methods and depending on the market and 
location, could be significantly more expensive. 

4.1.1. Modeling regimes 
The scalability of both the actual desalination methods and the 

corresponding models play a key role in dictating which can handle 
specific Md and Cf ranges and therefore pose limitations in their 
deployment. The MED and RO processes are modular, as system size can 
be easily increased by adding an additional effect or stage to increase the 
heat transfer or membrane area, respectively, and adjusting the corre
sponding operation conditions to satisfy production requirements. 
Furthermore, these metamodels do not rely on numerical correlations 
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that constrict them to a specific operational point. The other meta
models, on the other hand, present limitations in the validity of the 
correlations used to model key components such as the thermoejector in 
TVC, the humidifier in HDH, the limiting current density in EDS, and the 
equivalent resistances in CDI. It must be noted that most of these cor
relations are regressed from measured data valid for the specific 
component at the specific operational conditions and extrapolating to 
different Cf and Md ranges might not be appropriate. 

The operational regime plots in Fig. 11 include a ±20% deviation 
from the intended operational point that the literature model is designed 
for. It is important to highlight that even with this expanded operational 
ranges, the desalination models present no overlap in Md. Specifically, 
the smallest range corresponds to CDI, which is found as a bench scale 
system with a Md ranging from 4.9 × 10− 5 to 7.4 × 10− 5 kg/s. Then, 
there is a large gap of four orders of magnitude for the Md ranges where 
most of the models for small scale systems operate without any inter
section. TVC ranges from 0.46 to 0.69 kg/s, HDH from 0.92 to 1.39 kg/s, 
followed in increasing order by RO with an Md range from 1.66 to 2.49 
kg/s and EDS with a range from 3.24 to 4.86 kg/s. Finally, the opera
tional range for MED is an order of magnitude greater ranging from 110 
to 159 kg/s. On the other hand, the simulations present significant 
overlap in Cf. CDI and RO have complete intersection of Cf values 
ranging from 1.6 to 2.4 g/kg. This is followed by EDS with a Cf range 
from 0.29 to 4.2 g/kg. TVC and HDH have a complete intersection of Cf 
ranging from 28 to 42 g/kg. Finally, the MED simulations have partial 
intersection of about 37% with TVC and HDH because it ranges from 
36.8 to 55.2 g/kg. 

It is important to emphasize that these ranges specify the operational 
ranges for the representative literature models and not the possible 
operational range for each desalination method. Further research within 
each desalination method is required to find more accurate correlations 
that are applicable in wider operational ranges to minimize the 
modeling range gaps. All desalination models exhibit similar responses 
to variations of Cf and Md and are observed despite the completely 
different operational ranges that each simulation case presents. 

Therefore, the second part of this analysis deploys the proposed simu
lation framework and evaluates performance of the desalination 
methods within similar operational ranges. The models for CDI and EDS 
remain highly experimental while TVC and HDH are intended for very 
low production rates imposed by practical constraints that are not 
inherent to the desalination process. MED and RO are the most scalable 
technologies for both actual systems and theoretical modeling. Given 
that these two technologies are the predominant desalination processes 
in the desalination market, analyzing their performance at low, middle, 
and high Cf and Md ranges would set an appropriate benchmark in both 
modeling capabilities and desalination efficiency that other technolo
gies would compete with. 

