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Preface to "Ecosystem Service and Land-Use Changes
in Asia: Implications for Regional Sustainability”

The aim of this Special Issue (SI) of Sustainability is to provide insight into how land use, with its
interaction with historical land management, has configured the services provided by ecosystems.
This SI presents case studies that explore the impacts of direct and indirect drivers affecting the
provision of ecosystem services in Asian countries, including China, India, Mongolia, Sri Lanka, and
Vietnam. Findings from these empirical studies contribute to developing sustainability in Asia at
both local and regional scales.
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team for their effective assistance and cooperation.
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Editors
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This Special Issue focuses on qualitative and quantitative analyses of ecosystem
services (ESs) specifically toward sustainability in Asia. Asia is expected to experience
population growth, peaking around 2030-2060 [1], which will likely result in unpredictable
socio-economic changes that will present new challenges for land management. Sustainable
land and natural resource management will play a crucial role in addressing these issues in
the region. In particular, assessing land-use change and its effects on ESs is necessary to
foster regional sustainability.

In response to the trade-offs in multiple land use, the concept of ESs has been intro-
duced to find synergies between nature conservation and other aspects of human wellbeing.
In recent years, many studies have addressed the impacts of land-use change on bundles of
ESs by considering the influences of direct and indirect factors, e.g., region-specific changes
in population and other socio-economic statuses. These case studies provide insight on how
land use, with the interaction of historical land management, has configured the services
provided by ecosystems. Thus, the findings from such empirical studies contribute to
developing sustainability in Asia at both local and regional scales.

This Special Issue includes fifteen research papers that explore the impacts of direct
and indirect drivers affecting ES provision in Asian countries, including China, India,
Mongolia, Sri Lanka, and Vietnam. In this editorial, we briefly describe the contributions of
each paper and how the analysis revealed the changes in ESs and could contribute to the
intervention for regional sustainability in Asia.

The driving factor most frequently discussed in the Special Issue is urban devel-
opment. The world’s urban population is expected to nearly double by 2050, making
urbanization one of the most disruptive developments. Yang and Liu [2], in their study
titled “Spatio-Temporal Evolution and Driving Factors of Ecosystem Service Value of Urban
Agglomeration in Central Yunnan”, examined the spatiotemporal pattern of urban land
changes in central Yunnan and found a significant decline of ecosystem service values
(ESVs). The study highlights the need to have a balance between ecological conservation
and urban development.

In examining the impacts of land change, scenario analysis is an effective method for
providing implications for future land use planning and development. Yang and Su [3], in
their study titled “Multi-Scenario Simulation of Ecosystem Service Values in the Guanzhong
Plain Urban Agglomeration, China”, investigated the response of ESVs to land use change
in an urban agglomeration under different future scenarios and the trade-offs among
various ESVs. Peng et al. [4], in their study titled “Evaluation of ESV Change under Urban
Expansion Based on Ecological Sensitivity: A Case Study of Three Gorges Reservoir Area
in China”, applied the ecological sensitivity approach as a basis for predicting future urban
expansion. These scenario assessments provide insight into ecosystem conservation under
sustainable urbanization by predicting changes in urban land expansion that affect ESVs. In
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general, the scenario approach is applicable to other urban ecosystems. Athukorala et al. [5],
in their study titled “Ecosystem Services Monitoring in the Muthurajawela Marsh and
Negombo Lagoon, Sri Lanka, for Sustainable Landscape Planning”, examined the impacts
of urbanization on the natural landscape and ecosystem services of Muthurajawela Marsh
and Negombo Lagoon (MMNL), an important wetland ecosystem in Sri Lanka. Between a
business-as-usual scenario and an ecological protection scenario, the study suggests the
latter as the more desirable future scenario because ecological protection policies can help
flatten the MMNL’s curve of continuous ecological degradation.

In contrast to these comprehensive scenario analyses, empirical approaches that focus
on specific ecosystem services provide detailed evidence to practitioners in urban planning.
Du et al. [6], in their study titled “The Impact of Impervious Surface Expansion on Soil
Organic Carbon: A Case Study of 0-300 cm Soil Layer in Guangzhou City”, showed that
impervious surface expansion leads to soil organic carbon (SOC) loss and that retrofitting
residential areas with low-rise buildings can significantly reduce SOC loss compared to
the urbanization of agricultural land. For a large-scale development, Zhang and Hu [7]
analyzed the effect of topography on ES in their study titled “Spatial Variation and Terrain
Gradient Effect of Ecosystem Services in Heihe River Basin over the Past 20 Years”. They
showed that terrain gradient effects have a significant impact on ESs in inland watersheds,
providing a scientific basis for optimizing local ecological patterns.

Two case studies in India are examples of analyses in which climate change scenarios
were introduced in order to provide implications for climate change adaptation measures.
Chandra et al. [8], in their study titled “Investigation of Spatio-Temporal Changes in Land
Use and Heat Stress Indices over Jaipur City Using Geospatial Techniques”, estimated
the rise of thermal stress in urban areas in India based on land use and climate change
scenarios. They applied physical indicators to assess urban conditions during various
periods of thermal stress. This detailed spatial analysis of environmental changes in urban
spaces is an important contribution to urban planning that takes into account urban ESs
such as green space structure. Mitra et al. [9], in their study titled “Assessment of the
Impacts of Spatial Water Resource Variability on Energy Planning in the Ganges River
Basin under Climate Change Scenarios”, simulated future water availability by applying
climate change scenarios to examine the risks facing existing and planned power plants.
The results provide development planners, energy planners, and investors with information
on the spatial distribution of power plants that would be at risk, allowing them to make
more accurate decisions regarding the siting of future power plants.

Asia also needs to address the vulnerability of arid ecosystems to climate change.
Wang et al. [10], in their study titled “Evaluation of Qinghai-Tibet Plateau Wind Erosion
Prevention Service Based on RWEQ Model”, assessed the use of wind erosion control
services as a way for improving the quality of the ecological environment. They identified
factors governing the spatial differentiation of wind erosion control services and showed
that the ES can be improved by reverting agricultural land in this area to grassland and
controlling desertification.

Indirect drivers such as indigenous and local knowledge, technology, and financial
assets play a major role in influencing the direct drivers of change in nature, nature’s contri-
bution to people, and quality of life at different spatial and temporal scales [11]. Ulziibaatar
and Matsui [12], in their study titled “Herders’ Perceptions about Rangeland Degradation
and Herd Management: A Case among Traditional and Non-Traditional Herders in Khentii
Province of Mongolia”, focused on traditional and non-traditional pastoralists’ land man-
agement. Herders play essential roles in sustaining Mongolia’s economy and rangeland
conditions. They found that pastoralists are willing to cooperate with local managers in
rangeland management, providing implications for future management regimes.

Case studies exploring new systems in modern societies can provide insights into
future natural resource management regimes in Asia. Pham et al. [13], in their study titled
“Food Waste in Da Nang City of Vietnam: Trends, Challenges, and Perspectives toward Sus-
tainable Resource Use”, investigated the extent of food waste generation at the consumption
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References

stage, the eating habits of consumers, and the potential for reusing food waste as feed. They
proposed both consumer waste prevention and waste management as effective measures
for sustainable resource use. From a broader perspective, Morey et al. [14], in their study
titled “Towards Circulating and Ecological Sphere in Urban Areas: An Indicator-Based
Framework for Food-Energy-Water Security Assessment in Nagpur, India”, proposed a new
framework of indicators to address integrated food, energy, and water security in urban
areas, based on the principles of a new concept called the Circular Ecosphere (CES). They
concluded that food—energy—-water nexus thinking can help establish the linkages between
different resource management sectors and policies, thereby facilitating the application
of CES.

As a method for exploring the nature of institutions aimed at conserving and restoring
ecosystems, participatory approaches have an effective role in encouraging the participation
of diverse stakeholders. Ratnayake et al. [15], in their study titled “Land Use-Based
Participatory Assessment of Ecosystem Services for Ecological Restoration in Village Tank
Cascade Systems of Sri Lanka”, applied a participatory approach involving the integration
of local knowledge, expert judgements and land use systems attribute data to assess the ESs.
Chen et al. [16], in their study titled “Payments for Watershed Ecosystem Services in the
Eyes of the Public, China”, showed that the public had limited knowledge of the payment
for ESs schemes. Therefore, improving public acceptance is essential for more effective
payment schemes, and further research is needed on the impact of payment schemes on
the public.

The integration of participatory methods and scientific simulation is also important in
the context of coastal water resource management. Kumar et al. [17], in their study titled
“Scenario-Based Hydrological Modeling for Designing Climate-Resilient Coastal Water
Resource Management Measures: Lessons from Brahmani River, Odisha, Eastern India”,
applied a participatory modeling to evaluate current status and predict future conditions
of river water quality, which is critical for people’s livelihood in the region. The integration
of participatory approach and computer simulation modeling, with the active participation
of stakeholders, can enhance the science—policy interface for natural resource conservation
and help co-generate future options.

In conclusion, this Special Issue presents case studies relating to the management of
lands, natural resources and ESs in Asia. A variety of methods are employed, depending
on the intended policy intervention, ranging from studies of individual services to more
comprehensive ES assessments, studies that consider direct and indirect factors, and policy-
oriented studies that explore with stakeholders how future institutions could be introduced
into the society. It is noteworthy that continued efforts to address issues of ecosystem
change and sustainability in Asia require not only monitoring of Asia’s diverse ecosystems,
but also recognition of the various values that can influence human engagement and
policy decisions.
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Abstract: Urbanization and human activity have recently resulted in land use/cover change (LUCC),
which has had a detrimental effect on the biological environment, on keeping the ecosystem’s
sustainable growth and on comprehending the ecosystem’s quality and changes over the past
20 years in the central Yunnan urban agglomeration. The equivalent factor method and hotspot
analysis were used to analyze the spatio-temporal changes in land use and ecosystem service value
(ESV) in the urban agglomerations of central Yunnan province, and the effects of land use change
on ESV were then examined. This study is based on the grid data of land use in 2000, 2005, 2010,
2015, and 2020. Finally, Geodetector was used to investigate the possible causes of ESV. The results
showed that: (1) The urban agglomerations in central Yunnan’s land-use structure and pattern clearly
changed between 2000 and 2020, with continual declines in grassland, cultivated land, and woodland,
and constant increases in construction land. There was significant growth in both speed and area.
(2) The average ESV of the land decreased consistently, the hotspot areas shrank, and the cold-spot
areas grew as the ecosystem service function declined and the total amount of ESV decreased by
1.517 billion Yuan. These events were mostly explained by an increase in construction land and a
decrease in grassland, cultivated land, and woodland. (3) The synergistic effect of numerous factors
is what causes the change in ESV in the urban agglomerations of central Yunnan. The key forces
behind ESV change in the research area were land-use intensity, normalized difference vegetation
index (NDVI), slope, and people density. The results can help decision makers establish policies for
ecological conservation and land use.

Keywords: land-use change; ecosystem service value; hotspot analysis; Geodetector; central Yunnan
urban agglomeration

1. Introduction

The level of social and economic development worldwide has altered substantially as
urbanization has accelerated. Humans continue to seek development from nature during
this phase. Numerous issues, including climatic warming, biodiversity loss, and aggravated
soil erosion, have been brought on by the growing population, unsustainable land use
patterns, and excessive demand for resources [1,2]. As a result, ecosystem functions
have been severely compromised, endangering the long-term welfare of people and the
sustainable development of ecosystems. In this setting, it is crucial for human survival
and growth to control ecosystem quality and change, identify internal root causes of
these issues, and implement appropriate solutions [3]. There are numerous indicators
to track the dynamic changes in ecosystems, but few can accurately capture the value
and expense of ecological deterioration [4-6]. Ecosystem service value may quantitatively
evaluate ecosystem service value in monetary units, indicating the ecological consequences
caused by diverse activities and effectively connecting ecosystem study with management
decisions [7-11]. This concept has increasingly gained popularity in geography, ecology,
and other related sciences.
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Costanza et al. adopted the research method of economics, introduced “willingness to
pay”, and conservatively estimated the value of ecosystem services per unit area of different
types of ecosystems and the economic value of global ecosystem services. Furthermore,
they divided ecosystem services into 17 categories, which laid a theoretical foundation
for the follow-up research [12]. The Millennium Ecosystem Assessment issued by the
United Nations in 2005 formally established the concept of ecosystem services. They
defined ecosystem services as the benefits that people directly or indirectly obtained from
ecosystems and divided them into four categories: supply (food production, raw material
supply, etc.), regulation (gas regulation, climate regulation, etc.), support (soil conservation,
biodiversity maintenance, etc.) and culture (leisure and entertainment, aesthetic landscape,
etc.) [13]. Since then, research on ecosystem service value has become more diversified, and
research methods and framework systems have become more mature; The research objects
include the forests [14,15], farmland [16], wetlands [17,18], grassland [19], river basin [20,21],
city [22], island [23], coastal zone [24], etc. The research method is primarily quantitative
research based on remote sensing technology [25]. The research content also extends
from the detailed research of ecosystem service value to the correlation analysis with land
use change, landscape pattern and landscape ecological risk, etc. [26-28] In addition, the
existing research has gradually changed from evaluating and analyzing the total ecosystem
service value of the research object to studying the value of a specific ecosystem or a single
ecosystem service [29-31], from studying ESV itself to the comprehensive application of
ESV (such as proposing an ecological compensation mechanism based on the ecosystem
service value) [32].

In conclusion, the research on ESV is generally mature and productive; however, there
are still two areas that require development. To begin with, the majority of prior research
subjects were chosen from normal ecosystems, but there was a dearth of direction for the
ecological preservation of administrative units. Especially in urban agglomerations with
more complex structures and functions, the contradiction between social and economic de-
velopment and ecosystem protection is more prominent. Secondly, the ecosystem is highly
complex, and its changes resulting from the synergy of multiple factors. However, there are
few studies on the changes in ecosystem structure and function of urban agglomerations,
and the relationship between rapid urban development and ecosystem changes is still
unclear. The potential driving elements of ESV have not been fully examined, especially
the research on the influence degree and spatial differentiation of different types of driving
factors on ESV is scarce. As a result, using the urban agglomerations in central Yunnan as
the research object, this paper first examines the temporal and spatial evolution characteris-
tics of land use and ecosystem service value, then assesses the effects of land use change
on ecosystem service value, and finally, investigates the main driving forces of ecosystem
service value. The research results can provide quantitative information for decision makers
to grasp the ecological status of the urban agglomeration in central Yunnan to optimize the
structure of land use and reduce the loss of ESV caused by unreasonable land use patterns.
This will help to promote socioeconomic—ecological sustainable development in central
Yunnan and urban agglomerations with similar conditions [33].

2. Materials and Methods
2.1. Study Area

The Central Yunnan Urban Agglomeration is one of the 19 state-level urban agglom-
erations located in the central part of Yunnan Province (101-104.5° E, 24-26.5° N), which
is a typical plateau mountainous urban agglomeration with a topography dominated by
mountains and intermountain basins (Figure 1). It is also the most economically devel-
oped, densely populated, and strongly developed region in Yunnan Province, with the
highest concentration of intermountain basins. According to the Central Yunnan Urban
Agglomeration Development Plan, which was published in July 2020, the region’s scope
includes the entire territory of Kunming, Qujing, Yuxi, and Chuxiong, as well as seven
counties and cities in the north of Honghe Prefecture, totaling 49 counties (urban areas)
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with a combined area of 111,400 square kilometers, or 28.3% of Yunnan Province’s total area.
The urban agglomeration in central Yunnan has grown quickly in recent years, with a GDP
of 1507.394 billion Yuan in 2020, 11.45 times that of 2000 (136.105 billion Yuan), and making
up about 61.47 percent of the total GDP of Yunnan Province. The pace of urbanization has
also accelerated significantly, rising from 30.62 percent in 2000 to 59.90 percent in 2020.
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Figure 1. Overview of the study area.

2.2. Data Sources and Methods
2.2.1. Data Source

The five periods of land use/cover remote sensing monitoring data used in this
study from 2000 to 2020 were downloaded from the Center of Resources and Environmen-
tal Science and Data, Chinese Academy of Sciences (http://www.resdc.cn, accessed on
25 May 2022), among which the land use grid data in 2000, 2005 and 2010 were interpreted
by Landsat TM/ETM remote sensing image data, and the land use grid data in 2015 and
2020 were obtained by interpreting Landsat 8 remote sensing image data, with a spatial
resolution of 30 m and an interpretation accuracy of over 90%, including 6 primary land
types (cultivated land, woodland, grassland, water area, construction land, and unused
land) and 25 secondary land types [34]. DEM (digital elevation model) is a branch of digital
terrain model, whose purpose is to describe the terrain surface morphology and other
ground elevation information in digital form [35]. The DEM images of urban agglomeration
in central Yunnan in 2020 used in this study were downloaded from the geospatial data
cloud (http:/ /www.gscloud.cn, accessed on 25 May 2022), with a spatial resolution of 30 m,
and were derived from the stitching and cropping of multiple remote sensing images. The
grain yield and price data used to calculate the value of ecosystem services were obtained
from the Yunnan Statistical Yearbook, the National Compilation of Costs and Benefits of
Agricultural Products, and official government websites.

Considering the natural conditions and social development level of the urban ag-
glomeration in central Yunnan, and combining it with the related research result [36], nine



Sustainability 2022, 14, 10823

drivers were selected from the natural factors and human factors, including elevation, slope,
average annual temperature, average annual precipitation, NDVI, soil erosion, population
density, GDP, and land-use intensity in 2020. Elevation and slope data were extracted from
DEM images; temperature, precipitation, NDVI and soil erosion data were downloaded
from the Resource and Environment Science and Data Center of the Chinese Academy of
Sciences (http:/ /www.resdc.cn, accessed on 25 May 2022); population density and GDP
data were obtained from the Yunnan Statistical Yearbook in 2020; and land-use intensity
data were calculated by Equation (3).

2.2.2. Land-Use Dynamic Degree

The dynamic degree of single land use is an essential measure of the speed and magni-
tude of regional land-use change, which can effectively reflect the increase or decrease in the
area of various land-use types in the study area in a certain period [37], the expression is:

u,-U, 1 .

K=
where K is the dynamic degree of a specific land-use type in the T period, which is used to
measure the degree to which the change in the land-use type is disturbed by other factors,
and the larger the value of K, the more unstable this land-use type is in the T period; U,
and U}, indicate the area of this type of land use at the beginning and end of the study
period, respectively.

2.2.3. Land Use Transfer Matrix

The land use transfer matrix is a quantitative research method through systematic
analysis, which is mainly used in related research on land-use change. The mathematical
expression is [38]:
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where S;; represents the area change in a certain land-use type from the beginning to the
end of the research period, and n represents the number of land-use types involved in
the study.

2.2.4. Land-Use Intensity Index

The land-use intensity index reflects the degree of land-use change caused by human
activities, and regional land development and utilization to a certain extent, and measures
the depth and breadth of regional land use. The calculation formula is [39]:

noALP:
L =100 x - 3
z; At ( )

where L is the comprehensive land-use intensity index of the study area; n is the number
of land-use types, A; is the area of different land-use types, P represents the land-use
intensity parameter, and A; represents the total area of the study area. According to the
previous research results, the unused land, woodland, grassland, water area, arable land,
and construction land are divided into four grades and assigned values of 1-4; C; is the
area of the type i land-use type.

2.2.5. Calculation of Ecosystem Services Value

Costanza et al. proposed the equivalent factor method, which makes the assumption
that the ecosystem service value per unit area of the same ecosystem type is constant; the
total ecosystem service value can be obtained by multiplying this value by the area of each
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ecosystem type in the study area. Based on this, Chinese academics Xie et al. enhanced this
method to determine the ecosystem service value equivalent per unit area acceptable for
China [40,41]. Referring to the research results of Xie et al. and The Millennium Ecosystem
Assessment [13], this study categorizes ecosystem services into four primary service kinds—
supply, support, regulation, and culture—and 11 secondary service types. Combined with
the situation of urban agglomeration in central Yunnan, the equivalent scale of ecosystem
service value per unit area of ecosystem in the central Yunnan urban agglomeration is
shown in Table 1, and the construction land equivalent coefficient is referred to in the study
of Deng Shuhong [42]. The economic value of one ecosystem service value equivalent
factor can be defined as 1/7th of the market value of the average grain yield per hectare of
farmland in the study area under natural conditions without external interference [43]. The
calculation equation is as follows:

1 & SeP,Q
Ezixziasaa (4)

a=1
where E is the ecosystem service value of a standard equivalent factor, P, is the average
price of a grain in the study area during the study period, Q, is the grain yield per unit area
of a grain, S, and S is the sum of the sown area of grain a and the sown area of three-grain
crops. The value of ecosystem services for one common equivalent factor in the central
Yunnan urban agglomeration was 1149.34 Yuan/hm?. The formula for calculating the value
of ecosystem services is as follows:

n
ESV =) S,xVC, (5)
q=1
n
ESVi =Y Sy x VCy (6)
q=1
Y 1S, x VC
AESy = ==L 7 @)
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where ESV, ESV, and AESV represent the total ecosystem service value, the individual
ecosystem service value, and the average ecosystem service value, respectively; g is the
land type g; S is the area of the land type q; VC;, VCy represent the ecosystem service
value per unit area of land type g and the value coefficient of the kth ecosystem service,
respectively [26].

Table 1. Equivalent scale of ecosystem service value per unit area of ecosystem in central Yunnan
urban agglomeration.

Clefs];lirg::t};on Secondary Classification Cuit;]:;ed Woodland Grassland ‘Zizzr Conz:r;;hon UE:nSsd
Food production 0.96 0.26 0.21 0.80 0.00 0.00
Supply services Raw material production 0.33 0.60 0.31 0.23 —7.51 0.00
Water supply —0.55 0.31 0.17 8.29 —2.42 0.00
Gas regulation 0.77 1.97 1.08 0.77 0.00 0.02
Regulating Climate regulation 0.41 5.90 2.86 2.29 —2.46 0.00
services Purify the environment 0.12 1.72 0.95 5.55 0.00 0.10
Hydrological regulation 0.80 3.79 2.10 102.24 0.02 0.03
Soil conservation 0.81 2.40 1.32 0.93 0.00 0.02
Support services  Maintain nutrient cycling 0.14 0.18 0.10 0.07 0.34 0.00
Biodiversity 0.15 2.19 1.20 2.55 0.01 0.02
Cultural services Aesthetic landscapes 0.07 0.96 0.53 1.89 0.02 0.01
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2.2.6. Hotspot Analysis

The hotspot analysis method can judge whether there is a clustering of high and
low values of ecosystem service values in the study area and then identify the spatial
distribution locations of the hotspot and cold-spot areas of ecosystem service values to
reveal the spatial difference of ecosystem service capacity provided by various parts of the
study area [44]. The formula is as follows:
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where G; index is positive, it is a hotspot area with more ESV increase, and if the G index
is negative, it is a cold-spot area with more ESV loss; n is the number of grids; x;, x;is the
ecosystem service values of the ith and jth grids respectively.

S
™=

2.2.7. Sensitivity Analysis

The sensitivity index is similar to the principle of the elasticity coefficient in economics.
It is used to verify the reliability of the ESV results calculated using the ecosystem service
value coefficient of different land-use types and then to analyze the impact of different
land-use type changes on the value of ecosystem services [45]. The formula is as follows:

(ESV, — ESV,)/ESV, x 100%
(chk - ch-k) JVCy

CS = (11)

where CS is the elasticity coefficient, which indicates the degree of influence of different
land-use types on the ecosystem service value; ESV}, and ESV, indicate the ecosystem
service values at the end of the study period and the beginning of the study period;
VCi, VCj represent the ecosystem service value coefficient of the K land-use type before
and after adjustment, respectively.

2.2.8. Analysis of Driving Factors

Wang J.E.’s team first proposed Geodetector. It is a statistical analysis model, which
mainly includes four parts: ecology, factor, risk, and interaction detectors. Each detector
has different functions. The factor detector mainly indicates the explanatory strength of
the independent variable to the dependent variable and the spatial heterogeneity of the
dependent variable [46], The calculation method is as follows:

i NyoZ - SSW

1=1-=Nz 1757

(12)
where g denotes the explanatory power of a factor on ESV, and the value is between 0 and 1.
The larger the value of g, the stronger the explanatory power of the factor on ESV; h is the
partition number of the independent variable; L is the total number of partitions Nj, and N
is the total number of samples in each partition, and the whole region, respectively; o2 and
o2 are the variances of each partition and the variance of ESV in the whole region; SSW
and SST are the sum of variance within the stratum and the total variance in the whole
region, respectively.

10
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3. Results
3.1. Analysis of Land Use Change

From 2000 to 2020, the most crucial land-use type in the central Yunnan urban agglom-
eration was woodland (Figure 2), accounting for about half of the total area, followed by
grassland and cultivated land. During the study period, the land-use change showed “three
increases and three decreases, that is, cultivated land, woodland, and grassland decreased,
among which the grassland area decreased the most (a total decrease of 716.3 km?); the area
of construction land, water area, and unused land increased, among which the growth of
construction land was more pronounced (1269.01 km?)”. As can be seen from Table 2, the
dynamic degree of various land-use types in 2015-2020 was significantly higher than that of
the previous three research periods, indicating that the land use in the study area changed
drastically during this period. Overall, the land-use dynamics of woodland, cultivated
land, and grassland from 2000 to 2020 were —0.03%, —0.10%, and —0.12%, respectively,
indicating that the change rates of these three land-use types accelerated sequentially
during the study period. The land-use dynamics of construction land, the water area, and
unused land were all positive, with the land-use dynamics of construction land having
changed relatively significantly, increasing from 1.42% in 2000-2005 to 7.40% in 2015-2020.
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Figure 2. Spatial distribution map of land use. In the legend, I = cultivated land, II = woodland,
III = grassland, IV = water area, V = construction land, and VI = unused land.
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Table 2. Land use dynamics in central Yunnan urban agglomeration %.

Land Use Type 2000-2005 2005-2010 2010-2015 2015-2020 2000-2020
Cultivated land —0.07 0.01 —0.06 —0.27 —0.10
Woodland 0.00 —0.03 —0.01 —0.06 —0.03
Grassland 0.00 —-0.20 —0.01 —-0.27 —0.12
Water area —0.08 0.57 —-0.73 291 0.65
Construction land 1.42 4.96 1.72 7.40 4.94
Unused land 0.02 0.74 0.00 —0.09 0.16

The land use transfer matrix can describe the change in land-use quantity and transfer
direction from dynamic and static aspects, which is of great significance for analyzing the
change in the ecosystem service value caused by land-use changes. Based on the land-use
data, Table 3 and Figure 3 were obtained by processing with the raster calculator in ArcGIS
to systematically reflect the quantitative characteristics and spatial distribution of land-use
changes. Table 3 shows that the main characteristics of land-use transfer in the central
Yunnan urban agglomeration are the outflow of grassland, cultivated land, and woodland,
and the inflow of construction land. The outflow of grassland goes mainly to woodland
(2187.90 km?), followed by cultivated land and construction land. The cultivated land was
mainly converted into woodland (1208.45 km?), grassland (1195.59 km?), construction land
(936.21 km?), and water areas (105.05 km?), which is due to the project of returning farmland
to forests, lakes, and grasslands implemented in Yunnan in recent years, as well as the rapid
development of the city, resulting in a sharp increase in the demand for construction land.
Another reason for the increase in the water area is the comprehensive implementation
of the strategy of “strengthening Yunnan with water” and the construction of a series
of water conservancy projects such as the “Central Yunnan Water Diversion Project”,
which has increased the land and water area for water conservancy facilities. Construction
land inflow and outflow are quite different, and the primary source is cultivated land
(936.21 km?). From the spatial distribution of land use transfer, the conversion of arable
land and woodland to construction land mainly occurred in Anning City, Chenggong
District, Guandu District, Qilin District, Mengzi City, Hongta District, and Chuxiong City.

Table 3. Land-use transfer matrix of central Yunnan urban agglomeration from 2000 to 2020 km?.

Land-Use Type Grassland Cu{t ivated Construction Woodland Water Area Unused Land
and Land
Grassland - 1393.76 400.04 2187.90 98.44 12.88
Cultivated land 1195.59 - 936.21 1208.45 105.05 6.72
Construction land 23.25 142.28 - 23.67 10.25 1.39
Woodland 2086.96 1325.68 272.82 - 116.23 4.73
Water area 40.13 70.31 31.35 24.36 - 2.37
Unused land 12.30 7.00 0.14 2.55 1.03 -

12
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Land Use Change Mapping in Central Yunnan Urban Agglomeration from 2000 to 2020
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Figure 3. Map of land-use change in central Yunnan urban agglomeration.

3.2. Analysis of Ecosystem Service Value
3.2.1. Time Series Change in Ecosystem Service Value

Over the past 20 years, the central Yunnan urban agglomeration’s ecosystem service
value (ESV) has decreased by 1.517 billion Yuan (Table 4). During the study period, with
the exception of 2015 to 2020, the total ESV continued to decline, especially from 2010 to
2015, when ESV decreased rapidly, and the ecosystem service value decreased by nearly
1 x 10° Yuan. The reason for the decrease in the total amount of ESV lies in the decrease in
cultivated land, woodland, and grassland area and the increase in the construction land
area, resulting in the loss of ESV of 2.37 x 10® Yuan, 7.74 x 10® Yuan, 9.39 x 10® Yuan,
and 19 x 10® Yuan, respectively. From 2015 to 2020, although the ESV of other land
types decreased, the water area increased, and its ecosystem service value coefficient was
significant, which made the ecosystem service value of the study area rise in 2020.

Table 4. ESV of different types of land from 2000 to 2020 1 x 108 Yuan.

2000 2005 2010 2015 2020
Land Use Type - - - - -
ESV Proportion ESV Proportion ESV Proportion ESV Proportion ESV Proportion

Cultivated land 105.51 5.44% 105.12 5.43% 105.15 5.45% 104.85 5.46% 103.14 5.36%
Woodland 1281.34 66.12% 1281.20 66.20% 1279.28 66.27% 1278.73 66.59% 1273.60 66.24%
Grassland 381.83 19.70% 381.91 19.73% 378.06 19.58% 377.94 19.68% 372.44 19.37%
Water area 186.91 9.65% 186.19 9.62% 191.50 9.92% 184.50 9.61% 210.24 10.93%
Construction land -17.71 —0.91% —18.97 —0.98% —23.67 —1.23% —25.70 —1.34% —36.71 —1.91%

Unused land 0.04 0.00% 0.04 0.00% 0.04 0.00% 0.04 0.00% 0.04 0.00%
Total 1937.92 100.00% 1935.48 100.00% 1930.36 100.00% 1920.35 100.00% 1922.75 100.00%

13
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In terms of the value of individual ecosystem services (Table 5), from 2000 to 2020,
the regulation service was dominant (67.74%), followed by the support service (22.15%),
and their contribution rates to the total amount of ESV were close to 90%. Hydrological
regulation and climate regulation were the most prominent types of secondary ecosystem
services; followed by soil conservation, maintenance of biodiversity, gas regulation and
environmental purification, at 218.58 x 10® Yuan, 186.77 x 108 Yuan, 182.13 x 108 Yuan,
153.10 x 108 Yuan at the end of the study period, respectively. Water supply and nutrient
cycle maintenance were relatively weak. From the change in individual ecosystem service
value, the ecosystem service value of raw material production and climate regulation
decreased by 12.54 x 10® Yuan and 8.44 x 10® Yuan, respectively. During the study
period, only the ecosystem service value of hydrological regulation and nutrient cycle
maintenance increased.

Table 5. Value of individual ecosystem services from 2000 to 2020 1 x 108 Yuan.

Primary Classification Secondary Classification 2000 2005 2010 2015 2020 V ESV
ariation

Supply services Food p.roduction . 50.46 50.36 50.30 50.17 49.75 -0.71
(5.77%) Raw material production 46.95 46.13 43.03 41.70 34.41 —12.54

’ Water supply 19.70 19.45 18.76 17.92 17.47 -2.23

Gas regulation 184.13 184.05 183.52 183.35 182.13 —2.00

Regulating services Climate regulation 484.17 483.84 481.41 480.64 475.73 —8.44
(67.74%) Purify the environment 153.62 153.57 153.31 152.93 153.10 —0.52
Hydrological regulation 486.35 485.67 488.90 483.03 501.63 15.28

Support services ‘Soi.l conseFvation . 220.95 220.86 220.21 220.02 218.58 —2.37
(22.15%) Mamtalr.l mtltrler.\t cycling 19.47 19.49 19.57 19.61 19.78 0.31
Biodiversity 188.24 188.21 187.69 187.46 186.77 —1.47

C‘ﬂ“(l;zl ;Zr)‘”ces Aesthetic landscapes 83.87 83.86 83.66 83.53 83.39 —0.48

3.2.2. Spatial Change in Ecosystem Service Value

Compared with the total ESV in the study area, the average local ESV can better reflect
the regional ecological environment quality by excluding the influence of the administrative
area. With the help of the average ESV calculation formula, the average ESV of 49 counties
(cities, districts) in the central Yunnan urban agglomeration and its spatial distribution
(Figure 4) was obtained, and then the spatial characteristics of ESV distribution were
explored. On the whole, the ESV of the central Yunnan urban agglomeration shows the
spatial distribution characteristics being “high in the west and low in the east.” The low-
value areas are concentrated in the eastern region, with an expanding trend; the lower
value areas are mainly distributed in the northeast; the higher value areas are distributed
in the southwest and northwest of the central Yunnan urban agglomeration; the high-value
areas are fewer and mainly concentrated in the central region. Specifically, high-value
areas include the Xishan District, Chenggong District in Kunming, Chengjiang County, and
Jiangchuan District in Yuxi, which correspond to the spatial distribution of water areas.
In 2000, the low-value areas included seven counties in Kunming, Qujing, and Honghe
(Wuhua, Qilin, Fuyuan, Luliang county, Luoping, Shizong county, and Luxi county), and in
2020, three counties in Kunming (Anning, Songming, and Guandu) were added. In general,
the quality of the ecological environment has shown a downward trend. For example,
Guandu District has changed from a high-value area to a low-value area due to the surge in
construction land. However, the quality of the ecological environment has also improved
in some areas, among which Eshan and Luquan have changed from middle-value areas to
higher-value areas, and the value of ecosystem services has increased.
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Figure 4. Spatial distribution of land average ESV of central Yunnan urban agglomeration.

To further explore the specific location of the spatial change in ESV, the hotspot analysis
(Getis-Ord Gi*) in the ArcGIS spatial statistical tools was used to analyze the cold and
hotspots of ESV in the urban agglomeration of central Yunnan in 2000, 2005, 2010, 2015,
and 2020. The results are shown in Figure 5: the hotspots of ESV in the central Yunnan
urban agglomeration are distributed in the western and northeastern regions, while the
cold spots are concentrated in the central region. Specifically, the hotspots in 2000 included
Dongchuan District, Xuanwei City, and Shuangbai County. The sub-hotspot area included
Chuxiong City, Xinping Yi, Dai Autonomous County, and Yuanjiang Hani, Yi, and Dai
Autonomous County. The cold-spot areas include eight counties and districts in Kunming
City (Wuhua District, Panlong District, Songming County, Xishan District, Guandu District,
Chenggong District, Yiliang County, and Jinning District) and Chengjiang County in Yuxi
City. The sub-cold-spot areas involve Fumin County and Anning City in Kunming City
and Hongta District, and Jiangchuan District in Yuxi City. By 2020, the number of hotspots
decreased (Xuanwei City), and the area of cold spots expanded (Fumin County and Anning
City), indicating the degradation of ecosystem service functions in the study area.
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Figure 5. Analysis of ESV hotspots of central Yunnan urban agglomeration.

3.2.3. Sensitivity Analysis of Ecosystem Service Value

The sensitivity indices of different land-use types are different (Table 6). It is found
that the sensitivity indices of each land-use type in the central Yunnan urban agglomeration
are woodland, grassland, water area, cultivated land, unused land, and construction land
in descending order, which is consistent with the contribution of each land-use type to the
ESV. The sensitivity index of woodland was the highest, remaining above 0.66 during the
study period, followed by grassland, with a sensitivity index close to 0.2. Different from the
other land types, the sensitivity index of construction land was negative in different years,
indicating that the increase in construction land would lead to a decrease in the ecosystem
service value in the study area; the sensitivity index of unused land was shallow, indicating
that the change in unused land had no significant effect on the change in ESV. In addition,
the sensitivity indices of land-use types in each period were less than 1, indicating that
ESV is inelastic to land-use changes. The study uses ecosystem service value coefficients of
different land types suitable for the study area, and the ESV calculation results are reliable.

Table 6. Sensitivity coefficients of different land use types.

Sensitivity Index 2000 2005 2010 2015 2020
Cultivated land 0.054447 0.054311 0.054474 0.054601 0.053643
Woodland 0.661194 0.661954 0.662717 0.665880 0.662384
Grassland 0.197030 0.197320 0.195848 0.196808 0.193701
Water area 0.096451 0.096196 0.099203 0.096076 0.109345
Construction land —0.009140 —0.009799 —0.012261 —0.013384 —0.019092
Unused land 0.000018 0.000018 0.000019 0.000019 0.000019
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3.3. The Impact of Land Use Change on Ecosystem Service Value

The ESV profit and loss matrix (Table 7) is calculated based on the land-use transfer
matrix combined with the ecosystem service value coefficients of different land-use types,
which can reflect the impact of different land-use changes on the quantity change in
ESVs. The land use pattern that led to the loss of ESV was the change from a high ESV
land-use type to a low ESV land-use type. In particular, the conversion of woodland to
cultivated land and grassland, and cultivated land to construction land contributed the
most to the decrease in ESV, reducing the ESV by 24.84 x 10° Yuan, 22.65 x 10° Yuan,
and 17.20 x 10° Yuan, respectively. The land-use patterns that contribute to the increase
in ESV are grassland and cultivated land converted into woodland (23.75 x 10° Yuan,
22.64 x 10° Yuan), and other land types converted into water (43.51 x 10° Yuan).

Table 7. ESV profit and loss matrix of central Yunnan urban agglomeration from 2000 to 2020 10° Yuan.

Land Use Type Grassland Cultivated Land Construction Land Woodland Water Area Unused Land
Grassland 0.00 —10.98 —10.50 23.75 12.99 —0.16
Cultivated land 9.42 0.00 —17.20 22.64 14.68 —0.03
Construction land 0.61 2.61 0.00 0.88 1.62 0.02
Woodland —22.65 —24.84 —10.12 0.00 14.07 -0.11
Water area -5.29 —9.83 —4.96 —-2.95 0.00 —0.34
Unused land 0.15 0.03 0.00 0.06 0.15 0.00

According to previous research results, land-use change has an important impact on
ecosystem service value. However, few people have explored the impact of LUCC on
ESV. In this study, the Pearson coefficient was used in the Origin2021 software (Origin
2021 edition was developed by OriginLab, USA, and downloaded from https://www.
originlab.com/OriginProLearning.aspx, accessed on 25 May 2022) to analyze the relation-
ship between land-use intensity and ESV and its change, and a correlation heat map was
drawn (Figure 6) to discuss the impact of land-use intensity on both. The figure shows a
significant negative correlation between land-use intensity and the total amount of ESV,
and the correlation coefficient was between 0.68 and 0.72. The later the year, the stronger
the correlation. There is also a negative correlation between land-use intensity and ESV
variation. With the gradual increase in land-use intensity from 2000 to 2020, the influence
on the ESV change was also gradually increasing.
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05 20102015 w4 |2010-2015 | 0.22
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Figure 6. Correlation heatmap. The 2000 L indicates the land-use intensity of the central Yunnan
urban agglomeration in 2000; 2000 ESV represents the ecosystem service value in 2000; 2000-2005
denotes the amount of ESV change in central Yunnan urban agglomeration between 2000 and 2005.
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3.4. Analysis of the Driving Factors of Ecosystem Service Value

The Geodetector can explore how different factors explain the value of ecosystem
services, thereby identifying essential drivers of ESV changes. Kriging interpolation was
used in the ArcGIS 10.3 software (Version: 10.3.0.4322; Founder: Environmental Sys-
tems Research Institute, Inc. American; Website: https://www.esri.com, accessed on
25 May 2022) to obtain a spatial distribution map of the nine drivers (Figure 7). The results
of the factor detection are shown in Table 8. The explanatory strength of each driver in
descending order is: land-use intensity (0.532), NDVI (0.497), soil erosion (0.314), slope
(0.301), population density (0.29), temperature (0.233), GDP (0.214), elevation (0.21), and
precipitation (0.134); the q value of each driving factor was more significant than 0.1, which
indicates that these nine factors have an important impact on ESV. However, elevation,
temperature, precipitation, soil erosion, and GDP failed the significance test of p < 0.05,
so these five driving factors were excluded. The final result shows that the explanation of
land-use intensity reached 53.2%, which is the most crucial driving factor leading to the
change in ESV in the central Yunnan urban agglomeration, indicating that different land-
use patterns and human disturbance will have a significant impact on ESV. The explanation
of the NDVI to ESV is 49.7%, which indicates that the land cover has an important influence
on the total amount and change in ESV. The reason for this is that the ESV coefficients of
different vegetation types are significantly different, and the ability to provide ESV is also
very different. Slope and population density are also important driving factors of ESV in
the central Yunnan urban agglomeration. The greater the population density, the more
intense the human activities, and the greater the impact on the ecosystem and its functions.
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Figure 7. Spatial distribution of the main drivers of ESV. (a) Elevation; (b) Slope; (c) Temperature;
(d) Precipitation; (e) NDVI; (f) Soil erosion; (g) Population density; (h) Land-use intensity; (i) GDP.
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Table 8. Factor detection results.

Driving Factor q Statistic p Value Degree of Impact
Elevation 0.21 0.099 8
Slope 0.301 0.015 4
Temperatures 0.233 0.063 6
Rainfall 0.134 0.357 9
NDVI 0.497 0.000 2
Soil erosion 0.314 0.072 3
Land-use intensity 0.532 0.000 1
Population density 0.29 0.004 5
GDP 0.214 0.131 7

The results of the interaction detection (Table 9) showed that the interaction between
factors explained the dependent variable significantly more strongly than individual fac-
tors, involving both two-factor enhancement and non-linear enhancement, indicating that
the spatial differentiation of ESV in the urban agglomeration of central Yunnan is the
result of the synergistic effect of multiple factors. Specifically, the q value of land-use
intensity N NDVI has the largest value (0.785), indicating that the interaction between
the two has the greatest explanation for ESV. In addition, the interaction types with q
value of > 0.7 include precipitation N temperature (0.743), temperature N slope (0.740),
NDVI N temperature (0.711), land-use intensity N soil erosion intensity (0.711), land-use
intensity N precipitation (0.705), soil erosion N elevation (0.704), GDP N slope (0.703), and
GDP N NDVI (0.702). The interaction among the remaining factors also had an enhancing
effect on the spatial differentiation of ESV compared with an individual driver alone, espe-
cially the factor with a higher q value coupled and coordinated with other factors would
amplify the effect on ESV.

Table 9. Interactive probe results.

Driving Factor Elevation Slope Temperatures  Rainfall NDVI So%l I.and-l_.lse Popula.t on GDP
Erosion Intensity Density
Elevation 0.210
Slope 0.487 0.301
Temperatures 0.412 0.740 0.233
Rainfall 0.445 0.581 0.743 0.134
NDVI 0.681 0.565 0.711 0.685 0.497
Soil erosion 0.704 0.518 0.697 0.540 0.677 0314
Land-use 0.653 0.654 0.676 0.705 0.785 0.711 0.532
intensity
Population 0.444 0.533 0.504 0.393 0.599 0.560 0.640 0.290
density
GDP 0.570 0.703 0.568 0.477 0.702 0.511 0.746 0.436 0214

4. Discussion

This research employs land-use dynamic degree, transfer matrix, and hotspot analysis
to methodically investigate the spatial and temporal dynamics of land-use and ecosystem
service values. In order to support the sustainable development of urban agglomerations
in terms of economy, ecology, and resources, we use this foundation to investigate the
influence of LUCC on ESV by combining the ESV profit and loss matrix and Pearson
correlation coefficient and further exploring other potential factors affecting ESV changes.

4.1. Land-Use Change

The results show that the land-use pattern of the central Yunnan urban agglomeration
has changed dramatically in the last 20 years; cultivated land, woodland, and grassland
has been significantly reduced, and the construction land, water area, and unused land
have increased, which is consistent with the previous research results [47]. People de-
stroyed forests and reclaimed land in the 1990s to pursue higher economic benefits, turning
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woodlands and grasslands into cultivated land. This trend was effectively stopped by the
policy of returning farmland to forests and grasslands, which was fully implemented in
early 2002 as the nation’s economic strength and emphasis on environmental protection
increased. The urbanization rate of the urban agglomeration in central Yunnan nearly
doubled (from 30.62% to 59.90%) between 2000 and 2020 due to the rapid development of
urbanization, and the demand for construction land soared, encroaching on a significant
portion of high-quality agriculture. In the future, pertinent departments should concentrate
on developing policies and procedures to enhance the protection of cultivated land, ensure
its quantity and quality, and increase its productivity.