4.2. Cross-comparative simulation in common operational spaces 

The first step for a fair assessment of MED and RO desalination 
performance is defining common operational conditions for deploying 
the developed simulation framework. The notion of classifying models 
according to a Low, Normal, and High production capacity has been 
previously documented among the thermal desalination processes [6]. 
We deploy the metamodels usingCf values of 2, 18, 35, and 50 g/kg for 
this study, which correspond to the limit for conventional irrigation, 
brackish water, sea water and brine processing, respectively. At each 
salinity level, we simulate product water flow rates of 2.3, 70, 138, and 
1157 kg/s which correspond to common ranges for bench scale systems, 
industrial processing, municipal and large-scale systems, respectively. 
The feed water temperature is maintained at 24 ◦C for all the simula
tions. For each RO simulation case, the model attempts the maximum 
recovery ratio RR while minimizing feed pressure Pf. On the other hand, 
the MED simulations maintain a constant Ps at 31.2 kPa while mini
mizing the required steam flowrate Mp. Brine salt concentration Cb is 
fixed at 72 g/kg for all operational MED regimes. This limit corresponds 
to the maximum solubility limit of CaSO4 at common parallel feed MED 
operating temperatures [138]. At each [Cf,Md] regime (16 total), vari
ations of ±5% and ±10% in both Cf and Md (total of 25 simulations per 

Fig. 11. Surface plots at ±20% from the design point for different desalination methods, all plots are optimized to minimize system size. (A): TVC – base case (Md =

0.5787 kg/s, Cf = 35 g/kg) [24], (B) MED – base case (Md = 137.9 kg/s, Cf = 46 g/kg) [25], (C) HDH – base case (Md = 1.156 kg/s, Cf = 35 g/kg) [26], (D) RO – base 
case (Md = 2.087 kg/s, Cf = 2.0 g/kg) [27], (E) EDS – base case (Md = 4.051 kg/s, Cf = 3.5 g/kg) [28], (F) CDI – base case (Md = 6.138 × 10− 5 kg/s, Cf = 2.0 g/ 
kg) [29]. 
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[Cf,Md] pair) to account for variations that can occur in actual opera
tion. Table 11 shows the results of the cross-comparative simulation, 
[Cf,Md] pair results are averaged in this analysis. 

4.2.1. General hierarchy 
Following the proposed cross-comparative framework, we first 

analyze the parameters within the General Hierarchy. The variables Md, 
Cf, and Tin are fixed for MED and RO simulations within the same 
operational space. The motive steam pressure (Ps) remains constant for 
all MED simulations, and the motive steam flow rate (Mp) is optimized to 
supply enough heat for evaporation. 

Fig. 12 shows the fitted linear regression recovery ratio for different 
feed water salt concentrations and different product flow requirements. 
The metamodels consistently find an optimum system performance for 
most of the simulation cases. The RO metamodel shows a small nu
merical instability at 2 g/kg feed salinity and 1157 kg/s resulting from 
the mass transfer coefficient calculation at those opposing extreme 
values. Future research would be required to produce general, unified 
mass transfer coefficient correlations. The results show that optimized 
MED and RO systems can achieve similar RR at low salinities. At higher 
concentrations, however, RO consistently shows higher RR values than 
MED with the largest difference being 10% at 50 g/kg. For both MED 
and RO, the system can extract less water as feed higher salinity in
creases while incurring in greater energy intensity. 

The average RR for all Md scenarios can be approximated an inverse 
linear relationship to Cf which define optimal mass transfer capabilities. 
Ideal recovery can be described as a linear relationship with slopes of 
− 0.012 and − 0.014 for RO and MED, respectively, and an intercept of 
1.0. In the case of MED, greater feed water concentrations lead to higher 
boiling point elevation. The operating temperatures of the system, 
however, are constrained by the temperature of motive steam and thus 
RR decreases for higher Cf. Conversely in the case of RO, this tradeoff 
occurs because greater concentrations lead to higher osmotic pressure to 
overcome by the high-pressure pump. Operating pressure is constrained 
by the maximum allowable pressure in the membrane module to prevent 
membrane rupture. The total drop in recovery ratio from the lowest to 
highest Cf values is about 60% for RO and almost 70% for MED. The 
regressed intercept is 1.0 suggesting that, theoretically, zero salinity 
levels would make full recovery possible. 

Both MED and RO have a similar response of Mb to changes in Cf at all 
the studied Md regimes. A direct proportionality is maintained for which 
the greater Cf results in larger brine production. At the Md range between 
2.3 and 138 kg/s, MED and RO have comparable brine production for all 
Cf values. However, at higher production rates of 1157 kg/s this simi
larity only holds up to 35 g/kg feed concentration. At the higher Cf 
ranges, MED shows significantly higher Mb values that can be about to 
50% greater than the magnitude of Mb in RO. This is an important dif
ference to consider as brine disposal can have negative environmental 
effects and result in expensive treatment processes. 

Brine concentration in MED is constant at 72 g/kg as it is imposed in 
the system design as a safe maximum salinity limit to prevent fouling. 
On the other hand, RO presents lower Cb values for lower concentrations 
up to brackish water ranges. The operation conditions for MED and RO 
are dictated by solubility limits of salt to prevent fouling or scaling. From 
a modeling standpoint, brine concentration in MED can be defined a 
priori based on solubility limits of salts in the feed water stream [138]. 
RO, on the other hand, requires iterative simulations because solubility 
limits occur at membrane interface where concentration polarization 
takes place [139]. The resulting brine concentrations in RO are not 
consistently proportional to the magnitude of Md because the model 
employs an iterative procedure involving discrete increments of mem
brane area. For RO cases of greater salinity, the discharged brine can 
have concentrations close to 90 g/kg. This could be problematic as 
increased concentrations lead to precipitation and therefore localized 
fouling [48]. Furthermore, disposal of brine at greater concentrations 
increases the risk of pollution and could be subject to regulation 
depending on the location. 

The final parameter of interest within the general hierarchy is the 
product salt concentration Cp. It is expected to have no salt concentra
tion in MED as it employs a distillation process with demisters that 

Table 11 
Cross-comparative simulation results.   

MED RO 

Md [kg/s] Cf [g/kg] Mb [kg/s] Cb [g/kg] Cp [g/kg] RR [− ] Edes, th [kWh/m3] Mb [kg/s] Cb [g/kg] Cp [g/kg] RR [− ] Edes, el [kWh/m3]  

2.3  2  0.065  72  0  0.97  68.5  0.14  45  0.05  0.95  3.3  
18  0.76  72  0  0.76  70.7  0.73  86  0.25  0.78  4.5  
35  2.2  72  0  0.53  75.2  2.0  90  0.53  0.57  6.5  
50  5.7  72  0  0.32  86.5  4.0  90  0.90  0.39  1.2  

70  2  2.0  72  0  0.97  68.5  4.2  42  0.05  0.95  3.3  
18  23  72  0  0.76  70.7  27  86  0.32  0.77  4.5  
35  67  72  0  0.53  75.2  59  88  0.53  0.57  6.5  
50  175  72  0  0.32  86.5  126  90  0.90  0.39  1.2  

138  2  3.9  72  0  0.97  68.5  8.5  43  0.09  1.0  3.3  
18  46  72  0  0.76  70.7  45  89  0.26  0.78  4.5  
35  132  72  0  0.56  75.2  120  89  0.53  0.57  6.5  
50  343  72  0  0.32  86.5  241  89  0.90  0.39  1.5  

1157  2  33  72  0  0.97  68.5  76  47  0.13  1.0  3.3  
18  382  72  0  0.77  70.7  348  83  0.25  0.78  4.5  
35  1109  72  0  0.53  75.2  963  88  0.52  0.57  6.5  
50  2888  72  0  0.32  86.5  1951  81  0.89  0.38  3.3  

Fig. 12. Recovery ratio for RO at different feed salinities.  
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prevent entrained saline droplets from combining with the produced 
water vapor. However, salt ions can permeate the membrane in RO and 
result in a flow with non-negligible Cp. MED, as expected, results in 
negligible product concentrations independent of Md or Cf. RO, on the 
other hand, presents product concentrations ranging from 0.05 g/kg up 
to 0.90 g/kg at feed concentrations of 2 g/kg and 50 g/kg, respectively. 