4.2. Changes in Ecosystem Service Value

In this paper, we used the equivalent factor method of Costanza et al. [12], referred to
as the equivalent factor table of China’s terrestrial ecosystem in 2015 by Xie G.D. et al. [41],
combined with the data of the third land and resources survey in Yunnan Province, to
calculate the value of ecosystem services in the central Yunnan urban agglomeration for the
past 20 years. In the past, the construction land was not taken into account when calculating
the total ESV because much research on the evaluation of ecosystem service value assumed
that it served no purpose for ecosystem services [48,49]. However, this study believes that
urban development has led to a substantial increase in construction land, which has a
growing impact on the development pattern of land space and ecological security. On the
one hand, certain tourist destinations provide excellent aesthetic and landscaping purposes
(the Eiffel Tower, Forbidden City, Sydney Opera House, etc.). However, the production
of raw materials, the availability of water resources, and other ecosystem services are all
adversely impacted by construction land. Therefore, the ecosystem service function of
construction land should not be neglected in ESV evaluation. Additionally, it is discovered
that whether the ESV of construction land is considered or not and the selection of the
equivalent coefficient for construction land have a significant effect on the estimation results
of ESV. Even the ESV estimated using the same land use data may vary if the equivalent
coefficients of the construction land used are quite different. Therefore, to enable cross-
regional comparison, future study should establish a set of standard construction land
equivalent coefficients.

4.3. Analysis of Driving Factors

There are many methods used to study the driving factors of ESV, such as the canonical
correspondence analysis (CCA) model [50], decomposition analysis [29] and grey correla-
tion analysis [51], etc. However, these methods are not thorough enough to analyze the
spatial differentiation of factors. Geodetector, on the other hand, can not only quantitatively
detect the interaction between different factors but also judge the significant differences in
the influences of different driving factors on the research objects. According to the analysis
results of driving factors, it is clear that land-use intensity is the most important driving
factor for ESV change, and NDVI, slope, and population density also have significant
effects on ESV, which has been verified in previous studies [47,52-55]. The type and quan-
tity of data, the method of dispersion, and the carrier employed by the Geodetector may
be factors in why elevation, temperature, precipitation, soil erosion, and GDP failed the
significance test.

4.4. Innovation, Shortcomings, and Outlook

In order to examine the ESV changes and driving factors in the central Yunnan urban
agglomeration, this study chose it as the research object. It also took into account the spatial
heterogeneity of ESV and the interaction between the driving variables. The analysis was
more thorough than the study on the impact of a single component on ESV, which helped
improve the ecosystem service value. However, there are some restrictions. Firstly, the
changed dynamic equivalent coefficients are not employed with the static ESV accounting
method [56], which may cause a little inaccuracy in the evaluation of ESV. Secondly, the
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options for the driving factors are too limited, and the multicollinearity test was not
performed beforehand, leaving only four components that passed the significance test.
Additionally, the disparities between districts (counties) and years for ESV drivers were
not examined. The next phase should use a more precise technique of ESV accounting
in conjunction with the study region itself, gathering as much information as possible
regarding the driving causes. To suggest tailored ecological protection plans, the driving
variables of Geodetector should be studied for various administrative districts in various
years [57,58].

5. Conclusions

This research reveals the temporal and spatial characteristics and laws of land use and
ESV in the central Yunnan urban agglomeration in 2000, 2005, 2010, 2015, and 2020, then
investigates the influence of LUCC on ESV, and lastly, examines the main driving factors
of ESV changes using Geodetector, which can provide a valuable reference for optimizing
regional territorial spatial patterns and ecological protection and restoration. The results
show that woodland is the primary land use type in the urban agglomeration of central
Yunnan, accounting for about half of the total area; the land use change is manifested as
“three increases and three decreases,” that is, cultivated land, woodland, and grassland
decreased, while water, construction land, and unused land increased. Among them, the
construction land increased the most and changed the fastest. From 2000 to 2020, the
total ecosystem service value of the urban agglomeration in central Yunnan decreased
by 1.517 billion Yuan. Among the ecosystem types, woodland, grassland, and water area
provide more ecosystem services. Among the single ecosystem services, the ESV of climate
and hydrological regulation was the highest. The land average ESV showed a spatial
distribution characteristic of “high in the west and low in the east.” The low-value areas
were mainly concentrated in the eastern region and tended to increase with time, and the
high-value areas were located in the central region, consistent with the spatial distribution
of water. The results of hotspot analysis show that hotspots are mainly distributed in the
west and northeast of the urban agglomeration in central Yunnan, while cold spots are
concentrated in the central region, and the hotspots decrease, while the cold spots increase.
Land-use intensity, NDVI, slope, and population density are the main driving factors of ESV
changes. The interaction detection results showed that the effects of pairwise interactions
between factors on ESV were significantly enhanced compared with single factors.

In recent years, under the influence of the national urban agglomeration policy, the
urban agglomeration in central Yunnan has developed rapidly, and the land use structure
has changed, significantly impacting the ecosystem. Therefore, preliminary suggestions
are put forward according to the above research results. First of all, from 2000 to 2020,
the area of construction land in the urban agglomeration of central Yunnan continued to
increase, mainly encroaching on other types of land, primarily cultivated land. This trend
is not conducive to food security. Therefore, the disorderly expansion of construction land
should be strictly controlled and should strictly abide by the cultivated land “occupation—
compensation balance.” Secondly, woodland and grassland is important ecological land
in the urban agglomeration of central Yunnan, with a large area. In the future, ecological
restoration methods should be implemented according to local conditions to strengthen
the ecosystem services of woodlands and grasslands. In addition, the unit area of the
water area ESV was higher, and it is better to strengthen the comprehensive treatment of
water pollution, and ecological and environmental protection and restoration. Finally, it is
recommended to tap into the potential of land use, and improve the efficiency of land use
by reorganizing and rehabilitating urban villages, “hollow villages,” and abandoned indus-
trial and mining land, in addition to adhering to both development and protection, and
gradually improving and perfecting the system of paid use of resources and an ecological
compensation mechanism. The land use data used in this study are only divided into six
categories, eliminating wetlands with high ecosystem services, which will have an effect
on the outcomes of ESV accounting. Additionally, it is relatively challenging to obtain data
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for multiple driving factors in a long time series, so this study did not explore the driving
factors of ESV in different research periods, which had some limitations. The interpretation
of remote sensing images will be used in the future to obtain data on different land use
types, and attempts will be made to compile a long-term series of data on driving factors
for further research.
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Abstract: Rapid urbanization and human activities enhanced threats to the degradation of various
ecosystem services in modern urban agglomerations. This study explored the response of ecosys-
tem service values (ESVs) to land use changes and the trade-offs among various ESVs in urban
agglomerations under different future development scenarios. The patch-general land use simulation
(PLUS) model and ESV calculation method were used to simulate the ESVs of Guanzhong Plain
Urban Agglomeration under the Business As Usual scenario (BAU), Ecological Conservation scenario
(EC), and Economic Development scenario (ED) in 2030. Global and local Moran’s I were used to
detect the spatial distribution pattern, and correlation analysis was used to measure trade-offs among
ecosystem services. The results showed that: (1) The simulated result of land use in Guanzhong
Plain Urban Agglomeration showed high accuracy compared to the actual observed result of the
same period, with a Kappa coefficient of 0.912. From 2000 to 2030, land use changes were significant,
with the rapid decrease in farmland and an increase in construction land. The area of woodland
increased significantly under the EC scenario, and the area of construction land increased rapidly
under the ED scenario. (2) The decline of total ESV was CNY 218 million from 2000 to 2020, and
ESVs remained the downward trend in the BAU and ED scenarios compared to 2020, decreasing by
CNY 156 million and CNY 4731 million, respectively. An increasing trend of ESV showed under the
EC scenario, with a growth of CNY 849 million. (3) Significant spatial autocorrelation showed in
Guanzhong Plain Urban Agglomeration, as the Global Moran’s I were all positive and the p-values
were zero. The ESV grids mainly showed “High-High” clusters in the mountainous areas and “Low-
Low” clusters in plain areas. Except for food production, a majority of ecosystem services exhibited
positive synergistic relationships. In future planning and development, policymakers should focus
on the coordinated development of the urbanization process and ecological preservation to build an
ecological safety pattern.

Keywords: land use change; ecosystem service value; patch-general land use simulation (PLUS)
model; Guanzhong Plain Urban Agglomeration

1. Introduction

Ecosystem services are the direct or indirect contributions of ecosystems to human
well-being, linking natural ecosystems to society and the economy through ecosystem
functions [1]. Land, combining various ecosystems, natural and human factors, is a geo-
graphical entity [2]. Urbanization closely links regional land use type changes to changes
in the ability to provide ecosystem services [3]. Urban agglomerations are important power
sources and growth poles in China’s urbanization process [4]. An urban agglomeration is
of great significance for regional integration; coordinated development of large, medium,
and small cities; and high-quality regional development [5]. Urban agglomerations have
become the strategic core of China’s national economic development and the main compo-
nent of new urbanization. In recent years, there has been a gradual increase in the number
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of ecological studies with the perspective of urban agglomerations. Scholars have stud-
ied different urban agglomerations from the perspectives of quantification of ecosystem
services, synergistic relationships, accounting for ecosystem service values (ESVs), and
comprehensive evaluations [6-9].

The Guanzhong Plain Urban Agglomeration is a national urban agglomeration in
northwest China, with an important position in transportation, tourism, and industrial
production. In recent years, with the increase in the urbanization rate, ecosystems in the
region are facing degradation risk along with the phenomenon of groundwater and haze
pollution [10]. Ecosystem issues have gradually become hot topics in this study area. Yang
analyzed the spatio-temporal variations of ecological footprints and ESV from 2005 to 2017
in the Guanzhong Plain Urban Agglomeration, and found that the area’s consumption
demand of natural resources was greater than the natural capital output [11]. Dong used the
coupling coordination degree method to evaluate the relations between urbanization degree
and ecological environment in the urban agglomeration, and further detected influencing
factors of spatial divergence [12]. Peng estimated the future land use of Guanzhong
Plain Urban Agglomeration in 2030 using the FLUS model, and simulated the supply and
demand of ecosystem services [13]. His research was based on expert experience, which
in part influenced judgments about overall ecosystem service budgets. Chen proposed an
ecological pattern of the urban agglomeration by combining various ecological indicators
and found ecological sources and corridors using the MCR method [5]. Current studies
are fundamental for enriching the development patterns of ecosystem services in the
Guanzhong Plain Urban Agglomeration. However, future ecological environment patterns
had been a largely underexplored domain, especially under high-accuracy simulations.

Whether to pursue the ecosystem service value as ecological use or to pursue GDP as
construction land is a point of conflict in land use planning. During the future development
of urban agglomerations, different land use demands and development patterns induce
changes in various ecosystem services. How to predict the future ecological degradation
areas and develop land use planning scientifically has become the focus of research. In
the context of natural resource value accounting by the Chinese government, by setting
up three different development scenarios for the Guanzhong Plain Urban Agglomeration,
it is possible to accurately predict future land use under different development patterns;
thus, future urban development boundaries can be determined, and optimal management
strategies for sustainable urban development and ecological security can be made. This
paper attempts to construct three scenarios to simulate the trend, lower, and upper limits
of future ESV changes and to assist in identifying changes in overall ecosystem services in
the urban agglomeration.

In view of this, the specific research objectives of this paper are as follows: (1) to
simulate the land use patterns of different scenarios in the Guanzhong Plain Urban Ag-
glomeration in 2030, (2) to calculate the ESV changes from 2000 to 2020 and the differences
in ESVs for the three scenarios, and (3) to analyze the spatial-temporal distributions and
trends of ESVs and their trade-offs. This study provides significant support for securing
land use planning under the ecological red line, a reference for effective allocation of land
resources, and promotion of natural resource management under ecological protection.

2. Theoretical Background
2.1. Ecological Response to Land Use Changes

As human activities continue to intensify, rapid economic and social development has
put increasing pressure on global natural resources and the ecological environment [14].
Human activities have altered the landscape patterns within their sphere of activity, affect-
ing environmental diversity and further altering the geological and biological diversity of
the region [15]. Various land use types are demonstrations of geodiversity [16]. The protec-
tion of geology is fundamental to the protection of the ecological environment [17]. In the
process of rapid urbanization, urban sprawl continues to harm the ecological environment
due to urbanization and industrialization, especially in China [18]. Since the reform and

26



Sustainability 2022, 14, 8812

opening-up, China’s land use pattern has changed dramatically, manifested by changes
in the spatial distribution of ecological land and land degradation [19]. Urbanization
encompasses multiple forms of transformation, with land use shifting from agricultural
to construction land, economic models shifting from primary to secondary and tertiary
industries, and residents’ behavior patterns changing dramatically [20]. Correspondingly,
land use conversion caused structure and function changes in the original ecosystems,
concerning sustainable urban development [21]. Land use is the main form of response to
the ecosystem service value [22-25]. Changes in land use types affect the structure, pro-
cesses, and functions of ecosystems, which in turn affect the ecosystem service value [26].
Quantifying and analyzing changes in ecosystem service values (ESVs) is an important tool
to raise ecological protection awareness [27,28]. Studying ESV response to land use/cover
change (LUCC) has become a very popular research topic [29-32].

2.2. Land Use Simulation

Current land use simulation studies are mainly empirical studies, using GIS research
tools combined with scientific theoretical methods to explore the characteristics of land
use change and the driving factors [33]. Scholars obtained long-time-series land use data
through remote sensing interpretation. Natural and socio-economic driving factors were
spatialized by GIS software, and policy factors that cannot be quantified can be used as
constraints for land use type conversion. By using different models, land use change
rules were established using different driving mechanisms, and simulation results were
generated [34]. The simulation results were compared with the actual land use status,
and the accuracy was generally calibrated using Kappa coefficients or FoM coefficients.
Further, multiple development scenarios were set up to predict land use under different
development patterns.

Scholars implemented simulations of land use under different scenarios by adjusting
the transfer cost matrices, neighborhood weights, and total future land use projections in
the modeling [35,36]. In the different scenario settings of the simulation, scholars differed
in the naming of future land use patterns, but their research designs were similar. The
most common scenario settings were mainly three types, namely, the Business As Usual
scenario (BAU), Ecological Conservation scenario (EC), and Economic Development sce-
nario (ED) [35,37,38]. In some studies, Farmland Protection (FP) scenario was also a more
common setting, while some scholars consider the conservation of farmland in the ED
scenario [29,39]. Some researchers combined multiple scenarios with the UN’s SDG devel-
opment goals or the IPCC’s climate development goals [40,41]. The common features of
the multi-scenario simulations were that one scenario represented a non-interventionist de-
velopment trend, one scenario focused on ecological protection, and one or more scenarios
focused on economic development and its synergies [42,43]. Generally, the neighborhood
weights of woodland, grassland, and water increased in the EC scenario and the scale of
land use increased, while the neighborhood weight of construction land was generally the
highest value in the ED scenario. Such scenario settings combined with changes in total
land use can distinguish land use variations under multiple scenarios.

In the methodology choice of future land use simulation, most scholars adopted the
CA-Markov model, CLUE-S model, FLUS model, etc., for the simulation [44-46]. The patch-
general land use simulation (PLUS) model proposed by Liang et al. can better explore the
causal factors of various types of land use changes and better simulate the changes at the
patch level of multiple types of land use than other models. The PLUS model obtains the
transition rules by analyzing the growing patches of each changed land use. A random
forest classification algorithm is used to explore the relationships between the growth in
each land use type and the multiple driving factors [47,48]. The model has been applied in
the latest land use simulation studies [47,49-51].
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2.3. Quantification of Ecosystem Service Values

Studies accounting for ecosystem service values can be broadly divided into two
categories: methodologies based on unit service function values, or methodologies based
on the unit area value equivalent factor [52]. The unit service function value approach, in
which the total value is obtained based on the amount of ecosystem service function and
the unit price of the functional volume, models the ecosystem service function of a small
area by establishing a production equation between a single service function and local
ecological variables [53]. The method has more input parameters, the calculation process
is more complicated, and the evaluation method and parameter criteria for each service
value are difficult to unify [54]. The unit area value equivalent factor approach is more
intuitive and easy to use, requires fewer data, and is particularly suitable for the valuation
of ecosystem services at regional and global scales [55]. The method combines land use
types with different kinds of ecosystem services and generates a scale to assign values to
each ecosystem service. In this way, the ESV of an area can be measured.

Costanza et al. first proposed an approach for accounting the ecosystem service
value using the unit area value equivalent factor approach in 1997 [1]. Natural resources
were viewed as a form of capital, and their capital stock contains flows of materials,
energy, and information for ecosystem services. The value of each ecosystem service was
estimated, assuming that the ecosystem service supply and demand curve is a vertical line.
Xie et al. used the ecosystem service value table per unit area derived from the expert
scoring method to account for the value of each ecosystem on the Tibetan Plateau [56]. Based
on the method and the practical situation of the study area, scholars have studied the spatial
and temporal changes in the ecosystem service values in different study areas, including
different countries, provinces, cities, watersheds, and various ecological zones [57-61].
Most studies have been conducted on the response of past—present land use change to
ecosystem service values, but studies on future land use and ESV changes are still to be
further investigated [62,63].

3. Materials and Methods
3.1. Study Area

The Guanzhong Plain Urban Agglomeration (104°34'—112°34’ E, 33°34'—36°56' N) is
located in the inland area of northwest China, in the core area of the Wei River Basin, the
first major tributary of the Yellow River, and the Fen River Basin, and the second major
tributary of the Yellow River. The urban agglomeration covers an area of 107,000 km?
and belongs to the warm temperate continental monsoon climate zone, with a resident
population of 36,906,200 in 2020, and the regional GDP is CNY 1.91 trillion. The Guanzhong
Plain Urban Agglomeration is an important fulcrum of the Asia—Europe Continental
Bridge, and also the second-largest urban agglomeration in western China, connecting the
China-Mongolia—Russia International Economic Cooperation Corridor in the north and
the Chengdu-Chongqing Urban Agglomeration in the south [13]. The cities include Xi’an,
Baoji, Xianyang, Tongchuan, Weinan, Shangluo City in Shaanxi Province; Yuncheng City
(except Pinglu County and Quanqu County), and Linfen City (Yaodu District, Houma City,
Xianfen County, Huozhou City, Quwo County, and Yicheng County) in Shanxi Province;
Tianshui City (Hongdong County, Fushan County), Pingliang City (Kongdong District,
Huating County, Jingchuan County, Chongxin County, and Lingtai County), and Qingyang
City (Xifeng District) in Gansu Province. The study area is shown in Figure 1.

3.2. Data Sources

The land use data for 2000, 2010, and 2020 used in the paper were obtained from the
Chinese Academy of Sciences, with a spatial resolution of 30 m. The data are based on the
Landsat series of satellite images, generated through human—computer interaction and
manual visual interpretation, with a comprehensive evaluation accuracy of more than 93%
(https:/ /www.resdc.cn/, accessed on 15 April 2022). The 30 m resolution elevation data
were acquired from ASTER GDEM V2 datasets in the Geospatial Data Cloud (http://www.
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gscloud.cn/, accessed on 15 April 2022). Furthermore, details of the used datasets are shown
in Table 1. In the PLUS model, all the driving factors were resampled to a spatial resolution
of 30 m and reprojected to the coordinate system of WGS_1984_UTM_zone_49N (Figure 2).
Multi-year grain production and planted area in Shaanxi, Shanxi, and Gansu provinces were
obtained from the statistical yearbooks of each province, and grain prices were obtained
from the National Compilation of Costs and Benefits of Agricultural Products.
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Figure 1. Location map of Guanzhong Plain Urban Agglomeration, China.

Table 1. Source of Datasets.

Data Type Data Source Website Spatial Resolution
Slope Calculated with DEM from ArcGIS / 30m
GDP grid )
Annual average precipitation RESD https.//www.rede </, 1000 m
accessed on 15 April 2022
Annual average temperature
Railway
State road
Highway . https:/ /lbs.amap.com/,
Provincial road APLinterface of AMap accessed on 15 April 2022 Vector
City main road
County road
Urban and rural settlement .
Built-up area NCSGI hitps://www.webmap.cn/, Vector
. accessed on 15 April 2022
River
Population http:/ /www.worldpop.org,
density WorldPop accessed on 15 April 2022 100m
N https://eogdata.mines.edu/
NPP_YHRS nighttime Earth Observation Group products/vnl, accessed on 500 m
light image

15 April 2022

3.3. Methodology Flow

Integrating land use with ESV accounting, the methodology flow of this study can be
divided into three parts: (1) Analysis of land use change characteristics from 2000 to 2020 in
the Guanzhong Plain Urban Agglomeration. The change characteristics of each type of land
use were obtained by overlapping analyses and constructing land use transfer matrices.
(2) Establishment of multi-scenario simulations of land use in 2030 using PLUS model. The
total land use, land transfer rules, and neighborhood weights under the BAU scenario, ED
scenario, and EC scenario were set, and we obtained the high-accuracy simulation results
under the three scenarios by the PLUS model. (3) Calculation of ESVs, spatial and temporal
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Figure 2. Driving factors of land use simulation in Guanzhong Plain Urban Agglomeration. (a) Digital
elevation model (DEM), (b) slope, (c) GDP, (d) population density, (e) temperature, (f) precipitation,
(g) nighttime light, (h) distance to urban and rural settlements, (i) distance to river, (j) distance to
city main road, (k) distance to built-up area, (1) distance to county road, (m) distance to railway,
(n) distance to provincial road, (o) distance to state road and (p) distance to highway.

3.4. Future Land Use Simulation
3.4.1. PLUS Model

The PLUS model is a future land use change simulation model that integrates a land
expansion strategy analysis module and a metacellular automata model based on multi-
class random patch seeds [64]. The rule mining method of the land expansion analysis
strategy (LEAS) module extracts the part of each type of land use expansion between two
periods of land use change and uses the random forest algorithm to mine the factors of
each type of land use expansion and driving factors one by one to obtain the development
probability of each type of land use, the driving factors” contribution to each type of land
use in that time period, and the contribution of the drivers to the expansion of each type of
land use in that time period. The PLUS model is better than the CLUE-S and CA-Markov
models in terms of explaining the factors influencing land use change and the accuracy of
the simulation results [47].

3.4.2. Multi-Scenario Simulation Settings

After referring to existing studies, consulting with relevant experts, and repeated
adjustments, the probability of land use transfer under each scenario was set [50,65-67].
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(1) BAU scenario

The development pattern of land use in the Guanzhong Plain Urban Agglomeration
from 2020 to 2030 was assumed to remain unchanged, i.e., the Markov chain model results
from 2010 to 2020 were used to estimate the 2030 simulation results generated by the CA
based on multi-type random patch seeds (CARS) module.

(2) ED scenario

The land use in the economic development scenario is mainly referred to as the
development plan of the Guanzhong Plain Urban Agglomeration (a guidance document
issued by the Chinese government in 2018) and the overall land use plan of each city. “The
14th Five-Year Plan and the outline of the 2035 Vision” of China (official released in 2021)
proposed to optimize the spatial layout of new urbanization and vigorously promote the
construction of new urbanization with the county as the carrier to ensure food security, the
supply of important agricultural products in the process of urban-rural integration, and
development. Farmland is an important economic land type, so in the transfer condition
matrix, it is set to not transfer to other land types except construction land, and construction
land will not transfer to other land types. In the ED scenario in 2030, the transferring
probability of farmland, woodland, grassland, and other land to construction land was set
to increase by 50%, and the transferring probability of construction land to other land types
except farmland was set to reduce by 50%.

(3) EC scenario

The development plan of Guanzhong Plain Urban Agglomeration emphasizes ecolog-
ical environmental protection as the task and prerequisite for the construction of the urban
agglomeration, optimizing the ecological security pattern, and strengthening ecological
protection and restoration. In the settings of land transfer rules, the transfer out of wood-
land and water was strictly restricted, and construction land was set to be transferable
to woodland and grassland due to ecological remediation. In this study, the transferring
probability of woodland and grassland to construction land was set to reduce by 50%,
and the transferring probability of farmland, grassland, construction land, and other land
to woodland was set to increase by 50%. The woodland and water areas were used as
a restricted area, and the transfer of this type of land is prohibited. In the simulation
of the EC scenario, ecological protection zones and development restriction zones will
not be involved in land transfer. A buffer zone with 100 m around water systems was
generated to limit the participation of land use transfer in the area [37]. The restricted zone
of Guanzhong Plain Urban Agglomeration is shown in Figure 3.

N

A

Il Restricted area
[I Developable area

Figure 3. Restricted and developable area of Guanzhong Plain Urban Agglomeration.
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3.5. Valuation of Ecosystem Services

The calculation of total ESV in Guanzhong Plain Urban Agglomeration was referred to
Equation (1). The ESV per unit area of terrestrial ecosystem table proposed by Xie et al. set
the food production function of farmland to 1, which presents the economic value of natural
food production per unit area of farmland per year on average nationwide. The main food
crops in the Guanzhong Plain Urban Agglomeration are wheat and corn. The value of
different ecosystem services in the Guanzhong Plain Urban Agglomeration was corrected
according to the value of one standard equivalent equal to 1/7 of the average grain yield
market value in the region [56]. A provincial coefficient was used in the weighted average
calculation between different provinces regarding Xie’s study [68]. We also referred to
Li’s study to assign values to each coefficient of construction land [69]. The value of
ecosystem services in Guanzhong Plain Urban Agglomeration was finally found to be CNY
1057.68/hm?/a, as shown in Table 2. The exchange rates of CNY to USD and EUR are
6.698:1 and 7.058:1, respectively (obtained on 17 June 2022), same below.

ESV =) ) (Cf x Eg) €))
f=1i=1

where ESV is the total ecosystem service value (yuan) of the Guanzhong Plain Urban
Agglomeration, C; is the area of the fy, land type, Ey is the service function value of the
jth land use type, m is the number of land use types, and n is the number of ecosystem
service categories.

Table 2. ESV per unit area for different LULC types in the Guanzhong Plain Urban Agglomeration
(CNY/hm?).

Primary Classification

Secondary Classification Farmland Woodland Grassland Water Construction Land  Other Land

Provisioning services

Regulating services

Supporting services

Cultural services

Food production 1057.68 105.77 317.30 105.77 10.58 10.58

Raw material 105.77 2749.97 52.88 10.58 0.00 0.00

Gas regulation 528.84 3701.88 846.14 0.00 0.00 0.00

Climate regulation 941.34 2855.74 951.91 486.53 0.00 0.00
Waste treatment 1734.60 1385.56 1385.56 19,228.62 —2601.89 10.58
Water flow regulation 634.61 3384.58 846.14 21,555.52 —7943.18 31.73
Soil fertility maintenance 1544.21 4124.95 2062.48 10.58 21.15 21.15
Biodiversity protection 750.95 3448.04 1152.87 2633.62 359.61 359.61
Recreation and culture 10.58 1353.83 42.31 4590.33 10.58 10.58

3.6. Spatial Autocorrelation Analysis

Spatial auto-correlation is an important indicator to test the correlated significance of
the attribute value of an ecological index with the attribute value of its adjacent space [70].
The Global Moran’s I index reflects the correlation of attribute values of adjacent spatial
units [71]. The absolute value of Moran’s I is close to 1, indicating a stronger spatial
auto-correlation. The Global Moran’s I can be calculated as follows:

N Y 25 wii (% — X) (x— X)

Global Moran’s I = 5
(Zi Zij Wij) Yi(xi—X)

@

where Wij, Xi, Xj, 1, and N indicate the normalized weights, value in the ith pixel, value
in the jth pixel, mean value of the study area, and the total number of pixels, respectively.
The Moran’s I index is approximately +1 for places with complete correlation, while it is
approximately —1 for places that are completely non-correlated.

Local Moran’s I (LISA) index can effectively reflect the correlation between the ecolog-
ical environment quality of each grid unit in the study area [29]. The calculation formula is
as follows:

(xi— X) X Wi (% — X)

i (xi— %)?

Local Moran’sI =

®)
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where the calculation parameters are the same as the Moran’s I index. LISA cluster map has
five types of local spatial aggregation, namely High-High (H-H), Low-Low (L-L), Low-High
(L-H), High-Low (H-L), and Not Significant.

4. Results
4.1. Land Use Change Characteristics

Figure 4 shows the land use types of the Guanzhong Plain Urban Agglomeration from
2000 to 2020. According to the land reclassification results, the land types of Guanzhong
Plain Urban Agglomeration are mainly farmland, woodland, and grassland, which together
account for 95% of the total area. Farmland accounts for about 45% of the total area of
the region, woodland accounts for about 22% of the total area, and grassland accounts
for about 27%. Between 2000 and 2020, the area of farmland and other land decreased,
and the area of woodland, grassland, water, and construction land increased (Figure 5).
The land use type transfer matrix is shown in Table 3. The total area of farmland was
49,593.83 km? in 2000, dropped to 48,655.17 km? in 2010, and reduced to 46,877.72 km?
in 2020. The decreasing rate of farmland was about 0.27% per year. The most dramatic
expansion of the land types is the construction land, rising from 4400.11 km? in 2000
to 6173.44km? in 2020, with an increase of 1773.33 km? in total. The total increasing
rate of construction land reached 40.30%, almost 2.02% per year. The area of woodland,
grassland, and water increased slightly, with a growth of 271.41 km?, 628.05 km?, and
44.04 km?, respectively.

N

A

(a) 2000 (b) 2010

Farmland - Woodland
\:’ Grassland - Water
- Construction land - Other land

0 100 200 km
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Figure 4. Land use types in Guanzhong Plain Urban Agglomeration in 2000, 2010, and 2020.
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Figure 5. Land use area in Guanzhong Plain Urban Agglomeration in 2000, 2010, and 2020.
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Table 3. Transfer matrices of land use type during 2000-2020 (km?).

Period Land Use Types Farmland Woodland Grassland Water Construction Land ~ Other Land  Transfer Out
Farmland 48,256.30 187.27 615.12 109.07 459.14 6.49 1377.09
Woodland 51.05 22,921.05 69.72 6.40 17.48 1.56 146.22
Grassland 256.46 129.32 28,361.06 20.46 21.08 1.56 428.88
2000~2010 Water 108.15 7.78 18.86 1113.46 2.58 1.47 138.84
Construction land 13.51 117 3.68 0.55 4383.12 0.04 18.95
Other land 8.29 417 10.66 0.04 0.62 136.67 23.79
Transfer In 437.46 329.72 718.04 136.52 500.91 11.13 -
Farmland 45,482.36 260.65 1305.63 122.51 1508.63 13.46 3210.89
Woodland 144.11 22,738.86 315.51 8.33 34.06 7.89 509.89
Grassland 889.81 325.14  27,748.15 26.04 73.41 15.36 1329.75
2010~2020 Water 67.10 3.75 31.07 1117.27 28.49 2.09 132.50
Construction land 326.02 8.59 15.25 6.19 4527.64 0.33 356.38
Other land 2.88 0.79 0.00 15.98 3.84 120.76 23.49
Transfer In 1429.91 598.92 1667.46 179.05 1648.43 39.14 -

4.2. Multi-Scenario Land Use Simulation

Referring to existing studies and considering the current situation of the study area,
the authors selected 16 natural and social factors such as elevation, slope, GDP, population,
average annual precipitation, average annual temperature, distance to railroads, distance
to roads (city main road, highway, state road, provincial road, county road), distance to
rivers, distance to built-up areas, distance to urban and rural settlements, and nighttime
light brightness as the driving factors of land use change in the study area [50,66,72].
Their driving forces were identified using the LEAS module, the number of random forest
decision trees was set to 50, the sampling rate was 0.01, and the number of features in
the training RF was 16 to obtain the suitability images for the six land use types. The
contribution of each driving factor is shown in Figure 6.

{¢) Grassland

(d) Water (e) Construction land ~ Value (f) Other land
L1 |
e Low @ 1

Figure 6. Development potentials of six land use types.

Compared with the actual situation in 2020, the Kappa coefficient of the simulation
results was 0.912, greater than 0.8, meeting the simulation accuracy requirements. The
three scenarios’ conversion cost matrix and neighborhood weight matrix are presented in
Tables 4 and 5, respectively. The land use images of the Guanzhong Plain Urban Agglomer-
ation in 2030 under three scenarios were obtained by combining the development zones
and restricted zones (Figure 7, Table 6). In the BAU scenario, the area of farmland in 2030
was 4533.58 km?, which decreased by 1544.14 km? compared to 2020, which was the largest
area transferred out. The area of woodland and grassland increased slightly by 67.37 km?
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and 296.81 km?, respectively. The area of water rose to 1333.23 km?, with an increase of
37.33 km?, and the area of other land slightly increased from 159.82 km? to 169.62 km?.
Construction land was the largest transferred-in land type, compared to 2020, with a total
growth of 1146.96 km?.

Table 4. Conversion cost matrix for simulating different land use scenarios.

Different Scenarios Farmland Woodland  Grassland Water Construction Land Other Land
Farmland 1 1 1 1 1 1
Woodland 1 1 1 1 1 1
. Grassland 1 1 1 1 1 1
BAU scenario Water 1 1 1 1 1 1
Construction land 0 0 0 0 1 0
Other land 1 1 1 1 1 1
Farmland 1 0 0 0 1 0
Woodland 1 1 1 1 1 1
ED . Grassland 1 1 1 1 1 1
scenario Water 1 1 1 1 1 1
Construction land 0 0 0 0 1 0
Other land 1 1 1 1 1 1
Farmland 1 1 1 1 1 1
Woodland 0 1 0 0 0 0
EC . Grassland 0 1 1 1 0 0
scenarno Water 0 1 1 1 0 0
Construction land 0 1 1 1 1 0
Other land 1 1 1 1 1 1

Table 5. Neighborhood weight for simulating different land use scenarios.

Different Scenarios Farmland Woodland Grassland Water Construction Land Other Land
BAU scenario 0.7 0.5 0.2 0.5 0.9 0.1
ED scenario 0.7 0.5 0.2 0.5 1 0.1
EC scenario 0.5 1 0.2 0.5 0.8 0.1

o
(b) ED scenario 7
|:| Farmland - Woodland
\:| Grassland - Water
- Construction land - Other land

W 0 100 200 km
(¢) EC scenario

Figure 7. Land use simulation results under three scenarios.

Under the ED scenario, compared to 2020, the area of woodland, grassland, water,
and other land decreased. Conversely, farmland and construction land area increased.
Construction land, with the largest increase, increased by 1947.85 km?, followed by
172.69 km? in farmland. Under this scenario, the urban agglomeration’s construction
land area expanded rapidly, with Xi’an as the primary core, and Baoji and Yuncheng as the
secondary cores, developing rapidly along the Wei and Fen rivers. In this scenario, the high
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speed of farmland conversion was slowed down and the balance of farmland occupation
was taken into account to ensure the important economic productivity.

Table 6. Simulated areas of three scenarios in Guanzhong Plain Urban Agglomeration (km?).

Scenarios Farmland Woodland Grassland Water Construction Land Other Land
BAU scenario 45,333.58 23,381.52 29,670.14 1333.23 7320.40 169.62
ED scenario 47,050.41 22,849.78 27,898.48 1156.53 8121.29 132.01
EC scenario 45,233.17 23,694.21 32,243.73 1311.02 7257.18 169.18

In the EC scenario, the trends for each land type remained consistent with the BAU
scenario. Farmland was still the main source of construction land, 1644.55 km? less than
in 2020. The area of woodland, grassland, water, construction land, and unused land all
increased to some extent. The area of ecological land types expanded significantly, as the
area of woodland and grassland increased by 1.63% and 9.77%, respectively. The enhance-
ment of the water area was rather reduced compared to the BAU scenario, which may be
due to the transfer limitation of the buffer zone around the water systems. Compared with
the BAU scenario, the growth rate of construction land was not significantly reduced, and
the total area only decreased by 63.22 km?.

4.3. Spatial and Temporal Variation of Ecosystem Service Values
4.3.1. Total ESVs and Variations of Each Ecosystem Service

Based on the land use situation of 2000, 2010, 2020, and three scenarios in 2030, we
calculated the total ESVs and ESV of each classification in the Guanzhong Plain urban
agglomeration (Tables 7 and 8). From 2000 to 2020, the overall ESV continuously reduced.
In 2000, the total ESV was CNY 113.14 billion, and the number continuously dropped to
CNY 110.68 billion in 2020. The changing rate from 2000 to 2010, 2010 to 2020, and 2000 to
2020 was —0.48%, —1.70%, and —2.18%, respectively. For different land types, the ESV of
woodland, grassland, water, and other land enhanced, while farmland and construction
land decreased. The most degradation was the construction land ESV change from 2000
to 2020, which was 40.31% lower than in 2000. The trend of ESV reduction in farmland
continued to increase, with a total decline rate of —3.30% between 2000 and 2020, the
largest reduction except for construction land. The total increase of water ESV was the
highest in the last 20 years, with an increased rate of 3.52%. Among the different scenarios’
simulations, ESVs showed different trends in comparison to 2020. In the BAU and ED
scenario, the total ESVs decreased by CNY 156 million and CNY 4731 million, respectively,
while in the EC scenario, the total ESV increased by CNY 849 million. The growth of
construction land area was the main reason for the fluctuation of ESV under each scenario.

In the intercomparison of different ecosystem services, the ESVs of food production,
climate regulation, waste treatment, water flow regulation, and soil fertility maintenance
showed downward trends, while the ESVs of raw material, gas regulation, biodiversity
protection, and recreation and culture increased from 2000 to 2020. The value of soil fertility
maintenance was the highest of the nine ecosystem services, and the value of recreation
and culture remained the lowest. In the BAU scenario, the ESV of raw material increased
slightly, and the other eight ecosystem services all showed declining trends. In the ED
scenario, the trends were generally consistent, with all ESVs showing decreasing trends.
The EC scenario showed improvement in the situation of various ecosystem services.
Raw material, gas regulation, climate regulation, soil fertility maintenance, biodiversity
protection, and recreation and culture functions all increased to some extent, indicating the
improvement of the ecological environment in the Guanzhong Plain Urban Agglomeration
in this scenario.
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Table 7. ESVs of different land use types in Guanzhong Plain Urban Agglomeration from 2000 to
2030.

ESV/

J Year/Scenario Farmland Woodland Grassland  Water Construction Land Other Land Total
CNY 100 million

2000 362.46 532.53 220.12 60.87 —44.63 0.07 1131.42
2010 355.60 536.77 222.33 60.75 —49.52 0.06 1125.99
2020 342.61 538.80 224.93 63.01 —62.62 0.07 1106.80
2030 BAU 331.32 540.35 227.20 64.82 —74.25 0.08 1089.52
2030 ED 343.87 528.07 213.64 56.23 —82.38 0.06 1059.49
Changing rate/% 2030 EC 330.59 547.58 246.91 63.74 —73.61 0.08 1115.29
2000-2010 —1.89 0.80 1.00 —0.20 —10.96 —14.29 —0.48

2010-2020 —3.65 0.38 1.17 3.72 —26.45 16.67 —-1.70

2000-2020 —5.48 1.18 2.19 3.52 —40.31 0.00 —2.18

2020-BAU -3.30 0.29 1.01 2.87 —18.57 14.29 —1.56
2020-ED 1.26 —10.73 —11.29 —6.78 —19.76 —0.01 —47.31

2020-EC —12.02 8.78 21.98 0.73 —10.99 0.01 8.49

Table 8. ESVs of different ecosystem services in Guanzhong Plain Urban Agglomeration from 2000 to
2030 (CNY 100 million).

Ecosystem Service Type 2000 2010 2020 BAU Variation ED Variation EC Variation

Food production 64.19 63.32 61.57 60.06 -1.51 61.24 —0.33 60.80 —0.77
Raw material 70.15 70.57 70.64 70.68 0.04 69.30 —1.34 71.66 1.02
Gas regulation 135.85 136.28 135.95 135.63 —0.32 133.08 —2.87 138.92 297
Climate regulation 140.46 140.37 139.30 138.34 —0.96 136.66 —2.64 141.58 2.28

Waste treatment 170.41 168.13 163.17 158.73 —4.44 153.04 —10.13 162.30 —0.87

Water flow regulation 125.82 122.21 112.41 103.61 —8.80 91.23 —21.18 106.80 —5.61
Soil fertility maintenance 231.03 230.94 229.29 227.82 —1.47 224.64 —4.65 234.26 497
Biodiversity protection 154.77 155.19 155.14 155.07 —0.07 152.30 —2.84 158.96 3.82
Recreation and culture 38.73 38.98 39.32 39.59 0.27 38.01 -1.31 40.02 0.70

4.3.2. Spatial Distribution and Trade-Offs of Different ESVs in Different Scenarios

To compare the local variation and spatial correlation, a 5 km x 5 km grid was
generated by ArcGIS 10.8 to calculate the local ESVs. The spatial and temporal ESV
variations of Guanzhong Plain Urban Agglomeration are shown in Figure 8. The high ESV
grids were mainly distributed in the southeast, east, and north, and the low ESV grids were
mainly distributed in the middle and northeast. The areas with ESVs below CNY 0 and
10 million were mainly urban built-up areas, and a significant expansion of areas with low
ESV values can be observed in the three scenarios.

The Global Moran’s I was calculated by ArcGIS software, and the index showed an
increasing trend year by year during 2000-2020 (Table 9). The Moran’s I was 0.6979 in
2000, 0.7049 in 2010, and 0.7057 in 2020. In the three scenarios, the highest Moran’s I was
0.7122 in the EC scenario, and the lowest was 0.5755 in the ED scenario. All p-values were
zero, indicating that the ESVs of the Guanzhong Plain Urban Agglomeration showed a
high degree of spatial autocorrelation. The total ESV value of the Guanzhong Plain Urban
Agglomeration showed an obvious “two-pole” pattern, i.e., it was mainly manifested as
“High-High” agglomeration and “Low-Low” agglomeration (Figure 9). The “High-High”
clusters were mainly concentrated in the Qinling Mountains in the south and in the hilly
and ravine areas of the Loess Plateau in the north, while the “Low-Low” clusters were
mainly located in the plains and other areas where human activities were frequent.
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Figure 8. Spatial and temporal ESV variations of Guanzhong Plain Urban Agglomeration.

Table 9. Global Moran’s I statistics.

Year Moran’s 1 Z-score p-Value
2000 0.6979 83.9632 0.0000
2010 0.7049 84.8010 0.0000
2020 0.7057 84.8883 0.0000
2030BAU 0.7087 85.2570 0.0000
2030ED 0.5755 69.2342 0.0000
2030EC 0.7122 85.6717 0.0000

(d) 2030BAU (e) 2030ED (f) 2030EC

0 100 200 km
Not Significant  [JJJll Tigh-trigh Cluster] 7 Tigh-Low Outlier Low-ligh Oudier [l Low-Low Cluster

Figure 9. LISA map of three scenarios in Guanzhong Plain Urban Agglomeration.

Further, we calculated correlation coefficients for the ESVs in each secondary class
in 2000, 2010, 2020, and three scenarios in 2030 to examine the trade-offs among the
ecosystem services. The Pearson coefficient was calculated by SPSS 21 and visualized by
MATLAB 2019a (Figure 10). Significant positive correlations showed in some ESV types.
Except for FP and WT, all six ecosystem services showed positive synergistic relationships.
In the ecosystem service of FP, synergistic features remained consistent across the six
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periods, with negative correlations with RM, GR, CR, WFR, SFM, BP, and RC. This may
be due to the fact that the largest proportion of land type in the Guanzhong Plain Urban
Agglomeration was farmland and the reduction in the area of farmland caused a weakening
of the food production function. The correlation of the waste treatment function followed
the same pattern of changes as the food production function. From 2000 to 2020, the
negative correlation between FP and other services showed a gradual reduction. In the
three scenarios in 2030, excellent synergistic relationships remained among the various
ecosystem services, and in the EC scenario, the observation of the most significant synergies
was detected.
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Figure 10. Correlation analysis of ESVs between each ecosystem service in Guanzhong Plain Urban
Agglomeration (where FP, RM, GR, CR, WT, WFR, SEM, BP, and RC indicate the food production,
raw material, gas regulation, climate regulation, waste treatment, water flow regulation, soil fertility
maintenance, biodiversity protection, and recreation and culture, respectively).

5. Discussion
5.1. Feasibility of PLUS Model Application

The accuracy validation of simulation results is the main way to measure the land
simulation model [73]. The simulated result of land use in Guanzhong Plain Urban Ag-
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glomeration was compared with the actual land use in 2020. The Kappa coefficient of the
predicted image was 0.912 compared with the actual land use image. As the results of
Landis’ research, the Kappa statistic larger than 0.8 was recognized as almost perfect [74].
This indicates that the PLUS model has great advantages in terms of land use simulation
accuracy [75]. Wang et al. tested the FLUS model and the PLUS model with land use simu-
lations in western Beijing and found that the accuracy of the PLUS model was higher [65].
Guo et al. compared and analyzed the simulation results of the RNN-CA, the ANN-CA,
and the PLUS models, and the PLUS model continued to perform the best [76]. To further
verify the results of the PLUS model, we calculated the simulation accuracy for each of the
six land use types. The simulation accuracies were 0.941, 0.975, 0.948, 0.862, 0.780, and 0.816
for farmland, woodland, grassland, water, construction land, and other land, respectively.
The overall accuracy was 0.940, indicating that the prediction accuracy of the PLUS model
is excellent and can be used as a method for future land use simulation.

5.2. Land Use Change Patterns and ESV Trade-Offs

The land use changes in the Guanzhong Plain Urban Agglomeration were the result
of a combination of various factors. In general, the trend of land use changes showed that
the area of farmland continued to decrease and the area of woodland, grassland, water,
construction land, and other land increased. This feature was consistent with findings from
similar study areas [66,77,78]. From 2000 to 2020, farmland was the most transferred out
land type. The net transferred out area of farmland shifted mainly to construction land and
grassland. On the one hand, the policy of returning farmland to woodland and grassland
was being gradually implemented, and, on the other hand, the rapid development of
the economy and society significantly increased the demand for urban construction land,
and a large amount of farmland on the outskirts of cities had been occupied [79]. Under
the three scenarios for 2030, land use characteristics continued to be characterized by a
rapid turn-out of farmland. The most significant increase in woodland was observed in
the EC scenario, while the expansion of construction land reached its greatest level in the
ED scenario.

Multiple scenarios of future land use changes would trigger changes in the value of
various ecosystem services, which in turn would affect their trade-off relationships [80].
ESV degradation areas are mainly distributed around urban built-up areas, which were the
typical characteristics of land use type changes. In the high-altitude region, ESVs under
BAU and EC scenarios, on the other hand, showed an increasing trend due to the effect of
ecological remediation works. In the BAU scenario and the EC scenario, the ESV differences
revealed by the grids were not significant, while the ESV changes in the ED scenario were
more significant. It is noteworthy that the ESV in the southwestern mountains exhibited
a rapid decline under the ED scenario if the transfer out of woodland and grassland was
not constrained. With the expansion of urban and rural construction land, the “two-pole”
pattern of ESV distribution in the Guanzhong Plain Urban Agglomeration had become
more obvious.

Trade-offs between ecosystem services remain the focus of such studies [81]. Scholars
calculated the correlation coefficients between ecosystem services, ecosystem service values
in the region, or the spatial distribution patterns based on the characteristics of the study
area [82,83]. However, the correlation coefficients between the various types of ESVs
showed different characteristics due to the different study scopes (municipal, county, and
grid) [29,84,85]. Since the land use change patterns in rapidly urbanizing regions are alike,
the correlation pattern of ESVs we found was similar to that of Zhang et al. [86]. The
synergistic relationships of the nine types of ecosystem services did not change significantly
under the three simulated scenarios. This indicated that the trend of the Guanzhong Plain
Urban Agglomeration is characterized by the development of coupled urbanization and
ecological protection.
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5.3. Policy Implications

By comparing the future land use simulation results of the Guanzhong Plain Urban
Agglomeration under the three scenarios, we found that the expansion of urban construc-
tion land was rapid. The changes of ecological land such as woodland, grassland, and water
varied under different development scenarios, which also caused the great differences of
ESVs. Based on our findings, we have made policy suggestions for governments:

Scientifically delineate primary functional zones based on research results. China’s
current territorial spatial planning zoning is at the district and county levels. Each district
and county is set as a key development zone, a major agricultural production zone, or an
ecological function zone. In contrast, different districts and counties” natural and social
conditions vary greatly and cannot be divided simply by living, production, or ecological
space. Some major agricultural production zones are more suitable for new land for
construction, while some key development zones contain important ecological source sites.
The existing land use control requirements and policy convergence rules are also unclear,
making it more challenging to match the spatial governance requirements of different scales.
The prediction results of this study can refine future land use planning to the community
level and help to allocate land development targets more scientifically. By aggregating the
future land demand of each region through bottom-up statistics and preparing a new land
use plan, we can ensure a reasonable allocation while meeting the land use laws.

Establish a long-term mechanism for balancing the ESVs from the perspective of
urban agglomerations. The effectiveness of the current ecological project implementation
is unstable and lacks systematic evaluation. Most projects have focused on the efficacy of
single ecological projects, and the evaluation indexes are limited to the expected objectives
of the original projects, such as the area of afforestation, the area of soil erosion control, or
the number of dam systems projects, etc. Only a few plans have focused on the indicators
of ecosystem service functions. The results of our research can provide new ideas for land
use planning to plan the area of various land use types based on future ESV changes as a
constraint to ensure the overall ESV of urban agglomerations is not degraded. The general
land use target of the urban agglomeration is planned within limits using the ESV under
the EC scenario as the upper limit and the ESV under the ED scenario as the lower limit.

Further consolidate the effectiveness of ecological restoration projects. There are
numerous ecological restoration projects in government departments at this stage, but
the project effects are still lacking. Economic forests are generally operated inefficiently
and roughly: some plantation forests have a single structure, low ecological stability, and
service functions; and some areas are close to the upper limit of regional water carrying
capacity for vegetation restoration. The existing ecological funds come from a single source,
still dominated by state input, lacking long-term stable input mechanisms and investment
channels. Ecological conservation and restoration expenditures are still far below ESV
losses. Since ecological optimization has powerful positive externalities, cities should
negotiate the establishment of an ecological fund dedicated to ecological remediation.
In inner-city space layouts, municipal engineering should increase the number of urban
parks, green areas, green belts, artificial water systems, and lakes. In the ravine, the
river bank, the slope area, and the idle vacant land, departments should grow green
plants. Take traditional villages as units, greening and beautifying beside villages, houses,
roadsides, and watersides, forming a combination of ecological restoration of points,
lines, and surfaces. Within the mountains, natural restoration is the primary measure,
supplemented by artificial restoration, to maximize the recovery of damaged land and
destroyed vegetation to a zonal ecological landscape. Technical measures include hanging
net guest soil spraying, fish scale pit planting (planting trough), planting bag, vine plant
climbing, seedling replanting, etc.

5.4. Establishment of Smart and Sustainable Cities

Sustainability issues have received much attention from the United Nations Millennium
Development Goals (MDGs) to the 2030 Sustainable Development Goals (SDGs) [87,88]. The
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realization of SDGs depends on harmonizing social, ecological, and natural resource
elements. China was one of the fastest-growing countries in the SDGs’ global score ranking,
with a score that increased from 59.1 in 2016 to 73.89 in 2020 and a corresponding rise
in ranking from 76th to 48th. Despite China’s massive progress under the SDGs, rapidly
growing population and resource pressures have strongly impacted ecosystem services in
the context of rapid urbanization [89].

“Sustainable Cities and Communities” (SDG 11) is central to the achievement of all
seventeen UN SDGs. Sustainable cities are based on the idea of sustainable development
as a contemporary paradigm for building the ideal city of the future [90]. The concept was
officially conceptualized by UN-Habitat at its second conference in 1996 as cities that are
sustainable in three dimensions: environmental, social, and economic; that use resources
at a sustainable level; and that are highly resilient to risk. As technology evolves, the
understanding of sustainable cities is gradually gaining momentum. Subjects of com-
pactness, sustainable transport, density, mixed land uses, habitat diversity, and greening
were considered in the establishment of sustainable cities [91]. With the development
of modern information technology, smart cities have gradually begun to attract atten-
tion [92]. However, since the concept of smart cities was proposed, due to the different
starting points and focus, the connotation of smart cities has not yet formed a unified
understanding [93]. Bibri synthesized the related research on smart and sustainable cities
and proposed the research dimensions, technologies, and ideas for the future development
of smart and sustainable cities [94]. Since then, studies on smart and sustainable cities have
gradually emerged.

Our study attempts to propose a vision of smart and sustainable cities from the per-
spective of ecological security based on the current research results. It offers construction
ideas from the ecological environment level to provide a paradigm for the high-quality
development of the Guanzhong Plain Urban Agglomeration. The purpose of smart sus-
tainable urban ecosystem management is to build a cyclic system that harmonizes human
activities with natural development, to form and maintain a healthy ecosystem, to facilitate
the exchange of material and information flows, to build landscapes with regional charac-
teristics, and to enhance the quality of development with spatial control. The government
should establish an ecological detection network. The network is based on remote sensing
and drone images, combined with 5G transmission technology and Al recognition technol-
ogy. Based on big data, the network enables real-time monitoring of changes in land cover,
natural disasters such as wildfires and floods, and concentrations of PM2.5, PM10, and
other information to be passed on to the relevant authorities. Ecological and environmental
departments can make predictions on the current status and future trends of ecological
quality based on existing high-precision data, making the protection of ecosystem services
more scientific. At the same time, the government can incorporate more refined ecological
and environment-related indicators into the vision, such as targets for total energy con-
sumption, carbon emissions, forest accumulation, and green space per capita [95]. Each
city in the Guanzhong Plain Urban Agglomeration should play a role in constructing smart
and sustainable cities based on its characteristics and local conditions.

5.5. Limitations and Future Perspectives

The present study may have the following shortcomings. (1) This study cannot exhaust
all future land use patterns and can only use three scenario representations. In the scenario
settings of this paper, three scenarios were set up, namely the BAU scenario, ED scenario,
and EC scenario. For example, we did not consider the Farmland Protection (FP) scenario in
the scenario settings because the spatial distribution of permanently protected farmland is
confidential government data that are not available. In this study, the protection of farmland
was mainly reflected in the restriction of farmland to land types other than construction
land in the ED scenario. (2) The selection of land use driving forces was based on data
availability and accessibility, and therefore the driving factors of land use change could
not be exhaustive. (3) The PLUS model can only simulate the future land use based on the

42



Sustainability 2022, 14, 8812

changing pattern of existing land use types, and future policy factors were not considered.
Policy factors are the main contributors to land use change in China. Policy uncertainty
presents a variety of possibilities for future land use patterns.

This study provides methodological and data support for predicting the future ESVs
in rapid urbanization regions. In our future studies on land use simulation and ESVs, we
will improve the accuracy of regional ecosystem service value scales, collect natural and
socio-economic data with higher accuracy, and conduct studies on larger-scale ecosystems
based on land use simulation methods, focusing on the driving forces of land use transfers
on the ecological environment.

6. Conclusions

Cities are spaces with a high concentration of population, resources, wealth, and
human socio-economic activities. Due to the highly intensive nature of cities, ecological
environment destruction, disordered development of resources, high population density,
traffic congestion, declining quality of life, and other problems have become obstacles to
the development of cities. Taking the Guanzhong Plain Urban Agglomeration as the study
area, this paper analyzed scenario-based land use predictions and ESV responses. Through
its spatial and temporal variation characteristics and synergistic patterns, we provided
policy suggestions and data support for the coordinated and sustainable development of
urban agglomerations.

The Guanzhong Plain Urban Agglomeration is a highly representative inland urban
agglomeration among Chinese urban agglomerations. Its urbanization characteristics have
promising implications for urban development in central and western China. The first
feature is that farmland is the primary source of land transfer. In recent years, the national
spatial planning has restricted the transfer-out of woodland, grassland, and water, and the
policy of returning farmland to woodland and grassland has been gradually implemented.
In addition to permanently protected farmland, a large amount of farmland has been
converted to construction land. The massive withdrawal of farmland can trigger a dramatic
degradation of ESVs. Such characteristics were also seen in other similar rapidly urbanizing
regions. A regional ecosystem that wants to remain stable should follow the occupancy
balance of ESV or at least ensure that no drastic changes occur.

The second feature is that in the single-core urban agglomeration, new construction
land is mainly distributed around the main urban areas of the core city. In the simulation
results of the three scenarios in 2030, the Guanzhong Plain Urban Agglomeration with Xi’an
city as the core all exhibit a substantial expansion of the single-core. Due to policy-oriented
factors and location conditions, this region is more prone to the urbanization process and
accordingly triggers ecological degradation. Building multi-core urban agglomerations has
become the key to solving this problem. In the process of new urbanization, on the one
hand, the gravitational effect of core cities should be fully utilized to accelerate economic
growth; on the other hand, the urban development boundary should be strictly observed
in spatial planning and land use indexes should be reasonably allocated.

The third feature is that the spatial distribution pattern of ESVs shows significant
spatial heterogeneity. Land use type differences are the most crucial cause of regional
ESV changes and thus exhibit distinct spatial characteristics. The woodland is mainly
distributed in the mountains with high altitudes and steep terrain, and most of them are
located within the ecological protection red line, so the intensity of human exploitation
is small. Grassland and farmland are mainly located in flat areas at lower elevations
and are vulnerable to human activities. The plain area of the Guanzhong Plain Urban
Agglomeration is dominated by farmland, grassland, and construction land, and shows
L-L aggregation. The Qinling Mountains in the southern part and the Loess Hills in the
northern region are concentrated areas of high ESVs, which shows H-H aggregation in the
LISA results. Urban ecological security patterns are not static, which calls for governments
to focus on synergistic relationships among ecosystem services. Constraint on the area of
construction land and vigorous afforestation can effectively enhance the positive synergistic
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effect. Maintaining ESV supply and improving the quality of ecosystem services requires
ongoing policy attention.
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Abstract: In recent years, ecosystem service values (ESV) have attracted much attention. However,
studies that use ecological sensitivity methods as a basis for predicting future urban expansion and
thus analyzing spatial-temporal change of ESV are scarce in the region. In this study, we used the CA-
Markov model to predict the 2030 urban expansion under ecological sensitivity in the Three Gorges
Reservoir area based on multi-source data, estimations of ESV from 2000 to 2018 and predictions of
ESV losses from 2018 to 2030. Research results: (i) In the concept of green development, the ecological
sensitive zone has been identified in Three Gorges Reservoir area; it accounts for about 35.86% of
the study area. (ii) It is predicted that the 2030 urban land will reach 211,412.51 ha by overlaying the
ecological sensitive zone. (iii) The total ESV of Three Gorges Reservoir area showed an increasing
trend from 2000 to 2018 with growth values of about USD 3644.26 million, but the ESVs of 16 districts
were decreasing, with Dadukou and Jiangbei having the highest reductions. (iv) New urban land
increases by 80,026.02 ha from 2018 to 2030. The overall ESV losses are about USD 268.75 million.
Jiulongpo, Banan and Shapingba had the highest ESV losses.

Keywords: ecological sensitivity; ecosystem service values; CA-Markov model; urban expansion;
Three Gorges Reservoir area

1. Introduction

An ecosystem is a unity of the biota and the abiotic surroundings in a certain space of
nature [1]. It is also an ecological functional unit formed by the continuous exchange of
energy and materials between organisms and their abiotic environment [2—4]. Ecosystems
can provide a range of services for human production and livelihoods [5-7]. Ecosystem
services are the materials that humans need to obtain from the Earth’s ecosystems and
natural environment [8,9]. Ecosystem services are diverse, and the services are unique and
irreplaceable for different ecosystem [10-12]. For example, forests are the most essential
ecosystems for human life, providing wood, regulating air, promoting soil formation and
supporting social benefits such as spiritual, landscape and educational values [13]. The
evaluation of ESV can measure the status of a regional ecosystem.

The evaluation of ESV is a method based on ecology, economics and sociology [14-16].
It can quantitatively evaluate ecosystem services from the perspective of monetary value
and better reflect the change in ESV and provide decision makers with knowledge to make
policy adjustments [16,17]. In the early days, its evaluation methods made some progress
in emphasizing the impact of socio-environmental change on ecosystem services (supply,
regulation, support and entertainment services) [18-20]. Research scholars began to use
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RS and GIS technology to assess ESV for the region by remote sensing technology, such as
China at the national scale [9,21] and Leipzig at the municipal scale [22].

The delimitation of the ecological sensitive zone is important to improve ESV in the
region [5]. Itis believed that an ecological sensitive zone is characterized by the low stability
of an ecosystem that is easily affected by external activities, ecological degradation and
difficulty with self-restoration [23]. When humans develop them unreasonably, ecological
sensitive zones are prone to environmental problems. Delineating the ecological sensitive
zone plays an important role in maintaining the health of the ecosystem [24,25]. The
ecological sensitivity evaluation method can quantitatively identify the ecological sensitive
zone. The evaluation results provide the possibility to effectively control and protect the
target zone [7]. It also provides a practical way for developing countries to realize its
regional sustainable development strategy [26]. Starting from the perspective of ecological
sensitivity, providing scientific guidance methods for realizing the sustainable development
of regional ecosystem [27].

The assessment of ESV is closely linked to land use patterns. Land use simulations can
be modelled using spatial tools such as cellular automata (CA), which are temporal, spatial
and state-discrete models that can simulate complex dynamic systems with spatial charac-
teristics [28-31]. CA model express geographic entity information to simulate and predict
complex geographic processes by constructing a systemic spatial concept system [32].
Thus, CA is commonly used to predict future land use changes through endogenous and
exogenous drivers, which have the roles of human disturbance as well as socioeconomic
and institutional factors [33,34]. Estimations of future ESVs are obtained by addressing the
interactions between drivers, land use changes and ESV changes. These interactions are
usually considered as the dependent variable component of the CA model. For example,
logistic regression is combined with a CA model, which is used by assuming that the
development probability of a location is a function of a set of independent variables [35].
The ANN-CA model is a combination of artificial neural networks (ANN) and CA models,
which combines the nonlinear processing capability of artificial neural networks and the
spatial simulation capability of CA models [36]. In the CA-Markov model, the Markov
chain process controls the temporal variation between land use types according to the tran-
sition matrix, which facilitates the use of a wider range of spatial variables and improves
the accuracy of the model [37,38].

As urbanization progresses, it is necessary to delimit ecological sensitive zones and
predict the future urban development direction of the region through the CA-Markov
model to promote sustainable urbanization development. On this basis, estimating the
dynamic change of ESV in the region will provide a full understanding of the services
provided by ecosystems for human social development, providing relevant reference for
ecological environmental protection and the comprehensive control of ecological reserves.
Therefore, this paper takes the Three Gorges Reservoir area as an example to simulate the
future development rate and direction of urban land in different districts and counties of
the Three Gorges Reservoir area under the role of the ecological sensitive zone and urban
land drivers. The quantitative estimation of change in ESV and the prediction of future
ESV losses in the region are performed by ecosystem service value equivalence tables. This
study can provide scientific reference to promote ecological civilization construction and
sustainable development in developing countries.

2. Materials and Methods
2.1. Description of the Study Area

The Three Gorges Reservoir area is located at the end of the upper reaches of the
Yangtze River Basin, with an area of approximately 68,772.93 km? (Figure 1). It is bordered
by three provinces and a municipality, namely Hubei Province, Sichuan Province, Guizhou
Province and Chonggqing City. The Three Gorges Reservoir area includes 26 districts and
counties (autonomous regions). The relative height shows a gradual increase from west to
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east. The central and western parts of the reservoir area are dominated by platforms and
hills. The eastern part is close to the Daba Mountain and has many rolling hills [39].

(a) The map of China O N (c) The Three Gorges Reservoir Area N

——— The Yangzte River Elevation(m)
3 i 500 ="
(b) The Yangtze River Basin I — ‘ | The Yangtze River Basin — 2960
The Three Gorges Reservoir Area s

Figure 1. Location and elevation of the study area. (a) The map of China; (b) the Yangtze River basin; (c) the Three Gorges

Reservoir area.

There are abundant vegetation types in the Three Gorges Reservoir area, and the
overall spatial distribution of vegetation coverage shows the characteristics of high in
the east and low in the west [40]. The east is mostly broad-leaved forests, bushes and
grasslands; the central and western area are farming area with many cultivated plants
and crops [41]. The Three Gorges Reservoir area is an important ecological barrier in the
Yangtze River Basin, China’s strategic water resources reserve. Therefore, the prediction
of ESV change in the Three Gorges Reservoir area is important for China’s sustainable
development under the future urban expansion.

2.2. Materials

The two main types of data used in this study are spatial data and statistical
yearbook data.

Spatial Data. (1) Administrative boundary vector data of Three Gorges Reservoir area
(SHP format). (2) Soil dataset provided by Harmonized World Soil Database (HWSD) and
Cold Arid Regions, Available online: http:/ /www.westdc.westgis.ac.cn (accessed on 17
April 2019), which contains the spatial coordinates and properties of the soil (GRID format).
(3) Digital elevation model (DEM), which was downloaded from the Geospatial Data Cloud
Available online: http:/ /www.gscloud.cn/ (accessed on 26 April 2020). In the above data,
the DEM data, with a resolution of 30 m, can be extracted into slope and elevation. (4)
The highway, the primary road and railroad data procured from OpenStreetMap Available
online: http://www.openstreetmap.org (accessed on 13 July 2020). The population density
data was provided by Landscan Available online: https:/ /landscan.ornl.gov/ (accessed
on 18 December 2020). (5) The 1000 m Normalized Difference Vegetation Index (NDVI)
data and 30 m land use and land cover change (LUCC) data were obtained from the Data
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Past land use patterns

Centre for Resources and Environmental Sciences, Chinese Academy of Sciences (RESDC)
Available online: http:/ /www.resdc.cn (accessed on 26 April 2020). NDVI and LUCC data
were obtained by remote sensing image processing. NDVI data was based on inversion of
SPOT/VEGETATION and MODIS satellite remote sensing and LUCC data was generated
by manual visual interpretation based on Landsat 8 remote sensing images. (6) China
Nature Reserve, the earthquake and landslide vector data acquired from RESDC. China
Nature Reserve are surface vector data, the rest are point vector data.

Statistical data: The statistical data include average annual rainfall (2018), average
annual temperature (2018), number of days with wind and sand wind speed >10 m/s
(2018), annual evaporation (2018), groundwater mineralization and groundwater burial
depth. Meteorological data were mainly obtained from 22 meteorological stations around
the Three Gorges Reservoir area by the Chinese Meteorological Science Data Sharing
Service Available online: http://data.cma.cn/site/index.html (accessed on 17 January
2020). According to each weather station, the inverse distance interpolation (IDW) method
of ArcGIS was used to convert meteorological statistics into a raster image of meteorological
data in the study area. Groundwater mineralization and groundwater depth of burial data
were obtained by querying the statistical yearbooks of different districts and counties in
the Three Gorges Reservoir area.

2.3. Methods

In this paper, we use the overlay analysis function of GIS, Markov chain and cellular
automata (CA) to simulate the future urban expansion. From the scenario of ecological
conservation, predicting future urban expansion, estimating ESV during 2018-2030 and
forecasting ESV losses at 2030 in the Three Gorges Reservoir area were performed. The
research framework of this study is presented in Figure 2.

The equivalent coefficients table | ESVeval

"\ during 20002018

Markov chain :
4 —ang Preciction
- MCE-CA A/ of ESV losses at
Driving factors &)E—' ’# ” > 2030
Future urban expansion pattern
7R '—’\ i R
L7 . f‘,,

7 ’

L 7

Eco-environment sensitivity factor

[ K
Vi

w

Eco-environment sensitivity zone

Figure 2. Research framework.

2.3.1. Ecological Comprehensive Sensitivity and Zone Identification

In this research, the comprehensive ecological sensitivity was calculated from three
sensitivities of soil erosion, land desertification and soil salinization. The calculation
formula is shown below:

EES = wa * SSi 4+ wb * Zi 4+ wc * Si 1)

where EES denotes the comprehensive ecological sensitivity, and SS;, Z; and S; are the
weight values of soil erosion, land desertification and soil salinization, respectively. The
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coefficient of variation method was used to calculate w,, wy, and w, as 49.63%, 32.00% and
18.37%, respectively [42].

R;, SG;j, LS; and C; were selected for the evaluation of SS;. The ecological sensitivity
factors were classified into five classes named insensitive, mildly sensitive, moderately
sensitive, highly sensitive and extremely sensitive, which were categorized into classes 1, 2,
3,4 and 5, respectively (Table 1). The four indicators are calculated as follows:

SSi = v/Ri * SGi * LSi x Ci 2)

where SS; denotes the soil erosion sensitivity; R; is the rainfall erosivity factor; SG; is
the soil type factor; LS; is the relative height factor; and C; is the normalized difference
vegetation index factor. The ecological sensitivity factors were divided into five classes
named insensitive, mildly sensitive, moderately sensitive, highly sensitive and extremely
sensitive, which were categorized into classes 1, 2, 3, 4 and 5 (Table 1).

Table 1. Criteria for the soil erosion sensitivity.

Sensitivity Degree R; SG; LS; G
Insensitive (1) <25 Paddy soil, urban area, rock and river <20 >0.49
Mildly sensitive (2) 25-100 Limestone soil, rock-soil and mountain meadow soil 20-50 0.39-0.49
Moderately sensitive (3) 100-400 Dark brown soil and yellow-cinnamon soil 50-100 0.28-0.39
Highly sensitive (4) 400-600 Yellow loam, yellow-brown soil and skeleton soil 100-300 0.16-0.28
Extremely sensitive (5) >600 Purple soil >300 <0.16

The evaluation of the Z; required the I;, W; and SL;. Its classification and assignment
methods were the same as those of SS; (Table 2). The formula of Z; was as follows:

Zi = V/Ii * Wi * SLi (3)

where Z; denotes the land desertification sensitivity; I; is the dryness index factor; W; is the
number of days on which wind-blown sand speeds are 6m/s; SL; is the slope factor.

Table 2. Criteria for the land desertification sensitivity.

Sensitivity Degree I; Wi SL;
Insensitive (1) <0.96 <2 <5
Mildly sensitive (2) 0.96-1.01 2-4 5-8
Moderately sensitive (3) 1.01-1.08 4-6 8-15
Highly sensitive (4) 1.08-1.17 6-8 15-25
Extremely sensitive (5) >1.17 >8 >25

The evaluation of the S; required the E;, GS;, GD; and LUCG;. Its classification and
assignment methods were the same as those of SS; (Table 3). The formula of S; is as follows:

Si = v/Ei * GSi * GDi * LUCCi (4)
where S; is the salinization sensitivity; E; is the evaporation index factor; GS; is the degree

of mineralization of ground water factor; GD; is the groundwater depth factor; LUCC; is
the land use and land cover change factor.
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Table 3. Criteria for the salinization sensitivity.

Sensitivity Degree E; GS; GD; LUCG;
Insensitive (1) <0.6 <0.1 >20 Water body
Mildly sensitive (2) 0.6-0.7 0.1-0.2 18-20 Impervious surface
Moderately sensitive (3) 0.7-0.8 0.2-0.3 16-18 Forest and grassland
Highly sensitive (4) 0.8-0.9 0.3-0.4 14-16 Farmland
Extremely sensitive (5) >0.9 >0.4 <14 Unused land

The assessment results of ecological sensitivity were divided into 5 degrees, namely,
insensitive, mildly sensitive, moderately sensitive, highly sensitive and extremely sensitive.
The eleven factors required to calculate the spatial distributions of SS;, Z; and S; were
presented in Figure 3.

N

A

) Ci

(a) Ri (h) SGi

Sensitivity classification
B Insensitive

0 Mildly sensitive

"1 Moderately sensitive
I Highly sensitive
W Extremely sensitive

MU LT km
01020 40 60 80

h) Ei (i) GSi G) GDi Y ) Lucci

Figure 3. The spatial distribution of ecological sensitivity of 11 indicators in 2018: (a) rainfall erosion sensitivity; (b) soil type
sensitivity; (c) relief of topography sensitivity; (d) vegetation cover sensitivity; (e) dryness sensitivity; (f) wind-blown sand
sensitivity; (g) slope sensitivity; (h) evaporation sensitivity; (i) mineralization of ground water sensitivity; (j) groundwater
depth sensitivity; (k) land use and land cover change sensitivity.

Based on the results of the SS;, Z;, S; and EES (Figure 4), using the natural breakpoint
method in ArcGIS, the high sensitivity zone in the EES is proposed to determine the
location of ecological sensitive zone.
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Figure 4. The spatial distribution of SS;, Z;, S; and EES: (a) soil erosion sensitivity; (b) land desertifi-
cation sensitivity; (c) salinization sensitivity; (d) comprehensive ecological sensitivity.

2.3.2. CA-Markov Model

The CA-Markov model is composed of CA model, Markov chain and multi-criteria
evaluation (MCE) [29]. The CA model is a discrete, finite state composition of the meta-cell
model. It can simulate complex dynamic systems with spatial-temporal characteristics ac-
cording to certain local rules [43]. Markov chains create the transfer matrix and probability
between land use types for multiple time periods in the past through spatial comparison
analysis, which are the basic data for predicting future land use patterns. MCE refers to the
selection of expansion factors to construct a land use transition suitability image collection.
CA-Markov model can effectively predict future land use dynamics [44]. The prediction
process equation of the CA-Markov model is shown below [45]:

Ctj+1 = FICH,N| ©)

where C(t;) and C(tj+1) are the states of the cell at time t; and t;,1, respectively; F is the
transition rule; N is the domain of the cellular. In this study, elevation, slope, earthquake,
landslide, highway, main road, railroad and population density were selected as the driving
factors affecting urban expansion. Among them, elevation, slope, earthquake and landslide
are negative indicators, and the rest are positive indicators. The suitability evaluation maps
for earthquakes, landslides, highways, main roads and railroads were calculated by the
kernel density tool, and finally, the normalized driver maps were obtained (Figure 5).
The Kappa coefficient was applied to check the accuracy of the CA-Markov model
simulation results [46]. The formula for calculating the Kappa coefficient is shown below:

Pa — Pc

Kappa = = *—= (6)
1-p.
S
Pa = H (7)
_apxby +axxby
pc - n*n (8)

where n is the total number of cell sizes in the raster; a; is the number of cell sizes in the
real raster of the urban land; a; is the number of cell sizes in the non-urban land; b is the
number of cell sizes in the simulated raster of the urban land; b, is the number of cell sizes
in the non-urban land; s is the number of cell sizes in the real raster and the simulated
raster that correspond to each other.
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Figure 5. The spatial distribution of driving factors of urban expansion in Three Gorges Reservoir area: (a) elevation drive
factor; (b) slope drive factor; (c) earthquake drive factor; (d) landslide drive factor; (e) motorway drive factor; (f) primary
road drive factor; (g) railway drive factor; (h) population drive factor.

2.3.3. Evaluation of ESV

Ecosystems provide the ecological products and services that humans need [47].
In order to estimate the value of ecosystems, basic value transfer, expert modified value
transfer and spatial explicit function modeling were used [5,14,47]. Costanza et al. proposed
to divide ecosystem services into 17 services and established a global value equivalence
factor system to calculate the global ESV. This method has been widely accepted and used,
but it cannot be directly applied to evaluate ESV in China [48]. This paper will be based on
the recent research results of Xie et al. in Table 4, classify 6 types of ecosystems into the
4 following types of ecosystem services: provisioning services, regulating services, habitat
services and entertainment services. A VPUA-based work has published that in China,
and unit equivalent coefficients were estimated as USD 503.2 of ESV per ha [19]. For each
ESV category, the calculation formula of ESVy is as follows:

n
ESV = ) ESVi ©)
i=1
m Area;
_ )
ESVy = 2ECi,j * Area (10)

j=1

where ESV| is total value of ecosystem services; ESV; is the ESV for a particular primary
service class (i); EC is the equivalent coefficients of the secondary service class (j) in a
particular primary service class (i); n is the four kinds of primary service class that include
provisioning services, regulating services, habitat services and entertainment services; m is
the total number of the secondary service class; Area; is the area of class (j) in a land type of
a hectare and Area,, is a hectare. Table 4 shows the equivalent coefficients table for ESV per
unit area in China.
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3. Results
3.1. Ecological Sensitivity Zone Identification
3.1.1. The Evaluation of Soil Erosion Sensitivity

Soil erosion is the serious damage to natural resources of water, soil and land produc-
tivity [49].The soil erosion sensitivity result was calculated by formula (2), as shown in
Table 5 and Figure 4a. It shows a lower sensitivity at both ends and a higher sensitivity
in the middle. The percentages of mildly sensitive zones and moderately sensitive zones
are 30.00% and 22.99%, respectively. Next, the highly sensitive and insensitive zones ac-
counted for 19.88% and 15.85%, respectively. Finally, the least percentage of the extremely
sensitive zone is 11.28%, and it is mainly concentrated in Yunyang, Zigui, Fengjie, Kaizhou
and Wanzhou.

Table 5. The comprehensive assessment on ecological sensitivity.

The Comprehensive

Soil Erosion Land Desertification Soil Salinization .
Sensitivity Evaluation
Classification Area Percentage Area Percentage Area Percentage Area Percentage
(km?) (%) (km?) (%) (km?) (%) (km?) (%)
Extremely 6494.08 11.28 10,587.74 18.40 5145.91 8.94 6279.62 1091
sensitive
Highly sensitive 11,442.09 19.88 10,246.66 17.80 16,129.51 28.02 14,360.09 24.95
Moderately 13,232.75 22.99 13,845.73 24.06 16,224.49 28.19 17,261.63 29.99
sensitive
Mildly sensitive 17,265.48 30.00 13,213.63 22.96 14,444.79 25.10 15,234.81 26.47
Insensitive 9120.03 15.85 9660.65 16.79 5609.71 9.75 4418.26 7.68

3.1.2. The Evaluation of Land Desertification Sensitivity

Land desertification is generally defined as the loss of surface soil due to soil erosion,
a reduction of agricultural land use value and ecological degradation [50]. In the spatial
distribution of land desertification sensitivity (Figure 4b), extremely and highly sensitive
zones occur mainly in Fengjie County, Wuxi County, Yunyang County and the upper part of
Xingshan County. From the amount of land desertification sensitivity, as shown in Table 5,
the moderately sensitive zone and the mildly sensitive zone accounted for the highest
percentages of 24.06% and 22.96%, respectively. The extremely sensitive zone, highly
sensitive zone and insensitive zone accounted for 18.40%, 17.80% and 16.79%, respectively.

3.1.3. The Evaluation of Soil Salinization Sensitivity

Soil salinization is a process in which salts from the soil substrate or groundwater rise
to the surface, causing salts to accumulate in the surface soil after the water evaporates [51].
The spatial heterogeneity of the distribution of soil salinity sensitivity in the study area is
shown in Figure 4c. The characteristics of the spatial distribution showed a gradual decrease
from northeast to southwest. The higher sensitivity zones are mainly in Fengjie County,
Wuxi County and Xingshan County. In the evaluation table of soil salinity sensitivity
(Table 5), the highest percentages of the moderately and highly sensitive zones are 28.19%
and 28.02%, respectively. The mildly sensitive and insensitive zones accounted for 25.10%
and 9.75%, respectively. The least percentage was observed in the extremely sensitive zone
at 8.94%.

3.1.4. The Comprehensive Evaluation and Zone Identification of Ecological Sensitivity

The comprehensive sensitivity of the ecological environment was calculated by for-
mula (1), as shown in Table 5 and Figure 4d. In general, the highly sensitive zone is
mainly concentrated in Wuxi, Yunyang and Fengjie. It is close to the Daba Mountain
Nature Reserve and belongs to high forest cover areas with high terrain elevation [52]. The
moderately sensitive zone is mainly concentrated in Zhong, Fengdu, Badong and Zigui.
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The following zone of low sensitivity is mainly concentrated in the nine central urban areas
of Chongqing, Fuling and Jiangjin. As shown in the comprehensive sensitivity evaluation
table of the ecological environment (Table 5), the study area mainly showed moderate
sensitivity (about 29.99%). The proportions of extremely sensitive, highly sensitive, low
sensitive and insensitive zone are 10.91%, 24.95%, 26.47% and 7.68%, respectively.

In the identification of ecological sensitive zone, we use the spatial analyst tool in
ArcGIS to extract the extremely and highly sensitive zone in the comprehensive ecological
sensitivity, the vector data of Chinese nature reserves were converted into raster grid
data, and then both were mosaicked. Finally, we obtained the spatial distribution map
of the ecological key zone and the ecological core zone in the Three Gorges Reservoir
area (Figure 6).
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Figure 6. The spatial distribution of ecological key zone and ecological core zone.

3.2. The Urban Expansion Simulation
3.2.1. The Model Validation and Assessment

Using the 2000 and 2010 actual map as the base data and the 2010 land use data
as the initial state and driving factors of urban expansion, we predicted the 2018 urban
development pattern (Figure 7d). The accuracy of the model was verified by using the
2018 actual pattern with the 2018 simulated pattern to judge the accuracy of the model.
By comparing with the actual 2018 urban pattern (Figure 7c), using the Kappa coefficient
formula to verify the accuracy, the Kappa coefficients for the three land types and the whole
were calculated in Figure 8. The Kappa coefficients for nonurban, urban and water bodies
are 86.73%, 83.14% and 92.19%, respectively, while the accuracy of the overall pattern was
86.74%, which indicated that the overall simulation accuracy was better [53], it can provide
a basis for further simulation.
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Figure 7. Urban patterns for 2000, 2010 and 2018, simulated scenarios for 2018, 2030 and adjusted scenario for 2030 in three
classes: (a) urban pattern in 2000; (b) urban pattern in 2010; (c) urban pattern in 2018; (d) simulated urban pattern in 2018;
(e) simulated urban pattern in 2030; (f) adjusted urban pattern in 2030.
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Figure 8. Kappa coefficient of three classes and overall pattern.

3.2.2. The Simulation of Urban Expansion Based on Ecological Sensitivity

This study will use the trained sample to predict the state of urban expansion in the
Three Gorges Reservoir area in 2030, the urban expansion simulation map of the study
area in 2030 (Figure 7e) and the area of urban land is about 226,594.43 ha. The focus is on
the protection of ecological core zone and ecological key zone in the context of “Ecological
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Priority and Green Development” so that the urban expansion can be effectively adjusted.
Using spatial overlay and analysis tools, the adjusted land use is shown in Figure 7f.
Excluding the part of urban land that overlaps with the ecological core zone and ecological
key zone, the area of this part of land is about 15,181.92 ha, and finally, the area of urban
land is adjusted to 211,412.51 ha in 2030.

3.2.3. The Analysis of the Urban Expansion Simulation

The results of the 2030 urban land expansion were simulated based on ecological
sensitivity in the Three Gorges Reservoir area, and we identified the development direction
and area change of urban expansion in different districts in the study area. A map of the
urban expansion change in the study area from 2018-2030 is shown in Figure 9, the faster
growth in urban land is mainly occurring around the main urban areas of Chonggqing.
The statistical analysis yields a statistical map of the urban expansion area as shown in
Figure 10, the northwestern part of Banan shows the most growth in urban land, about
9903.69 ha; followed by the northwestern part of Yubei, with an increase of 9400.41 ha;
the growth area of Jiulongpo, Shapingba and Beibei are about 7448.76 ha, 7308.09 ha and
6133.68 ha, respectively; Yuzhong growth area is only 100.80 ha in urban land, and it is
the only city-wide urban functional core area in Chongging and past large-scale urban
expansion has resulted in less available land for development and construction. Next, the
smallest areas of urban land growth are in Xingshan, Zigui and Wushan. These areas are
constrained by natural conditions, economic development and policy regulation, making
them unsuitable for future urban expansion.

3.3. Estimation of ESV Change
3.3.1. ESV Change from 2000 to 2018

The ESV was calculated by Formulas (9) and (10) and land use data as shown in
Table 6, Figures 11 and 12.
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Figure 9. Modeled urban expansion from 2018 to 2030.
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.o Badong Urban growth 2018-2030
Zigui Area (ha)  Bannan
Zhong 10000 Beibei
Yuzhong 8000 Changshou
Yunyang Dadukou
Yubei Fengdu
Yiling Fengjie
AN
Xingshan // Fuling
W Jiangbei
Wushan Jiangjin
Waulong Jiulongpo
Wanzhou Kaizhou

Reservoir area.

Shizhu
Shapingba

Nanan

Table 6. The ESV of different land use types in the study area from 2000 to 2018.

Figure 10. The urban growth area of various districts from 2018 to 2030 in the Three Gorges

2000 2010 2018
Land Use Type  ESV (Million o ESV (Million o ESV (Million o

USD) Percentage (%) USD) Percentage (%) USD) Percentage (%)
Dry land 3188.74 8.32 3135.26 7.75 3105.17 7.40
Paddy field 1229.56 321 1196.58 2.96 1139.29 2.71
Co?gﬁz(t’“s 7960.03 20.77 7959.81 19.68 7171.30 17.09
Mixed forest 719.17 1.88 883.25 2.18 876.58 2.09
Bro?jrl:;"ed 10,893.48 28.43 11,314.77 27.97 16,575.17 39.50
Bush 5923.07 15.46 6150.63 15.20 3372.12 8.04
Meadow 4252.15 11.10 3578.59 8.85 3413.38 8.13
Wetland 537.39 1.40 459.82 1.14 515.56 1.23
Lake and river 3616.79 9.44 5775.83 14.28 5796.12 13.81
Barren 0.10 0.00 0.05 0.00 0.05 0.00

Total 38,320.49 — 40,454.61 — 41,964.75 —

From Table 6, it can be found that the total ESV of the study area is USD 38.32 billion
(2000), USD 40.45 billion (2010) and USD 41.96 billion (2018), respectively. In 18 years, the
total ESV of the study area increased by USD 3644.26 million. The ecosystem services of
the broadleaved forests, the coniferous forests, the bush, the meadows, the lakes and the
rivers provide the main systems in various ecosystem services, and their value accounted
for 85.20% (2000), 85.98% (2010) and 86.57% (2018) of the total value. The broadleaved
forests had the highest ESV, about 1 USD 0.89 billion (2000), USD 11.31 billion (2010) and
USD 16.58 billion (2018); the coniferous forests have the second highest value, about USD
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7.96 billion (2000), USD 7.96 billion (2010) and USD 7.17 billion (2018), respectively. From
2000 to 2018, the value of broadleaved forests has increased most significantly, while the
value of the dry land and paddy fields has been decreasing. The results indicate that
although the Three Gorges Reservoir area has been affected by urban expansion to some
extent, the overall value has maintained an increasing trend, mainly due to the increasing
area of broadleaved forests, which provide a large amount of ESV.
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Figure 11. The change in unit ESV from 2000 to 2018.

At the district scale, nine districts and counties had increasing unit ESVs from 2000
to 2010 (Figure 11a), this growth is partially concentrated in the middle section of the
Three Gorges Reservoir area, with the highest gain in Shizhu (4052.54 USD/ha). How-
ever, the decrease in unit ESV is mainly concentrated in the vicinity of the main city of
Chongging: Dadukou had the largest decrease, about 5058.49 USD/ha. The total value
showed an increasing trend in the Three Gorges Reservoir area between 2010 and 2018, but
there are still 17 districts that declined in unit ESV (Figure 11b), and the most significant
decrease was found in Jiangbei (5190.16 USD/ha). The increase was concentrated in the
key protective areas of the Three Gorges Reservoir area, such as Wushan and Wuxi, and
the highest increase was found in Wuxi County (14,530.61 USD/ha). Overall, the increase
in unit ESV during the 18 years was concentrated in the central part of the Three Gorges
Reservoir area (Figure 11c), with Wuxi, Wushan and Shizhu growing faster than 8000
USD/ha, and Dadukou and Jiangbei showing the most significant decrease, both exceeding
5000 USD/ha.
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Figure 12. The ESV of four ecosystem classifications from 2000 to 2018.

As shown in Figure 12, the four types of value in the study area showed an increasing
trend from 2000 to 2018. We found that regulating services accounted for the highest
proportion of overall ESV, about 79.88% (2000), 80.40% (2010) and 80.29% (2018), respec-
tively. The proportion of each type of ecosystem service function had the following order
of magnitude: regulating services > habitat services > provisioning services > cultural and
amenity services.

3.3.2. Prediction of ESV Losses from 2018 to 2030

The CA-Markov model predicts the urban expansion pattern of the study area in
2030, and the results show that there will be a certain degree of outward urban expansion,
mainly in the vicinity of the main city of Chongqing. The urban expansion will lead
to a decrease in the value of ecosystem services. Our model suggests that the newer
urban area is 80,026.02 ha from 2018 to 2030. In the ten land use types (Figure 13a), The
most transferred land to urban areas is dry land and paddy field, about 33,903.54 ha and
28,381.23 ha, respectively, while the least transferred area is wetland, lake and river, about
6.48 ha and 61.38 ha, respectively.

Table 7 shows the significant differences in the losses of other ecological land under
urban expansion in different districts from 2018 to 2030. Dry land losses in Banan and
Yubei comprised an area of 5083.38 ha and 4681.71 ha, respectively, the sum of which
accounted for 28.80% of the total area. The area of paddy field losses in Yubei, Banan,
Shapingba and Jiulongpo accounted for 45.69% of the total area. The largest coniferous
and mixed forest area losses were in Wulong, Beibei and Kaizhou with areas of about
293.22 ha and 268.65 ha lost, respectively. The losses of broadleaved forest mainly occurred
in Jiulongpo (1177.83 ha) and Shapingba (1130.31 ha). The losses of meadows mainly
occurred in Fuling (509.67 ha). The largest losses occurred in Zhong (4.05 ha) and Beibei
(45.90 ha), respectively. In barren land, Jiangbei and Banan lost the largest area of 376.65 ha
and 285.48 ha, respectively.
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Figure 13. The losses area of land-use area and ESV from 2018 to 2030.