The General Output analysis results also suggest it is important to 
consider what the product water will be used for after desalination. 
While MED consistently results in water with negligible salt content, the 
RO permeate product can have salt concentrations up to 0.90 g/kg at 
high Cf. As a reference point, the World Health Organization defines 
palatable concentration limits for human consumption as follows: 
0.2–0.3 g/kg for chloride, 0.2 g/kg for sodium, and 0.6 g/kg for total 
dissolved solids [140]. If the product water is used as municipal water, it 
must go through a post-desalination process regardless of what desali
nation method is used, however, the MED process will consistently 
produce water with negligible salt content as opposed to RO which could 
involve additional desalination. 

4.2.2. Family hierarchy 
MED and RO correspond to the thermal and molecular transport 

desalination families, respectively, and therefore, their family parame
ters cannot be directly cross-compared. However, it is important to 
consider them independently to understand potential tradeoffs associ
ated to each system. 

Fig. 13 shows the relation between mean Edes across the studied Md 
ranges and Cf. All curves are superimposed for each desalination method 
indicating that Pdes and Md are directly correlated with a 1:1 ratio. Edes is 
the main point for cross-comparison in other studies whose analysis is 
usually restricted to sea water salinity ranges between 35 and 42 g/kg. 
The results closely match the energy consumption found at these con
centrations for both MED and RO [12,13,141]. Furthermore, the results 
lie within the generalized ranges of 73 kWh/m3 and 2–4 kWh/m3 for 
MED and RO, respectively, determined in a previously conducted life 
cycle assessment analysis [142]. The change in Edes is positively corre
lated to Cf for both technologies. This can be expected from the increase 
in boiling point elevation and osmotic pressure that result from 
increasing feed concentration in MED and RO, respectively. It is 
important to note that Edes in both methods has a similar gradient with 
respect to Cf at low concentrations; however, while energy intensity in 
RO remains linear with a constant gradient, the gradient for MED starts 
increasing after roughly 25 g/kg thus, deviating from a linear relation. 

Overall, Edes remains between 51 and 13 times larger for MED than 
RO. This difference is attributed to the greater energy requirements 

involved in phase change which is inherent to the MED process. Despite 
the fact MED consistently shows a larger energy intensity, it must be 
noted that unlike RO, the process can run on low-grade energy. This 
could make the cost irrelevant if heat from a different process is avail
able at a lower cost. For instance, in the MENA region, the average 
operating cost for RO can be about 4.6 times greater than MED, pre
sumably due to low oil prices; however, the average total costs for both 
methods is relatively similar with differences of 0.04 $/m3 [143]. The 
difference in the cost of energy is further extended for indirect solar 
desalination plants where the cost of water produced through RO can be 
up to about 13 times greater than MED even though the associated 
specific energy for desalination for RO can be between one and two 
orders of magnitude lower than that for MED [2]. RO presents a higher 
risk of fouling as it involves a permeation process, and therefore, pre
processing and maintenance can contribute to greater costs of desali
nation at higher feed salt concentrations and production rates. About 
14% of the operating cost can be attributed to chemicals and post 
treatment [144] and pretreatment while structural and administrative 
tasks can add to 46% of the total cost [145]. The large discrepancies in 
energy consumption and total water cost further support the need of a 
methodological approach to benchmarking and cross-comparison as 
opposed to restricting the analysis to energy consumption alone. 

Table 12 shows the remaining Family Hierarchy parameters for 
MED. It is evident that to achieve greater product flow rates, the system 
must generate more water vapor and therefore incur larger energy re
quirements with motive steam for evaporation independently of the 
value of Cf. Within a fixed Md, there is a consistent positive correlation 
between Mp and Cf as increased salt concentration leads to a greater 
boiling point elevation and therefore larger energy requirements for 
evaporation. 

The gain ratio (GR) for MED decreases as Cf becomes greater in all Md 
ranges. From an energetic standpoint, the results show that the MED 
system becomes slightly less efficient as Cf increases, independent from 
Md, since less product water can be produced by unit of motive steam 
used. There is about a 20% drop in GR between the lowest and highest Cf 
values. 