Table 7. The land-use losses in different districts from 2018-2030.

Farmland Forest Grassland Water Unused
Region Body Land
(ha) Padd Coniferous Mixed Broadleaved Lake and
Dry Land Fieldy Forest Forest Forest Bush Meadow Wetland River Barren
Badong 138.6 143.19 216.81 76.05 54.36 1.89 6.21 0 0 43.2
Xingshan 47.79 61.29 42.93 73.89 15.66 13.95 1.26 0 0 51.12
Yiling 209.88 767.88 318.69 71.82 402.21 271.26 4.14 0 0 95.58
Zigui 22.41 108.09 201.87 13.23 45.72 21.15 2.79 0 0 24.75
Banan 5083.38 3623.40 302.04 83.79 434.88 29.25 55.44 0 6.03 285.48
Beibei 3111.93 2213.37 113.49 293.22 139.5 64.17 0.18 0 459 151.92
Changshou 679.77 1546.38 45 0 87.12 20.07 27.09 0.99 0 18.54
Dadukou 1135.71 679.86 175.32 26.64 232.47 0 0 0 0 48.87
Fuling 1281.42 1466.01 337.32 144 153.36 171 509.67 0 0 160.47
Jiangbei 1221.75 840.24 168.93 214.2 38.43 0 0 0 0 376.65
Jiangjin 2434.32 986.67 321.3 57.42 134.91 304.02 176.49 0 0 73.8
Jiulongpo 3026.34 2533.14 327.24 116.19 1177.83 152.01 49.95 0 0 66.06
Nanan 1906.20 1587.96 227.7 8.64 125.19 9.36 0 0 0 171
Shapingba 2778.84 2978.82 225.63 1.35 1130.31 8.01 6.3 0 0 178.83
Wanzhou 1035.72 1462.14 191.88 109.26 14.31 34.56 313.65 0 0 161.91
‘Yubei 4681.71 3830.94 282.87 49.05 347.04 11.25 64.8 1.44 9.45 121.86
Yuzhong 0 0 0 9.18 0 0 0 0 0 91.62
Fengdu 663.21 533.97 77.49 6.93 59.67 39.87 57.78 0 0 58.68
Fengjie 196.56 235.71 86.85 0.54 51.93 8.19 96.03 0 0 98.91
Kaizhou 1342.89 1261.80 78.3 268.65 10.44 1.98 203.85 0 0 62.28
Shizhu 234.36 266.4 40.05 0 20.43 3.24 73.35 0 0 30.87
Wushan 231.75 78.03 4.23 1.89 119.43 5.58 16.29 0 0 54.18
Wuxi 232.38 101.07 13.41 0 22.5 2.34 133.83 0 0 14.85
Wulong 1284.03 434.97 484.38 0 207.63 174.96 156.69 0 0 95.22
Yunyang 377.01 245.79 193.05 14.49 11.16 16.74 250.47 0 0 271.8
Zhong 545.58 394.11 276.21 57.42 0.18 15.48 39.87 4.05 0 49.86
Total 33,903.54 28,381.23 4752.99 1568.25 5036.67 1211.04 2246.13 6.48 61.38 2858.31

The increasing urbanization will encroach on other ecological lands and directly lead
to the losses of ESV by the equivalent coefficients. We found that the total ESV losses is
USD 268.81 million in the Three Gorges Reservoir area (Figure 13b). The highest values
of dry land and broadleaved forest were lost with USD 68.41 million (25.45%) and USD
58.17 million (21.64%), respectively. The variation of the overall ESV losses was explored
from the district scales (Figure 14a). Jiulongpo, Banan, Shapingba and Yubei have higher
losses (more than USD 25 million). This result indicates that these areas are at risk of ecolog-
ical degradation. Yuzhong, Xingshan and Wuxi have the lowest losses, mainly due to the
highest level of urbanization in Yuzhong, resulting in limited land for urban development.
In addition, Xingshan and Wuxi are as important ecological reserves in China, which limit
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the large-scale expansion of urban land use. On average, Dadukou, Jiulongpo, Shapingba
and Nanan have the highest unit ESV losses (more than 400 USD/ha) (Figure 14b).
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Figure 14. The losses in the total and unit ESV from 2018 to 2030.

Figure 15 summarizes the amount of loss of the four primary services in different
districts. In Figure 15a, we find that Banan, Jiulongpo and Jiangjin have the largest loss
of provisioning services values (more than USD 1.2 million). There are 13 districts and
counties with a loss of less than USD 0.3 million, mainly concentrated in the upper half
of the Three Gorges Reservoir area of Wushan, Badong and Zigui, etc. The losses of
regulation services values are the largest among the four types of services. Four districts
lost more than USD 20 million: Jiulongpo, Banan, Shapingba and Yubei (Figure 15b). These
districts are important places for future urban expansion and their ecological regulating
services functions will decline from 2018 to 2030. Among the habitat services values
and entertainment services values (Figure 15c,d), Jiulongpo and Shapingba have the
largest losses.
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Figure 15. The ESV losses in primary services from 2018 to 2030.
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4. Discussion
4.1. The Rationality of Delimiting Ecological Sensitive Areas

First, because of the limitation of collecting data and the need to delimit ecological
sensitive areas, according to the actual situation of the Three Gorges Reservoir area, this
study selects relevant indicators from 2018 to identify the ecological sensitive areas in the
study area in terms of three sensitivities (i.e., soil erosion sensitivity, land desertification
sensitivity and soil salinity sensitivity) so as to identify the scope and number of ecological
sensitive areas and provide a basis for achieving green development in the region [54].
As of now, the indicators and data will be further updated, which is a hot topic for
future research.

Second, the grid size used to identify ecological sensitive areas is 30 m x 30 m in this
paper. However, some of the raw data (NDVI, soil type, groundwater mineralization and
groundwater depth) are of higher resolution, but still can accurately identify the extent of
ecological sensitive zone. We believe that higher resolution data will be used in the future
to improve the accuracy of delimiting ecological sensitive zones.

Third, in the comprehensive ecological sensitivity evaluation, the areas with high
sensitivity or above account for 35.86% of the study area, with an area of 20,639.71 km?,
mainly in Wushan, Fengjie and Yunyang. This part is a forest reserve with mainly moun-
tainous terrain and high elevation, and its ecosystem types are diversified and spatially
heterogeneous, which are vulnerable to some natural disasters and human factors. The
harm to the ecological sensitive zone should be reduced. Meanwhile, a corresponding
ecological compensation mechanism is established [55], the ecological advantages will be
transformed into economic advantages, the ecological and economic benefits of the study
area will be improved, and the green development concept of “making all-out efforts to
protect it, and forbidding large-scale development” will be fully implemented.

4.2. The Accuracy of Simulated Urban Expansion

This study combines the ecological sensitivity, CA and Markov models in the context
of green development to simulate and predict the future urban spatial patterns in the
Three Gorges Reservoir area. The urban construction land area is predicted to increase by
80,026.02ha between 2018 and 2030, while the main expansion areas are in the northwestern
part of Banan, the northwestern part of Yubei, Jiulongpo, Shapingba and Beibei. The
analysis revealed that the future urban expansion in the study area is mainly occupying
paddy fields and drylands, occupying an area of 33,903.54ha and 28,381.23ha, respectively.

The driving factors affecting urban expansion were mainly selected as elevation, slope,
earthquake, landslide, highway, main road, railroad and population density. These factors
performed relatively well in simulating urban expansion in 2018, with an overall kappa
coefficient of 86.74% compared to the actual 2018 urban sites, but urban expansion is a
complex dynamic system [56]. It is not enough to consider only the above eight driving
factors. In the future, more socioeconomic and ecological data should be obtained to
provide a basis for improving the accuracy of urban expansion simulation. At the same
time, different prediction scenarios [57-59] and different grids sizes [33,60] play different
roles in the simulation of urban expansion.

4.3. Estimation of ESV Dynamics and Prediction of Future ESV Losses as an Effective Tool for
Ecological Safety Management

The estimation of ESV can provide a basis for the region to achieve sustainable
development [61]. The ESV change in the study area were calculated by using the land
use data from 2000-2018 and the ESV value equivalent table. The results show that the
ESV in the Three Gorges Reservoir area increased from USD 38,320.49 million in 2000 to
USD 41,964.75 million in 2018, and the overall ESV change showed an increasing trend.
This may be due to the continuous increase in the area of forest land (especially broadleaf
forest) due to the implementation of the reforestation project, which also brings an increase
in the value of different ecosystem service functions [62,63]. However, it is noteworthy
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that between 2000 and 2018, there are 16 districts and counties with decreasing ESV per
unit. The most significant decreases (more than 5000 USD/ha) were observed in Dadukou
and Jiangbei. With increasing urbanization, we see that ESV will show a decreasing trend
and ecosystems will face increasing pressure in the region. In the four different ecosystem
services, regulating services provide the highest value, followed by habitat services, and
finally provisioning services and entertainment services.

As urbanization continues, it may cause degradation of the ecosystem [64,65]. This
study uses the CA-Markov model to predict the trend of urban expansion in 2030, and the
study finds that the growth of urban land in the study area is mainly through the occupation
of dry land and paddy fields. From 2018 to 2030, the overall ESV of the Three Gorges
Reservoir area will be reduced by about USD 268.81 million. At the district and county
scales, the ESV of Jiulongpo, Banan and Shapingba will be reduced most significantly, and
the ecological pressure in the area will be further increased. In starting from the perspective
of the four ESV, we found that regulating services values decreased the most. Therefore, it
is necessary to combine the ecological sensitivity method and ESV evaluation results to
achieve a more reasonable and targeted implementation of ecological spatial management
and steadily realize the green development strategy.

This study provides insights into ecological conservation under sustainable urbaniza-
tion by predicting change in urban land expansion and calculating ESV, using the Three
Gorges Reservoir area as an example, which can be of guidance to other countries. Espe-
cially, developing countries are facing different problems caused by rapid urbanization,
such as India [66], Sri Lanka [53] and Egypt [67]. Each country faces different ecological
problems. We should consider geohazard sensitivity and select suitable indicators for
the region where geohazards occur frequently. In ESV evaluation, there are differences
in different countries’ ecosystem value, and the equivalent coefficients table should be
changed appropriately according to the regional characteristics. Although there are dif-
ferences between the spatial scales of different countries, it is necessary to identify the
ecological sensitive zones and to predict the future development direction of urban land
and the dynamic change of ESV through scientific and rational identification. This quan-
titative evaluation provides a reference basis for ecological spatial control and effective
macro-control.

5. Conclusions and Outlook

In the context of economic globalization, the urbanization process of human beings
has become irreversible. Handling the relationship between environmental protection and
economic development has become particularly critical. In this study, we simulate the
future urban expansion and ESV change in the study area based on ecological sensitivity.
Under the guidance of green development concept, the socioeconomic maximization is
achieved, and the relationship between ecological protection and urban expansion is
coordinated. This study shows that:

1. Inthe comprehensive ecological sensitivity assessment, we found that the ecological
sensitive zone is about 20,639.71 km? in the Three Gorges Reservoir area, account-
ing for 35.86% of the total study area. This part of the area is in Wushan, Fengjie
and Yunyang.

2. The results of the study show that the overall ESV in the Three Gorges Reservoir
area showed an increasing trend from 2000 to 2018. The growth was about USD
3644.26 million. From the perspective of ESV change in districts and counties, we
found that 16 districts and counties were decreasing in unit ESV, Dadukou and
Jiangbei decreased most significantly. In four ecosystem services, regulating services
provided the highest ESV.

3. Inthe context of ecological priority and green development, the 2030 urban land was
predicted and simulated. In 2018-2030, about 80,026.02 ha of new construction land
will be added to the Three Gorges Reservoir area, and the overall ESV will lose USD
268.75 million. The largest losses are in Jiulongpo, Banan and Shapingba.
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Although, this method can better delimit ecologically sensitive zones and estimate
the dynamic changes of ESV in the Three Gorges Reservoir area, there is still much room
for improvement. We will use high-resolution land use data and remote sensing inversion
data (FVC, WET, NDBSI, LST and NPP) in the future work. This allows us to better identify
zones of ecological sensitivity. Meanwhile, we should also make different simulations of
urban expansion for different scenarios, such as developmental orientation or ecological
orientation. It can provide better prediction and estimation of ESV changes for future urban
expansion in the Three Gorges Reservoir area.
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Abstract: In this study, we examined the impacts of urbanization on the natural landscape and
ecosystem services of the Muthurajawela Marsh and Negombo Lagoon (MMNL) located in the
Colombo Metropolitan Region, Sri Lanka, with the goal to help inform sustainable landscape and
urban planning. The MMNL is an important urban wetland ecosystem in the country but has been
under the immense pressure of urbanization where the natural cover (e.g., marshland and mangrove
areas) is continuously being converted to urban use (e.g., residential and commercial). Here, we
estimated and assessed the changes in the ecosystem service value (ESV) of the MMNL based on
land use/cover (LUC) changes over the past two decades (1997-2017). Considering two plausible
scenarios, namely a business-as-usual (BAU) scenario and ecological protection (EP) scenario, and
using a spatially explicit land change model, we simulated the future (2030) LUC changes in the
area and estimated the potential consequent future changes in the ESV of the MMNL. The results
revealed that from 1997 to 2017, the ESV of the MMNL decreased by USD 8.96 million/year (LKR
1642 million/year), or about 33%, primarily due to the loss of mangrove and marshland from urban
expansion. Under a BAU scenario, by 2030, it would continue to decrease by USD 6.01 million/year
(LKR 1101 million/year), or about 34%. Under an EP scenario, the projected decrease would be lower
at USD 4.79 million/year (LKR 878 million/year), or about 27%. Among the ecosystem services of the
MMNL that have been, and would be, affected the most are flood attenuation, industrial wastewater
treatment, agriculture production, and support to downstream fisheries (fish breeding and nursery).
Overall, between the two scenarios, the EP scenario is the more desirable for the sustainability of
the MMNL. It can help flatten its curve of continuous ecological degradation; hence, it should be
considered by local government planners and decision-makers. In general, the approach employed is
adaptable and applicable to other urban wetland ecosystems in the country and the rest of the world.

Keywords: wetland ecosystem; urban wetland; wetland ecosystem services; Muthurajawela Marsh;
Negombo Lagoon; sustainability; land change modeling; scenario modeling

1. Introduction

Wetland ecosystems provide a wide range of valuable ecosystem services, such as
flood control, pollution control, water conservation, and climate regulation [1,2]. They
feature prominently in the United Nations” Sustainable Development Goals (SDGs) and
targets [3]. In urban areas, urban wetland ecosystems play important roles, providing
ecosystem services that contribute to the maintenance and sustainability of urban ecolog-
ical environment and the overall safety and livability of urban regions [4-6]. However,
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anthropogenic activities such as industrialization, agricultural expansion, and urbanization
have changed, diminished, or destroyed most wetlands in recent decades [7,8], including
urban wetland ecosystems [9].

In this study, we examined the impacts of urbanization on the natural landscape
and ecosystem services of the Muthurajawela Marsh and Negombo Lagoon (MMNL), an
important urban wetland ecosystem and one of the top priority wetlands in Sri Lanka.
Here, we used settlement expansion as a proxy indicator of urbanization, where settlement
is a land use/cover (LUC) class that includes low-intensity and high-intensity urban areas,
industrial zones, transportation hubs, airports, home gardens, asphalt areas, and residential
areas (more on Section 2.2). Owing to its geographical and biophysical characteristics,
the MMNL is a source of valuable ecosystem services, such as flood attenuation, water
purification, carbon sequestration, and fish breeding and nursery [10,11].

However, because of rapid and uncontrolled urbanization that has led to the loss of
natural cover [9,12], we hypothesize that these ecosystem services, including the ecosystem
service value (ESV) of the MMNL have been affected. Among the major challenges that local
government planners and decision-makers and other concerned groups and individuals
are facing today is how the MMNL'’s curve of continuous ecological degradation can be
flattened. The goal of our study is to help inform landscape and urban planning towards
this context and for the sustainability of the MMNL in general.

In previous studies, the concept of ecosystem services has been included in spatiotem-
poral monitoring and assessments of the impacts of urbanization in many parts of the
world, both in non-wetland urban regions [13-17] and in urban wetland regions [4,6].
Advances in geospatial technology, including the increasing availability of Earth obser-
vation (remote sensing) data at various spatial and temporal resolutions, have helped to
improve social-ecological monitoring and assessments. Furthermore, the development of
land change models has helped researchers to project future LUC changes and explore
different scenarios [13,14,18-20].

Several studies have been conducted to investigate various aspects of the MMNL. For
example, Athukorala et al. [9] have studied the impacts of urbanization on the MMNL,
emphasizing implications for landscape planning towards a sustainable urban ecosystem.
Jayathilake and Chandrasekara [21] have investigated the variations of avifaunal diversity
concerning land use modifications in the Negombo estuary. Emerton and Kekulandala [11]
have assessed the economic value of the Muthurajawela Marsh. Bambaradeniya et al. [22]
have studied the biodiversity status in the Muthurajawela wetland sanctuary. However, we
are not aware of any study that monitored the past-present changes and/or projected the
future changes in the ecosystem services and ESV of the MMNL based on Earth observation
data and geospatial techniques.

Hence, in this study, we assessed changes in the ESV of the MMNL based on LUC
changes over the past two decades (1997-2017) using Earth observation data. Consider-
ing two plausible scenarios, namely a business-as-usual (BAU) scenario and ecological
protection (EP) scenario, and using a spatially explicit land change model, we simulated
future (2030) LUC changes in the area and estimated potential consequent future changes
in the ESV of the MMNL. We discussed the implications of the results in the context of the
MMNL's sustainability.

2. Methods
2.1. Study Area

Figure 1 shows a cross-section of the MMNL, classified into five ecological zones, each
with a description of the level of anthropogenic activities, water conditions, soil groups,
vegetation types, and some ecosystem services. The MMNL is situated on the western
coastal plain of Sri Lanka, within the Colombo Metropolitan Region (Figure 2). It has a total
area of approximately 134 km? [9,10]. In 1996, the Government of Sri Lanka designated the
northern section of the MMNL as a wetland sanctuary (Muthurajawela Sanctuary) owing to
its high ecological and biological significance [10] (Figure 2, PA1). In 2006, another protected
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Edge

area was designated by the government (Muthurajawela Environmental Protection Area)
for ecosystem services, including flood control [23] (Figure 2, PA2).

The Negombo Lagoon is linked to the Indian Ocean by a single narrow opening at
the northern end of the channel segment (Figure 2). The Muthurajawela Marsh stretches
southward from the lagoon, forming the largest coastal peat bog in the country [9]. The
elevation range is approximately from —13 to 44 m above sea level. This urban wetland
ecosystem receives plenty of rainwater from the southwest monsoon. Annual average
rainfall ranges from 2000 to 2500 mm, and annual average temperatures are from 22.5 °C
to 25.0 °C [24].

The marsh plant vegetations are in their final stages of succession, leading to dry
land formation [10]. In the MMNL, 194 species of flora have been recorded under seven
major plant communities—marsh, reed swamp, short grassland, shrubland, lentic, stream
bank, and mangrove swamp. For species of fauna, 40 fishes (4 of which are endemic and
nationally endangered), 14 amphibians, 31 reptiles, 102 birds (1 endemic and 19 winter
migratory birds), and 22 mammals have also been recorded [10]. The aquatic resources are
abundant in phytoplankton, phosphors, and algae, all of which are essential components
in the food web of various organisms [25].

Today, the sustainability of this valuable urban wetland ecosystem is under threat
from the growing pressure of urbanization. Flattening the MMNL's curve of continuous
ecological degradation is important, not only as a research endeavor but also as a landscape
and urban planning priority.

Wetland Cross Section — Muthurajawela Marsh and Negombo Lagoon

Aquatic Zone -

Upland Zone Marsh Zone Wet Meadow Zone Mangrove Zone (Negombo Lagoon)

Center

High u;'atcr table

Anthropogenic
activities

Water

Soil group

Vegetation

Ecosystem
services

Characterized by
upland forests,
brush land, and
mangrove

Low water table

High Moderate Moderate Moderate Moderate
Seasonally/ Seasonally/ Pormanentiz inuninog
Low Seasonally/intermittently inundated ?ntermittently Permanently (Neg ombg lagoon)
inundated inundated
Alluvial soil, Bog and half-bog soil, Bosiand
. half-bog soil, Bog and
latosol, and latosol and regosol, 2 . None
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Figure 1. Graphical illustration of the cross-section of the MMNL divided into zones (aquatic, mangrove, wet meadow,

marsh, and upland). These zones are further characterized based on anthropogenic activities, water level, soil group,

vegetation, and ecosystem services. Source: National wetland directory of Sri Lanka [10], Environmental Profile of
Muthurajawela and Negombo Lagoon [25], Athukorala et al. 2021 [9].
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Figure 2. Location of the study area: (a) map of Sri Lanka [26]; (b) Gampaha District; and (c¢) Muthu-
rajawela Marsh and Negombo Lagoon. PA 1 = Protected area 1 (Muthurajawela Sanctuary). PA
2 = Protected area 2 (Muthurajawela Environmental Protection Area).

2.2. LUC Change Analysis

We used three LUC maps in this study (1997, 2007, and 2017) (Figure 3). We classi-
fied these LUC maps from cloud-free Landsat images (https:/ /earthexplorer.usgs.gov/,
accessed on 1 October 2021) captured on 7 February 1997, 2 January 2007, and 13 January
2017. We used a supervised classification method, employing the maximum likelihood
algorithm [27-29].

Our LUC classification system included four classes, namely marshland, mangrove,
settlement, and water. The marshland class included seasonally and intermittently flooded
areas, abandoned paddy lands, agricultural lands, marsh plant vegetation, trees, grassland
and scrub, peat and bog soil areas, and other cropland areas. The mangrove class included
seasonally and intermittently flooded areas with mangroves. The settlement class included
low-intensity and high-intensity urban areas, industrial zones, transportation hubs, airports,
home gardens, asphalt areas, and residential areas. The water class included the lagoon
and other bodies of water such as canals, streams, and ponds.

The accuracy of each LUC map was assessed using 400 reference points generated
using a random sampling technique. Google Earth images were used as sources of reference
data for 2007 and 2017, while topographic maps of Sri Lanka were used as sources of
reference data for 1997. The overall accuracy was 86.50%, 84.25%, and 84.50% for the 1997,
2007, and 2017 LUC maps, respectively.
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Figure 3. LUC maps of the MMNL in 1997, 2007 and 2017.

2.3. LUC Change Modeling
2.3.1. Model Calibration and Validation

We used the Land Change Modeler (LCM) [30-32], which is available in geospatial
monitoring and modeling software called TerrSet (https://clarklabs.org/terrset/, accessed
on 1 October 2021), to simulate future LUC changes in the area and examine potential
future impacts of urbanization on the natural landscape and ecosystem services of the
MMNL (2017-2030). To do this, we first calibrated the model by simulating the observed
LUC changes between 2007 and 2017. We considered two LUC transitions: (i) marshland
to settlement and (ii) mangrove to settlement. We used the Markov chain algorithm [30,32]
to derive a transition matrix that contained the rate or proportion of the area of a particular
LUC class that would persist (non-change) or transition to another class (change) from
2007 to 2017 (in our case, these were from marshland to settlement and from mangrove to
settlement).

To spatialize the projected quantities of LUC changes from the two transitions con-
sidered, we used six spatial variables (variables that we hypothesized to have influenced
LUC change patterns in the area) and the multi-layer perception neural network (MLP
NN) algorithm [30,32] to model two transition potential maps (one for each transition).
These variables included distance to road, distance to growth nodes, distance to the lagoon,
distance to the protected areas, elevation, and slope (Figure 4). They were identified and se-
lected based on the literature [33-36], our knowledge of the study area, and the availability
of data. The same set of spatial variables was used for both transitions.

To simulate the LUC changes between 2007 and 2017, we ran the model (LCM) with the
following inputs: 1997 and 2007 LUC maps, the six spatial variables for each transition (for
the modeling of transition potential maps using the MLP NN algorithm), and a transition
matrix for the 2007-2017 period (derived using Markov chain based on the 1997 and
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2007 LUC transitions). The output was a simulated LUC map in 2017 that depicted the
projected LUC changes from 2007 based on the two LUC transitions considered (marshland
to settlement and mangrove to settlement).
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Figure 4. Spatial variables used in the modeling of LUC transition potential maps: (a) distance to
road, (b) distance to growth node, (c) distance to lagoon, (d) distance to protected area, (e) elevation,
and (f) slope.

We validated the simulation result by calculating the figure of merit (FoM) statis-
tic [18,37,38] for each transition. The FoM was derived based on a three-map comparison
technique: LUC 2007 (observed), LUC 2017 (observed), and LUC 2017 (simulated). More
specifically, it was derived by taking the ratio of the intersection (H) of the observed change
between 2007 and 2017 (H and M) and simulated change between 2007 and 2017 (H and F)
to the union of the observed change and simulated change (Equation (1)).

H
In Equation (1), H (hits) refers to the quantity of observed change pixels that were
simulated as change. M (misses) refers to the quantity of observed change pixels that were
simulated as non-change. F (false alarms) refers to the quantity of observed non-change
pixels that were simulated as change.
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2.3.2. Scenario-Based LUC Change Simulation

The trajectory (quantity and spatial pattern) of future LUC changes generally depends
on various factors, such as future changes in various socioeconomic indicators (including
development policy-related) and biophysical conditions in the area. In this context, a
scenario analysis might be useful as scenarios are aimed at forward-looking adaptive
development planning and decision making [39,40]. In fact, scenario analysis has become
a useful technique in land change and sustainability research [13,41-44]. Scenario analysis
is a structured process of exploring and evaluating plausible alternative futures [39,45].

In this study, we projected the future impacts of urbanization (2017-2030) on the
natural landscape and ecosystem services of the MMNL. We considered two plausible
development scenarios: a business as usual (BAU) scenario and an environment protection
(EP) scenario.

In the BAU scenario, we allowed the model (LCM) to project and simulate future
LUC changes in the MMNL based on the past rates (Markov transition matrix based on
the 2007 and 2017 LUC maps) and spatial pattern (transition potential maps) of LUC
changes as per the two transitions considered (marshland to settlement and mangrove to
settlement). In a recent study, it has been shown that settlements have also been expanding
and encroaching into the protected areas (PAs) [9]. In this scenario, we did not introduce
any spatial constraints, allowing the observed LUC change pattern to continue. To run
the scenario, we used the 2007 and 2017 LUC maps (Figure 3) and the six spatial variables
(Figure 4) as inputs and considered 2030 as the end time (year) of the simulation.

In the EP scenario, we used the same data inputs as in the BAU scenario, but we also
introduced some plausible policy and development-related assumptions. More specifically,
we were interested in the potential impacts of urbanization on the ecosystem services of
the MNNL under a scenario in which (i) the urbanization rate would slow down by 20%,
and (ii) the two protected areas (PAs) in the area would be completely protected. To do
this, first, we revised the Markov transition matrix by withholding (deducting) 20% of the
proportion of the area of marshland and mangrove that would transition to settlement by
2030. Second, we introduced a spatial constraint disallowing LUC change to occur in the
two PAs. The 20% rate is based on a previous study [37], and our assumption was that the
rate (20%) is not that stringent, meaning plausible at given circumstances (e.g., protection
of the protected areas, implementation of land use zoning, no illegal settlements, etc.).

2.4. Monitoring ESV Changes

We estimated the past changes in the ESV of the MMNL (1997-2017), as well as the
potential future changes based on the BAU and EP scenarios (2017-2030). We consid-
ered 10 ecosystem services, namely flood attenuation, industrial wastewater treatment,
agriculture production, support to downstream fisheries (fish breeding and nursery), fire-
wood, fishing (fisheries production), leisure and recreation, domestic sewage treatment,
freshwater supplies for the local population, and carbon sequestration (Table 1).

We sourced the needed ESV coefficients from an earlier study in the MMNL [11].
We converted the ESV coefficients, which were originally expressed in Sri Lankan Rupee
(LKR)/year (2003 price level), into 2020 USD/ha/year equivalents (Equation (2)). To
do this, we first expressed the coefficients into 2003 LKR/ha/year. We then converted
these 2003 values to the 2020 price level, taking into account inflation. We used a de-
flator based on the average consumer price index (CPL, a measure of inflation) in 2003
(44.838) and 2020 (135.367) from https:/ /www.imf.org/en/Home (accessed on 1 October
2021). Subsequently, we took the average USD-LKR conversion equivalent (CE) in 2020
(I USD = 183.23 LKR) from https://www.cbsl.gov.lk (accessed on 1 October 2021) and
converted the derived 2020 LKR values to 2020 USD equivalents.

2020 CPI
(Esv LKR 2003 x 220 cm)
2020 CE

ESV (2020 USD) = @)
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Using the ESV coefficients in Table 1, we estimated the ESV of the MMNL in 1997,
2007, 2017, and by 2030 (under two scenarios) following Equations (3) and (4):

n
ESVf = Z Ak X VCf (3)
k=1
ESV =) ") A xVC 4)
k=1f=1

where ESV¢ and ESV refer to the value of ecosystem service f and the ecosystem service
value of the MMNL, respectively. Ay refers to the area (ha) of LUC class k, VCs refers to the
ESV coefficient of ecosystem service f (USD/ha/year) for LUC class k, and n and m refer to
the number of LUC classes and ecosystem services considered, respectively. We considered
two LUC classes (marshland and mangrove) and 10 ecosystem services (Table 1).

We also mapped the spatial distribution of the 99 Grama Niladhari (GN) divisions
that cover the entire MMNL with their respective ESVs. GN divisions are the smallest
administrative divisions in Sri Lanka. To do this, first, we conducted a zonal analysis
(tabulate area) to determine the LUC composition and extent in each GN division in 1997,
2007,2017, 2030 BAU, and 2030 EP using the polygon boundaries of the GN divisions as
zones and the LUC maps as inputs. Second, we estimated the ESV of each GN division
using Equations (3) and (4).

Table 1. Values of the ecosystem services considered for the MMNL’s marshland and mangrove
biomes. Source of original values: Emerton and Kekulandala [11].

Ecosystem Services ESV Coefficients (2020 USD/ha/Year)

Flood attenuation 2607.43

Industrial wastewater treatment 871.69

Agriculture production 162.67
Support to downstream fisheries (fish breeding and nursery) 107.41
Firewood 42.75
Fishing (fisheries production) 33.62
Leisure and recreation 28.36
Domestic sewage treatment 23.20
Freshwater supplies for local population 20.30
Carbon sequestration 4.19

3. Results
3.1. Changes in LUC and ESV (1997-2017)

Over the past 20 years, the MMNL'’s landscape has undergone considerable changes. In
1997, the MMNL had a marshland and mangrove area of 4242 ha and 2637 ha, respectively
(Figure 5). However, in 2017, their extent decreased to 3058 ha and 1523 ha, equivalent
to a 28% and 42% decrease, respectively. By contrast, the area of the settlement has
expanded rapidly over the past two decades at the expense of the MMNL’s marshlands
and mangroves, with 3368 ha in 1997 and 5741 ha in 2017, i.e., equivalent to a 70% increase.

As a consequence of the significant loss of marshland and mangrove due to urbaniza-
tion (settlement expansion), the ESV of the MMNL decreased by USD 8.96 million/ year,
from USD 26.84 million/year in 1997 to 17.88 million/year in 2017, i.e., equivalent to a 33%
decrease (Table 2). Among the ecosystem services considered, flood attenuation, industrial
wastewater treatment, agriculture production, and support to downstream fisheries (fish
breeding and nursery) were the top services that were affected the most. Altogether, they
accounted for over 95% of the total decrease. The ESV loss of flood attenuation accounted
for 67% (USD 6.0 million/year).
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Figure 5. LUC changes in the MMNL (1997-2017).

Table 2. ESV changes in the MMNL.

USD Million/Year
Ecosystem Services 1997 2007 2017 Changes
1997-2007 % of 1997 2007-2017 % of 2007

Flood attenuation 1794 1525 1194 —2.69 —14.99 —3.31 —21.70

Industrial wastewater treatment 6.00 5.10 4.00 —0.90 —15.00 —-1.10 —21.57

Agriculture production 1.12 0.95 0.75 —0.17 —15.18 —0.20 —21.05

Support to downstream fisheries 074 063 049 —0.11 ~14.86 ~0.14 —2222
(fish breeding and nursery)

Firewood 0.29 0.25 0.20 —0.04 —13.79 —0.05 —20.00

Fishing (fisheries production) 0.23 0.20 0.15 —0.03 —13.04 —0.05 —25.00

Leisure and recreation 0.19 0.17 0.13 —0.02 —10.53 —0.04 —23.53

Domestic sewage treatment 0.16 0.13 0.11 —0.03 —18.75 —0.02 —15.38

Freshwater supplies for local population 0.14 0.12 0.09 —0.02 —14.29 —0.03 —25.00

Carbon sequestration 0.03 0.03 0.02 0.00 0.00 —0.01 —33.33

Total 26.84 22.83 17.88 —4.01 —4.95

3.2. Projected Changes in LUC and ESV (2017-2030)

Under the BAU scenario, by 2030, the area of marshland and mangrove in the MMNL
would decrease by 1329 ha and 213 ha, respectively, whereas the area of settlement would
increase by 1542 ha (Figure 6, Table 3). By contrast, under the EP scenario in which
urban expansion rate (settlement expansion) would slow down by 20% (Section 2.3.2), the
decrease in the area of marshland and mangrove would be much lower at 1063 ha and
171 ha, respectively. In this scenario, the area of settlement would increase by 1234 ha.

As a consequence of the projected loss of marshland and mangrove by 2030, the ESV
of the MMNL would also decrease (Table 4). Under the BAU scenario, the MMNL’s ESV
would decrease by USD 6.01 million/year, i.e., equivalent to a 34% decrease relative to 2017
(Table 2). Under the EP scenario, the decrease would be much less at USD 4.79 million/year,
i.e., equivalent to a 27% decrease relative to 2017.
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Figure 6. Projected LUC changes (loss of marshland and mangrove and gain of settlement) in the MMNL under the (a) BAU
and (b) EP scenarios (2017-2030).

Table 3. Projected LUC changes in the MMNL under the BAU and EP scenarios (ha).

Changes
LUC Class 2017 2030 BAU 2030 EP
2017-2030 BAU % of 2017 2017-2030 EP % of 2017
Marshland 3058.47 1729.89 1995.66 —1328.58 —43.44 —1062.81 —34.75
Mangrove 1522.98 1309.5 1352.07 —213.48 —14.02 —170.91 —11.22
Settlement 5741.10 7283.16 6974.82 1542.06 26.86 1233.72 21.49

Table 4. Projected changes in the ESV of the MMNL under the BAU and EP scenarios.

2017-2030 (BAU) 2017-2030 (EP)
o Vo eorwnr hotoal R et oo
Flood attenuation —4.02 —33.67 66.89 —3.21 —26.88 67.01
Industrial wastewater treatment -1.35 —33.75 22.46 -1.08 —27.00 22.55
Agriculture production —0.26 —34.67 4.33 —0.21 —28.00 4.38
Support to downstream fisheries ~0.16 32,65 266 ~013 2653 271
(fish breeding and nursery)
Firewood —0.07 —35.00 1.16 —0.05 —25.00 1.04
Fishing (fisheries production) —0.05 —33.33 0.83 —0.03 —20.00 0.63
Leisure and recreation —0.04 -30.77 0.67 —0.03 —23.08 0.63
Domestic sewage treatment —0.04 —36.36 0.67 —0.03 —27.27 0.63
Freshwater supplies for local population —0.02 —22.22 0.33 —0.02 —22.22 0.42
Carbon sequestration 0.00 0.00 0.00 0.00 0.00 0.00
Total —6.01 100.00 —4.79 100.00
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3.3. ESV and Its Changes across the GN Divisions

Figure 7 shows the spatial distribution of the GN divisions in the MMNL with their
respective ESVs in three time points. Of the 99 divisions, only three had a positive change
between 1997 and 2017, and these are Katunayaka North (143), Munnakkarai North (156A),
and Siriwardana Pedesa (156C) (Figure 7, Table Al). The top five ESV-losing divisions
over the past 20 years were Kerawalapitiya (171), Pattiyawala (167B), Ambalammulla (146),
Bolawalana (157), and Mahabage (178). In both scenarios (BAU and EP), the projected top
five ESV-losing divisions were Pattiyawala (167B), Balagala (171B), Kunjawatta (166A),
Siriwardana Pedesa (156C), and Mahabage (178). Overall, this GN division-level ESV
monitoring can help in landscape and urban planning. For example, the projected top
ESV-losing divisions should be given particular attention.

(a) 1997 (b) 2007 (c) 2017

Negombo
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Figure 7. GN divisions in the MMNL with their respective ESVs on (a) 1997, (b) 2007 and (c) 2017
under the (d) BAU and (e) EP scenarios. The numbers and letters on the 1997 map refer to the GN
codes as presented in Table Al.
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3.4. LUC Change Model Validation

Our LUC change modeling focused on assessing the impacts of urbanization as
proxied by settlement expansion on the natural landscape and ecosystem services of the
MMNL. Two transitions were considered, namely marshland to settlement and mangrove
to settlement, with the FoM being used to validate the LUC change modeling results
(Section 2.3.1). The validation results revealed that the marshland to settlement transition
had an FoM of 45.4%, whereas the mangrove to settlement transition had 29.5%. These
FoM values are within the range of FoM values reported in other LUC change modeling
studies. For example, in their LUC change modeling in connection with ecosystem services,
Estoque and Murayama [18] recorded an FoM of 43%. In their LUC change modeling in
the context of flooding, Johnson et al. [44] had an FoM of 20%. In an earlier seminal review
of FoM applications in the validation of LUC change modeling studies, Pontius et al. [38]
reported an FoM value range of 1-59%.

4. Discussion

The MMNL is among the 12 priority wetlands in Sri Lanka. The presence of two
protected areas within the MMNL (Figure 2) is a direct manifestation of its ecological
significance. However, our findings indicate that the sustainability of the MMNL is now in
jeopardy; hence, urgent action has to be taken, landscape and urban planning wise.

In the early 2000s, in a seminal study that identified and quantified the ecosystem
services of the MMNL, it was reported that the area had been experiencing intense and
growing pressure from urbanization [11]. It had been observed that (i) wetland resources
had been harvested at high and often unsustainable levels; (ii) lands were being rapidly
reclaimed and modified for agricultural, commercial, and residential purposes; and (iii)
heavy loads of industrial and domestic wastes were being discharged untreated into the
MMNL. With all of these happening, the said study concluded that the MMNL has seriously
degraded over time.

Nearly two decades have passed since the conduct of the said study, but the MMNL's
curve of continuous ecological degradation has not been flattened out; instead, the degrada-
tion of this valuable urban wetland ecosystem has continued as indicated by our findings.
For example, between 2007 and 2017, the MMNL lost another 1002 ha of marshland and
265 ha of mangrove (Figure 5). Between 1997 and 2007, these values were 182 ha and 849 ha,
respectively. By contrast, another 1301 ha of natural cover were converted into settlement
between 2007 and 2017. This value was even higher than during the 1997-2007 period
(1072 ha). Consequently, the ESV of the MMNL has decreased by USD 8.96 million/year
over the past 20 years (USD 4.01 million/year between 1997 and 2007, and USD 4.95 mil-
lion/year between 2007 and 2017) (Table 2). Flood attenuation and industrial wastewater
treatments were among the ecosystems that were greatly affected.

The MMNL has long been seen as having prime potential for industrial and urban
development, but at the same time, it is considered as a coastal wetland ecosystem of
high biodiversity and ecological significance [9-11]. Our findings indicate that while
urbanization has been continuing at an unprecedented rate, the conservation of this critical
urban wetland ecosystem has been neglected. One important earlier observation that
remains valid until today is that there seems to be little appreciation of either the economic
value attached to the conservation of the MMNL or the high and far-reaching economic
costs arising from its degradation [11]. Decisions regarding how land and resources should
be used have been based on development initiatives that favor the modification of the
wetland for short-term economic gain over long-term benefits and the conservation and
sustainability of the MMNL [11]. In fact, the loss of natural cover due to settlement
expansion has been observed even within the boundaries of the PAs (Figures 2 and 3).

Our results have also shown that the future (2030) condition of the MMNL can be
expected to be worse if the recent (2007-2017) rate and spatial pattern of urbanization
(settlement expansion) continues (BAU scenario). It is because the projected ESV loss under
this scenario between 2017 and 2030 (USD 6.01 million/year) (Table 4) would be greater
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than the ESV loss in the past decade (2007-2017, USD 4.95 million/year) (Table 2). This
also means that the future of the MMNL will be much worse if the threat of marshland
and mangrove loss due to urbanization grows and intensifies. Nonetheless, our study also
demonstrates that under the EP scenario, while the continuous decline of the MMNL's ESV
cannot be fully stopped, the rate of loss could be slowed down (USD 4.79 million/year)
(Table 4). Hence, between the two scenarios, the EP scenario is the more desirable one for
the MMNL.

Our study considered only two basic scenarios, and thus, the exploration of other more
complex plausible scenarios can be considered for future research. Examples of more com-
plex scenarios include those that incorporate future trajectories of relevant socioeconomic
indicators, such as population growth, changes in economic, land use, and environmental
conditions, as well as future development priorities and policy targets. The shared so-
cioeconomic pathways (SSPs) are examples of such scenarios, though they are designed
for a global scale analysis [46—48]. The adaption of these pathways to local-level analysis
could be a future research direction. Other scenarios could focus more on conservation
storylines [14] or other more complex and stringent versions of our EP scenario.

Nonetheless, despite their simplicity, the inclusion of our two basic scenarios in the
analysis helped us demonstrate that, for the sustainability of the MMNL, it is still possible
to flatten its curve of continuous ecological degradation. In fact, the simple full protection
of the PAs inside the MMNL (EP scenario) could make a significant positive contribution.
Furthermore, with the use of a monitoring scheme built on a state-of-the-art geospatial
technique (including GIS, remote sensing, and scenario-based land change modeling) and
the concept of ecosystem services, our study also makes important methodological and
empirical contributions.

In fact, the economic value of wetland goods and services is rarely factored into LUC
change decisions in the MMNL [11]. Our study offers a basic template that can be adopted
and improved in future studies and/or considered in landscape and urban planning for
the MMNL. In general, the valuation and monitoring of ecosystem services across space
and time have many potential uses, including raising of awareness and interest, national
income and well-being accounts, specific policy analyses, urban and regional planning,
payment for ecosystem services, full cost accounting, and common asset trusts [13,49,50].
We argue that the MMNL can benefit from landscape and urban planning that considers
the concept of ecosystem services.