Like GR, the specific cooling water (sMcw), is independent of Md and 
decreases with a total drop of about 40%. This highlights the fact that 
the MED is driven by evaporation and that the system must operate at 
higher temperatures because the boiling point is elevated with the 
presence of salt. The larger temperature differences between steam in 
the last effect and the intake cooling water improve heat transfer and 
reduce the requirements for cooling water. This would suggest that the 
MED process is optimized for larger salt concentrations, regardless of the 
required production. 

The Family Hierarchy can give a notion of the performance of the 

Fig. 13. Energy intensity (Edes) averaged across the studied Md ranges in 
response to changes in feed water concentration. 

Table 12 
Thermal family hierarchy results.   

MED 

Md [kg/s] Cf [g/kg] Mp [kg/s] GR [− ] sMcw [g/kg]  

2.3  2  0.25  9.3  2.9  
18  0.25  9.0  2.8  
35  0.27  8.5  2.5  
50  0.31  7.5  1.7  

70  2  7.5  9.3  2.9  
18  7.7  9.0  2.8  
35  8.2  8.5  2.5  
50  9.5  7.5  1.7  

138  2  15  9.3  2.9  
18  15  9.0  2.8  
35  16  8.5  2.5  
50  19  7.5  1.7  

1157  2  124  9.3  2.9  
18  128  9.1  2.8  
35  136  8.5  2.5  
50  156  7.5  1.7  
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desalination process and the tradeoffs associated with each method, but 
it cannot yield comparative conclusions as MED and RO come from 
different desalination families. The resulting GR from MED indicates 
that at the system produces about 9.3 times the mass flow rate of motive 
steam and reduces to about 7.3 with increasing Cf. This occurs due to the 
increasing energy required to overcome the higher intermolecular 
attraction between salt ions and water molecules resulting from higher 
feed salinities. Greater Md flow requirements and higher Cf consistently 
result in greater motive steam demand. It is important to note that MED 
can work with low-grade steam and thus be combined with an existing 
process. Steam availability can constrain the production flow rates 
achieved through MED. An external steam generator can supply the full 
or partial steam load, but this results in additional operating costs. This 
Family parameter analysis highlights a tradeoff in MED where greater Cf 
results in lower GR, or increased steam demands per product water flow 
rate, but also results in a deceasing sMcw and therefore less discharged 
cooling water. With respect to MED, this hierarchy yields valuable 
insight on the limitations imposed by energy availability and water 
supply and discharge. 

4.2.3. Specific hierarchy 
The Specific Hierarchy is redundant in this analysis since the studied 

systems are completely different, and therefore, the parameters cannot 
be cross compared. Nevertheless, a brief independent assessment of the 
resulting representative system size in response to changes in feed 
salinity can be important to consider. As shown in Table 13, the repre
sentative system size is expressed in the condenser area (Ac) in the case 
of MED and the total membra area (Am) in the case of RO. In both 
desalination methods, the larger the production requirements require a 
larger system. Furthermore, for most cases the system size is also posi
tively correlated to Cf. At 2 g/kg and with a product flow rate of 1157 
kg/s, the membrane area for RO is larger and deviates from the trend. 
This occurs because the model considers such large flow rate as many 
parallel pressure vessels, therefore increasing one module in series, since 
adding a membrane module is equivalent to a discrete increase in system 
area, actually results in a larger total area than required for the desired 
Md. It must be noted that the condenser area in MED is the effective area 
in the tube bundles of the heat exchanger while the system area in RO is 
the total surface area of the spiral-wound membrane modules. Gener
ally, RO systems are more flexible in terms of size as membrane modules 
can be added to an existing system with relative ease as opposed to a 
condenser in MED which would require replacing the entire component. 