5. Summary and Conclusions

The MMNL is an important urban wetland ecosystem in Sri Lanka, but its sustainabil-
ity is now in jeopardy due to rapid and uncontrolled urbanization. Swift action must be
taken in order to save this valuable urban wetland ecosystem. In this study, to help inform
sustainable landscape and urban planning, we examined the impacts of urbanization on the
natural landscape and ecosystem services of the MMNL over the past 20 years (1997-2017).
We also projected landscape and ESV changes by 2030 under two plausible scenarios. We
found that, due to rapid urbanization (settlement expansion equivalent to 70% from 1997
to 2017), the area of the MMNL’s marshland and mangrove had decreased by 1184 ha
and 1114 ha, respectively. Consequently, its ESV had decreased by USD 8.96 million/year
(33%). If the current rate and spatial pattern of urbanization (2007-2017) continued in the
future (BAU scenario), another 1329 ha of marshland and 213 ha of mangrove would be
lost by 2030. The projected loss in ESV would be USD 6.01 million/year (34%). However,
if the urbanization rate slowed down by 20% and the PAs were completely protected (EP
scenario), the future loss of marshland and mangrove would only be around 1063 ha and
171 ha, respectively. The projected loss in ESV would be lower at USD 4.79 million/year
(27%). Between the two scenarios, the EP scenario would be the more desirable one that
should be considered by local government planners and decision-makers. The past, present,
and future ESV maps of the GN divisions produced in this study can be used to identify
hotspots. For future research, other more complex and stringent plausible scenarios need
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to be explored to help flatten the MMNL's curve of continuous ecological degradation.
Overall, the results of this study can help provide landscape and urban planners with
information useful to the sustainability of the MMNL. The approach employed is also
adaptable and applicable to other urban wetland ecosystems in the country and the rest of
the world.
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Appendix A
Table A1. ESV and its changes at the GN division level. Note: The GN code is linked with Figure 7.
ESV (USD Thousand/Year)
C?:e GN Name 1997 2007 2017 2030 BAU 2030 EP Change
2017-2030 BAU 2017-2030 EP
190A Weligampitiya North 167.40 78.90 52.60 1.00 1.00 51.60 51.60
191A Ja-Ela 279.00 241.20 131.40 0.60 0.60 130.80 130.80
165B Pulluhena 171.30 168.20 133.80 133.80 133.80 0.00 0.00
175 Telangapatha 62.20 39.40 12.40 0.00 0.00 12.40 12.40
169 Hekitta 57.70 17.30 4.80 0.00 0.00 4.80 4.80
175A Evariwatta 90.80 47.70 10.90 0.01 0.09 10.89 10.81
176B Galwetiya 70.50 25.20 3.90 0.02 0.06 3.88 3.84
168 Palliyawatta South 64.10 32.70 34.10 0.01 0.08 34.08 34.02
169A Kurunduhena 72.70 42.00 8.10 0.01 0.00 8.09 8.09
172C Nayakakanda South 136.60 75.80 29.20 0.00 0.00 29.20 29.20
170 Thimbirigasyaya 49.20 26.50 1.30 0.00 0.00 1.30 1.30
176 Wattala 140.00 71.20 13.10 0.00 0.00 13.10 13.10
172 Hendala South 60.90 11.60 7.10 0.00 0.00 7.10 7.10
168A Palliyawatta North 154.70 127.60 86.60 0.00 0.00 86.60 86.60
172B Nayakakanda North 41.70 29.50 9.00 0.00 0.00 9.00 9.00
170A Elakanda 76.80 35.00 6.40 0.00 0.00 6.40 6.40
176C Welikadamulla 103.40 43.90 7.80 0.00 0.00 7.80 7.80
172A Hendala North 50.00 19.60 9.10 0.00 0.00 9.10 9.10
176A Mabola 60.90 35.10 18.20 0.00 0.00 18.20 18.20
171A Matagoda 134.30 64.50 35.10 0.02 0.00 35.08 35.09
177A Kerangapokuna 151.20 129.90 84.10 0.00 0.90 84.10 83.20
168B Dikovita 115.60 100.00 83.20 24.50 25.60 58.70 57.60
177 Mattumagala 24420 214.90 60.20 3.00 3.00 57.20 57.20
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GN

ESV (USD Thousand/Year)

Code GN Name 1997 2007 2017 2030 BAU 2030 EP Change
2017-2030 BAU 2017-2030 EP
171 Kerawalapitiya 500.10 243.80 136.50 16.20 16.20 120.30 120.30
178 Mahabage 445.60 391.90 224.60 29.50 29.50 195.10 195.10
171B Balagala 607.50 468.60 412.10 54.60 104.20 357.50 307.90
182 Welisara 194.60 146.70 83.60 29.30 29.30 54.30 54.30
182B Elehiwatta 118.50 131.70 58.80 0.00 0.00 58.80 58.80
183 Nagoda 321.70 238.30 166.80 27.70 27.70 139.10 139.10
184B Uswatta 153.00 86.40 39.50 1.20 1.90 38.30 37.60
167 Uswetakeiyawa 391.80 397.40 314.90 245.80 280.50 69.10 34.40
167B Pattiyawala 2785.40 2548.70 2493.10 1916.50 2278.10 576.60 215.00
184 Kandana West 28.40 20.90 4.30 0.00 0.00 4.30 4.30
187 Nedurupitiya 316.70 245.40 166.60 17.10 17.10 149.50 149.50
186 Rilavulla 127.10 111.40 42.70 3.50 3.50 39.20 39.20
188 Kalaeliya 171.00 142.80 94.70 19.00 38.40 75.70 56.30
190C Kapuwatta 302.70 233.90 118.00 410 410 113.90 113.90
189 Wewala 428.10 368.10 297.90 183.30 224.90 114.60 73.00
167A Paranambalama 407.20 371.30 324.40 174.40 234.40 150.00 90.00
190 Weligampitiya South 153.90 80.70 55.20 1.10 1.10 54.10 54.10
166 Nugape 594.10 541.90 448.80 439.30 448.80 9.50 0.00
166A Kunjawatta 1658.50 1529.00 1458.80 1139.90 1198.00 318.90 260.80
190E Indivitiya 383.40 263.40 255.90 170.70 211.20 85.20 44.70
165 Bopitiya 102.70 78.00 47.50 47.50 47.50 0.00 0.00
165A Bopitiyathuduwa 887.70 780.10 796.20 703.00 708.30 93.20 87.90
192 Thudella West 379.30 288.10 209.60 116.30 176.90 93.30 32.70
192A Thudella South 65.40 39.00 14.90 0.00 0.00 14.90 14.90
191 Kanuwana 88.60 76.70 14.30 0.00 0.00 14.30 14.30
193A Delathura East 462.40 334.80 326.60 326.60 326.60 0.00 0.00
192B Thudella North 194.70 178.60 127.20 105.40 111.20 21.80 16.00
194A Dehiyagatha South 123.30 105.90 93.60 55.80 85.90 37.80 7.70
195 Kudahakapola South 163.40 119.40 63.80 4.10 18.20 59.70 45.60
193 Delathura West 1453.00 1415.20 1368.50 1358.50 1368.50 10.00 0.00
196 Kudahakapola North 167.50 137.00 97.80 54.80 74.40 43.00 23.40
164A Maha Pamunugama 837.30 839.30 752.60 736.10 736.10 16.50 16.50
194 Dandugama 1090.30 952.30 1076.70 896.30 893.40 180.40 183.30
194B Dehiyagatha North 158.60 147.90 120.10 120.10 120.10 0.00 0.00
164 Pamunugama 532.00 521.40 464.90 460.00 464.10 4.90 0.80
197A Udammita South 159.50 156.10 109.00 94.60 107.90 14.40 1.10
198 Alawathupitiya 227.40 224.20 205.20 196.80 205.20 8.40 0.00
163A Kepungoda 218.00 289.90 188.00 140.30 181.90 47.70 6.10
198A Dambaduraya 285.30 259.10 160.50 160.50 160.50 0.00 0.00
146 Ambalammulla 1425.80 1263.20 1159.50 1079.40 1159.50 80.10 0.00
145 Bandarawatta West 308.80 169.50 92.90 91.90 91.80 1.00 1.10
145C Bandarawatta East 167.50 175.20 89.90 85.10 89.90 4.80 0.00
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163C Settappaduwa 102.90 109.80 73.10 48.40 48.40 24.70 24.70
145B Mookalangamuwa West 305.80 177.70 122.00 120.10 122.00 1.90 0.00
145A Mookalangamuwa East 273.90 212.90 137.40 72.80 131.50 64.60 5.90
144 Liyanagemulla South 244.80 200.60 134.10 70.50 108.50 63.60 25.60
163B Dungalpitiya 258.10 258.70 172.10 58.60 104.90 113.50 67.20
144A Liyanagemulla North 293.60 189.30 127.70 34.60 50.40 93.10 77.30
143A Katunayaka South 81.20 140.40 63.20 0.00 0.90 63.20 62.30
143 Katunayaka North 60.80 82.50 132.10 0.00 0.00 132.09 132.09
142A Kurana Katunayaka South 213.20 215.50 58.40 0.00 0.00 58.40 58.40
142B Kurana Katunayaka Central 265.70 256.50 80.20 0.00 0.00 80.19 80.19
163 Thalahena 179.30 218.50 111.60 0.01 0.02 111.58 111.57
142 Kurana Katunayaka North 133.60 145.80 90.30 0.00 0.00 90.30 90.30
157B Kurana West 196.90 150.70 45.30 0.01 0.02 45.28 45.27
157A Kurana East 133.10 135.50 75.50 0.09 0.02 75.41 75.48
162C Pitipana Southeast 107.60 110.00 49.90 0.00 0.00 49.90 49.90
162B Pitipana South -West 54.40 54.00 8.90 0.00 0.00 8.90 8.90
156C Siriwardana Pedesa 233.60 221.10 240.50 0.00 0.00 240.50 240.50
156 Munnakkarai 18.30 2.00 10.50 0.10 0.00 10.49 10.49
160A Thaladoowa 82.80 85.30 70.30 0.00 42.80 70.29 27.50
162D Pitipana Central 99.70 94.30 77.30 0.00 0.00 77.30 77.30
157 Bolawalana 376.00 299.30 147.00 0.00 0.30 147.00 146.70
156B Munnakkarai East 61.00 48.10 58.90 0.00 26.40 58.90 32.50
162 Pitipana North 108.00 102.80 31.50 0.00 0.00 31.50 31.50
162A Doowa 33.70 39.10 29.10 0.05 0.01 29.05 29.09
160B Udayarthoppuwa South 161.40 89.00 12.40 0.00 0.30 12.40 12.10
160 Udayarthoppuwa 122.50 71.90 1.20 0.00 0.30 1.20 0.90
156A Munnakkarai North 32.30 54.60 71.20 0.00 11.20 71.20 60.00
161A Angurukaramulla 209.30 124.60 3.90 0.00 0.00 3.90 3.90
158A Wella Weediya South 10.70 9.60 1.20 0.00 0.00 1.20 1.20
159 Periyamulla 47.30 29.20 6.70 0.00 0.00 6.70 6.70
158 Wella Weediya 12.50 12.30 5.00 0.00 0.00 5.00 5.00
73C Kudapaduwa South 45.20 38.00 6.20 0.00 0.00 6.20 6.20
158B Wella Weediya East 63.70 29.90 0.20 0.00 0.00 0.20 0.20
159A Hunupitiya 74.70 28.70 2.00 0.00 0.00 2.00 2.00
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Abstract: Empirical evidence shows that the expansion of impervious surface threatens soil organic
carbon (SOC) sequestration in urbanized areas. However, the understanding of deep soil excavation
due to the vertical expansion of impervious surface remains limited. According to the average soil
excavation depth, we divided impervious surface into pavement (ISyg), low-rise building (IS1q9) and
high-rise building (IS3pg). Based on remote-sensing images and published SOC density data, we
estimated the SOC storage and its response to the impervious surface expansion in the 0-300 cm soil
depth in Guangzhou city, China. The results showed that the total SOC storage of the study area
was 8.31 Tg, of which the top 100 cm layer contributed 44%. The impervious surface expansion to
date (539.87 km?) resulted in 4.16 Tg SOC loss, of which the 1Sy, IS199 and 1Szqy contributed 26%,
58% and 16%, respectively. The excavation-induced SOC loss (kg/m?) of IS3p9 was 1.8 times that of
IS199. However, at the residential scale, renovating an IS;gg plot into an ISzpy plot can substantially
reduce SOC loss compared with farmland urbanization. The gains of organic carbon accumulation in
more greenspace coverage may be offset by the loss in deep soil excavation for the construction of
underground parking lots, suggesting a need to control the exploitation intensity of underground
space and promote residential greening.

Keywords: expansion of impervious surface; underground space development; deep soil excavation;
SOC loss in deep soil; urban renovation; Guangzhou city

1. Introduction

The share of urban people in the world has increased from 30% in 1950 to 55% in
2018 and this proportion is projected to reach 68% by 2050 [1]. Urbanized areas in 2030
will nearly triple from those in 2000 [2]. With the rapid expansion of urban areas, many
agricultural or natural ecosystem areas have been converted into greenspace or impervious
surface, which greatly changes the structure and function of the original ecosystems and
has a far-reaching impact on soil organic carbon (SOC) storage [2-5]. Previous studies
have shown that urban vegetation has high carbon sequestration capacity [6-11], and
the SOC density observed in greenspace is higher than that of grassland or farmland in
some cities [8,12,13]. In New York City, the SOC density of the greenspace is comparable
to that of suburban and rural forest soil [14]. However, the vegetation and soil removal
and soil sealing during the installation of impervious surface have seriously disturbed
soil functions [15], which can counterbalance the positive effects from urban greenspace
ecosystems [14]. Impervious surface has become the dominant land cover in urbanized
areas. Impervious surface covers approximately 31% [13] and 65.91% [16] of the land
within urban areas in the United States of America and China, respectively, and more
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than 50% in many European cities [17]. Therefore, it is necessary to study the influence of
impervious surface construction on SOC storage to comprehensively quantify the impact
of urbanization on regional carbon budgets [18,19].

The effect of impervious surface expansion on soil carbon storage has been studied
from two perspectives. Some studies revealed the differences in SOC storage between
sealed soils and surrounding greenspace soil at the sample site scale [14,19-23], and others
have used spatially explicit models driven by land cover change and/or other multiple
environmental covariates to analyze the total SOC loss and its spatial and/or temporal
variability at regional, national and even global scales [24-28]. These models provide a
powerful and effective tool for presenting carbon changes in space and time. However,
they usually treat urban area or impervious surface as a homogeneous space unit, and
interpret land cover types from medium or low resolution remote sensing images, which
cannot reflect the differences of soil carbon disturbance among impervious surface types.
For urban carbon management, research based on high-resolution images and refined types
of impervious surface could be more beneficial to policy making.

Topsoil removal is the main cause of depletion in SOC content under impervious
surface [29]. Although the depth of soil removal varies in different types of impervious
surface, few studies have explored in detail the difference of soil carbon disturbance
between different impervious surfaces. In China, the depth of soil extraction for pavement
is approximately 15-30 cm, and that for low-rise buildings without underground parking
lots is approximately 80-100 cm. High-rise buildings usually include underground garages.
According to the Design Code for Residential Buildings (GB 50096-2011) [30], the net height
of underground garage driveways should not be less than 220 cm. Adding spaces for the
construction of building foundations and for the installation of facilities, such as pipes,
wires and ventilating ducts, the depth of soil extraction for buildings with underground
parking requires a deeper depth than 300 cm. Large utility lines, subways, car park facilities
and malls have been constructed under the urban surface in many big cities around the
world [31,32], especially in China where high-rise buildings with underground parking
lots are widely distributed in many medium-sized or big cities. Although the depth of
soil excavation in many underground space utilizations is deeper than the top 100 cm soil
layer, most published studies on urban SOC storage ignored the carbon below a depth of
100 cm. Soil at deeper depths (e.g., 100-300 cm) still has large carbon storage [33]; therefore,
consideration of 0-20 cm or 0-100 cm soil depth cannot reveal the influence of the vertical
expansion of impervious surface on SOC pools.

Soil is the largest contributor to the urban ecosystem carbon pool [13,34]. Although
the SOC density beneath impervious surface is lower than that in adjacent greenspace
areas [14,19,20,28,29], the contribution of soil under impervious surface to urban SOC
pool is still large due to the large coverage area. For instance, in the Chicago and Boston
metropolitan areas, the impervious surfaces contribute 28.76% and 22.46% to the total soil
and plant carbon pools with aerial coverages of 60% and 53.9%, respectively [18]. In the
China Urumgi urban area, the impervious surface covers 63% of the urban area and it
contributes 57% of the SOC pool. Buildings account for a large proportion of impervious
surface in cities; however, previous studies usually sample soils under pavement, such
as roads, sidewalks, parking lots, paved backyards and paved squares [14,19,20,22,23,29],
because it is hard to sample soil under buildings. The SOC stock in building-covered soil
was assumed to be 0 kg/m? [19,23], or was designated a proxy such as the SOC density of
clean fill soil [13,18] or the provincial average SOC density [34], which greatly increased
the uncertainty of urban SOC pool estimation and its response to the expansion of urban
impervious surface. Thus, it is necessary to try other methods to estimate SOC storage in
building-covered areas.

Due to the rapid land use/cover changes in China, ecosystem services intensity experi-
enced a continuously decreasing trend from 1995 to 2015, especially in large megacities [35],
and ecosystem service values for provision, regulation, support and culture also decreased
during the period of 1988-2008 [36]. Guangzhou is a representative megacity with rapid
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urbanization and increasing impervious surface in China. Urban area in Guangzhou has
increased from 187.40 km? in 1990 to 1324.17 km? in 2019 with an annual expansion area
of 39 km? [37]. Urban underground space use has become an essential part of the urban
master plan in China. According to the urban subsurface development target of “The
master plan of Guangzhou city (2011-2020)", the city-wide area of developed underground
space will reach 90 million square meters, of which 8 million square meters will be used as
commercial space. This large-scale soil excavation will cause large disturbances to SOC
storage, which should not be ignored in the environmental assessment of underground
space exploitation. The objectives of this study were: (1) to estimate the SOC stocks of
pavement, low-rise buildings and high-rise buildings based on their average soil extraction
depth and the SOC density of pre-urbanization pervious surfaces; (2) to estimate the SOC
storage in the 0-300 cm soil layer and then quantify the impacts of urban impervious
surface expansion on the SOC stock at the residential and regional scale. To our knowl-
edge, this is the first study in which the urban SOC and its response to the expansion of
impervious surface in the 0-300 cm soil layer have been quantified. This research provides
implications for policy making on how to reduce disturbances to the deep soil carbon pool
during urban underground space development.

2. Materials and Methods
2.1. Study Area

Guangzhou city (112°57'~114°03' E, 22°26/~23°56/ N) is located in the lower reaches of
the Pearl River Delta near the South China Sea. This city is the economic and transportation
center of South China, with a built-up area of 1263.34 km? and a large population of
14.49 million in 2018 [37], making it a key area to study the effects of impervious surface
expansion on soil carbon sequestration. Guangzhou city, which is dominated by lateritic red
soil and paddy soil, has a subtropical monsoon climate with an average annual temperature
of 21.4-22.6 °C and an average annual precipitation of 1600-2300 mm [37]. The northeastern
part of this city is dominated by middle and low mountains, the central part contains a
hilly basin and the southern part contains a coastal alluvial plain. We delineated the
urban core area (735.66 km?) as our study area on Google Earth images (0.27 m resolution)
using geographic information system software (ArcGIS version 10.4, ESRI) (Figure 1). This
area is separated from the surrounding regions by rivers, woodlands, farmland and rural
settlements.
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Figure 1. Location of Guangzhou city and its land use/cover in the urban core area in 2019.

2.2. Mapping Land Use/Cover in 2019

We first classified land use/cover into nine types: urban village plot, high-rise building
plot (>28 m), farmland, conservatory, residual forest, tree orchard, water, greenspace
with area larger than 1500 m? and low-rise building (<28 m) plot. Then, using manual
digitization techniques, we digitized the first eight land use/cover types from Google Earth
images (0.27 m resolution) using the software of ArcGIS (version 10.4, ESRI). The area of
the low-rise building plot was the total size of this study area minus the summed area of
the other eight land cover types. Second, we grouped the above nine land use/cover types
into six categories: greenspace, woodland, farmland, pavement (excavated soil thickness
< 20 cm, ISy), low-rise building (excavated soil thickness < 100 cm, IS1g0) and high-rise
building (excavated soil thickness > 300 cm, IS3p9). According to codes for road and
building foundation construction, consultation with engineers and our field investigation,
we assigned the evacuation thickness of 1Sy, IS109 and IS5 as 0-20, 0-100 and 0-300 cm,
respectively, and detailed information was presented in the Section 1 of the Supplementary
Materials [30,38]. The area of green space was the difference between the total area of
this study and the summed area of the other five land cover types. Tree orchard land
was grouped with forestland. Conservatory land was classified as farmland. Buildings
located in urban village plots and low-rise building plots were grouped as IS1oy. 1S300
included buildings located in high-rise building plots and low-rise building plots or villas
equipped with underground parking or other kinds of underground space development.
To calculate the area covered by buildings, we multiplied the area of each type of building
plot by its building density. The building densities of low-rise building plots, high-rise
building plots and urban village plots were randomly sampled based on Google Earth
images (0.27 m resolution) using the software of ArcGIS. To calculate the area of pavement,
we first calculated the sum area of the impervious surface and bare soil and then subtracted
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the area of the buildings and conservatory areas (according to Google Earth images, most
of the bare soil plots are land parcels under construction, and they were digitized as
high-rise building plots; impervious surface interpreted from Landsat images included
conservatories that were grouped with farmland). We used the method developed by
Fan et al. [39] to estimate the area of imperious surface (Figure S1) and bare soil from
Landsat8 OLI images (30 m resolution) at the subpixel scale. The detailed framework
for the land use/cover type interpretation was presented in Figure S1 and Table S1. The
accuracy assessment of impervious surface map and land use/cover data was presented in
the Section 2 of the Supplementary Materials [39-42].

2.3. Compiled SOC Densities for Pervious Surfaces

By assuming that the 100-200 cm soil layer had a constant SOC density, we calculated
the SOC density of the 100-200 cm layer according to the difference in SOC density between
the 0-180 cm and 0-100 cm soil layers. The SOC density of woodland was an area-weighted
value of the SOC density in residual forest and tree orchard soil. The SOC density of the
0-20 cm, 0-100 cm and 0-180 cm soil layers in farmland, woodland, orchard and greenspace
were derived from Zhu [39,40].

For the SOC density of the 200-300 cm layers in woodland and farmland soil, we
used the globally averaged SOC density of 200-300 cm soil in tropical evergreen forest and
farmland [33] as a proxy, respectively. Urban land in this study area was mainly converted
from farmland; therefore, the SOC density for greenspace in the 200-300 cm layer was
assigned the value of the corresponding layer in the farmland soil.

2.4. Estimates of SOC Density for Impervious Surfaces

Previous studies have suggested that there is no significant difference between SOC
density at the equivalent depth and soil sampled under impervious surface and
greenspace [21,23]. The pattern of vertical decline of the SOC density in impervious-
covered soil is similar to the trend of rural soils, and the disturbance of pavement instal-
lation to the subsoil layers may not be serious; therefore, the vertical distribution of the
SOC density before soil sealing is largely maintained [19]. Due to the inaccessibility of
soil sampling beneath impervious surface, especially soil under buildings, we estimated
the SOC density of sealed soil according to the SOC density of the residual soil layer of
the land use/ cover before urbanization and the average depth of soil excavation for an
impervious surface installation. We hypothesize that: (1) the mineralization rate of residual
original soil layers was zero and that all excavated soil was removed from this study area;
(2) for regional SOC loss estimation, soil excavation for the construction of buildings and
underground facilities was limited to the areas where the buildings would be located. The
specific assignment method was as follows.

The average excavation depth was included in the profile of impervious-covered soil;
however, its SOC density was assigned as 0 kg/m?. The SOC density of the soil layer
beneath impervious surface was equal to the SOC density of the residual soil layer of the
land use/cover before urbanization. The average soil excavation depths were 0-20 cm,
0-100 cm and 0-300 cm for ISy, IS199 and ISz, respectively. By subtracting the SOCy_pg
density from the SOC_1gp density of the pre-urbanization land use/cover, we obtained the
SOC_100 density of ISyg. By assuming that the SOC density between 100 cm and 200 cm
soils was a constant value, we evaluated the SOC1gg_09 density for ISy or IS;gg according
to the averaged SOC density of the 0-180 cm layer in the original land use/cover soil
before urbanization. We assigned the SOCyg_309 density of farmland soil from Jobbagy
and Jackson [33] as the SOCp_300 density of ISyg and ISp_1gp.

Field investigations [19,21,23] and estimation based on the measured SOC density of
interval soil layers [14,22] are the main methods by which to obtain the SOC density of deep
soil under pavement. SOC density of building-capped soil was assigned as 0 kg/m? [14,19]
or the density of clean-fill soil [13,18]. For comparison with the other methods and their
values (Tables S2 and S3 within which references [19,21,23,42-46] were cited). we sampled
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soil (020 cm) beneath impervious surface from 11 new road reconstruction projects and
clean-fill soil (a kind of backfill soil excavated from natural sedimentary soil layer, and into
which organic waste, stone or white lime should not be mixed) from three road greening
projects. We also collected SOC content data from granitic residual soil and oceanic-
continental sedimentary clay soil (the widely distributed parent material in Guangzhou),
as well as SOC content data from the bottom soil layers of paddy soil and lateritic red soil
(the widely distributed soils in Guangzhou). Based on these literature-derived SOC data
and the code of soil compaction used for road construction (to evaluate the bulk density
of soil under impervious surface), we calculated the SOC density of the deep-soil layer
beneath buildings and pavement (Tables S2 and S3). Methods of soil sample and SOC
density calculation for the sealed soil and clean-fill soil were present in the Section 3 of
the Supplementary Materials [38,46—61]. The SOC density estimated according to the SOC
density of the remaining soil layer in the original pervious soil profile was used to assess
the total SOC pool and its loss due to the expansion of impervious surface, while the SOC
densities calculated by the other methods were mainly used for comparison.

2.5. Estimate of SOC Storage Loss Caused by Impervious Surface Expansion

Topsoil removal largely contributed to the depletion in SOC content under impervious
surface [21,23,29]. We used the SOC storage in the removal soil layer as a representation of
the carbon loss caused by impervious surface expansion since it is almost impossible to
survey soil beneath buildings. SOC(_3go density changes and the total SOCg_3qg pool loss
were estimated to reveal the impact of impervious surface expansion at the residential and
regional scale, respectively. For farmland urbanization, the loss of SOCy_3g storage at the
residential scale was estimated by the area-weighted average SOCy_3¢g loss in pavement,
building and greenspace. For impervious surface and green space, we assumed that the
SOC density loss for each impervious surface was the difference between the SOC density
of the original pervious surface before urbanization and the estimated SOC density of each
surface type. It is very difficult to conduct a spatially explicit study on the conversion
between each impervious surface and original pervious surfaces; therefore, we took the
average SOCy_3gg density of woodland (including tree orchard) and farmland as a proxy for
the SOC density of original pervious surfaces (farmland, tree orchard and woodland were
the main land use/cover types before urbanization in this region, and the differences in
SOCy-150 density between these land covers were small [40]). For urban renewal plots, the
loss of SOC storage was the difference of SOCy_3qg density before and after urban renewal.
The detailed method of this section is present in the Table S5 [62-64].

The rapid urbanization of Guangzhou city began around 1990; however, the earliest
fine resolution images that we could get were from 2000. Therefore, we did not consider
the specific time period of impervious surface expansion, but rather assessed the total SOC
loss according to the current distributions and areas of these impervious surface types.
To estimate the SOC pool loss caused by the expansion of each impervious surface, we
multiplied the area of each impervious surface by its loss of SOC(_39 density. Summing
the SOC pool losses caused by each impervious surface, we obtained the total SOC pool
loss due to the expansion of impervious surface to date. A summary of the method and
characteristics of the study area are shown in Figure 2.
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Figure 2. The summary of the methodology and land use/cover characteristics of the study area. Numbers in the round

brackets represent the coverage proportion of green space, building and pavement in each typical residential land parcel.

The GS, PA, FS, UPL, BF and RS represent green space, pavement, fill soils, underground parking lots, building foundations

and residual soils, respectively. ISyg, IS1p9 and IS5 represent pavement with a soil evacuation thickness of around 20 cm,

buildings with soil evacuation thickness < 100 cm and buildings with evacuation thickness > 300 cm, respectively. (1) and (2)

represent renovating urban village plots into high-rise building plots I and IT, respectively; (3) and (4) represent renovating

low-rise building plots into high-rise building plots I and IT, respectively. Areas of high-rise building land parcels, low-rise
building land parcels and urban village plots in 2019 were 121.41, 364.97 and 89.53 km?, respectively, and ISy, IS10p and
IS5 totally covered 73% of the study area (Table S1).

3. Results
3.1. Area Estimation by Land Cover in 2019

ISpo had the largest area (35.54%), followed by 1S1oy (32.88%), greenspace (9.13%),
woodland (8.02%), 1S30p (4.96%) and farmland (3.39%) (Figure 1). The areas of urban
village plots, low-rise building plots and high-rise building plots were 89.53, 364.97 and
121.41 km?, respectively (Table S1). Large areas of urban roads were subsumed in the
low-rise building plots. However, these roads were not considered in the building density
sample, which may result in an overestimation of 16% of the low-rise building’s area
(Section 2 of the Supplementary Materials). We used the root mean square error (RMSE)
to assess the accuracy of the impervious surface map, and the RMSE citywide was 0.20
(Section 2, Figure S1). The total area of 1Sy, IS19p and 1S3p (539.87 km?2) was much higher
than the impervious surface area interpreted from Landsat 8 OLI images (Figures S1 and S2),
because the bare soil areas were regarded as high-rise building plots under construction.
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3.2. SOC Stock and Its Profile Distribution by Land Cover

When the thickness of the excavated soil layer was included in the profile of impervious-
covered soil, the SOC density at the 0-300 cm layer of farmland, woodland, greenspace,
IS50, IS100 and IS309 was 19.04 kg/m?, 17.32 kg/m?, 17.15 kg/m?, 4.04 kg /m?, 8.22 kg /m?
and 0 kg/m?, respectively (Table 1). Relative to the top 100 cm, the percentage of SOC den-
sity in the 0-20 cm layer was 26%, 28% and 26% for farmland, woodland and greenspace,
respectively; the proportion of SOC density in the 100-200 cm layer was 0.73%, 0.67%,
and 0.75%, respectively (Figure 3). The SOCy_1go density and SOC_09 density for ISyg
accounted for 41% and 39% of SOCy_3qg density, respectively. The SOC density of IS1g in
the 100-200 cm layer was 67% of that in the 0-300 cm layer (Table 1).

Table 1. Soil organic carbon density by land cover.

A SOC Density (kg/m?)
Land Use/Cover kre';’
(km?) 0-20 cm 20-100 cm 100-200 cm 200-300 cm 0-300 cm
Farmland 24.97 2.49 6.97 6.88 2.70 19.04
Woodland 59.02 222 5.82 5.38 3.90 17.32
Greenspace 67.16 2.13 6.14 6.18 2.70 17.15
ISy 261.46 0 5.82 5.52 2.70 14.04
1S100 241.90 0 0 5.52 2.70 8.22
1S300 36.51 0 0 0.00 0.00 0.00
Farmland Woodland Greenspace
Proportional distribution (interval SOC density/0—100cm SOC density)
00 02 04 06 08 1.000 02 04 06 08 1.000 02 04 06 08 1.0
0-20
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Figure 3. Proportional distributions of SOC density by land cover.

The total SOC pool of 300 cm was 8.31 Tg (the thickness of the excavated soil layer
was included in the profile of impervious-covered soil), and the largest pool by land cover
was ISy (3.67 Tg), followed by IS1y (1.99 Tg), greenspace (1.15 Tg), woodland (1.02 Tg),
farmland (0.48 Tg) and 1S3py (0 Tg) (Figure 4). By soil horizon, the contributions of the
0-20 cm, 20-100 cm, 100-200 cm and 200-300 cm layers to the total SOC pool were 4%, 30%,
44% and 22%, respectively (Figure 4, Table S4). Pervious surface carbon pools contributed
32% of the total SOC pool, of which 48% was stored in the 0-100 cm soil layer; impervious
surface carbon pools contributed 69% of the total SOC pool, of which 49% was stored in
the 100-200 cm layer (Table S4).
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Figure 4. Profile distributions of SOC pools by land cover.

3.3. SOC Loss Caused by Soil Removal for the Installation of Impervious Surface

All residential districts converted from farmland had high SOCy 300 loss
(6.16-14.18 kg /m?), particularly the high-rise building plots for which underground park-
ing lots covered the whole residential land (14.18 kg/ m?) (Figure 5, Table S5). The SOCy_3¢9
losses of renovating urban village into high-rise building plot were lower than that of reno-
vating low-rise building plot. If underground parking lot covers 30% of the residential area,
urban village renovation may even slightly increase SOC storage (0.85 kg/m?) (Figure 5,

Table S5).

The total SOC loss caused by the expansion of impervious surface (539.87 km?) was
4.16 Tg (0-300 cm), of which the IS;qp, ISy and IS3pg contributed 58%, 26% and 16%,
respectively (Table 2). The SOC density loss by impervious surface type was 18.18 kg/m?,
9.96 kg/m? and 4.14 kg/m? for 1S3q9, IS199 and ISy, respectively (Table 2).

Table 2. The SOC loss at a depth of 0-300 cm caused by the expansion of impervious surface.

Impervious Surface

SOC Density Loss SOCPool Loss  Fraction of SOC Pool Loss

Impervious Surface Coverage

Type kg/m?2 Tg % %
IS300 18.18 0.66 16 5
IS100 9.96 2.41 58 33
ISy 414 1.08 26 35
Total 7.67 % 4.16 100 73

Note: * The area-weighted loss of SOC density due to the construction of the ISy, IS199 and ISzgo.
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Figure 5. SOC storage (black columns) and SOC loss of farmland urbanization and urban renovation (white columns) at
the residential scale; I and II represent the coverage fraction of underground parking lots (30% and 100%, respectively).
The detailed estimation method is presented in Table S5.

4. Discussion
4.1. Comparison Analysis of SOC Density for Pervious Surfaces

Our results showed that the SOCy_py density and SOCy_1¢g density in farmland were
much lower than the global mean values of the corresponding soil layers [33]. The average
proportion of SOCy_pg density to SOCy_199 density in farmland was 26% (Figure 3), which
was close to the sampled value of 29% in the Ten-Thousand-Mu Orchard in the Haizhu
District of Guangzhou city [65], but slightly lower than the citywide average value of
paddy soils (33%) in Guangzhou [66]. All of the above-mentioned ratios in the farmland
of Guangzhou were much lower than the global mean value of 40% [33], and farmland
management practices may be the main reason for this difference. Compared with the
utilization of chemical fertilizer, less organic fertilizer was applied in the farmland of
Guangzhou, which was disadvantageous to the SOC accumulation, especially in the topsoil.
Sulman et al. [67] reported that tilled soil had low organic carbon concentrations in the
top mineral soil. In Guangzhou city, farmers rarely let their land lie fallow, instead tilling
their farmland more frequently because of the farming system of the rice-rice-vegetable
rotation or the rotation of various vegetables. Farmers plow paddy fields into deep furrows
(to a depth of 20-30 cm covered with water) and then heap up soil into rows of broad
ridges to grow vegetables on them. Therefore, soils layers deeper than 20 cm are often
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flooded, which is beneficial to the accumulation of organic carbon in the deep soil. The
SOCy-p0p density in farmland (Table 1) was slightly higher than the global averaged value
of 15.0 kg/m? [33]. This may contribute to landform and soil parent material in this region.
Buried soil layers in the alluvial plain of a river can increase the organic carbon storage
of the deep soil layer [68,69]. Our study area is located in the lower reaches of the Pearl
River Delta and near the South China Sea. Organic-rich, oceanic-continental sedimentary
clay soils are widely distributed in this area. Furthermore, large areas of this clay soil are
buried no deeper than 300 cm [70], and its average organic carbon concentration is as high
as 2% [46].

The average SOCy_19p density of woodland was only 43% of the global average
value [33]; the low stand age and anthropogenic disturbance may be the main reasons for
these lower carbon stocks. Guo and Gifford [71] noted that the conversion of natural forests
into plantations reduced soil carbon storage. Many forests in the study area are secondary
forests or young forests planted in the middle of the 1980s. The average SOC density of the
young, middle-aged and mature forests in the Pearl River Delta (where Guangzhou city is
located) was only 6.67 kg/m?, 8.41 kg/m? and 10.26 kg/m?, respectively [72], all of which
are much lower than the values reported by Jobbagy and Jackson [33]. The SOC1gp-200
density in woodland (Table 1) was comparable to the average value in tropical evergreen
forest soil [33], which may be due to the deeply buried organic-rich clay soil under the
orchard land (tree orchards were grouped with woodland).

We assigned the SOCpp_300 density of farmland reported by Jobbagy and Jackson [33]
as a proxy to the SOCygg_309 density of farmland soil in our study area. Turnover profiles,
which were removed from the dataset of Jobbagy and Jackson, were widely distributed in
our study area because of the organic-rich sedimentary clay soil that developed in the deep
layer of paddy soil [43]; therefore, this proxy maybe an underestimated value.

The proportion of SOCy_» density to SOCy_199 density in greenspace (Figure 3) was
equivalent to the value of 0.25 in a greenspace in the Ten-Thousand-Mu Orchard in the
Haizhu District of Guangzhou city [65]. Many topsoil layers in the greenspace originated
from clean fill soil, plus the younger age of the vegetation and the carbon storage in the
upper 20 cm soil was low. The proportion of SOCgg209 density to SOCy_199 density in
the greenspace was as high as 0.75, which was slightly higher than the proportion in the
woodland. Most of the greenspaces were converted from farmland. Perhaps because the
high carbon pool of 100-200 cm in farmland had not been greatly disturbed during the
conversion, the greenspace soil inherited the high carbon density at a depth of 100-200 cm
(Table 1 and Figure 3). In addition, areas with thick organic-rich clay soil are usually
developed as greenspaces rather than buildings because of their low bearing capacity.

4.2. Comparison Analysis of SOC Density of Impervious-Covered Soil

For soils under pavement, the SOCy_1gg density estimated from the residual original
pervious surface was similar to the value calculated by the measured SOC density of
0-20 cm soil beneath pavement (Table S2 and Section 3). Our estimated SOC_1oy density in
soils sealed by pavement was comparable to that in Urumgji, China [19] and in New York
City, USA as reported by Raciti et al. [14]; however, it was much lower than that in Leicester,
UK [23] and in New York City, USA as reported by Cambou et al. [21] (Table S2). Clay
content and climatic differences may account for the carbon density differences among
cities [23]. For clean-fill soil or constructional layers (mainly carbon-free materials) under
pavement, SOCgy_1op density estimation based on the SOC density of residual pervious
surface may lead to a large overestimation. For instance, the SOC density estimated based
on the measured organic carbon content in clean-fill soil (100 cm thick) in this study was
3.94 kg /m? for artificially tampered soil and 3.30 kg/m? for untampered soil (Table S2 and
Section 3), which was similar to the estimation by Pouyat et al. in USA [18]. The sampled
SOC density of filled soil under pavement of the Seoul residential area in South Korea
was as low as 2.7 kg/m? [42], and the sampled value for constructional layers (mainly
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gravel, crushed rock and sand) below the road surface in Lahti, Finland, was as low as
1.20 kg/m? [22].

For the SOC density of the 0-100 cm soil layer under buildings, Pouyat et al. [18]
took the estimated SOC density of clean fill soil as a proxy, which was equivalent to the
value calculated in this study (Table S2). If we are using the SOC density of the residual
original soil layer before urbanization as a proxy, assuming that the decomposition rate of
the residual soil was zero, the estimated values of 5.52 kg/m? (an estimation based on the
SOC density of the residual original soil layer) and 5.43 kg/m? (an estimation based on the
averaged SOC content of the bottom soil in original pervious soil layer) were both higher
than the SOC density of the clean fill soil (Table S2 and Section 3). Fill soil mainly comes
from excavated deep soil, which has low organic matter content; therefore, the SOC density
of clean fill soil may be used as an underestimated proxy for the 0-100 cm soil under IS;qo,
especially for buildings without a clean fill soil layer.

For the SOCp_300 density of pavement and IS covered soil, we took the SOCppp_300
density (Table 1) in farmland as a proxy, which was close to the estimated SOC density of the
granitic residual soil (100 cm thickness) (Table S2). The proxy coincided with the measured
SOC density of the 0-100 cm fill soil under impervious surface in a Seoul residential area
in South Korea [42] (Table S2). Weathered granitic residual soils excavated during the
construction of building foundations is commonly used as a kind of high-quality fill soil.
This coincidence may support the rationality of the above-mentioned proxy, since most fill
soil came from excavated deep soil layers. However, if the organic-rich, oceanic-continental
sedimentary clay soil (Table S2) developed beneath pavement and IS¢, this proxy may
underestimate the SOCyg0_300 density of pavement and IS;¢g covered soil.

Topsoil removal, decomposition and leaching of the residual soil layers beneath
impervious surface may attribute to the carbon loss from sealed soil [14]. A controlled
field study reported that the removal of 0-10 cm soil contributed 57% to the total carbon
loss (0-30 cm) [29]. We assumed that the SOC mineralization of the residual soil was zero,
which would underestimate the carbon loss. However, SOC decomposition in impervious-
covered areas will be slowed because of anoxic conditions [20,29]. The SOC turnover rate
varies with the type, degree and extent of sealing [20,23,29]. Evidence has shown that the
SOC density decreases from the edge to center in imperviously covered areas [19]. For small
patches of impervious surface surrounded by greenspace, soil could still be colonized by
vegetation roots and retain the organic carbon turnover rate to some extent, while organic
carbon could be more stable in areas with impervious surface largely distributed [20,23].
Large areas of impervious surface continuously distributed in the study area, and the
soil was excavated deeper than the organic-rich topsoil for the construction of building
foundations. Therefore, the carbon mineralization in residual soil may contribute less to
the carbon loss. Thus, the underestimation of carbon loss due to the above-mentioned
assumption may be small.

4.3. Impacts of Impervious Surface Expansion on SOC Storage

Our result showed that there was a large amount of organic carbon in impervious-
covered areas. SOC stored in sealed soil in the 0-300 cm layer and 100-300 cm layer in
our study area was equivalent to 9% and 6% of the 0-100 cm SOC pool in Guangzhou
city [66], respectively. If SOC density in building-covered soil were assigned 0 kg/m?
(Table S6, scenario 3), the total SOC pool in the 0-300 cm soil layer would decrease 34%
(Table S6, scenario 1) or 42% (Table S6, scenario 2), and the loss of the SOC pool due
to impervious surface expansion would increase by 48% or 82%, respectively (Table S6).
Therefore, ignoring the SOC pool under IS;oy will greatly underestimate the urban carbon
pool and then greatly overestimate the negative impact of impervious surface expansion
on urban soil storage.

At the residential scale, carbon loss per unit area varied with the coverage of greenspace
and pavement, building density and development intensity of underground space.
Foundation-excavation-induced SOC loss of IS3p; was 1.8 times that of 1S9 (Table 2);

102



Sustainability 2021, 13, 7901

however, at the residential scale, if the intensity of underground space development is
limited within a reasonable range, the SOC loss of IS3qg plots can by roughly equivalent
to that of ISgg plots (Figure 5, Table S5). Underground parking lots in many high-rise
residential districts had extended to the underground spaces covered by greenspace and
pavement. According to the urban construction code of the Planting Soil for Greening
(CJ/T 340-2011) [64], the thickness of an effective soil layer for tree planting should not
be less than 100 cm. Appropriately raising this thickness criterion may increase SOC
stock in greenspace. Compared with farmland urbanization, renovating urban village or
low-rise building plots into high-rise building plots has potential to substantially reduce
SOC loss (Figure 5, Table S5). Adding the increment of vegetation carbon due to the
increased greenspace coverage, urban renewal will be more profitable to urban carbon
management. Analysis of the total organic carbon loss per unit area in vegetation and soil
at the residential scale can further our understanding.

In areas with deep soil layers and intensive utilization of underground space, studies
at conventional depths of 0-20 cm or 0-100 cm cannot fully reveal the negative impact of
the vertical expansion of impervious surface on SOC storage. The SOC pool estimated
in the 0-100 cm soil layer was 73% (scenario 1) or 54% (scenario 2) lower than that in the
0-300 cm soil layer, and the SOC loss of the 0-100 cm layer was 23% (scenario 1) or 47%
(scenario 2) lower than that in the 0-300 cm soil layer (Table S6). We used SOC storage
in the excavated soil layer as a representation of carbon loss caused by the expansion of
impervious surface. However, these removed SOC cannot simply be considered as a carbon
source because they were not necessarily mineralized rapidly [29].

The difficulty of sealed soil sampling, the higher heterogeneity and the lack of stan-
dardized methods for urban soil sampling are the main barriers to a robust estimation of
the urban soil pool and its response to urbanization [21]. If the thickness of the excavated
soil layer is included in the soil profile of the building-covered soil (0 kg/m? is assigned as
the SOC density of the excavated soil layer), and the SOC density of the residual pervious
soil layer is taken as a proxy for soil under buildings, the great difficulty of deep soil
sampling conducted beneath buildings could be avoided. Indeed, soil surveys are the basic
method to accurately assess the urban soil carbon pool; however, the method presented
here may be used as a last resort.

4.4. Uncertainties of SOC Pool Evaluation

Buried cultural layers may greatly contribute to the urban deep soil carbon pool [42,73].
We neglected carbon pools stored in the buried A horizon and buried sediment from ponds,
which underestimated the regional carbon pool. The possibility of buried A horizons in
greenspaces and paved ground is relatively high. If there are buried A horizons under all
the greenspaces and pavement in the study area, and by assigning the SOC density of the
0-20 cm layer in farmland (the main land use before urbanization) as a proxy for these
horizons, then the total SOC pool of these buried layers is 0.82 Tg. Rapid urbanization in
Guangzhou city began in the 1990s. From 1990 to 2018, a total of 7.74 km? of water area
(mainly fish ponds and streams) was converted into construction land, according to the
dataset provided by the Data Center for Resources and Environmental Sciences, Chinese
Academy of Sciences [74]. The SOC density of this sludge in the 0-100 cm layer can reach
19.64 kg/ m? [65]. If we assume that all these converted water areas contain a buried sludge
layer (100 cm depth with a SOC density of 19.64 kg/m?), then the SOC pool of this buried
sediment is 0.15 Tg. Taken together, the underestimation of SOC stored in buried soil layers
may not be larger than 12% of the total carbon pool.