4.3. Limitations 

Although the presented simulations support the viability for 

integrating different desalination methods into the proposed frame
work, the major limitation remains at the validity ranges for intake 
product flow rate (Md) and intake salinity (Cf) of the representative 
models. Most of the constructed models, including TVC, MED, HDH, and 
RO, are validated within a 10% difference of their corresponding liter
ature model and show excellent agreement with more than 24 inde
pendent publications in total. However, models such as EDS or CDI that 
rely on empirical correlations and coefficients that are valid only for the 
specific system and operating conditions have a much narrower opera
tional range that does not completely intersect with the other models. 
Therefore, the proposed framework can only be deployed at these 
reduced ranges potentially showing incomplete results. Bench scale 
systems will need future modeling upgrades to represent electric energy 
consumption for a commercial system that could potentially include not 
only the electric energy for electrodes but also for circulation pumps. 
More appropriate general models for these desalination processes are a 
subject of ongoing research and updating the existing models can solve 
this limitation. The hierarchical parameter classification framework 
presented in this paper provides a clear structure to easily incorporate 
published models which can either expand the capabilities of the current 
metamodels or incorporate new models for novel desalination methods. 

The present study focuses on specific energy consumption and the 
associated operational cost as a key parameter for cross-comparison. We 
suggest that the type of energy associated to MED and RO justifies the 
current market share panorama based on the costs of steam and elec
tricity generation. It is possible that inadequate operation and mainte
nance are more expensive than energy itself in an actual facility. This is a 
view of energy which is an important piece of the puzzle, but there are 
many other aspects of desalination technologies which are out of the 
scope of this work. Additional studies, such as a full lifecycle analysis 
can provide insights into levelized cost calculations and therefore better 
conclusions about the financials associated to each desalination process. 

5. Conclusions 

This work aims to evaluate technologically possible operation con
ditions for different desalination technologies, which set targets to 
achieve or exceeds in the development of new desalination systems. This 
study developed reduced-order desalination metamodels and a frame
work to conduct a cross-comparative analysis by classifying input and 
output parameters according to an analytical hierarchy. The meta
models show excellent agreement with published data as the results 
have a maximum 9% error when compared to the results of models in 
the existing literature. The proposed framework compares the general 
outputs of (a) Thermovapor Compression (TVC), Multi-Effect Distilla
tion (MED), Humidification-Dehumidification (HDH) in the thermal 
family of desalination methods, and (b) Reverse Osmosis (RO), Elec
trodialysis (EDS), and Capacitive Deionization (CDI) in the molecular 
transport family of desalination methods, at different operational con
dition ranges. The study provided a detailed comparative analysis be
tween the most popular desalination technologies, MED and RO. 

The first part of this study used the developed framework for a 
comparison between the studied desalination methods and their corre
sponding operational points from the most representative model in the 
literature. The results highlight the importance of system scalability in 
catering towards wider ranges of salt concentrations and production 
flow rates. The simulation results at the operational conditions pre
sented in the literature for each representative model highlights the lack 
of overlap in product flow rate ranges that the models can simulate, 
which makes cross-comparison more challenging as some correlations 
cannot be used beyond the intended operational range. Indeed, there are 
instances where operation ranges are reported in the literature, but the 
number of undisclosed parameters makes their implementation difficult. 
Future research would be required to expand modeling capabilities of 
the presented metamodels by linking additional modeling correlations. 
Nevertheless, integrating the current metamodels into a single 

Table 13 
Relevant specific family hierarchy results.   

MED RO 

Md [kg/s] Cf [g/kg] Ac [m2] Am [m2]  

2.3  2  37  53  
18  41  55  
35  49  96  
50  63  155  

70  2  1138  1653  
18  1262  1694  
35  1481  2934  
50  1915  4684  

138  2  2242  3218  
18  2486  3314  
35  2918  5779  
50  3772  9304  

1157  2  18,821  128,411  
18  20,873  28,015  
35  24,499  48,353  
50  31,671  78,113  
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simulation frame is appropriate as the existing models exhibit partial 
overlaps in feed water salt concentration and show similar sensitivity to 
feed salinity independent from product flow rate. Specifically, the 
operation points from the most representative literature models employ 
a salinity range of 1.6 to 2.4 g/kg for both Capacitive Deionization and 
Reverse Osmosis, a range of 28 to 42 g/kg for Thermovapor Compres
sion and Humidification-Dehumidification desalination, and a range of 
37 to 55 g/kg for Multi-Effect Distillation, and there is a common in
crease in energy intensity for each increase in feed salinity. The pre
sented comparative analysis suggests this relationship is consistent for 
MED and RO when testing wider operation ranges. 