We ignored the SOC losses in deep soil under pavement and greenspace. If we assume
that all of the 100-300 cm soil layers under greenspaces and pavement in high-rise building
plots have also been removed during the construction of underground parking lots, then
the SOC pool loss of 1Szpp will increase by 0.75 Tg (the SOC density of greenspace and
pavement at the 0-100 cm layer is derived from Table 1), which is 9% and 18% of the
total SOC pool and SOC pool loss, respectively. In addition, a small number of low-rise
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building plots also have small underground parking lots. The construction of subways and
underground shopping malls also results in a larger amount of soil excavation. However,
carbon loss due to these kinds of underground space developments is difficult to estimate
due to the inaccessibility of data on the volume of the soil cuts and fills.

5. Conclusions

We estimated the total SOC pool and its response to impervious surface expansion
in the 0-300 cm layer in the core area of Guangzhou city. Our results suggest that there
was a large amount of SOC in low-rise building- and pavement-covered soils. Deep soil
excavation during the vertical expansion of impervious surface can seriously disturb soil
carbon sequestration, and the conventional 0-100 cm soil profile cannot fully reveal the
negative effect of this vertical expansion on the regional soil carbon storage. For high-rise
residential areas, the gains of organic carbon accumulation in more greenspace coverage
may be offset by the loss in deep soil excavation for the construction of underground
parking lots. However, compared with farmland urbanization, renovating urban village or
low-greenspace-coverage low-rise building plots into high-rise building plots can generate
lower SOCy_30 loss. Large areas of deep soil excavation and sealing could greatly disturb
the capacity of soil to provide supporting, provisioning, regulatory and cultural services.
Possible disposals of these excavated soils include discarding, dumping into designated
landfill sites and using as backfill soil to foundation ditch, greenspace, ponds, etc. For
regional sustainable development, it is necessary for policy-makers to manage the intensity
of underground space development and to promote urban greening. It is also very neces-
sary to investigate the disposal method of excavated soil and its corresponding effects on
SOC so as to find the proper solution to meet both the requirements of urban construction
and soil protection.

There are some uncertainties in SOC estimations because they are based on data
compiled from the literature and a series of assumptions. For the inaccessibility of fine
resolution images circa 1990 and the impossibility of deep soil sampling in impervious
surface area, we used the statistical summary method to evaluate the possible excavation-
induced SOC losses caused by existing impervious surface. Soil profiles formed during
the construction of building foundation or underground parking lots can be used to
investigate the SOC content in deep soil. Models driven by space-time explicit land cover
map (fine resolution) and other natural or human-mediated covariates (such as sediment
characteristics, disposal method of excavated soil and its corresponding SOC mineralization
characteristics, evacuation thickness, etc.) can provide more useful information for urban
construction and soil protection at site at the regional scale.
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use/cover classification and its area, Table S2: Comparison of SOC densities and their calculation
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Abstract: With the advent of large-scale development, extreme imbalance in the ecology of the Heihe
River Basin (HRB) has caused a series of ecological problems. In order to explore the spatiotemporal
variation of ecosystem services (ESs) and to assess the characteristics of ESs under the terrain gradient
effect (TGE), the three key ESs were quantified based on the InVEST model using five series of
land-use data obtained from remote sensing images from 2000 to 2020 in this study. The terrain index
was used to analyze the influence of terrain on ESs. The results show that most of the ESs were in
high numbers in the south and low numbers in the north, as well as high numbers in the middle and
upper reaches and low numbers at downstream locations. It was found that high-quality habitats
degrade to general-quality habitats, and poor-quality habitats evolve into general-quality habitats. It
was also found that the water production volume continues to decline and soil conservation becomes
relatively stable with little change. This study illustrates different ESs showing obvious TGE with
changes in elevation and slope. These results indicate that the effect of land-use change is remarkable
and TGE is highly important to ESs in inland watersheds. This research study can provide a scientific
basis for the optimization of regional ecosystem patterns. The results are of great significance in terms
of rational planning land use, constructing ecological civilizations, and maintaining the physical
conditions of land cover at inland river basins.
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1. Introduction

Ecosystem services (ESs), which are the benefits that humans receive directly or in-
directly from ecosystems, have played an important role in the development of human
civilization [1]. Generally, ESs include food supply, climate regulation, and cultural and
supporting services. In recent years, the conflicts between the rapid socio-economic devel-
opment and the consumption of natural resources and environmental change have resulted
in the degradation of ESs and frequent natural disasters in some areas [2—4]. ESs have
been considered as indispensable features in land-use planning and resource adjustment,
becoming one of the research hotspots over recent decades. Currently, ES assessments
mostly focus on different land-use scenarios, such as croplands, forests, oceans, lakes,
wetlands, and others [5-8]. In order to ensure the sustainable provision of ESs for human
beings, it is necessary to evaluate ESs in order to support human wellbeing. ES evaluations
consist of a value assessment and material quality assessment [9-11]. The former measures
the economic value of ESs by using ecological economics methods [12-14] that are based on
the value equivalent factor of a unit area or the price of a unit service function [15-21]. The
value measurement method is primarily used to evaluate supply services, and the results
are of high economic significance [22-24]. With the refinement of the ES classification,
material quality methods are gradually used as the mainstream assessment methods of ESs.
The material quality of various ESs can be quantitatively evaluated based on ecological
principles in this method. By contrast, the credibility and accuracy of the quality assess-
ment method are higher than that of the value assessment method, which is influenced
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subjectively to some extent [25]. It is necessary to conduct research on the sustainability of
an ecosystem and to provide a more scientific and reliable basis for decision making [11].
Material quality assessment methods can be roughly divided into emergy methods and
model methods [26]. The emergy method is based on the emergy theory for evaluating
different types of emergy and material flows in the system [27]. It combines the total
amount of effective energy invested directly and indirectly in the ecosystem with the en-
ergy conversion rate to calculate the final energy value. The energy flow and utilization rate
of ESs can be expressed better by emergy evaluation. This method is often used to describe
the regional differences with the utilization of ESs in large-scale areas and to evaluate urban
ecosystems [28]. However, with increasing studies on the coupling of multiple ESs and
the relationship between ESs and human wellbeing during these years, the emergence
and development of evaluation models represent a major breakthrough in the field of ES
assessment. The results can be presented in the form of a map incorporating more spatial
and intuitive information by using model assessments. It can simulate and predict the
changing scenario of future ESs.

According to the formation mechanism of ESs, studies on ES evaluation have in-
creased due to the quality assessments of ecosystems generated through comprehensive
models. The commonly used models include Integrated Valuation Ecosystem Services and
Tradeoffs (InVEST), Artificial Intelligence for Ecosystem Services (ARIES), Social Value for
Ecosystem Services (SolVES), and Multi-scale Integrated Models of Ecosystem Services
(MIMES) [29,30]. Some models, such as SOLVES, ARIES, and MIMES, output good eval-
uations for specific regions and have promising application prospects, but they have not
been fully developed yet. The INVEST model is the most widely used tool for the quality
assessment of ESs. The advantages of the IN'VEST model have been highlighted by integrat-
ing various service production functions or simulating service dynamic changes. Previous
assessment studies using the INVEST model are mostly concentrated in small-scale areas,
such as administrative regions, urban economic zones, or lakes and rivers [31-36]. ES
evaluations in medium and large watershed scales are relatively rare. In addition, most
of the studies analyzed spatiotemporal pattern changes or showed cold and hot spots
in the service space by spatial mapping for individual or several services, such as biodi-
versity conservation, water conservation, soil conservation, and carbon storage [33-38].
Relatively few studies discuss the connection and divergence between different ES supplies
and specific natural environmental factors [39,40]. As an important factor in the natural
environment, the terrain factor is of great significance for fully understanding the spa-
tiotemporal difference of ESs [41,42]. It is well known that ESs are closely related to their
terrain [43,44]. Some terrain-based studies analyzed the spatial distribution of land-use
patterns [45,46] and some were focused on mountain areas [47,48]. However, there are
only a few studies assessing the impact of topographic factors on the spatial heterogeneity
of ESs. The evaluation of the characteristics of ESs with terrain gradients has not been
explored in depth. Understanding the influence of topographic elements on the spatial
difference of ESs comprehensively is of great significance for deepening the understanding
of ES differentiation and for ensuring effective ecosystem management.

The Heihe River Basin (HRB) is not only a key area with respect to the ecological
safety barrier, but it is also an important node in the layout of the national “Belt and Road”
initiative [49,50]. Typical natural conditions and long-term, frequent human activities have
resulted in ecological environmental deterioration in the basin, resulting in the degradation
of biodiversity, water production, soil, and water conservation. Therefore, the problem
of how to maintain the stability of regional ecosystems as an economy develops is an
important issue for all inland river basins in arid zones. To summarize, combined with
the geographical conditions and characteristics of the HRB, we discuss the relationship
between ESs and land-use changes in typical arid inland river basins from a topographical
perspective on the basis of previous research studies. In this paper, we selected three key
ESs (i.e., habitat quality, water yield, and soil conservation) of the HRB in Northwestern
China to study. Based on the proposed framework (Figure 1), our analysis focuses on
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addressing three questions at fine scales: (1) How have ESs changed over the past 20 years
and where are the areas of high and low distribution of individual ESs? (2) How are
different ESs affected by terrain factors with respect to inland watershed scales? (3) How
can variations of ESs guide land-use management in a river basin?
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Figure 1. Framework of the methodological process in this study.

2. Materials and Methods
2.1. Study Area

The HRB is the second largest inland river basin in arid region of Northwestern China,
within the range of 96°42'-102°00" E, 34°41'-42°42' N (Figure 2). The area of core drainage
is approximately 128,900 km?, with a mainstream length of 821 km. Different reaches of the
river are distributed in the three provinces or autonomous region, belonging to Qinghai,
Gansu, and Inner Mongolia, respectively. Climatic characteristics of the basin are a typical
continental arid climate, little but concentrated precipitation, ample sunshine, and greater
diurnal temperature range. With an average altitude over 1200 m, the topography varies
significantly from south to north [51]. The regional climate is significantly different in the
basin. Therefore, it is an important for ecological function in terms of water production,
soil conservation, biodiversity protection, windbreak, and sand fixation in Northwestern
China [52].

This basin can be divided into three parts according to the locations of the gorge
stations. The upstream region is located in the Qilian Mountain, with low population
density, high vegetation coverage, and good ecological environment. This segment, the
main contributing area, is bounded by the Yingluo Gorge. The midstream area is a main
field for developing human activities, extending from the Yingluo Gorge to the Zhengyi
Gorge. This region is rich in light and heat resources. The downstream region, below
the Zhengyi Gorge, constitutes areas where runoff disappears. It is mostly made up of
desert and bare land [53]. More than two thousand years of different human activities in
HRB have caused collision and exchange of various cultures, making natural and human
processes meet together. This is an ideal region for studying the variation of different ESs.
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Figure 2. Location of Heihe River Basin and land use and land cover in 2015.

2.2. Data Sources

The datasets used in this study included: (1) land-use types in 2000, 2005, 2010, 2015
and 2020 (with a spatial resolution of 1km) and NDVI (Normalized Difference Vegetation
Index). These were both obtained from the Resource and Environment Science and Data
Center (http://www.resdc.cn accessed on 21 March 2021). According to the model input
acquirements and the reference of land-use classification system of the Resources and
Environment Database, the land-use data were reclassified into six categories: cropland,
forest, grassland, waters, built-up land, and unused land; (2) DEM (Digital Elevation Model)
and potential evapotranspiration data (with a spatial resolution of 250m) were derived from
the National Tibetan Plateau/Third Pole Environment Data Center (https://data.tpdc.ac.
cn/zh-hans/accessed on 24 March 2021); (3) basic geographic information data (including
regional boundaries, roads, settlements, etc.) were acquired from the “Digital Heihe River”
project of the Cold and Arid Region Scientific Data Center; (4) soil attribute data were
derived from Chinese soil datasets (1995) in the Food and Agriculture Organization’s
Harmonized World Soil Database; and (5) meteorological data were retrieved from the
China Meteorological Data Service Center (http://www.nmic.cn/ accessed on 26 March
2021) and the National Earth System Science Data Center (http:/ /www.geodata.cn accessed
on 06 April 2021), including annual, monthly, and daily value data from 2000 to 2020.

2.3. Methodology

In this study, terrain analysis and integrated maps were carried out by using the
ArcGIS (Ver.10.2) software. Regression analyses to detect trend significance were performed
in SPSS (Ver. 21.0), and visualized charts were generated by using Microsoft Excel (Ver.
2017). All the spatial assessments of ESs were processed by using InVEST (Ver. 3.8.0). As
a strong technical support in ES research, the INVEST model is used for a quantitative
assessment of ESs on the basis of ecosystem processes, and a full demonstration of their
spatially distributed characteristics [54,55]. The three sub-models, habitat quality, water
yield, sediment delivery and retention were selected to quantitatively evaluate and analyze
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the changes of three ESs (including habitat quality, water production and soil conservation)
in this work.

2.3.1. Habitat Quality (HQ)

The HQ in this model can be described as the connection between different types of
land use and threat sources. The results and scarcity of HQ can be obtained in accordance
with the response degree of different habitats to various threat sources.

The formula for calculating habitat quality (HQ;;) is:

HO; = H: [ 1 7%' 1
Qi=Hi\l1- ;@ @
XJ]

where H; is the habitat suitability of land-use type j; D,; is the total threat level; k is the
half-saturation value.

The input data of this sub-module include current land-use and threat data. ArcGIS
was used to process the original data (i.e., mosaic, reclassify, merge, etc.) in order to
obtain the land-use and threat factor layer data. The HQ correlation function in the model
corresponds to the four variables: the relative impact of each threat, the relative sensitivity
of each habitat to each threat, the distance between habitat and threat and impact from
the threat, and the level at which a grid cell of the habitat is legally protected. In order to
reduce the interference of human factor on results, the impacts of the first three variables
were discussed in this study. We selected cropland, town, residential area, and road as
habitat threats. The corresponding parameters of the model (Tables 1 and 2) were set by
referring to the user guide and previous works with similar eco-environments in arid
region [56,57], as well as the suggestions from experts and professors in the ecological field.
The half-saturation constant defaults to 0.5 according to the user guide.

Table 1. Threat factor properties.

Threat Max-Dist/km Weight
Cropland 1 0.2
Town 8 0.9
Residential area 3 0.8
Road 10 0.6

Table 2. Sensitivity of habitat types to each threat.

Habitat Residential

Habitat Type Suitability Cropland Town Area Road
Cropland 0.4 0.5 0.4 0.5 0.45
Forest 0.8 04 0.8 0.6 0.5
Grassland 0.6 04 0.5 0.6 0.6
Waters 0.9 0.5 0.6 0.6 0.55
Built-up land 0 0 0 0 0
Unused land 0 0 0 0 0

2.3.2. Water Yield (WY)

The WY estimation is based on the principle of water balance, which simplifies the
flow process. It does not distinguish between surface runoff, runoff in the soil, and base
flow. WY defines the amount of water produced within each grid range by the difference
between precipitation and evapotranspiration (including plant transpiration and surface
evaporation). Its calculation is based on the acquired data, such as topography, land use,
meteorological factors, etc.
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The water yield (WYj,;) is calculated using the following formulas:

AETy,
WYy = (1-—5") x Py @)
X
AETx]' 1+ a)xij 3)
Py 1+waxj+R%j
AWC,
=7 4
Wy P, 4)
K.ETo,
Ryj = —p— ®)
X

where AETY; is the annual actual evapotranspiration for land-use type in category j on grid
x (mmy); Py is the average annual value of precipitation on grid x (mm); wy is the ratio of the
year’s available water for modified vegetation to the expected amount of water; R,; is the
ratio of potential evaporation to rainfall; Z is the Zhang coefficient, which represents the
parameters of seasonal rainfall distribution and precipitation depth, ranging from 1 to 30;
AWCy is the average annual value of available water capacity on grid x (mm); ETj, is the
potential evapotranspiration on grid x (mm); K,; is the evapotranspiration coefficient of
vegetation. The input data of the model include precipitation, reference evapotranspiration,
depth to root restricting layer, plant available water fraction, land use, and watersheds.
The parameters include Z parameter and evapotranspiration coefficient of vegetation. The
precipitation data were interpolated by using ArcGIS. The reference evapotranspiration
was calculated by the modified formula. The soil depth data were derived by rasterizing
the soil spatial attribute data. The plant available water fraction was set according to the
reference results [58]. The watershed boundary was extracted by hydrological analysis
with DEM in ArcGIS. The Zhang coefficient was set as 2.2 referring to the instruction
manual and previous reference [59]. The plant evapotranspiration coefficient was defined
according to the calculation method proposed by FAO and the reference value was given
by the model.

2.3.3. Soil Conservation (SC)

The SC can be calculated with soil erosion reduction and sediment retention using the
sediment delivery and retention sub-module. The decrease in soil erosion was expressed
by the difference between potential erosion and actual erosion. The amount of sediment
retention refers to the amount of uphill sand retained by plot. On the basis of cell scale
USLE (Universal Soil Loss Equation) calculation method, the calculation on the grid unit
scale was simulated using the following data, including land-use data, soil attribute, DEM,
rainfall data, vegetation cover factor, and soil and water protection measure factor. The
rainfall erosivity was calculated using observation data from meteorological stations in the
basin and then interpolated with Kriging method in ArcGIS. The soil erodibility factor was
calculated from the soil attribute data by formula-10. The vegetation cover factor and soil
and water protection measure factor can be defined by consulting the user guide.

The formulas for calculating SC are defined as the following:

SC = USLE — RKLS 4+ SEDR (6)
USLE=RxKxLSxCxP )

RKLS =R x K x LS 8)
12

p?
R — Z 1.735 x 10(1.51gE70.8188)

i=1

x 17.02 ©9)
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where SC is the amount of soil conservation (t-hm~2-a~1); USLE is the amount of potential
soil loss in the original land-use cover (t-hm=2.a~1); RKLS is the amount of potential
soil loss for bare soil (t-hm~2-a=1); SEDR is the retention from the upstream sediment
(t-hm=2-a~1); R is the rainfall erosivity (MJ-mm-hm=2-h~1.a~1); K is the soil erodibility
factor (t-hm?-h-hm=2-MJ~1-mm~1); LS is the slope length gradient factor; P is the soil
and water protection measure factor; P; is the average monthly rainfall (mm); Py is the
average annual precipitation (mm); SAN, SIL and CLA are the content values of sand grains,
powder grains and sticky grains (%); Cp indicates the organic carbon content value (%); c
is the vegetation cover; NDVI is the normalized difference vegetation index; C is the crop
management factor (value range is between 0 and 1). If C is 0, the vegetation cover of the
land surface is good and almost not eroded; if C is 1, there is almost no vegetation cover on
the surface.

2.4. Terrain Niche Index

Terrain is one of the important factors affecting spatial distribution and changes
in land use. TGE is also manifested as the variations in ES supply that are caused by
land-use changes to some extent. The terrain differences are outstanding in HRB, which
has a variety of mountain, plain, basin, and hilly geomorphological types. In order to
mirror the comprehensive relationship between terrain condition and ESs, the terrain niche
index was selected as a geographical factor to analyze TGE between land-use patterns
and terrain gradient in this study. The terrain niche index (T) can be calculated using the

following formula:
E S
T=1 =+1 =+1 14
g[(g)x(;ﬂ (9

where E and E, respectively, indicate the elevation value of any point in the region and that
of the areas where the point is located; S and S, respectively, represent the slope value of
any point in the region and the average slope value of the areas where the point is located.
If terrain level index of a point is low, the elevation and the slope of this point are low
values; if that of a point is centered, the values are high and low. Both are high values if
that of a point is large.

3. Results
3.1. Spatiotemporal Variations of ESs
3.1.1. Spatial Distribution and Variation of HQ

HQ score is a comprehensive indication of the influence of each threat factor on itself
and the impact of habitat on threat resistance. The higher the number is, the better the HQ
is. The HQ in this study was classified as higher (0.8-1), high (0.5-0.8), general (0.3-0.5)
and poor (0-0.3). Figure 3 shows the proportion of different HQ grades in the basin. More
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than half of the HRB was in poor and average HQ over the past 20 years. Higher and high
HQ account for less than 30% of the total area, and the overall proportion composition
is relatively stable from 2000 to 2020. In order to further clearly explore the changes of
HQ spatial distribution over time, we calculated the difference based on the HQ data and
obtained the interannual changes in four five-year periods (Figure 4). Spatial differences
and variations of HQ are obvious throughout the basin. Most of the upstream region has
high- and higher-grade HQ. There have been many changes over the past two decades,
especially in the two phases of 2005-2010 and 2015-2020. The area of higher-grade HQ
increased and the HQ showed an upward trend. The overall ecological environment
became better, which might be the benefit of a sparse population and dense vegetation
in the upper mountains. A different layout was presented in the middle stream. The
south-central region was dominated by general- and high-grade HQ. The area of general
HQ level increased, which was due to the human reclamation of wasteland, grasslands,
and forest land, and the expansion of cultivated land and construction land in the active
areas. At the same time, the area of high-level HQ also reduced with the reclamation and
the degradation of grassland and forest land. By incorporating the changes of four stages,
it can be found that mostly the HQ in the northern part of the midstream area was at the
poor level and it increased over the past 20 years, due to large distribution of unused land.
Downstream areas were clearly affected by land use. The HQ was higher in most of the east,
with grasslands, woodlands and waters. Obvious increases can be seen through the four
periods in this region, while the central and western regions were dominated by unused
land with low coverage and the HQ levels therefore dropped. There were few changes in
the areas during 2000-2005 and 2010-2015, while the HQ changed significantly and mainly
increased in the other two periods. With the transformation of unused land into grasslands
and woodlands, as well as the increase in water area over the past 20 years, the area of
high-grade HQ in the downstream region increased and that of poor-grade HQ decreased
gradually. This indicates that the overall HQ of the downstream area improved, which
may be related to the implementation of the Heihe Ecological Water-divide Project (2000).
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Figure 3. HQ grade ratio of different habitats in HRB from 2000 to 2020.
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Figure 4. Variation of HQ in HRB from 2000 to 2020. (a) Spatial distribution of HQ in 2015; (b)—-(e) four difference maps of

the five-year changes.

Totally, the quality of habitats at all levels changed by a small margin, with a slight
decrease in poor and high HQ areas and a slight increase at general and high levels. The
overall HQ in the basin became better and the improvement was mostly concentrated in
the upstream and downstream areas in the northeast, while the quality levels deteriorated
in the midstream and lower-west regions.

3.1.2. Spatial Distribution and Variation of WY

The annual WY in this study was classified into one, two, three and four levels from
low to higher weight (Figure 5). In 2000-2015, the proportion of low-grade WY gradually
increased, while that of high-grade WY decreased bit by bit. However, during the five-year
period from 2015 to 2020, the proportion of low-value WY decreased, and that of high-
value WY increased. However, the WY in most areas was at a lower level and the depth
of water production was not large. As can be seen in Figure 6, the spatial distribution of
WY shows great difference. The upstream region was the principal origin for high-value
water production, and the area of high-value WY gradually decreased. In particular, some
of them degraded to medium-yielding areas. However, with the exception of large-scale
decline in the five years from 2010 to 2015, the changes of WY still increased in the other
years. The overall trend also caused an increase in the upstream water production. The mid-
range showed a decreasing trend from south to north. The high-value water-producing
region in the southern gradually decreased, yet some low-value water-producing areas
increased to medium-yielding areas. The central and northern regions were dominated by
low-value water production and continued to decrease in most areas over the past 20 years.
Compared with the upper and middle reaches, the downstream area is a region with a
low-value WY. Although the WY partially increased between 2005 and 2015, there has still
been a slight decline in the past 20 years. The overall change was not significant.
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Figure 5. WY ratio of different grades in HRB from 2000 to 2020.
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Figure 6. Variation of WY in HRB from 2000 to 2020. (a) Spatial distribution of WY in 2015; (b)—(e) four difference maps of
the five-year changes.

Combined with precipitation and land use, it can be found that the spatial distribution
shows consistency for WY, precipitation and vegetation in the basin. The region with strong
WY capacity has high average annual precipitation and high vegetation cover and low
steaming emission. On the other hand, the areas with low annual precipitation and low
vegetation cover and strong steaming had a low-value WY. In terms of land-use changes
from 2000 to 2020, except rainfall, the variation of WY capacity in HRB was dominated by
the area decrease in grassland and forest and the area increase in unused land. Considering
the effects of grassland and forest degradation through the whole basin, the overall WY
finally showed continuous reduction. Compared to land use in recent years, it can be found
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that grassland provided the largest proportion among the overall WY services in the basin,
reaching more than half of the total WY. This was followed by forest land and cropland.

3.1.3. Spatial Distribution and Variation of SC

The annual SC was classified into one, two, three and four levels, from low to higher
values (Figure 7). The soil-conservation composition strongly varied through the whole
basin. The low-grade SC accounts for about 70% of the total area, but there was a downward
trend year by year. The proportion of SC changed little at middle and high levels. As
shown in Figure 8, the spatial distribution of SC in HRB showed that high-value SC had
more in the east and less in the north in the southern area. From a regional perspective,
the soil holds in the upstream area was relatively small. The SC decreased in 2000-2005
and 2010-2015 and increased significantly with a wide range in the five years from 2005
to 2010. The mesh distribution of high-value SC increased over the past 20 years. The
high-value SC focused on the southern part of the mid-range areas. It expanded year by
year and the amount of hold increased. Conversely, soil erosion in the north region was
more serious and the changes mainly occurred in the mutual transformation of low SC into
medium-grade SC. As for the four stages, the changes slightly increased or decreased but
were not obvious. So, the soil-keeping ability in mid-range areas has been improved since
2000. High soil holds in the downstream area were few. SC in the first decade showed
an upward trend and declined in the next decade. Some soil-hold areas previously of a
general level have degraded to that of low level.
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30.00
14.17 15.92

402 \ 136 | 1436 1034 1041
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Figure 7. Proportion of SC grade in HRB from 2000 to 2020.

Incorporating the analysis of land use, the expanded utilization of cropland and forest
land has brought an increase in SC in the upper and the middle regions. However, the
main body to provide SC supply was grassland throughout the whole basin. The areas
decrease in grassland caused the decline of SC. At the same time, the growth of cropland
and the reduction in unused land compensated the loss of SC caused by the area drop of
grassland to some extent. So, in terms of total volume, the soil holds in the study area
showed a slight upward trend from 2000 to 2015, followed by a downward trend from 2015
to 2020.
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Figure 8. Variation of SC in HRB from 2000 to 2020. (a) Spatial distribution of SC in 2015; (b)—(e) four difference maps of the

five-year changes.

3.2. TGE of Different ESs

In order to analyze the TGE of different ESs, 2015-HRB was selected to conduct
this practice.

3.2.1. Terrain Niche Index of HRB

The slope and the elevation data were extracted from DEM, and the topographic
index of HRB was calculated by the terrain niche index formula-14 (Figure 9). It was
divided into six levels: one (0.179-0.305), two (0.305-0.463), three (0.463-0.709), four
(0.709-1.005), five (1.005 —1.282), and six (1.282-1.786). The topography was dominated
by one and two levels, the area of which accounts for 70.96% of the whole basin. As
seen from the spatial distribution (Figure 10), the topographic index was low in the south
(east) and high in the north (west). In other words, the high-grade topographic level was
concentrated in the upper and middle reaches of the basin, while low- and medium-level
terrain areas were heavily distributed in the north of midstream region and throughout the
downstream region.

120



Sustainability 2021, 13, 11271

%
4500

4000 | 3881
3500 32.15
30.00

25.00
20.00

15.00
10.53

10.00

5.80 6.44 6.17
o B B B
0.00
3 4

5 6

Topographic index level
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Figure 10. Spatial distribution of topographic position index in HRB in 2015.

3.2.2. TGE of HQ

The HQ was reclassified into four levels: one (0-0.3), two (0.3-0.5), three (0.5-0.8), and
four (0.8-1), which correspond to poor, general, high, and higher grades (see Section 3.1.1),
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respectively. The scatter plot was obtained by the statistical re-regression analysis on the
HQ and topographic index (Figure 11). The HQ in the HRB has an upward trend with the
growth of the topographic index, and there is a significant positive correlation between the
two. The curve fitting (R?) is 0.441, indicating that the logarithmic function can effectively
describe their relationship.
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Figure 11. Correlation between terrain index and HQ in HRB in 2015.

As can be seen from Figure 12, the majority of low-grade habitat mass was distributed
in the low-grade topographic index in HRB in 2015. With the growth of the topographic
level index, the low-quality habitat area gradually reduced with the area increase in high-
quality habitats. Additionally, it can be clearly seen that the proportion of high-grade HQ
significantly increased with the growth of the terrain niche index from the proportion of
change matrix during 2000-2015 (Table 3). The dominant interval was the third HQ level
for the fourth and fifth levels of the terrain index, while the other levels of terrain were the
first level of HQ. Over the past 15 years, the HQ of second- and fourth-grade topography
positions declined. By incorporating land-use changes, this appearance was caused by
the decrease in grassland and the increase in built-up land and unused land. Conversely,
the increase in HQ at other topographical levels was caused by the increase in cropland
and the decrease in unused land. It is sufficient to show that the transformation of nature
has a considerable impact on HQ. Therefore, under the impact of rapid urbanization on
ecological environment in this basin, relevant departments should take some ecological
measures to deal with this.
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Figure 12. Spatial distribution of HQ at various topographic levels in HRB in 2015.

Table 3. Proportion of HQ distribution at different topographic locations (2000/change value from
2000 to 2015) (%).

Terrain Niche HQ Level
Index Level 1 2 3 4
1 75.05 —0.99 2.58 0.64 19.20 0.26 3.17 0.05
2 84.33 —0.36 4.37 0.59 10.64 —0.32 0.65 0.03
3 58.65 —0.11 9.34 0.35 28.95 0.03 3.07 —0.16
4 22.93 0.20 2.18 0.13 62.90 —1.13 11.99 0.33
5 27.61 0.34 0.35 0.02 49.02 0.15 23.02 —0.56
6 49.51 —0.82 0.04 0.01 32.77 0.60 17.68 0.68

3.2.3. TGE of WY

The water depth in the basin was divided into four levels based on the raster data
obtained from model (see Section 3.1.2). The scatter plot was obtained by the statistical
re-regression analysis of WY and the topographic index (Figure 13). The WY in the HRB
has an upward trend with the growth of the topographic index. There is a significant
positive correlation between the two. The curve fitting (R?) is 0.566, which indicates
that the logarithmic function can successfully describe their relationship. The overlaid
spatial distribution of the terrain niche index and WY shows the distinct discrepancy in the
distribution of water depth levels on the local shape level index in HRB in 2015 (Figure 14).
Similar to the distribution of HQ with the local level index, the WY distributed in the low-
terrain-level index areas significantly decreased. With the growth of the topographic level
index, the depth of water production also gradually increased. There was little low-grade
water depth in the areas of the sixth topographic level index.
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Figure 13. Correlation between terrain index and WY in 2015.
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Figure 14. Spatial distribution of WY depth at various topographic levels in HRB in 2015.
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The regional statistics of topographic level can be obtained based on the spatial
distribution of WY in each year (Table 4). WY in the low terrain level was dominated by
the low depth of first and second levels. The water production depth increased to three
or four levels in this basin when it raised to fifth and sixth topographic indexes. This is
enough to show that WY is closely related to the topographic gradient. The reason for this
is that land use in low-terrain areas is majorly unused land with low grassland cover and
low water conservation. High-terrain areas mostly have with medium- and high-density
grassland cover, and the climate is humid at higher altitudes, resulting in higher water
production. Comparing the water depth of 2015 with that of 2000, a decline in the water
depth of the low-grade topographic index and the increase in water-producing depth of
medium- and high-level topographic index areas was found. In addition to the differential
rainfall, this difference may be due to the increasing area of grassland and forest land cover
in high-altitude and high-terrain areas. The ecological environment in the unused land of
the desert-dominated region continues to deteriorate in the north due to the continuous
and extensive human activities. This needs to arouse people’s vigilance with regard to,
e.g., reducing human extrusion of original animal and plant living space, improving bad
ecological environments, and maintaining good surroundings together.

Table 4. Distribution proportion of WY in different topographic levels (2000/change value from 2000
to 2015) (%).

Terrain Niche WY Level
Index Level 1 2 3 4
1 97.75 —3.57 2.25 0.01 0.00 0.50 0.00 0.00
2 84.29 —4.23 14.52 —0.04 1.19 5.38 0.00 0.13
3 42.26 1.58 25.08 0.19 25.95 —-1.23 6.71 10.40
4 4.69 1.43 16.72 —0.03 43.63 —7.87 34.96 13.42
5 0.21 0.61 4.98 —0.03 35.41 —8.89 59.41 8.84
6 0.01 0.01 1.61 0.00 28.41 3.60 69.97 —4.43

3.2.4. TGE on SC

The scatter plot was obtained by the statistical re-regression analysis of SC and the
topographic index (Figure 15). The SC in the HRB has an upward trend with the increase in
the topographic index, and there is a significant positive correlation between the two. The
curve fitting (R?) is 0.687, indicating that the logarithmic function can properly describe
their relationship.

As seen in Figure 16, it was in a poor condition for the whole basin in 2015. However,
it can also be seen that the TGE of SC is similar to that of HQ and WY, although the SC in
different locations is primarily of a low grade. The SC gradually became better with the
increase in the terrain niche index. Furthermore, in order to analyze the proportions of each
part, the SC was divided into four levels using the natural break point method (Table 5) and
was then overlaid with the terrain niche index. Most of the low-grade areas transformed
into high-grade areas and the proportion decreased gradually with the increase in the
terrain niche index. This is mainly due to the concentration of high-terrain zones in the
upper reaches of the basin, which have large areas of forest land, grassland and cropland,
as well as dense vegetation and thick and fertile soil. The downstream area was dominated
by desert ecosystems, with sparse vegetation and poor soil. The area proportion of low soil
levels in various shapes decreased slightly, while that of high-grade soil levels increased.
However, soil conditions in the basin remained poor and large amounts of soil were at risk
of erosion, particularly in the southern mountainous areas and unused land in the north.
Administrators should develop reasonable management measures. Only by strengthening
the protection of woodland and grassland, planting trees and expanding vegetation cover
can we reduce the threat of soil erosion and decrease the harm.
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Figure 16. Spatial distribution of SC at various topographic levels in HRB in 2015.
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Table 5. Distribution proportion of SC at different topographic levels (2000/change value from 2000
to 2015) (%).

Terrain Niche SC Level
Index Level 1 2 3 4
1 99.83 —2.70 0.14 0.07 0.03 0.10 0.01 2.53
2 99.75 -1.73 0.20 0.96 0.04 0.02 0.01 0.75
3 98.45 0.39 1.38 —0.58 0.12 —0.04 0.05 0.23
4 92.42 —2.33 7.24 —0.03 0.23 1.13 0.11 1.23
5 90.12 1.62 8.68 —2.65 1.07 0.29 0.13 0.74
6 81.21 —491 12.70 3.24 0.83 -0.37 0.18 2.04

4. Discussion

In this study, we evaluated the changes in ES patterns in the HRB from 2000 to
2020 by using the three sub-modules in the IN'VEST model. The spatial variations of
HQ, WY and SC were revealed for the past 20 years. We also analyzed the distribution
characteristics of three ESs from the perspective of topography. This can provide the
scientific basis for optimizing regional ecosystem patterns and land-use planning and
management. The results are of great significance for rational planning of land use and
constructing ecological civilizations.

4.1. Validation of Results with Previous Works

In general, the overall trends of the spatiotemporal changes of ESs are the same
compared with the similar studies in the region [52,57]. Therefore, the reliable results can
objectively mirror the spatial differentiation characteristics of ESs in the HRB. Otherwise,
elevation and slope were used to analyze the changes in ESs on different terrain gradients
and the results illustrate different ESs showing obvious TGE in the HRB. The distribution
pattern of ESs is generally high in the mountainous areas and low in the plain, which is
consistent with the relevant research [60,61]. In order to further verify the accuracy and
reliability of the results, some specific cross-validations were conducted between this paper
and previous studies [62,63], including the values of different ESs and spatial distributions
(Table 6). The range of HQ in this result is the same with the referenced work. It shows
complete consistency with the distribution of high values and low values. The WY value
in our study is slightly higher than that in the referenced work, but the difference is within
a reasonable range. The major spatial differentiation is that the high value in our work
is continuously distributed in the south of middle reaches, while it is dispersed with
fragments in the referenced study. This may be due to different methods used to calculate
the potential evapotranspiration in the two studies. Additionally, owing to lacking SC in
previous studies in HRB, research from 2011 was selected to compare with our results in
2010. The result of this study is numerically low. The spatial difference lies in the shortage
of high-value areas for SC in the northern basin and the distribution is not obvious along
the riverside. This may be the factor parameter difference in the biophysical coefficient
table. In addition, different formulas used to calculate the K factor in the two studies may
also cause a discrepancy in the final outcomes.
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Table 6. Comparison between the results in this paper and those in the referenced work.

ESs Results in This Paper
Supply Year Area Range Spatial Distribution
HO 2015 Midstream (by provincial 0.0-1.0 General and higher in the central region while
boundaries) - poor in the northern and southern regions
Midstream (by provincial More southeast, less northwest; obvious
WY 2000 boun. dzrf)e 5) 0.0-314.7 mm difference between the north-south and
continuous distribution of high-value areas
More west and less east, more south and less
sC 2010 HRB 0-644 t/hm? north; high-value concentrated area in the
southern part of middle reaches
ESs Results in Referenced work
Supply Year Area Range Spatial Distribution
. . General and higher-grade in the central and
HQ 2015 gfl(is;?;l;h(:z Ylingé?oe) 0.0-1.0 southern regions while poor in the northern
gorg gYy1 gorg regions
Midstream (by Yingluo More southeast, less northwest; Dispersed
WY 2000 gorge and Zhengyi gorge) 0.0-306.0 mm distribution of high value areas
More west and less east; Sparse distribution
SC 2011 HRB 0-646 t/hm? of high-value areas along the riverside in the

north and south basin

4.2. Driving Forces of ESs Variation

The changes of ESs are affected by natural and human factors. Climate change is
the main driving issue for natural factors. Furthermore, human factors, such as activity
intensity on different topographic gradient will also have an important impact on ESs [64].
We qualitatively analyze the natural and human factors of ES changes in the HRB in terms
of temperature, precipitation and human activities.

Research indicated that the temperature in the HRB shows a significant upward trend
in the recent decades [65]. The increase rate of temperature in the study area is much higher
than that of the average in the northern hemisphere during the same period. In particular,
a large increase in temperature around 2010 was rare [66]. Rising temperature will promote
the conversion of some unused land covered by glaciers and snow into grassland and
grassland into woodland in the basin. The general trend of precipitation is increasing but
the magnitude is negligible. The change is not obvious. The precipitation in this basin is
not enough to balance the increase in evapotranspiration caused by the rising temperature.
This gave rise to a further reduce in surface water, while the glacier melt water alleviated
the decrease in runoff [66]. So, runoff changes little as temperature rises. The water supply
gradually decreased, and some rivers and lakes dried up. The water area shrunk and
desertification increased significantly [67].

Human activity is another essential driving force for land-use change in the water-
sheds. As be seen from Table 7, urban and rural industrial and other residential land
continue to expand with the gradual deepening of human influence over the past 20 years.
A large amount of unused land and grassland were reclaimed as arable land due to more
intensive human activities in the middle reaches, which causes the area growth of cropland
significantly. On the other hand, the manual allocation of water resources has given rise
to a large amount of water diversion to the downstream region of the HRB. As a result,
some unused land has been restored to grasslands. The ecological environment has been
remarkably improved. A series of ecological management measures, such as natural forest
and grass fence enclosures, have provoked the area increase in forest land in the upstream
and the midstream areas. However, the growth of the population has brought about
an increase in water demand. Then, adding up the decrease in rainfall, forest land and
grassland shows a degradation trend in some areas. Therefore, the land-use change in
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the watersheds is a result of the joint power of human activities and climate change [37].
Furthermore, the land-use change will have an impact on the variation of different ESs.

Table 7. Area of land use in different reaches of HRB from 2000 to 2020 (km?).

2000 2005
Land-Use Type 3 .
Upstream Midstream Downstream Upstream Midstream Downstream
Cropland 11.66 4617.33 60.41 11.66 4939.70 69.22
Forest 1487.75 2950.35 878.84 1487.75 2941.53 870.45
Grassland 5457.08 13,654.56 11,069.79 5457.08 13,598.84 11,053.02
Waters 228.56 805.92 332.60 228.56 803.08 356.77
Built-up land 10.24 414.33 135.16 10.24 449.15 135.19
Unused land 2756.17 33684.40 54,012.44 2757.61 33,394.58 54,003.63
2010 2015
Land-Use Type
Upstream Midstream Downstream Upstream Midstream Downstream
Cropland 10.24 4959.17 66.95 10.24 5255.53 65.53
Forest 1513.77 2933.15 845.86 1511.92 2932.72 823.55
Grassland 5459.92 13,631.82 11,046.05 5459.92 13,535.16 11,170.57
Waters 217.90 799.38 388.32 216.48 870.45 377.66
Built-up land 10.24 452.43 135.12 10.24 572.25 133.33
Unused land 2755.76 33,327.20 54,016.13 2758.23 32,937.04 53,806.20
2020
Land-Use Type -
Upstream Midstream Downstream
Cropland 16.45 6217.98 76.42
Forest 1401.17 3292.52 876.20
Grassland 5732.36 14,570.27 11,568.41
Waters 188.73 921.64 386.24
Built-up land 12.24 641.19 116.89
Unused land 2616.08 30,459.55 53,352.68

4.3. Suggestions for Sustainable Improvement of ESs

The implementation of ecological protection policies and effective management in the
Qilian Mountain reserve have enhanced the grassland coverage and water conservation
capacity in the upstream area over the years. The Forestry Bureau should continue to
strengthen the protection and surveillance of forest and grassland [68]. In the upper moun-
tain region, climate change is always a dominant element for water resource allocation.
Furthermore, except for water conservation, the increase in forest and grassland will also
play an important role in adjusting runoff in the form of transpiration interception due
to the warming and drying trend in recent years [69,70]. Grass planting and forestation
measures should also be taken under the guidance of the Forestry Bureau within a scien-
tific and reasonable range to stabilize runoff according to local conditions. In addition,
thoughtful reservoir construction by the Water Resources Bureau is also useful in the
regulation of seasonal runoff and in the efficient implementation of the ecological water
diversion project.

The optimization and adjustment of the agricultural planting structure have been
implemented in the midstream area in recent years, which yielded preliminary results
for the construction of a water-saving society. However, the rapid development of the
agricultural economy has brought the expansion of the irrigation area, which has caused the
increase in water consumption, offsetting the consequences of saving water [70]. According
to the analysis of long-term climate change in the basin, runoff may turn into the dry season
in the future [71]. The implementation of the water transfer project may not be enough to
support the rapid growth of population and fast development of the agricultural economy
in the middle reaches [69-72]. In order to adapt to the changes in water resources in various
stages, it is necessary to control the cropland expansion in the midstream region as soon
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as possible and the Bureau of Land Management needs to adjust the industrial structure.
Moreover, during the implementation of the Heihe River “97” water diversion scheme, the
continuous expansion of the oasis has begun to consume a large amount of groundwater
and the ecological environment has a tendency of degradation [70]. It is essential to
strictly limit the exploitation of groundwater, make zoning planning and continue to
implement ecological protection projects in fragile ecological environment areas by the
Natural Resources Planning Bureau. This basin needs to develop urbanization without
destroying natural environment and follow the principles of sustainable development.

Since the implementation of the Heihe River “97” water diversion scheme in 2000, the
amount of water flowing into the downstream region has increased significantly. The water
area gradually recovered and steadily expanded, and the growth of vegetation improved.
This alleviated the deterioration of the ecological environment in the downstream area, re-
markably restored the ecological environment and initially realized the control goal [69,73].
However, the continuous expansion of cropland and construction land still brings great
pressure on the environment. So, to improve ecological conditions, the Environmental
Protection Agency should strictly control overgrazing and deforestation to allow the self-
healing function of the ecosystem to take place. According to the local conditions, planting
trees and grass can alleviate the ecological deterioration of desert. The government should
further optimize and adjust the amount of water allocation and conduct a more reasonable
allocation of resources for the sustainable development of the basin.

4.4. Limitations and Future Study

Although some reliable results have been obtained in this study, we recognize some
limitations of this research. First of all, more attention should be paid in future studies. For
example, only three key services provided by the ecosystems in the HRB were considered in
our study due to the urgency to solve eco-environmental problems, such as the deterioration
of the ecological environment, shortage of water resources and soil erosion. At the same
time, the eco-environmental characteristics and data availability of the research area were
also taken into consideration. However, the temporal and spatial changes of other ESs in
the basin cannot be ignored, and they can be further discussed in future research. Then,
the terrain niche index was used to comprehensively mirror the effect of topography on
ESs. However, the respective weights of elevation and slope in the impact is not clear, and
this needs to be further explored so as to formulate more practical ecological protection
policies. Additionally, distinct operation mechanisms of different models may result in
dissimilar outputs. It is necessary to focus on the comparative verification of the evaluated
results between various models in future work.

5. Conclusions

In this study, three key ESs (e.g., HQ, WY and SC) were evaluated using the INVEST
model in HRB from 2000 to 2020, and the TGE of different ESs was analyzed based on the
terrain niche index. First of all, HQ and SC in the basin improved overall, while WY was in
continuous decline. The values of various ESs changed little and the spatial distribution
of them always presented similar discrepancy laws. The distribution of ESs in the basin
shows lower values in the north and higher values in the south, high values at upstream
areas and low values at downstream area. Furthermore, the correlations between different
ESs and topography are strong, showing obvious TGE. HQ, WY and SC increased with
the growth of the topographic level index. A high-quality habitat has high rates of water
production. A low-quality habitat has a low yield of water. High SC is mostly distributed
in the mountainous hilly areas with high grassland coverage, while a low SC is related to
the accumulation of built-up land and unused land.

We analyze the variation of different ESs on the two scales: watersheds and sub-
stream. Relevant suggestions should be adopted for the distinct changes of ESs on different
scales. In addition, topography and land use were combined to analyze the ES variation;
in particular, the terrain niche index was specifically used to analyze the influence of
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TGE on different ESs. The results provide useful information for policy proposals to
comprehensively consider the effect of terrain factors on the spatial differences of Ess and
its drivers. The method provides a new perspective for studying the spatial differentiation
of various ecological problems in the inland watersheds and can be applied to other
similar areas, and then be incorporated into the formulation of watershed ecological zoning
management policies.
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Abstract: Heat waves are expected to intensify around the globe in the future, with a potential increase
in heat stress and heat-induced mortality in the absence of adaptation measures. India has high
current exposure to heat waves, and with limited adaptive capacity, impacts of increased heat waves
might be quite severe. This paper presents a comparative analysis of urban heat stress/heatwaves by
combining temperature and vapour pressure through two heat stress indices, i.e., Wet Bulb Globe
Temperature (WBGT) and humidex index. For the years 1970-2000 (historical) and 20412060 (future),
these two indicators were estimated in Jaipur. Another goal of this research is to better understand
Jaipur land use changes and urban growth. For the land use study, Landsat 5 TM and Landsat
8 OLI satellite data from the years 1993, 2010, and 2015 were examined. During the research period,
urban settlement increased and the majority of open land is converted to urban settlements. In
the coming term, all months except three, namely July to September, have seen an increase in the
WBGT index values; however, these months are classified as dangerous. Humidex’s historical value
has been 21.4, but in RCP4.5 and RCP8.5 scenarios, it will rise to 25.5 and 27.3, respectively, and
slip into the danger and extreme danger categories. The NDVI and SAVI indices are also used to
assess the city’s condition during various periods of heat stress. The findings suggest that people’s
discomfort levels will rise in the future, making it difficult for them to work outside and engage in their

usual activities.

Keywords: heat stress; WBGT index; climate change; land use; humidex index

1. Introduction

The occurrence of more extreme climate events has been becoming more frequent
and severe as global warming, and causes a distressing effect on human lives [1]. These
changes can have both positive and negative impacts on urbanization and human health.
Climate change will have a significant impact on metropolitan areas, and it may result
in chronic health concerns [2]. Different climate change pathways affect human health
between different time periods [3]. India has generated only 2% of total carbon emissions
from fossil fuel combustion over the last 100 years [4], which is likely owing to the effects
of extreme weather events (NIOO-KNAW, 2017). Human health risks related to climate
change can, directly and indirectly, affect older people [5]. An urban heat island (UHI) is
a metropolitan area which is significantly warmer than its surrounding rural areas due to

135



Sustainability 2022, 14, 9095

human activities. In metropolitan regions, UHIs tend to amplify the impact of heat waves,
and rising temperatures in the area contribute to the likelihood of heat-related deaths [6,7].
In 2003, 3500 deaths were estimated across Europe due to extreme heatwave [8]. People’s
conditions are worse at night due to the high temperature during heatwaves compared
to the high daytime temperature, and it also increases the mortality rate at night-time [9].
The high temperature causes an increase in mortality in metropolitan areas, as well as
various health conditions such as heat cramps, weariness, non-fatal heat stroke, and overall
discomfort [10]. Climate change models anticipate that a gradual increase in summer
temperatures and heat waves will exacerbate the situation [8].

India is most vulnerable to the increased temperature associated with climate change.
It is estimated that from 1992, about 25,000 Indian people died because of heat waves [11].
In 2003, heatwaves hit parts of India (Uttar Pradesh, Haryana, Punjab, Rajasthan, Gujarat,
Bihar, and Orissa), resulting in a higher fatality rate [12]. As a result of the increased
number and frequency of heat waves, the death rate will rise in the future [13]. The
climatic approaches such as El Nifio-Southern Oscillation (ENSO) and fluctuations in the
sea surface temperatures in the Bay of Bengal have been related to the heatwaves over India.
Heatwaves may occur as a result of changes in wind direction and a lack of moisture in
inland areas, resulting in heat waves. Despite the significant societal impact, no systematic
attempt has been made to investigate the primary mechanism of heatwaves in India.

In different parts of the world, some authors employed the WBGT and humidex
for heat stress assessments [14,15]. WBGT is an experimental index that was developed
by Yaglue and Minard in 1957 and published as an ISO 7243 standard in 1989. It is
used in both indoor and outdoor environments. It was recommended to eliminate the
time-consuming process of calculating the effective temperature index (ET), which was
developed from a series of laboratory investigations about 1920 and quickly became the
standard approach for assessing heat stress [16]. Temperature, humidity, radiation, and
wind were merged into a single figure that could be utilized for assessment (ISO, 1989).
The natural wet bulb temperature, globe temperature, and air temperature are the key
determinants of WBGT. The WBGT index’s most important strength is its sensitivity to
radiant heat and air movement, which are two important factors in estimating the ambient
air temperature [15,17]. In tropical and subtropical areas of the world, climate change
has resulted in temporal and spatial changes in workplace heat exposure, resulting in
occupational health issues. In this regard, the results of prior studies show that WBGT
values have been rising in recent years. Wet bulb globe temperature (WBGT) is used as a
heat stress indicator for assessment of thermal comfort in environments [15,18,19]. Ref. [20]
examined WBGT in the Coimbra region of Portugal and found a strong association between
globe temperature of 2.8 percent and natural wet bulb temperature of 2.6 percent and
WBGT. Ref. [21] assessed the thermal comfort in 15 regions with the help of WBGT by
evaluating the past and future threshold exceedance rates concerning moderate (28 °C),
high (32 °C) and extreme (35 °C) temperatures. They are using the WBGT for the 2020s
and 2050s with A1B scenarios and in the HadCM3 model, and observed that heat events
might become aggravated in regions of tropical humidity and mid-latitude even though
the temperature there would be less than the global average, but the absolute humidity is
on the rise. The authors of [22] projected the future heat waves in India using the WBGT
index using the CMIP5 scenarios data. They used the three representative concentration
pathways (RCPs) RCP2.6, RCP4.5, and RCP8.5 for the historical and future period and
projected the severe heatwave in the future period. The study aims to calculate the heat
stress in the study area and its effects on human health in the past and future scenarios.
The state-of-the-art of the research in the study is presented in Section 2. Section 3 data
and methodology describes the SWBGT, humidex, and NDVI procedures and defines the
simulation flow. Section 4: Results and Discussion presents the simulation’s results as
well as a discussion on them. The study’s findings and the most important outcomes are
summarized in Section 5 Conclusions.
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2. Study Area Description

Jaipur is Rajasthan state’s capital, India, also called the Pink city, for its characteristics
of the buildings’ colour. Jaipur has a population of around 3.15 million people (Census
of India, 2011). The city is mostly flat and is flanked on three sides by the Aravalli hill
ranges: north, northeast, and east. The rest of the city is made up of a combination of barren
ground, low to medium height vegetation, and built-up areas like as highways, buildings,
and industries [23]. According to the Koppen climate classification, the Jaipur come under
the hot semi-arid climate. It is located at an elevation of 431 m above mean sea level and
at 26.92° N latitude and 75.82° E longitude. Jaipur covers approximately 1464 km? (JDA)
area and this study cover the 472 km? area (Figure 1). Jaipur city has mostly as-associated
a flat plain and hills encircle it in the northern, northeast, and east directions. The area
around Jaipur city experiences three seasons each year: winter from November to February
(cold nights with average air temperatures as low as 3 °C), summer from March to June
(very hot during the day with maximum air temperatures as high as 48 °C), and monsoon
from July to October (with extensive variations in daily average air temperature due to
atmospheric conditions) [22]. The rainfall mainly occurs in the July and August months
due to the monsoon. According to Chandra et al. 2018, the percentage change of the urban
area of the Jaipur city was 13.54 (1993) to 57.32 (2015) and open land has been decreased by
45.84 (1993) to 19.4 (2015) [24]. They also explained the urban city expansion in the north,
west, and south direction.
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Figure 1. Study area map (Jaipur city).

3. Materials and Methods

The heat stress indicators were calculated using WorldClim’s historical and future
datasets. The WorldClim portal (http://worldclim.org (accessed on 2 May 2016) provides
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free access to WorldClim datasets for many climate indicators. Long-term average monthly
climate data of maximum temperature and vapour pressure were acquired from the World-
Clim data portal for the historical period (1970-2000) and future period 2050s (2041-2060)
RCP4.5 and RCP8.5 scenarios. Table 1 lists all of the GCMs that were employed in the heat
stress analysis. For the past and future eras, this study calculates two heat stress indicators
for Jaipur. Monthly ensemble 17 GCMs are used to forecast the research area’s future heat
stress indices for the future timeframe.

Table 1. Detailed information of the GCMs (CMIP5) data of RCP4.5 and RCP8.5.

GCMs Information Data Information

ACCESS1-0(AC), BCC-CSM1-1(BC),
CCSMA4(CC), CNRM-CM5(CN),
GFDL-CM3(GF), GISS-E2-R(GS),

HadGEM2-AO(HD), HadGEM2-CC(HG), Monthly average maximum temperature
HadGEM2-ES(HE), INMCM4(IN), (°C*10)
IPSL-CM5A-LR(IP), MIROC-ESM-CHEM(MI), GHG Scenarios: RCP4.5; RCP8.5

MIROC-ESM(MR), MIROC5(MC),
MPI-ESM-LR(MP), MRI-CGCM3(MG),
NorESM1-M(NO)

This analysis was conducted by combining temperature and vapour pressure through
two heat stress indices, namely Simplified Wet Bulb Globe Temperature (SWBGT) and
humidex. Many researchers used the SWBGT indicators to estimate the general heat stress
index at various spatial and temporal scales [25,26].

The Australian Bureau of Meteorology [21] suggested the SWBGT indicator for spatial
analysis. Equation (1) is used to calculate the SWBGT of Jaipur city.

SWBGT = 0.567Ta + 0.393¢ + 3.94 @D

where, Tz and e represent the air temperature (°C) and water vapour pressure (hPa) near
the surface.

The humidex index was developed in Canada to estimate the humidity and conse-
quence of high temperature on human health. The humidex indicator is assessed by using
Equation (2) [27]:

Humidex = Ta + <g> (e —10) )

where, T is air temperature (°C) and e is the water vapour pressure (hPa) near the surface.

After an assessment of these indices, different categories are allocated based on these
values. Each group represents a particular kind of condition and is linked with the heat
stress situation for their effect on human health. Table 2 provides the classes of heat stress
along with their consequence on human health.

Table 2. Categories of the heat stress, WBGT and humidex index with human effects.

Heat Stress Category WBGT Index Humidex Index Inferences

Greater and equal Dangerous and the

Extreme danger Greater and equal to 40 to 46 risk of heat stroke
Very uncomfortable

Danger 34-39 38-45 and avoid physical

exertion
Extreme caution 28-33 30-37 Little uncomfortable
Caution 22-27 20-29 Comfortable

Source: http:/ /www.crh.noaa.gov, http://www.ec.gc.ca/meteo-weather/ (accessed on 6 August 2016).
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3.1. Image Classification and Accuracy Assessment

The study area is divided into five key groups using a supervised technique with
the maximum likelihood classification method: water body, vegetation, urban settlement,
open land, and hilly area/rocky area. The Kappa technique was used to examine the
categorization accuracy [28,29].

Kappa coefficient (k) for the image classification is as follows:

oo NEigxii— Y g xitsxit] 5
o NZ-Y g xidexit1

(Total sum of correct) — Sum of the all the (row and column total)

k =
Total squared — Sum o fthe all the (row and column total)

(4)

The Kappa coefficient should never be greater than or equal to one. The high Kappa
value indicates accurate land use class information. According to [30] Monserud and
Leemans (1992), Kappa coefficients ranging from 0.55 to 0.7 indicate good agreement, 0.7 to
0.85 indicate very good agreement, and values more than 0.85 indicate excellent agreement
between image and ground.

3.2. Normalized Difference Vegetation Index (NDVI)

Vegetation cover plays a vital role in diminishing the conservation issues in urban
areas. As indicated by Batista et al. 1997, the NDVI esteems went from —1 for the non-
vegetated area to +1 for vegetation [31]. For the NDVI estimation red band and visible
range band and the NIR band are utilized. The NDVI calculation is as follows:

(Band 4 — Band 3)

NDVI =
(Band 4 + Band 3)

©)

3.3. Soil-Adjusted Vegetation Index Calculate (SAVI)

The SAVI index also plays a role in the vegetation cover, but it adds the area’s back-
ground soil conditions. SAVI calculation is as follow:

SAVI = (14 L) % (band4 — band3) / (band4 + band3 + L) (6)

where the TOA reflectance is used for each band and L is a soil brightness correction factor.
From Huete (1988), L = 0.5 is used in most conditions. Figure 2 shows the methodology
and the climatic data used in the study.
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Landuse Classification
(1993, 2010 and 2015)

Index
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| Climatic data |

| WorldClim Data |

RCP 4.5 and 8.5
Scenarios

l

WBGT and Humidex
Index

Heat Stress

Spatio-temporal
Changes

Figure 2. Flowchart of methodology and data used.

4. Results and Discussions

Heat stress is on the rise in various countries of the world, including India, and is to
blame for the rising level of human misery. Heat stress is becoming more severe in cities as

a result of urbanization and greenhouse gas emissions.

4.1. Land Used Classification

Water body, vegetation, urban settlement, open land, and hilly terrain/rocky area are
the five primary land use types evaluated in this study. Land use classifications are carried

out for 3 years: 1993, 2010, and 2015. The accuracy of the classified map was determined by

a random selection of 330 points for each year. The overall accuracy of the classified maps
was found to be 0.92, 0.97, and 0.95 for selected years. According to Table 3, the Kappa

coefficients for the indicated years are 0.88, 0.95, and 0.93. In comparison to ground reality,

the classified land use accuracy is shown to be good.

Table 3. Accuracy assessment of the land cover types.

Users Accuracy %

Year Water  Vegetation g, Opentand MUY e Coethent

1993 100.0 95.4 96.7 97.9 69.8 0.92 0.88

2010 100.0 94.7 100.0 96.6 91.2 0.97 0.95

2015 100.0 95.7 97.2 92.7 88.6 0.95 0.93
Producer Accuracy %

Year Water Vegetation Segfrr:lr;nt Open Land Hillzilzzcky

1993 100.0 98.41 87.88 90.73 91.67

2010 100.0 97.83 98.21 95.45 100.00

2015 100.0 94.74 99.28 86.44 93.94
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Table 4 shows the total area covered by various categories and their percent coverage.
It has been observed that the urban settlement of Jaipur city has grown over time. It was
63.9 km? in 1993, but by 2015, it expanded to 270.47 km?. This indicates that during the
course of 22 years, the area has changed nearly four times. In 2015, over 43.78% change of
the studied area was under settlement, compared to the entire area. These trends suggest
that the city is rapidly expanding, and it accelerated significantly after 2010.

Table 4. Land use area and percent change of different years.

Class Name Area 1993 Area 2010 Area 2015 (;/‘())ﬁ)}ligg;) (;/Blcsll;gfg) (;/(())1(:511?915;)
Water. 0.4 0.9 0.8 0.10 —0.01 0.09
Vegetation 84.4 88.6 45.7 0.87 —9.09 -8.21
Urban Settlement 63.9 166.5 270.5 21.75 22.03 43.78
Open Land 216.3 159.8 91.5 —11.96 —14.47 —26.44
Hilly /Rocky Area 106.9 56.1 63.4 —10.76 1.55 -9.21

Figure 3 depicts the spatial distribution and patterns of land cover change during the
three years. The image clearly shows the evolution of urban settlement in Jaipur city. In
comparison to the 1993 map, there is a significant rise in of urban area in the Jaipur and

found the maximum land use was converted into the urban settlement.
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Figure 3. LULC maps for different years (A) 1993 (B) 2010 (C) 2015.

4.2.

Humidex Index

For the historical and future RCP4.5 and RCP8.5 scenarios, the humidex index was
calculated on a monthly and seasonal basis. All of the monthly and seasonal data were
shown in Table 5. The lowest humidex was recorded in the month of January. The historical
minimum humidex value has been 21.4, and in the RCP4.5 and RCP8.5 scenarios, it will

141

27°0'0"N

26°50'0"N



Sustainability 2022, 14, 9095

27°0°0"N

26°50°0"N

rise to 25.5 and 27.3, respectively. The highest humidex values are observed to be 39.5, 43.2,
and 46.4 for the historical and two future RCPs in the May month. In Table 5, the May and
June months show the danger conditions in the humidex index for all three cases, but the
RCP4.5 and RCP8.5 show the danger and extreme danger conditions in most of the months.

Table 5. Average monthly variation in humidex for historical and future periods.

Historical RCP4.5 RCP8.5 Historical RCP4.5 RCP8.5

January 214 255 27.3 C C C
February 24.2 28.2 30.4 C C EC
March 29.9 34.1 36.7 EC EC EC
April 35.8 39.9 42.7 EC D D
May 39.5 43.2 46.4 D D ED
June 39.5 41.5 443 D D D
July 39.1 36.0 38.2 D EC D
August 37.7 334 354 D EC EC
September 37.7 35.0 37.3 D EC D
October 35.3 35.6 38.3 EC EC D
November 30.2 31.5 33.7 EC EC EC
December 255 26.9 255 C C EC
Winter 23.7 26.9 27.7 C C EC
Monsoon 38.5 36.5 38.8 D EC D
Summer 35.1 39.1 41.9 EC D D
Autumn 32.8 33.6 36.0 EC EC EC

C—caution; EC—extreme caution; D—danger; ED—extreme danger.

Figure 4 depicts the spatial distribution of Humidex for all of the months in the past.
The months of May and June are classified as Danger and Extreme Danger. From January to
May, the Humidex values rise, then begin to decrease until the month of December. There
is a slight rise in value in September and October months compared to the decreasing trend.
In majority of the months over the historical period, the humidex is high in the southeast
and west.
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Figure 4. Spatial variation of humidex for historical in January to December months.

The spatial maps of humidex variations for January to December for the future RCP4.5
and RCP8.5 scenarios are shown in Figures 5 and 6. The majority of the month in these
statistics depicts danger and extreme danger conditions in hypothetical futures. The
months of May and June exhibit a danger situation, and the majority of the months fall
into the danger and extreme dangerous categories. In the figure, the area with low values
is represented by the colour green, while the area with high values is represented by the
colour red. The humidex is elevated in the east and south as well as in a small portion of
the west side between RCP4.5 and RCP8.5.
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Figure 5. Spatial variation of the humidex for future (RCP4.5) in January to December months.
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Figure 6. Spatial variation of the humidex for future (RCP8.5) in January to December months.

The monthly difference in humidex for historical and projected RCP4.5 and RCP8.5
is shown in Figure 7. In the three months, July to September, as well as throughout the
monsoon season, humidex displays a drop. Because RCP8.5 represented the high emission
scenario, there is always a significant disparity between RCP8.5 and RCP4.5. It has been
demonstrated that the seasonal analysis helps to explain how the severe category shifts.
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By the year 2050, the summer season displays a shift from extreme caution to danger

and a rise in temperature in the urban region.

Figure 8 displays the seasonal humidex

variations for the past and future of the city border. The monsoon and autumn seasons
show the maximum humidex value in all scenarios and cover the city’s east, west, and

north direction.
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Figure 7. Difference in humidex values for future scenarios (2050s).
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Figure 8. Seasonal map of the humidex index of Jaipur city (Historical, RCP4.5, RCP8.5).

4.3. WBGT Index

The WBGT index is computed in this study on a monthly and seasonal basis for both
past and future periods. The average monthly seasonal fluctuations in the WBGT indicator,
together with its stress category, are shown in Table 6. In all three scenarios—historical,
RCP4.5, and RCP8.5—the danger categories are visible from June through September. In
January, the value is at its lowest, and in June and July, it is at its highest. However, the
WBGT, high in the monsoon season of RCP scenarios and the danger situation of the heat
of the city of Jaipur, are shown in the season-wise calculation. The correlation coefficient of
ESI and environmental parameters of wet temperature, dry temperature, solar radiation,
and relative humidity was obtained as 0.88, 0.96, 0.4, and —0.7, respectively, in a study
by [32] Hajizadeh et al. (2016), which aimed to investigate the correlation between the
environmental stress index (ESI) and WBGT index in a hot and dry climate.

As with the humidex, the lowest values of WBGT are observed for January month
in the historical and future periods. The historical value of WBGT is 19.7, which will
increase to 22.0 for RCP4.5 and 23.1 for RCP8.5 (Table 6). In the historical period, the
high value of WBGT is obtained in the month of July, but it shifts to June for the future
period. It is also observed that WBGT values are projected to decrease in the monsoon
season (July to September) with the heat stress category of danger. The monthly pattern
of values is similar for humidex, increasing from January to June/July and then further
decreasing until December. Some cases of a shift from the existing caution condition to
extreme caution condition in March, November, and December. The spatial variance of
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WBGT in Jaipur city for the past and the future is explained in Figures 9-11. In Figure 9,
the southern half of the city showed the greatest changes when compared to other places.
Figures 10 and 11, which depict possible futures and determine the city’s danger condition,
show the same pattern. These show the monthly variation of WBGT values for a future
period (both scenarios) compared with historical data. The indicator’s value decreases
throughout a three-month period from July to September, indicating a decline in indicators
during the monsoon season. These areas came under the industrial zones and cover half of
the city area. The green colour represents the area with low values, whereas the red colour
represents high values.

Table 6. Average monthly variation in WBGT for historical and future periods.

Historical RCP4.5 RCP8.5 Historical RCP4.5 RCP8.5

January 19.7 22.0 23.1 C C C
February 21.2 235 24.8 C C C
March 247 27.1 28.6 C EC EC
April 28.2 30.5 321 EC EC D
May 30.3 32.5 34.2 EC EC D
June 34.6 35.8 37.3 D D D
July 37.3 35.5 36.8 D D D
August 36.7 334 354 D D D
September 34.9 33.4 34.7 D D D
October 30.0 30.2 317 EC EC EC
November 255 26.2 27.5 C C EC
December 222 23.0 221 C C EC
Winter 21.0 22.8 23.3 C C C
Monsoon 35.9 34.5 36.1 D D D
Summer 27.7 30.0 31.6 EC EC EC
Autumn 27.8 28.2 29.6 EC EC EC

C—caution; EC—extreme caution; D—danger; ED—extreme danger.
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Figure 11. Spatial variation of WBGT for future (RCP8.5) period.

RCP8.5, which simulates a high emission scenario, consistently provides a large
difference from RCP4.5. Figure 12 illustrates the disparity pattern, which is seen to be
similar to the humidex indication. The study is being carried out to better understand
how heat stress conditions vary seasonally. All four seasons” heat stress categories show
little variation; however, the monsoon season shows a rise in the danger category. In
the monsoon season, WBGT is at its highest; in the winter season, WBGT is at its lowest.
An increasing value is found in the future period when compared to the historical period.
Figure 13 shows the variation in monsoon WBGT for historical and future periods and the
difference in indicator value within the city boundary. The WBGT is high in the summer
and autumn season in the southeast direction and these changes are created due to the

changes in land use pattern and expansion of urban areas.
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Figure 13. Seasonal map of the humidex index of the Jaipur city (Historical, RCP4.5, RCP8.5).

4.4. Normalized Difference Vegetation Index (NDVI)

In this study, NDVI was calculated for different periods: April 1993, April 2000,
June 2010, and April 2015; NDVI values range from —1 to +1, different geographical
features show the different NDVI values. These layers give different information through
the bands and band 3 and 4 provides the vegetation with cover information of Jaipur city.

160



Sustainability 2022, 14, 9095

The extracted vegetation layer covers of NDVI were spatially compared with the colour
composite image of Landsat-5 and Landsat-8 (TM and OLI) imagery. The range of NDVI in
1993 was —0.01 to 0.71, in 2000 was —0.019 to 0.63, and in 2010 was 0.04 to 0.56 of Landsat
5 TM imagery, and year 2015 shows the range of NDVI was —0.24 to 0.70 for the Landsat
8 OLI image of Jaipur city (Figure 14). The vegetation cover area utilizes solar radiation in
the photosynthesis process and reduces the city’s surrounding temperature.
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Figure 14. NDVI map of Jaipur city: (a) April 1993, (b) April 2000, (c) June 2010, and (d) April 2015.

4.5. Soil-Adjusted Vegetation Index (SAVI)

The study area is mainly classified into different types of land use. All these random
samples are selected and the values of these cites are observed between NDVI and SAVI
indices. The range of SAVI in 1993 was —0.005 to 0.50, in 2000 was —0.005 to 0.44, and in
2010 was —0.024 to 0.43 of Landsat 5 TM imagery, and 2015 shows the range of SAVI was
0.118 to 0.52 for the Landsat 8 OLI image of Jaipur city (Figure 15). This influence can be
restricted using SAVI instead of NDVI. High NDVI and SAVI values were found in the
buildup area.

On the other hand, there is a correlation between land use and NDVI data and data
measured in meteorological stations in most research, including the current study, which
is a significant reason for the efficiency of using this data for environmental issues. As
a result, which can be derived indirectly using daily recorded metrological parameters in
weather stations, it can be used to assess thermal conditions in Jaipur. Because evaluating
environmental parameters for the calculation of heat stress indices is normally costly and
time consuming, it is possible to alleviate this problem in environmental evaluations in
open spaces by using daily recorded weather station data. Meteorological data has the
advantage of being continuously recorded and providing a low-cost and comprehensive
database for computing a variety of essential thermal indicators.
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Figure 15. SAVI map of Jaipur city: (a) April 1993, (b) April 2000, (c) June 2010, and (d) April 2015.

5. Conclusions

The study’s major goal was to predict the WBGT and humidex indexes for the past
and future. This study demonstrates the expansion of urban land usage in Jaipur city
from 1993 to 2015 using intermediate satellite images. The number of people living in
cities has increased substantially in the last 23 years. The most prevalent type of land
converted to urban areas is open terrain, followed by vegetation and hilly/rocky areas.
The NDVI and SAVI indices are also used to determine the changes in land use patterns
in the city and the amount of green space in the urban and peri-urban areas. The WBGT
is highest during the monsoon season and lowest during the winter. When compared to
the historical period, the future time shows an increase in value. Humidex’s historical
value has been 21.4, but it is projected to rise to 25.5 and 27.3 under the RCP4.5 and RCP8.5
scenarios. In May, the greatest humidex values were 39.5, 43.2, and 46.4 for the historical
and two future RCP scenarios. The months of May and June are shown in the danger and
extreme danger categories in the analysis. From January to May, the humidex values rise,
then begin to fall until the month of December. It predicts that, with the exception of the
monsoon season in the metropolis, discomfort levels will rise in the future. The findings
indicate that the index’s average value is increasing. Global warming or the absence of
suitable conditions in these environments may be responsible for this trend. This will help
in the identification of a better heat stress index for diverse situations and temperatures.
There are some restrictions on the study; the distribution of indices studied throughout
the different continents varies because the majority of studies undertaken in this field are
focused on regions with hot climates. Application of WBGT and humidex indices has
limited application in warmer climates as it shows a low level when the air temperature is
in high range. The environmental heat index is preferred in occupational situations, but
is not suitable at all work locations [33]. The possible reason for using these indices is
comprehensiveness of the index for assessing the thermal stress conditions with limited
data availability. However, it is a useful indices to understand the pattern of long-term
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change and warning purposes. The additional limitations of this analysis were the dearth
of pertinent papers and the evidence provided in the articles. Appropriate protective
strategies are required to prepare for the working population, which includes vulnerable
persons whose occupational health and performance are harmed by heat stress.
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Abstract: Availability of water in the Ganges River basin has been recognized as a critical regional
issue with a significant impact on drinking water supply, irrigation, as well as on industrial de-
velopment, and ecosystem services in vast areas of South Asia. In addition, water availability is
also strongly linked to energy security in the region. Hence, quantification of spatial availability
of water resources is necessary to bolster reliable evaluation of the sustainability of future thermal
power plants in the Ganges River basin. This study focuses on the risks facing existing and planned
power plants regarding water availability, applying climate change scenarios at the sub-basin and
district level up to 2050. For this purpose, this study develops an integrated assessment approach
to quantify the water-energy nexus in four selected sub-basins of the Ganges, namely, Chambal,
Damodar, Gandak, and Yamuna. The results of simulations using Soil and Water Assessment Tools
(SWAT) showed that future water availability will increase significantly in the Chambal, Damodar,
and Gandak sub-basins during the wet season, and will negligibly increase in the dry season, except
for the Yamuna sub-basin, which is likely to experience a decrease in available water in both wet
and dry seasons under the Representative Concentration Pathway (RCP) 8.5 scenario. Changes in
the water supply-demand ratio, due to climate change, indicated that water-related risks for future
power plants would reduce in the Chambal and Damodar sub-basins, as there would be sufficient
water in the future. For 19 out of 23 districts in the Chambal sub-basin, climate change will have a
moderate-positive to high-positive impact on reducing the water risk for power plants by 2050. In
contrast, existing and future power plants in the Yamuna and Gandak sub-basins will face increasing
water risks. The proposed new thermal power installations, particularly in the Gandak sub-basin, are
likely to face serious water shortages, which will adversely affect the stability of their operations.
These results will stimulate and guide future research work to optimize the water-energy nexus,
and will inform development and planning organizations, energy planning organizations, as well
as investors, concerning the spatial distribution of water risks for future power plants so that more
accurate decisions can be made on the location of future power plants.

Keywords: water-energy nexus; spatial water variability; climate change; thermal power plant;
Ganges River basin

1. Introduction

Home to 600 million people, the Ganges is the most populous river basin in the
world [1]. The Ganges River basin (GRB) is a strategically important river basin for all
riparian countries, including Bangladesh, India, and Nepal, as more than 40% of people
directly or indirectly relying on the water of this river for drinking, agriculture, energy
generation purposes [2]. For instance, this river basin accounts for 25% of India’s water
resources, and more than 50% of irrigated areas in India are situated in this basin [1]. A
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vast amount of water is used for energy generation purposes. The Ganges River supplies
water to several thermal power plants with more than 50 GW generation capacity [3].
Therefore, any changes in water availability in the Ganges will have paramount impacts
on the development and wellbeing of the region.

Water resources in the GRB were once abundant, but are now under increasing
stress, due to the growing demand. The Ganges is shown as water-stressed as per the
Falkenmark water stress index with 1039 cubic meters of water per capita [4]. In this
river basin, about 20% of people live without access to safe drinking water [5]. During
the non-monsoon period, limited water resources hardly allow cropping to 1.3 times the
net sown area [6]. Furthermore, climate change may exacerbate water stress, due to its
impacts on hydrological dynamics in the GRB. Regional climate change model studies in
the GRB predict an increase in annual mean temperature [7], and a rising trend of seasonal
maximum and minimum temperatures [8]. This rise in temperature will lead to various
dynamic changes, including a greater evapotranspiration loss [9], shrinking glaciers [10,11],
and increased rainfall that will lead to more water flow, but with greater variability [12].

GRB is one of the hotspots of economic development in the region. It accounted
for USD 700 billion of the GDP of India [1]. The river basin caters to a 40% share of
the total electricity generation capacity in the region [3]. However, per capita energy
consumption in riparian countries comes to 310 kWh in Bangladesh, 805 kWh in India,
and 139 kWh in Nepal, which are far below the world average of 3130 kWh [13]. This
leaves room for a step-up of the growth of the electricity sector in India for decades to come.
Nevertheless, the electricity fuel mix in the region is dominated by coal and gas-based
thermal power that accounted for 73% of the total electricity generation capacity [14,15].
Given conventional cooling technology, thermal power plants (TPP) require a large amount
of water for cooling purposes. With the availability of indigenous coal and gas resources in
India and Bangladesh, it is envisaged that future power generation will rely heavily on
thermal sources. However, the sustainability of thermal power generation will be seriously
affected by the climate-induced variability of water resources [16]. For example, drought
events between 2013 and 2016 forced a shutdown of 14 major power plants, due to scarcity
of cooling water, which incurred at least USD1.4 billion in potential revenue loss [17].
It implied that water availability for thermal power generation is in jeopardy, and this
situation poses a serious operational risk for power plants in this river basin.

There are ample studies in the region covering the issues of direct use of water in
agriculture, human habitat, and in other sectors. There are also certain studies in the field
of energy use for water withdrawal focusing on pumping efficiency improvement, etc.
However, there is little systematic literature looking at quantifying the interactions between
energy infrastructure and spatial water availability under the impacts of climate change. In
this context, the study narrates how water scarcity can be a major threat to energy security
in the sub-basins of the Ganges River. To the best of our knowledge, this is a pioneer study
of the GRB that deals with the water-energy nexus, particularly dealing with the water
risks of existing and planned power plants, while considering the plausible climate change
impacts on spatial water availability. The study aimed to assist informed decision-making
related to power plant planning in the Ganges sub-basin in India, considering the impacts
from spatial water resource distribution and long-term climate change.

2. Materials and Methods
2.1. Study Area

For this study, we selected four sub-basins of the Ganga River basin in India, namely,
Yamuna, Chambal, Gandak, and Damodar. These sub-basins were choose based on the
key features, including water supply, water demand and installed capacity of the existing
thermal power plants, and the proposed location of the new thermal power plants. Figure 1
shows the location and characteristics of the selected sub-basins.
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A map of the study areas with four selected sub-basins in India with the specific characteristics.

2.2. Methodological Framework

In this study, we took an integrated methodological approach that consists of the
hydrological modeling of the spatial distribution of water availability, water demand
assessment for non-energy sectors, collected water use intensity data for power generation
through a field survey of 20 thermal power plants for estimation of water demand of energy
generation in India. The overall framework is furnished in Figure 2.

2.3. Water Resource Variability Assessment

To classify the water resource availability, we used the Soil and Water Assessment
Tool (SWAT) for assessing future water resource distribution at the sub-basin level. The
advantages of using SWAT include; (i) it is suitable for ungauged water catchment and
does not need calibration; and (ii) it simulates future water yield based on the physical
data [16,18-21]. In the SWAT model, basins are considered as an agglomeration of multiple
sub-watersheds. The sub-watersheds are further split into hydrologic response units
(HRUs) characterized by similar land use, slope, and soil type, etc. For each HRU, the net
hydrological balance is simulated based on precipitation, evapotranspiration, soil water,
lateral sub-surface flow, and water yield [21,22].

The hydrological cycle is simulated by the SWAT model based on water balance
Equation (1):

t
SWt = SWO + Z (Pday - Qs - Ea - Wseep - ng) (1)
i=1

where SW; is the final soil water content after ¢ days (in mm); SW) is the initial soil water
content (in mm) on day i; Py, is the amount of precipitation on day i (in mm); Qs is the
amount of surface runoff on day 7 (in mm); E, is the amount of evapotranspiration on day i
(in mm); Wsep is the amount of percolation and bypass flow exiting the soil profile bottom
on day i (in mm); Qg is the amount of return flow on day i (in mm); ¢ is the time (days).
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Figure 2. The methodological framework for assessing the impacts of spatial water resource variability on energy planning

in the Ganges sub-basin in India under climate change scenarios.

Essential data, including the Digital Elevation Model (DEM), soil map, land use and
land cover data, meteorological data, and climate model projections of temperature, and
precipitation, were collected from various sources. For DEM, Shuttle Radar Topography
Mission (SRTM) 90 m resolution was used [23]. Land use and land cover data from Na-
tional Remote Sensing Centre (NRSC) and soil data were taken Food and Agriculture
Organization (FAO) (available at http:/ /www.fao.org/soils-portal /soil-survey /soil-maps-
and-databases/harmonized-world-soil-database-v12/en/). Weather data, including pre-
cipitation of 0.5-degree grid data, the temperature of 1-degree grid data, relative humidity,
solar radiation, wind grid weather data were taken from Global Weather Data for SWAT
(available at http:/ /globalweather.tamu.edu/).

A bias-correction technique based on the delta change method was employed to
correct the bias of precipitation and temperature projections derived from the Global Circu-
lation Model (GCM), consequently, minimize the uncertainty in future water availability
projection. This bias-corrected projection was used to generate different climate change
scenarios on water availability using the SWAT model. We used two climate scenarios,
namely, the RCP 4.5 and RCP 8.5. To assess the climate change impacts on spatial wa-
ter availability, the RCP 4.5 and RCP 8.5 climate scenarios from the MRI-CGCM3 model
were used (available at http://pcmdi9.lInl.gov/). MRI-CGCMS3 is selected considering
its good performance at the basin scale for India [24]. MRI-CGCMS3 is developed by the
Meteorological Research Institute based on the earlier MRI-CGCM2 model. The simulation
of the SWAT model provided water yield at the HRU level. The SWAT model simulated
water yield of relevant HRU is used as a representative value for the districts located at the
respective HRU. Then water yield was multiplied by the area of the district to estimate the
water availability of each district.

2.4. Estimation of Water Demand

District level water demand for major water users was estimated, including domestic
sector, irrigation, livestock, industrial use, environment water, and energy use for present
and future scenarios, as mentioned below.
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2.4.1. Water Demand for Domestic Use

Water demand for domestic use was calculated by multiplying the population of
each district. As water use patterns in urban and rural significantly vary, domestic water
demand for urban and rural populations calculated separately, and their cumulative sum
represents water demand for domestic use of the respective district. For the present study,
per capita, water demand of 150 L per capita per day (Ipcd) and 70 Ipcd was considered for
urban and rural areas, respectively [25]. District-level population data is taken from the
census (2001 and 2011). The following are the equations used for estimation of urban and
rural domestic water demand:

Druml = Pruml x 70 lpCd (2)

where D,,,,,;; denotes the water demand for the rural segment, and P,,,,; is the population
in the rural area.
Durbun = Purban x 150 lPCd (3)

where D,,4,,, denotes the water demand for the urban segment, and P4, is the population
in the urban area.

2.4.2. Water Demand for Irrigation

For estimating water demand for irrigation, major cereal crops are identified for
each of the four sub-basins. The reference evapotranspiration of each major crop, ETy
(in mm/day), is estimated based on which the evapotranspiration of each major crop,
ET., the amount of water demand of the crop under standard conditions, is calculated by
Equation (4) as follows:

ET.=ETy x K, 4)

where K. is the crop coefficient suggested by FAO for the main crop in each of the
sub-basins.

Effective precipitation, Refctie, rainfall available for crop growth, is estimated based
on the FAO/AGLW formula see Equation (5) by which total rainfall, Ry, is corrected by
taking account of the losses (as a percentage of total rainfall), due to runoff and percola-
tion [26].

Reffective = 60% X Ryotar — 10, if Rpppq) < =70 mm

. 5
Reﬁ(ective =80% X Ryotar — 25, if Ryotar > 70 mm ©)

Irrigation water demand is calculated by Equation (6).
D irrigation = ET. — Reﬁective (6)

To estimate the total irrigation water requirement at the district level, national reference
values were utilized [27]. To calculate the base year (2010) water demand, a reference factor
of 1.45 was used, which was multiplied by the cereal irrigation water demand of 2010.
Similarly, for calculating future irrigation water demand, different we used different
multiplication factors (e.g., 1.003 for the 2020s, 1.007 for the 2030s, 1.168 for the 2040s, and
1.329 for the 2050s).

2.4.3. Water Demand for Livestock

We calculated the livestock water demand by multiplying the livestock population
by the water use rate per head for different types of animals. Data on the district-level
population of the livestock is collected from the census (2007 and 2012). It is, however,
impossible to estimate the decadal growth for future livestock as the regular fluctuation are
not known. Hence, we considered an increase of 10% in water demand on a decadal basis.
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2.4.4. Water Demand for Industry

Water demand for the industrial sector was estimated as a percentage of urban and
rural domestic water use, as recommended by the Central Pollution Control Board of
India (1989).

Dindustry = Dyyrar X fruml + Dyrpan ¥ furban 7)

In which Djgystr, denotes industrial water demand, D,y is the rural domestic water
demand, and D, is the urban domestic water demand, see Equations (2) and (3), and
frural Tepresents rural water use factors, which is considered 25%, and f,;;,, represents
urban water use factors is considered 5% in this study.

2.4.5. Environmental Water Requirement

Environmental water requirement, i.e., the amount of water required to maintain
ecological processes and biodiversity, is an important consideration for estimating future
water demand. However, it is tough to estimate environmental water requirements, due to
a lack of necessary data. In this study, environmental water requirement is estimated as
1.23% of the total water demand as recommended by the Central Water Commission (2015).

2.4.6. Energy Water Demand Estimation

To collect the water use intensity of different power generation technologies, including
the different cooling systems, a power plant survey was conducted. During the power
plant surveys, various information, including fuel types (fuel), installed capacity (Ciystan),
power generation technologies (tech), cooling systems (cool), plant load factors (L), source of
water, water use intensity (I, tech, cool), €tc., were collected. Energy water demand (Denergy)
is calculated using Equation (8):

Denergy = Cinstanl X 24 x 365 x L X Ifuel, tech, cool 8

For estimation of future water demand from power generation, the study relied on
the disclosed information of the total planned fuel mix by the Central Energy Authority
(see Appendix A) and used Equation (8).

2.5. Water Risk Assessment for Future Power Generation

Based on the simulated future water resources and sectoral water demand at the dis-
trict level for each sub-basin, the supply-demand ratio, defined as (supply-demand)/supply,
is calculated for the present period (2010). Districts were classified into four classes of water
risks based on the value of the supply-demand gap ratio, including highly water-stressed
(<0.0), moderately water-stressed (0.0 to 0.5), no stress (0.5 to 1.0), and water surplus (>1.0).
Then, future period changes in the supply-demand ratio in 2050 compared with the level
in 2010 are calculated for each of the four sub-basins. The changes in the supply-demand
ratio (in percentage) are classified into five levels to indicate the impact of climate change
on future water risks under RCP 4.5 (see Table 1).

Table 1. Classification of the changes in the supply-demand ratio for assessing climate-induced water risk for future

power plants.

Level of Changes in the Supply-Demand Ratio (%) Colour Description of Level of Effect
More than 25 Green High positive
Between 5 to 25 Blue Moderate positive
5to -5 Yellow Negligible/No change
Between —5 to —25 Brown Moderate negative
less than —25 Red High negative
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3. Results and Discussions
3.1. Climate Parameters under RCP 4.5 and RCP 8.5

As per climate model scenarios, it is projected that there will be an increase in precipi-
tation in all the four sub-basins irrespective of RCP 4.5 and RCP 8.5 scenarios, as shown in
Table 2. The model suggested that overall, four sub-basins will increase in precipitation in
the future with a more positive change in the mid-future period and then a decrease in the
positive trend far into the future. This is a good sign as it will improve water availability in
the sub-basin. The projection also revealed that all sub-basins will receive more precipita-
tion under the RCP 8.5 scenario than the RCP 4.5 scenario. The Chambal basin will have
a 9% increase in precipitation in the far future period to a 17% increase in the mid-future
period under the RCP4.5 scenario. This increase varies from 11% in the far future period to
31% in the midfuture period. In the case of Yamuna, an increase of precipitation by 19%
in the near future and 14% in the mid-future is predicted under RCP 4.5. However, the
model predicts a slight decrease in precipitation in the far future under RCP 4.5. Under the
8.5 RCP scenario, precipitation will increase from 4% in the near future to a 26% increase in
the midfuture period.

Table 2. Precipitation and evapotranspiration in four sub-basins under RCP 4.5 and RCP 8.5 scenarios (in mm).

Chambal Yamuna Gandak Damodar
P E P E P E P E
Historical 854 443 744 452 1075 608 1464 712
RCP 4.5
Near Future (2011-2040) 940 423 888 512 1253 653 1652 793
Mid Future (2041-2070) 1006 533 847 495 1233 649 1743 763
Far Future (2071-2100) 934 468 740 465 1127 624 1646 780
RCP 8.5
Near Future (2011-2040) 1024 494 775 476 1175 649 1661 829
Mid Future (2041-2070) 1119 504 941 517 1318 665 1829 832
Far Future (2071-2100) 949 482 862 515 1335 661 1850 849

Note: P denotes precipitation; E denotes evapotranspiration.