From a modeling perspective, small scale, or newer desalination 
methods such as TVC, HDH, EDS, and CDI, do not yet offer the required 
system scalability reflected in ranges for which correlations hold valid, 
to compete with the established MED and RO processes. This is partic
ularly evidenced in the humidifier calculations for HDH, the limiting 
current density in EDS, and the ion adsorption in CDI. All of these critical 
parameters are estimated with empirical relations that are specific to the 
system and operating conditions and are not generalizable to larger 
system scales and other operational regimes. MED and RO are con
structed in a modular form for either evaporator effects or membrane 
units governed by less constrained equations that can be easily added to 
expand capacity and therefore cover the largest operational spaces. 
Until new developments within the other desalination processes allow 
such scalability, the commercial competitiveness of TVC, HDH, EDS and 
CDI would be limited to the specific conditions of low production flow 
rates and in the case of the molecular transport processes, low salt 
concentrations that are found in the literature. Further research is 
required within each desalination method to enable generalized pre
dictive modeling to facilitate adoption and fair cross-comparison in the 
long term. 

The second part of the study uses the simulation framework in a 
cross-comparative analysis between MED and RO, which are the most 
widely used desalination technologies in the current market. We find 
that recovery ratio can be expressed as an ideal operation line that can 
be used to assess how far from ideal operation a system is. These func
tions give targets for existing facility managers to understand if their 
technology is optimally designed or operated. The first concluding 
remark from this analysis points at the wide operational regimes in the 
conducted simulations. The operational space considered in product 
water flow rates ranges from bench to large scale production, and feed 
salinity levels concentrations range from irrigation to brine. The ability 
to cover such a large range of operational regimes is the first objective 
that experimental desalination technologies need to reach to become 
competitive in the marketplace. The conducted comparative analysis 
identified the tradeoffs, strengths, and weaknesses that each system has 
through a systematic review of General-, Family-, and System-level pa
rameters. This can also be used to identify potential niche opportunities 
that experimental desalination methods could target. For all ranges, 
energy intensity is an order of magnitude larger for MED than RO. This 
difference results from the greater energy requirements involved in 
phase change in the MED process and can be equalized by the higher cost 
of electricity compared to low grade steam. Furthermore, at high feed 
salinities MED shows 50% greater brine production values than RO, 
whose discharged brine can have concentrations close to 90 g/kg, while 
MED restricts brine concentration at 72 g/kg. In addition, MED product 
concentration is consistently negligible as opposed to RO for which 
product concentration ranges from about 0.1 g/kg to 0.9 g/kg for feed 
concentrations of 2 g/kg and 50 g/kg, respectively. Therefore, although 
MED incurs a larger energy intensity, the lower energy costs and greater 
controllability of brine and product streams justify such a difference. For 
actual desalination plants, the thermodynamic differences between MED 
and RO result in similar utility costs due to the variation in the costs of 
thermal and electrical energy. Furthermore, besides energy availability 
and costs, other considerations in selecting the type of desalination plant 
involve available space for the plant, system lifetime, and local 

regulations regarding brine disposal, including temperature, quantity, 
and salinity. 

In conclusion, energy intensity alone or isolated model parameters 
are not appropriate for determining the viability of desalination pro
cesses. Instead, an inclusive approach relating model inputs and outputs 
across the same analytical hierarchy clearly outlines the energetic 
tradeoffs that a desalination system presents. Taking this into account, 
the best desalination method is the one that fulfills the operational re
quirements while recognizing energy availability and its costs. Practical 
constraints, such as the available space for the desalination facility and 
the disposal of the brine, also play a major role in establishing the most 
suitable desalination system. Overall, this study developed an analytical 
framework to desalination modeling because it allowed for systemic 
comparisons among all desalination methods. 
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