It represents a positive change in water availability in the Yamuna sub-basin. In the
Gandak sub-basin, there is also an increase in precipitation which varies between 6 to
23% under RCP 4.5, whereas between 13 to 34% under the RCP 8.5 scenario. All three
future periods show an increase in precipitation. In the Damodar sub-basin, the percentage
change in precipitation varies between 12 to 19% under RCP 4.5 scenario, whereas the
increase is predicted to be between 13 to 26% under the RCP 8.5 scenario.

In all the four sub-basins, there is a projected increase in evapotranspiration (E), as
presented in Table 2. In the Chambal sub-basin, there is a slight decrease in E in the near
future, but it will increase in the mid-future and far-future under RCP 4.5. Under RCP
8.5, there will be an increase in E for all future periods. In the Yamuna sub-basin, E will
increase under both RCP 4.5 and RCP 8.5 scenarios. Under the RCP 8.5 scenario ratio of E
and P will increase in the far future period, which implies a reduction of water availability
in the far future. In the Gandak sub-basin, the ratio of E and P will decrease under both the
RCP 4.5 scenario and the RCP 8.5 scenario. Similar observations are made in the Damodar
sub-basin as there is a decrease in E and P ratio f under both scenarios.

3.2. Water Availability Assessment under Climate Change Scenarios

Figure 3 presents the changes in the water yield in 2030 and 2050, respectively, as
compared with the levels in the historical period (1976-2005) in four sub-basins under
RCP 4.5 and RCP 8.5. Water yield is not evenly distributed throughout the year and
will show significant seasonal variation, depending on the physical conditions, such as
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precipitation, evapotranspiration, and surface runoff, etc. Under RCP 4.5, all the sub-basins
will show an increasing trend of water yield during the wet seasons in 2030 and 2050.
Changes in the water yield in the wet season will vary from 8% in 2030 to 55% in 2050
in the Damodar sub-basin. Under RCP 8.5, Yamuna will face a negative change in the
water yield in both 2030 and 2050, even during the wet season. In contrast, water yield
will increase significantly in all other basins. The results show that RCP 8.5 will have
more positive impacts on the water yield than RCP 4.5 in both the Chambal and Damodar
sub-basins. The results imply that the total water yield will increase in Chambal, Damodar,
and Gandak at all times, but with great seasonal variabilities. However, under the extreme
climate scenario, water yield in the Yamuna will decrease.

1000 ®Chambal ®Damodar ® Gandak © Yamuna
800
=]
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Historical RCP 4.5
1976-2005

Figure 3. Seasonal water yield in four sub-basins under climate change scenarios in 2030 and 2050.

A positive effect of climate change on the water yield will result in an increase of avail-
able water in the four sub-basins (Figure 4). The results show that under both RCP 4.5 and
RCP 8.5, Chambal will have the largest among of available water ranging from 47,823 MCM
(million cubic meter) in 2050 under RCP 8.5 to 34,701 MCM in 2030 under RCP 4.5. Among
four sub-basins, Yamuna will have the lowest volume of available water. The results
imply that the increasing amount of available water will positively support water-intensive
development, including thermal power generation, in the Chambal sub-basin.
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Figure 4. Future water availability in four sub-basins under climate change scenarios.
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3.3. Water Demand Assessment
3.3.1. Water Demand of Non-Energy Sectors

Table 3 shows the water demand from five non-energy sectors in four sub-basins
for the base period 2010 and the future period (2050). The results show that the future
water demand from non-energy sectors will increase, due to population growth, industrial
development, and irrigation requirements. Out of the four sub-basins, the Chambal sub-
basin would have the least water demand, and the Yamuna sub-basin would have the most
water demand in 2010. In all the four sub-basins, non-energy sectors water demand will
increase significantly by 37% in Chambal, 34% in Damodar, 37% in Gandak, and 42% in
Gandak in 2050. Although the rate of water demand increase will be high for domestic and
industrial sectors, the share of irrigation water demand will dominate the total non-energy
sector water demand followed by domestic water demand, which will continue until 2050.
The Yamuna sub-basin will lead the highest water demand, including both irrigation water
demand and the domestic water demand, among the four sub-basins, followed by the
Gandak sub-basin.

Table 3. Water demand changes from non-energy sectors in four sub-basins under climate change
scenarios in 2050 compared to 2010 (in MCM).

Water Demand Base Period 2010 Change in 2050
Chambal
Domestic 725 635
Industry 113 133
Livestock 189 88
Irrigation 8895 2927
Environment 125 47
Total 10,112 3828
Damodar
Domestic 925 625
Industry 123 106
Livestock 200 93
Irrigation 20,281 6672
Environment 273 92
Total 22,099 7589
Gandak
Domestic 1375 1441
Industry 139 163
Livestock 218 101
Irrigation 22,688 7464
Environment 306 116
Total 24,796 9285
Yamuna
Domestic 2291 2728
Industry 446 621
Livestock 333 154
Irrigation 23,437 7711
Environment 333 140
Total 26,940 11,354

3.3.2. Water Demand of Energy Sector

A field survey was carried out to collect water use intensity data for existing power
plants. Power plants were chosen based on the fuel types and technologies employed for
the cooling systems, including open loop cooling systems, closed-loop cooling systems,
and dry cooling systems. As such, it was observed that cooling technologies have major
impacts on the energy sector’s water demand. It was observed that the water use intensity
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in thermal power generation varies from 3.3 m®/MWh with a closed-loop cooling system
to 70 m3/MWh with an open-loop cooling system. Furthermore, the requirement for
water is much higher in coal-based power plants than gas-based power plants. Apart from
gas-based power plants, the results revealed that all the thermal power plants under our
survey exceeded the upper limit for regulated water use intensity (2.5 m3/MWh) [28].

According to the CEA database, coal-based power plants dominate the majority of the
existing installed thermal power capacity in four sub-basins (see Table A1l). For example,
100% of the installed capacity is based on coal in the Damodar and Gandak sub-basin.
As a result, energy-water demand is the highest in the Damodar sub-basin, followed
by the Gandak sub-basin. Energy water demand will decrease in the Chambal and the
Damodar sub-basins and will maintain a similar level in the Yamuna sub-basin; while it
will substantially increase in the Gandak sub-basin. Among four sub-basins, the Damodar
sub-basin has the largest thermal power capacity (17.9 GW). As a result, water demand
for power generation is the highest among the four selected sub-basins. This situation will
continue until 2030. In 2030, the water demand for thermal power generation will be more
than 400 MCM (Figure 5). The Gandak sub-basin has the second-highest water demand for
thermal power generation, and in 2030, the thermal power generation will require nearly
255 MCM of water. In contrast, estimates show that water demand for thermal power
generation will reduce in the Chambal and Yamuna sub-basins by 2030.

500
m2010 = 2020 m2030
400
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Chambal Damodar Gandak Yamuna

Figure 5. Water demand for existing power plants in four sub-river basins.

3.4. Assessment of Water Risks to Future Power Plants

Water supply-demand balance was calculated by subtracting total water demand
(non-energy and energy-related water use, as shown in Table 3 and Figure 5) from the
amount of available water in the future (Figure 4). Water supply-demand balance analysis
revealed that the Chambal and Damodar sub-basins will have surplus water for all the
periods. The estimate shows the amount of water surplus in the Damodar sub-basin will
decrease over time.

In 2010, the surplus water volume in the Damodar sub-basin was 8072 MCM, and the
estimate predicts a reduction by 15% in 2050. Water deficit will become more serious in
both the Yamuna and Gandak sub-basins. In the Yamuna sub-basin, the water deficit will
increase by 86%.

In Figure 6, water risk maps for 2010 showed that only a small part of the Chambal
sub-basin located in the upper part of the area would face high water stress (in red), and
some parts would have moderate water stress (in orange). The majority of the sub-basin
would have a water surplus (in yellow). In the case of the Damodar sub-basin, districts
at the upper catchments would have a water surplus. However, districts at the lower
catchment areas would face moderate to high water risk, and many of the existing power
plants are located in this part of the Damodar sub-basin. It indicates exiting power plants
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might face water shortage for operation. In the case of the Gandak and Yamuna, most of
the districts would have moderate to high water risks.
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Figure 6. Water risks in 2010 (a—d) and the percent changes in the supply-demand ratio in 2050 in
four sub-basins compared with 2010 (e-h).
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Future water risks were assessed based on the percentage change of the supply-
demand ratios for 2050 compared with the levels in the base year (2010) to comprehend
future changes in water availability. The classification of water risks is shown in Table 1.

The results of the changes in the water supply-demand ratios at the sub-basin level
indicate that water risks will reduce in the Chambal and Damodar sub-basins which will
have surplus water in the future. Figure 6 shows that out of 23 districts in the Chambal
sub-basin, climate change will have moderate positive to high positive impacts on reducing
the water risks in 19 districts in 2050. However, four districts, including Bhopal (Ch_03),
Neemuch (Ch_13), Sawai Madhopur (Ch_16), and Shivpuri (Ch_20), will face increasing
water risks. Similarly, water risks will be reduced in the Damodar sub-basin. The number
of districts with moderate positive impacts on reducing the water risks from climate change
will increase to 10 in 2050. The results revealed that water risks for the existing and future
power plants would decrease in the Chambal and Damodar sub-basins. In contrast, the
existing and future power plants in the Yamuna and Gandak sub-basins will face increasing
water risks in the future. Districts that will receive moderate negative impacts will increase
to 19 in 2050. In the Gandak and Yamuna sub-basin, all the existing power plants and
future power plants are located in the districts with increasing water risks. Particularly
in the Gandak sub-basin, there will be a number of planned thermal power installations
whose operations will face severe water risks. Please see Table A2 for the list of districts.

Existing or planned thermal power plants that are located in areas with high water
risks may face serious water shortages, which will impact the stability of their operations.
Districts with moderate to high positive impacts on the water risks from climate change in
the Chambal and Damodar sub-basins can be considered as the appropriate locations for
new electricity generation projects in the future.

4. Conclusions

Given the importance of water resources in the GRB for drinking water supply, en-
ergy generation, irrigation, and maintaining ecosystem services in South Asia, this study
assessed the spatial variability of water resources under different climate change scenarios
and the potential risks to future energy supply, regarding water availability. The study was
conducted for four selected sub-basins. An integrated assessment method was developed,
combining a single climate model (MRI-CGCM3), hydrological model (SWAT), and water
demand projections for both non-energy sectors (domestic sector, agriculture, livestock,
industry, and the environment) and the energy sector (thermal power generation). To
gather primary data on water use intensity, we conducted a survey of thermal power plants
in the four sub-basins and used the survey data to estimate the water demand for power
generation in the four selected areas. The power plant survey results revealed that the
water use intensity in coal thermal power plants varies from 3.3 m3/MWh to 70 m®/MWh,
depending on power generation technologies, cooling technologies, as well as the quality
of coal. An assessment of water availability under RCP 4.5 and RCP 8.5 shows that future
water availability will increase in three sub-basins during the wet season except for the
Yamuna sub-basin under RCP 8.5. Likewise, water demand will also steadily increase in
four sub-basins, dominated by irrigation requirements and followed by domestic use. For
the water demand from energy, of four sub-basins, Gandak will have the highest water
demand for cooling down the coal power plants, followed by Damodar and Yamuna.
The lowest water demand for future energy generation will be in the Chambal sub-basin
as there is no plan to install new thermal power plants, although more water will be
available in Chambal in the future. In the Gandak sub-basin, there will be a number of
planned new thermal power installations in the coming years. However, changes in the
water supply-demand ratio in 2050 relative to 2010 demonstrated that out of 33 districts in
Gandak, 22 districts would face moderate negative impacts from climate change, which
will worsen the water risks for the existing and future power plants. Similarly, thermal
power plants in the Yamuna sub-basin will also face high water risks. These results will
inform development and planning organizations, energy planning organizations, as well
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as investors, with regard to the spatial distribution of water risks for future power plants.
All entities may consider this information to plan the location of future power plants in
the districts with high water availability, thereby mitigating any conflicts with other water
users and minimizing the risks of losing out on revenue related to the forced shutdown,
due to water scarcity.
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Appendix A

Table A1l. List of existing and future thermal power plants in four Sub-basins.

Power Plants in Sub-Basins Fuel Capacity (MW) Teiﬁzlolﬂ) ggy Og::::n
Chambal
Kota Super Thermal Power Station Coal 1240 Wet-closed loop Operational
Chhabra Thermal Power Plant Coal 2320 Wet-closed loop Operational
Anta Thermal Power Plant Gas 419 Wet-closed loop Operational
Damodar
Koderma Thermal Power Station Coal 1000 Wet-closed loop Operational
Patratu Thermal Power Station I Coal 880 Wet-closed loop Operational
Patratu Thermal Power Station II Coal 4000 Wet-closed loop Planned
Bokaro B Thermal Power Station Coal 500 Wet-closed loop Planned
Tenughat Thermal Power Station Coal 420 Wet-opened loop Operational
Mejia Thermal Power Station Coal 2340 Wet-closed loop Operational
Kolaghat Thermal Power Station Coal 1260 Wet-closed loop Operational
Durgapur Steel Thermal Power Station Coal 1000 Wet-closed loop Operational
Santaldih Thermal Power Station Coal 500 Wet-closed loop Operational
Chandwa Power Project Phase I Coal 1080 Wet-closed loop Construction
Tori power plant Unit 1 Coal 1800 Wet-closed loop Construction
Raghunathpur Thermal Power Station phase I Coal 1200 Wet-closed loop Construction
Gola power station Unit I and II Coal 126 Wet-closed loop Operational
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Table A1. Cont.

. . . Coolin Operation
Power Plants in Sub-Basins Fuel Capacity (MW) 8 P
Technology Status
Gandak
Kahalgaon Super Thermal Power Station Coal 2340 Wet-closed loop Operational
Nabinagar Super Thermal Power Project Coal 1980 Wet-closed loop Construction
Kanti Thermal Power Station Coal 610 Wet-closed loop Operational
Banka Power Project Stage I (Unit 1 and 2) Coal 2320 Wet-closed loop Construction
Barh I power station Coal 1980 Wet-closed loop Construction
Barauni power station Unit 8 Coal 250 Wet-closed loop Operational
Yamuna
IPGCL-Gas Turbine Power Station Gas 270 Wet-opened loop Operational
NTPC- Faridabad Thermal Power Plant Gas 430 Wet-closed loop Operational
Panipat Thermal Power Station I and II Coal 1360 Wet-closed loop Operational
Panipat Thermal Power Station I and II Unit 9 Coal 800 Wet-closed loop Planned
Dholpur Thermal Power Station Gas 330 Wet-closed loop Operational
Table A2. Name of districts in four sub-basins with district code.
Chambal Damodar Gandak Yamuna
D(I;t;l:t ?\}:tr::t Dézt;l:t District Name D(I;t;]:t District Name D(I;t;]:t District Dclitél:t District
Ch_01 Baran Da_01 Bankura Gd_01 Aurangabad Ya_01 Agra
Ch_02 Bhilwara Da_02 Barddhaman Gd_02 Banka Ya_02 Aligarh Ya_34 Shimla
Ch_03 Bhopal Da_03 Bokaro Gd_03 Begusarai Ya_03 Alwar Ya_35 Sirmaur
Ch_04 Bundi Da_04 Chatra Gd_04 Bhagalpur Ya_04 Auraiya Ya_36 Solan
Ch_05 Chittaurgarh Da_05 Deoghar Gd_05 Chatra Ya_05 Baghpat Ya_37 Sonepat
Ch_06 Dewas Da_06 Dhanbad Gd_06 Deoghar Ya_06 Bharatpur Ya_38 Tehri Garhwal
Ch_07 Dhar Da_07 East Midnapore Gd_07 Dumka Ya_07 Bulandshahr Ya_39 Uttarkashi
Ch_08 Guna Da_08 Giridih Gd_08 Gaya Ya_08 Dausa Ya_40 Yamuna Nagar
Ch_09 Indore Da_09 Haora Gd_09 Giridih Ya_09 Dehra Dun
Ch_10 Jhalawar Da_10 Hazaribag Gd_10 Godda Ya_10 Delhi
Ch_11 Kota Da_11 Hugli Gd_11 Gopalganj Ya_11 Dhaulpur
Ch_12 Mandsaur Da_12 Jamtara Gd_12 Hazaribag Ya_12 Etawah
Ch_13 Neemuch Da_13 Koderma Gd_13 Jamui Ya_13 Faridabad
Ch_14 Rajgarh Da_14 Latehar Gd_14 Jehanabad Ya_14 Firozabad
Ch_15 Ratlam Da_15 Lohardaga Gd_15 Khagaria Ya_15 Gautiln;;;ddha
Sawai Purba . .
Ch_16 Madhopur Da_16 Singhbhum Gd_16 Kushinagar Ya_16 Ghaziabad
Ch_17 Sehore Da_17 Puruliya Gd_17 Koderma Ya_17 Gurgaon
Ch_18 Shajapur Da_18 Ranchi Gd_18 Lakhisarai Ya_18 Haridwar
Saraikela Lo .
Ch_19 Sheopur Da_19 Kharsawan Gd_19 Mabharajganj Ya_19 Jaipur
Ch_20 Shivpuri Da_20 West Midnapore Gd_20 Munger Ya_20 Jhajjar
Ch_21 Tonk Gd_21 Muzaffarpur Ya_21 Jind
Ch_22 Ujjain Gd_22 Nalanda Ya_22 Karauli
Ch_23 Vidisha Gd_23 Nawada Ya_23 Karnal
Gd_24 Palamu Ya_24 Kinnaur
Gd_25 Pashchim Ya_25 Kurukshetra
Champaran
Mahamaya Ngar
Gd_26 Patna Ya_26 (Hathras)
Gd_27 Purba Ya_27 Mathura
Champaran
Gd_28 Sahibganj Ya_28 Meerut
Gd_29 Samastipur Ya_29 Muzaffarnagar
Gd_30 Saran Ya_30 Panipat
Gd_31 Sheikhpura Ya_31 Rohtak
Gd_32 Siwan Ya_32 Saharanpur
Gd_33 Vaishali Ya_33 Sawai Madhopur
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Abstract: Ecosystem service research is essential to identify the contribution of the ecosystem to
human welfare. As an important ecological barrier zone, the Qinghai-Tibet Plateau (QTP) supports
the use of a crucial wind erosion prevention service (WEPS) to improve the ecological environment
quality. This study simulated the spatiotemporal patterns of the WEPS based on the Revised Wind
Erosion Equation (RWEQ) and its driving factors. From 2000 to 2015, the total WEPS provided in
the QTP ranged from 1.75 x 10° kg to 2.52 x 10° kg, showing an increasing and then decreasing
trend. The average WEPS service per unit area was between 0.72 kg m~2 and 1.06 kg m~2. The
high-value areas were concentrated in the northwest and north of the QTP, and the total WEPS in
different areas varied significantly from year to year. The average retention rate of the WEPS in the
QTP was estimated to be 57.24-62.10%, and high-value areas were mainly located in the southeast of
the QTP. The total monetary value of the WEPS in the QTP was calculated to be between 223.56 x 10°
CNY and 321.73 x 10° CNY, and the average WEPS per unit area was between 0.08 CNY m—2
and 0.13 CNY m~2, showing a declining-rising—declining trend. The high-value areas gradually
expanded to the west and east of the QTP. The slope was the most important factor controlling the
spatial differentiation of the WEPS, followed by the landform type, average annual precipitation, and
average annual wind speed, and human activities such as land-use change could improve the WEPS
by returning farmland to grassland and desertification control in the QTP.

Keywords: wind erosion prevention service; revised wind erosion equation; geo-detector

1. Introduction

The Qinghai-Tibet Plateau (QTP) is the most unique geographical unit in the world
because of its high altitude and mountainous landforms. The QTP is considered an impor-
tant ecological barrier in south-western China, as it supports various ecosystem services
in the region and in neighboring countries [1,2]. Among these ecosystem services, wind
erosion prevention service (WEPS) is very important because of the extreme climate and
low vegetation coverage in most parts of the plateau [3-7]. The average wind erosion rate
for the plateau as a whole reached the medium erosion standard in 2001 [8], and the area of
desertification in the QTP accounted for 15.1% of the total region in 2015 [9]. Therefore, it is
critical to assess the regional WEPS and analyze the influencing factors in order to forecast
wind erosion and provide a scientific basis for desertification control [10].

The WEPS can be estimated by the difference between potential and actual sand
erosion by ecosystems. Several models have been adopted to simulate sand erosion by
ecosystems, including the sediment transport equation [11], the wind erosion equation
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(WEQ) [12], the Texas erosion analysis model (TEAM) [13], the description model [14], the
revised wind erosion equation (RWEQ) [15], the wind erosion prediction system [16], and
the wind erosion stochastic simulator (WESS) [17]. Among these models, the RWEQ model
is most commonly used for sand erosion simulations in the QTP. For example, Jiang [18]
used the RWEQ model to evaluated wind erosion modules in Qinghai and showed that
the total area of wind erosion in Qinghai Province accounts for more than half of the
regional area, and the level of wind erosion damage in the Qaidam Basin is relatively
serious. Huang [19] analyzed the WEPS of ecosystems in the Tibet Plateau from 1990 to
2010 by RWEQ, showing that the annual average soil wind erosion modulus, the average
sand fixation service quantity, and the retention rate of the average annual WEPS in the
Tibet Plateau were 1.58 kg m?, 18.99 x 108 t, and 66.5%, respectively. Teng [10] adopted the
RWEQ model to simulate the WEPS of the QTP from 2000 to 2015. However, studies on
WEPS in this area have been limited, with most studies only involving local areas [20,21].
Accordingly, few studies have comprehensively described the WEPS and its dynamic
characteristics over the whole QTP. As the terrain of the QTP is complex, the spatial pattern
of sand erosion and WEPS may differ significantly between the east and west parts [9].
Few studies have examined wind erosion throughout the QTP or investigated the changes
among different areas and ecosystems.

In recent years, many scholars have used multi-source data and methods such as
the linear correlation model, multiple regression model, structural equation model, and
constraint effect to investigate the factors (vegetation coverage, wind speed, precipitation,
animal husbandry development, land use, etc.) driving the WEPS [10,22-27]. Latocha et al.
showed that changes in land use have affected soil erosion to a larger extent than climate
change in the Sudetes Mts. within the last 150 years [28]. Garbrecht et al. showed that
warmer temperatures and reduced rainfall could exacerbate soil wind erosion in farmland
areas in the southern Great Plains [29]. Li argued that the increase in the afforestation
area is the main factor driving the improvement of WEPS in Inner Mongolia [30]. Sharratt
showed that increase in the crop yield in the Colombian Plateau could reduce damage from
soil wind erosion [31]. Few studies have conducted a driving factor analysis of the WEPS
in the QTP. Teng [10] simulated the influences of climate changes and human activities on
sand erosion and the WEPS in the QTP from 2000 to 2015 through comparative analysis of
spatiotemporal dynamics. The above studies have helped us to understand the driving
mechanism responsible for the spatial distribution pattern of WEPS, but there are still gaps
in our knowledge on the interaction of different driving factors.

The geographic detector is a spatial statistical method based on spatial differentiation
that is used to reveal the driving mechanism of a variable [32]. The geographic detector
can analyze the interaction between two independent variables and determine the specific
effect type while detecting the influences of variables with attributes of different types and
values on the spatial distribution of the dependent variable. At present, the geographic
detector is widely used in the analysis of the change process of spatial patterns in many
fields such as meteorology, environmental pollution, ecology, human health, and regional
planning [33-39]. Few studies have adopted the geographic detector to analyze the driving
factors related to the WEPS. Zhang [40] conducted an exploratory study on the factors
driving changes in the WEPS in Xilingol League using the geographic detector, and proved
that the application of the geo-detector analysis on the WEPS is rational and scientific. The
application of geographic detectors to analyze the factors driving changes in the spatial
pattern of WEPS can account for the influences of type variables and numerical variables
on service changes, analyze the interactions between various factors, and make up for the
lack of analysis of factors driving the spatial distribution of the WEPS.

Therefore, this study adopted the RWEQ model to simulate the WEPS in the QTP from
2000 to 2015, estimated its monetary value using the restoration cost method, evaluated
the differences in the material and monetary value of the WEPS among different cities and
ecosystems, and analyzed the contributions and interactions of natural and human factors
in the formation and evolution of the spatial pattern of the WEPS. This study can be used
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to improve the understanding of the spatial patterns of the WEPS in the QTP and provides
crucial knowledge that can be used to make decisions about ecological restoration and
protection to improve the WEPS in different ecosystems.

2. Methodology and Data
2.1. Study Area

The QTP is located in southwestern China, and involves five provinces (autonomous
regions): Qinghai, Tibet, Sichuan, Xinjiang, Gansu, and Yunnan (Figure 1). In the western
part of the QTP is the Pamir Plateau and the Karakoram Mountains, bordering Tajikistan
and Pakistan, and in the southern part there are the Himalayas, bordering Nepal, Bhutan,
and other countries. The QTP has an average elevation of more than 4000 m. The highest al-
titude is found on Mount Everest, 8844.43 m, whereas the Jinsha River is only 1503 m above
sea level. The special geographical location of the QTP means that it has a unique plateau
climate with a cold, hypoxic, and arid climate with strong radiation. The temperature is
15-20 °C lower than that of other areas at the same latitude. The complex terrain in this area
also causes the climate to vary. The temperature decreases from southeast to northwest,
and the average annual temperature can reach below —6 °C. Due to the blocking effect
of the multiple high mountains, the annual precipitation decreases from south to north,
and the annual precipitation is less than 50 mm. The total annual solar radiation on the
QTP can be as high as 5400-7900 MJ-m~2-year~!, and the total annual sunshine hours are
2500-3200 h.
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Figure 1. Location of the Qinghai-Tibet Plateau (QTP) and the land cover map from 2000 to 2015.
2.2. Method and Data
2.2.1. Calculation of WEPS

The WEPS represents the reduction of wind erosion caused by vegetation and is
calculated as the difference between the potential wind erosion under bare soil conditions
and the actual wind erosion under vegetation conditions. The potential and actual wind
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erosion are calculated with the RWEQ model [15,41]. The actual wind erosion is the level
of soil erosion under the condition of vegetation coverage in a real scenario, whereas
the potential wind erosion is the level of soil erosion under bare land conditions without
vegetation. The WEPS was calculated as follows:

2 :
SL= é X Qmax X e_(E)Z )
S
Qmax = 109.8 x (WF X EF x SCF x K/ X C) (2)
s = 109.8 x (WF % EE x SCF x K x C) —-0.3711 (3)
2 z\2
SLR = Sizz X Qrmax X 67(5) @)
r
Qrmax = 109.8 x (WF x EF x SCF x K') 5)
s = 109.8 x (WF x EF x SCF x K’)‘O-3711 ©
G=SLR-SL @)

where SLR represents the potential wind erosion (kg m2); Qrmax represents the maximum
potential sediment transport capacity (kg m~1); S, represents the potential critical plot
length (m); SL represents the actual wind erosion (kg m2); Quax represents the maximum
sediment transport capacity (kg m~1); S represents the critical plot length (m); G represents
the WEPS (kg m~2); z represents the calculated downwind distance (m); and WF, EF, SCF,
K’, and C correspond to the factors of weather (kg m~!), the soil erodibility fraction (%),
soil crust factor (dimensionless), the soil roughness factor (dimensionless), and vegetation
(dimensionless), respectively. The WF was calculated as follows:

WF:fongWxSD 8)

Wf = Uy X (MZ — 1/[1)2 X Nd (9)

where Wf is the wind factor (m3 s~!); ¢ represents the gravitational acceleration (m? s~ 1);
p represents the air density (kg m~3); SW is the soil moisture factor (dimensionless); and
SD represents the snow cover factor (dimensionless), which is the ratio of days with no
snow cover to the total number of days studied. A snow cover depth less than 25.4 mm
indicates no snow cover. The expression u; represents the threshold wind velocity at a
height of 2 m (m s~1). The threshold wind velocity for sand lands and sandy grasslands is
5m s~ !; up represents the monthly average wind velocity at a height of 2 m (m s~1); and
N, represents the number of days with a monthly average wind velocity that exceeds the
threshold wind velocity.

In this study, EF and SCF were assumed to be unchanged over time and were calculated
using the soil raster data that were converted from a 1:1,000,000 soil data shapefile provided
by the Harmonized World Soil Database (HWSD) developed by the International Institute
for Applied System Analysis (IIASA) of the FAO. For the calculation, the classification
criteria for soil texture taken from international data in the database were converted to
American criteria to meet the factor calculation requirements by using the logistic growth
model proposed by Skaggs et al. [42]. The values of EF and SCF were calculated as follows:

EF =29.09 +0.31 x Sa+0.17 x S5i +0.33 x % —2.59 x OM —0.95 x CaCOs3 (10)

1
~ 1+0.0066 x cI2 4+ 0.021 x OM?

where Sa, Si, Cl, OM, and CaCOj3 represent the content of sand, silt, clay, organic matter,
and calcium carbonate (%), respectively.

SCF (11)
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The value of K’ was calculated with the following equation:
K' = cosa (12)

where « represents the slope gradient and was calculated by a digital elevation model
(DEM) in ArcGIS. The value of C was computed as follows:

C = e—0.0483><5C (13)

_ NDVI—NDVl,,,
" NDVlIpax — NDVIn

where SC represents the vegetation coverage (%); ND VI, represents the normalized dif-
ference vegetation index (NDVI) value of a highly vegetated grid; and NDVI,;,, represents
the NDVI value of a bare land grid. The values of NDVI,;, and NDVI,,;,, correspond to the
NDVI values at cumulative frequencies of 95% and 5%, respectively.

sC (14)

2.2.2. Calculation of Retention Rate of WEPS

The retention rate of WEPS more accurately quantified the contribution of ecosystems
on WEPS and avoided the impact of climatic factors on WEPS. The retention rate of WEPS

was computed as follows:

G
F=3sr (15
where F is the WEPS retention rate.

2.2.3. Calculation of the WEPS Monetary Value

The monetary value of the WEPS can be measured as the cost required to restore sandy
land. It was calculated with the following formula:

st:—xc (16)

where V¢ is the WEPS value in CNY (CNY is the Chinese Currency); p is the soil bulk density
(g cm~3), which was 1.25 g cm 3 [43]; h is the thickness of the soil, which was calculated as
0.71 m [43]; and c is the average cost of the sand control project (CNY m~2), based on the
costs of afforestation and grass grid desertification control in The QTP (1.135 CNY m~2).

2.2.4. Geographical Detector

The geographical detector (geo-detector) was mainly used to analyze correlations of
the WEPS with the five selected impact factors and multiple impact factor interactions. This
is because the geo-detector g values have clear physical meaning with no assumption of
linearity, allowing us to objectively show that the dependent variable explains 100 x g%
of the difference [44]. This study applied factor detectors and interaction detectors in
geo-detectors to analyze the correlations between the WEPS and selected impact factors
more comprehensively. The formula used to calculate for the value of g4 was

L
= = Y Nui? (17)
h=1

where h =1, ..., L is the stratification of variable Y or factor X, that is, the classification or
partition; N, and N are the number of units in the layer and the whole area, respectively;
5,2 and 62 are the variance of Y with in the layer and in the whole area, respectively; and
SSW and SST are sum of the variances within the layer and the total variance of the whole
area, respectively.
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Risk area detection was used to judge whether there was a significant difference in
the average WEPS between the sub-areas of two influencing factors. This was tested using
the statistic

Y11:1 - ?hzz
t = — =2 (18)
Var(Yhzl) Var(Yhzz)
Mp=1 Mp=2

where Y}, is the average WEPS of the sub-areas h, 1y, is the number of samples in the
sub-areas (h), and Var represents the variance.

Ecological detection was used to evaluate whether the influences of two influencing
factors, X1 and X2, on the spatial differentiation of the windbreak and sand fixation were
significant. This was done using the F statistic:

_ Nxi(Nxz —1)SSWx1  Nxi(Nxz — 1) TpL, Nyo?

_ _ 19
Nx2(Nx1 —1)SSWx2  Nx»(Nx1 — 1) Tf24 Nyo? )

where Nx1 and Nx; are the sample numbers of impact factors X1 and X2, respectively;
SSWyx1 and SSWx, represent the sum of the variance within the layers corresponding to the
impact factor stratification; and L; and L, represent the number of layers in impact factors
X1 and X2.

Interactions occur between different factors. To evaluate whether the explanatory
power of the dependent variable increases when the influencing factors work together, it
was necessary to select the dominant factors. Interaction detection can identify interactions
between different influencing factors, as showed by the following table (Table 1, Figure 2).
Achievement of the geographic detector was operated with geo-detector software (http:
/ /geo-detector.cn/, accessed on 15 January 2022). The data needed to be separated and
decentralized for the calculation due to their different spatial dimensions. ArcGIS software
was used to extract the values of different data.

Table 1. Detecting factor indicators and class break values.

Class Break Value

Factor
2 3 4 5 6 7 8 9 10 11 12 13 14
Y 0.67 2.24 4.26 7.95 28.56

X1 PL PLA H SRM MRM BRM EBRM - - - - - - -
X2 Ls SLs Cs Drs Des Ps Sas Wis Ses Ms As Fa Ur Os
X3 2.06 4.5 7.13 9.76 12.58 15.58 18.76 22.34 27.03 47.68 - - - -
X4 0.1 0.17 0.24 0.33 0.43 0.53 0.62 0.7 0.77 0.91 -
X5 2126.31  3506.49 452347 5685.72 684798 8010.24 9390.42 11,279.09 13,894.16 18,979.04 -
X6 —0.95 0.68 2.01 3.34 4.67 6.07 7.77 9.54 11.24 14.57 - - - -
X7 0.64 1.07 1.41 1.70 2.00 2.33 2.64 2.94 3.31 5.04 - - - -
X8 2050 2624 3110 3597 4038 4426 4761 5074 5458 8313 - - - -
X9 1.00 2.00 3.00 4.00 >5.00 - - - - - - - - -
X10 1.00 2.00 3.00 4.00 >5.00 - - - - - - - - -

Y: grade of average WEPS (g km~2), X1: landform types (PL: plains, PLF: platforms, H: hills, SRM: small
rolling mountains, MRM: medium rolling mountains, BRM: big rolling mountains, EBRM: extremely big rolling
mountains); X2: soil type (Ls: leaching soil, SLs: semi leaching soil, Cs: calcareous soil, Drs: dry soil, Des: desert
soil, Ps: primary soil, Sas: semi-aqueous soil, Wfs: water-forming soil, Ses: saline earth, Ms: man-made soil,
As: alpine soil, Fa: ferro-alumina, Ur: urban area, Os: other soil); X3: slope (°); X4: average annual NDVI, X5:
average annual precipitation (mm), X6: average annual temperature (°C); X7: average annual wind speed (m-s~!);
X8: DEM (m); X9: average annual GDP (10* CNY km™—2); X10: population density (human km~2).
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Figure 2. Diagram of the geographical detector principles and interaction types [32,40] M: the study
area; G1, G2, G3: the dependent variables used for detection (average WEPS from 2000 to 2015 as Y
factor); C1, C2, C3, C4: sub-areas of impact factor C; D1, D2, D3, D4: sub-areas of impact factor D;
q: explanatory power of the impact factors on the WEPS.

Changes in the WEPS are simultaneously affected by natural factors such as climate,
soil, and vegetation types, as well as by human activities such as grazing withdrawal
and grazing prohibition (see previous research [39,40]). In this study, eight natural factors
and two socioeconomic factors were selected as detection factors and used to analyze the
factors driving change in the average annual WEPS in the QTP from 2000 to 2015 (Table 1).
Based on data types and operability, the landform types and soil types of the QTP were
divided into 7 and 14 categories, respectively. The numerical variables were classified by
the natural discontinuity method in ArcGIS. For example, the population density and GDP
per unit area were divided into 5 categories, and the remaining variables were divided into
10 categories (Table 1).

2.2.5. Data Source

Meteorological datasets, including data on the daily temperature, precipitation, wind
speed, and solar radiation data from 2000 to 2015, were acquired from meteorological
stations. Snow cover data with a 25-km resolution were obtained from a long-term snow
depth dataset [45], which was accessed from the Cold and Arid Region Science Data Center
(http:/ /westdc.westgis.ac.cn, accessed on 15 January 2022). NDVI values (spatial resolution
500 m) were derived from the international scientific data mirror website of the computer
network information center of the Chinese Academy of Sciences (http://www.gscloud.cn,
accessed on 15 January 2022). The DEM data (spatial resolution 30 m), GDP data (spatial
resolution 1 km), 1:1,000,000 landform data, and land cover data (spatial resolution 1 km)
were derived from the Resource and Environment Data Cloud Platform of the Chinese
Academy of Sciences (CAS) (http:/ /www.resdc.cn, accessed on 15 January 2022). The
1:1,000,000 soil data shapefile was provided by the Harmonized World Soil Database
(HWSD) developed by the International Institute for Applied System Analysis (ILASA)
of FAO. During the calculation, the international soil texture classification criteria in the
database were converted to American criteria to meet the factor calculation requirements
by using the logistic growth model proposed by Skaggs [42]. The 1:4 million calcium
carbonate content data were accessed from the Data Sharing Infrastructure of Earth System
Science (http:/ /www.geodata.cn, accessed on 15 January 2022). All of the above data were
resampled to a 1 km spatial resolution.
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3. Results
3.1. WEPS and Its Monetary Value in the QTP

From 2000 to 2015, the total SLR (potential wind erosion) in the QTP was computed
to range from 56.36 x 108 t to 68.13 x 108 t. There was an increase of 5.67 x 10% t, and a
trend of “rising—declining—declining” was shown. The SLR per unit area was calculated
to be from 0 to 60.86 kg m~2, and the average SLR per unit area was estimated to be from
2.40 kg m~2 to 2.95 kg m~2 (Figure 2). The SLR per unit area was higher in the western
and northern parts, whereas it was lower in the southeastern parts. This shows that the
western and northern areas of the QTP, which contain desert areas, are more threatened by
wind erosion.

The total SL (actual wind erosion) in the QTP was calculated to be from 38.55 x 108 t
to 43.39 x 10® t during the year (Figure 3). Compared to 2000, the total SL was 0.65 x 108 t
lower in 2015. The SL per unit area was the highest in 2005, reaching 60.83 kg m~2, and a
continuous decline occurred from 2005 to 2015. The average SL per unit area was estimated
to be 1.67 kg m~2,1.90 kg m 2, 1.75 kg m 2, and 1.65 kg m 2 in 2000, 2005, 2010, and 2015,
decreasing by 0.02 kg m~2. The SL per unit area was higher in the northern and western
parts and lower in the eastern and southern parts. This shows that strong wind erosion
occurred in the northern and western areas of the QTP. In addition, when comparing the SL
and SLR in the western area, it can be seen that the vegetation cover significantly reduced
the occurrence of wind erosion (Figures 1 and 3).

2005 2010 ‘ 2015 A

2005 2010 . 2015

0 500 1,000 km
L1 |

Figure 3. The amount of WEPS, SLR, SL, and F per unit area of the QTP from 2000 to 2015.

The total WEPS in the QTP was computed as 17.48 x 10 t in 2000 and 25.15 x 10° t
in 2015, and the total monetary value was estimated to be 22.36 x 108 CNY in 2000 and
30.52 x 108 CNY in 2015. The WEPS decreased by 6.39 x 108 t in 2015 compared with the
value in 2000, and its monetary value was reduced by 8.17 x 10 CNY. The WEPS per unit
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area was calculated to range from 0 to 38.40 kg m~2 in 2000 to 2015 (Figure 2), and the
average WEPS per unit area was estimated to be from 0.09 kg m~2 to 0.13 kg m 2. The
WEPS per unit area was higher in the central and southwestern parts of the QTP, where
grassland is the main land type, whereas it was found to be lower in the northern parts
(Figures 1 and 3). It can be speculated that the grassland distribution area played a major
role in preventing wind erosion in the QTP.

The average F value (retention rate of WEPS) in the QTP was between 57.24% and
62.10% from 2000 to 2015 (similar to that found in previous research [10]), showing an
increasing trend. The F value was calculated to range from 0 to 99.94%. Different from
the inter-annual variation in the WEPS, potential wind erosion, and actual wind erosion
values, the retention rate of the WEPS in the QTP was highest in 2015 and lowest in 2000.
Areas with higher WEPS retention rate were mainly located in the southeast where there is
better vegetation coverage (Figure 1). A relatively obvious geographical distribution from
northwest to southeast was shown.

3.2. WEPS and Its Monetary Value of Different Province and Cities in the QTP

Among the provinces in the QTP, Qinghai and the Tibet Autonomous Region were
found to account for more than 90% of the WEPS. The total WEPS in Tibet showed the
highest value, reaching 16.15 x 108 t in 2005, and its monetary value was calculated as
20.66 x 108 CNY. This was followed by Qinghai Province and Yunnan Province.

From 2000 to 2015, there were significant differences in the WEPS. The total WEPS in
Xinjiang showed a gradual increasing trend over time, and the other four provinces showed
a trend of “rising-declining”. The Tibet Autonomous Region and Yunnan Province reached
the highest total WEPS values in 2005, whereas in 2010, the maximum values occurred
in Qinghai and Sichuan (Figure 4). The total WEPS in all provinces increased from 2000
to 2015, with Qinghai Province showing the largest increase of 3.55 x 108 t, followed by
the Tibet Autonomous Region. It can be concluded that Tibet and Qinghai have greater
WEPS concentrations.

In 2000, 2010, and 2015, the average WEPS per unit area was the highest for Qinghai
province with values of 0.89 kg m~2, 1.52 kg m 2, and 1.42 kg m 2, whereas in 2005, the
Tibet Autonomous Region had the highest average WEPS per unit area, and the Yunnan
province had the lowest values. From 2000 to 2015, the average WEPS per unit area in
Sichuan province showed a gradual increasing trend over time, and that in Yunnan showed
a trend of “rising-declining-rising”. The other three provinces showed a trend of “rising-
declining”. However, the average WEPS per unit area increased for all provinces, with that
in Qinghai increasing the most at 0.52 kg m 2, followed by Xinjiang with 0.30 kg m~2.

Among the 37 cities in the QTP, Nagqu was shown to have the highest total WEPS,
accounting for 25-33% of the total. In 2015, its total WEPS amounted to 6.17 x 108 t. This
was followed by Haixi, accounting for 16-22%. From 2010 to 2015, all cities showed a trend
of “rising—declining”. Compared with 2000, the total WEPS decreased in Shannan, Shigatse,
Haibei, and Zhangye in 2015. Shigatse decreased by 0.54 x 10® t. Zhangye decreased the
least, by only 0.06 x 108 t. The largest increase in the WEPS occurred in Haixi, where
there was an increase of 1.91 x 108 t, followed by Naqu and Yushu, which increased by
0.19 x 108 tand 0.17 x 10® t, respectively.

In 2000, the average WEPS per unit area was the highest for Hainan Region at
1.33 kg m 2, whereas during 2005 and 2015, Naqu reached the highest average WEPS
per unit area with a range from 1.82 to 2.43 Guangyuan city had the lowest WEPS per
unit area. From 2000 to 2015, the average WEPS per unit area in cities such as Mianyang,
Ganzi, Ya’an, Yushu, Chengdu, Deyang, and Guangyuan showed a gradual increasing
trend over time. In Shannan, Shigatse, Haibei, and Zhangye there was a volatile decreasing
trend, whereas in other cities, a volatile growing trend was shown. Compared with 2000,
the average WEPS per unit area in Yushu increased the most (0.71 kg m~2), followed by
Haixi with 0.64 kg m~2. The average WEPS per unit area decreased the most in Shigatse
(by 0.32 kg m~2). Overall, the WEPS in most of the cities in the QTP improved.
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Figure 4. The WEPS in different provinces (a,b) and cities (c,d) in the QTP from 2000 to 2015.
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3.3. WEPS and Its Monetary Value of Different Ecosystems in the QTP

Among the different types of ecosystems in the QTP, the grassland ecosystem has
the highest WEPS, accounting for more than 68% of the total. The WEPS of the grassland
ecosystem was estimated to range from 12.7 x 108 t to 18.29 x 108 t from 2010 to 2015.
The monetary value was calculated to be from 16.24 x 108 CNY to 23.39 x 108 CNY. The
settlement ecosystem had the lowest WEPS. In 2015, the average WEPS per unit area was
the highest for the grassland ecosystem, 8.06 kg m~2, followed by the settlement ecosystem,
and the value for the forest ecosystem was the lowest. From 2000 to 2015, the total WPES in
all ecosystems showed an increasing trend, among which the forest ecosystem increased
the most, reaching 3.61 x 108 t, followed by the desert ecosystem (Figure 5).
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Figure 5. The total (a) and average (b) WEPS of different ecosystems in the QTP from 2000 to 2015.

3.4. Change of Spatial Pattern of WEPS in the QTP

From 2000 to 2015, the change in SLR per unit area in the QTP ranged from —27.74 kg m 2
to 15.29 kg m 2, with an average change of 0.24 kg m 2. An increase in SLR per unit area
mainly occurred in the western areas of northeastern QTP, on the eastern edge, and in the
central and northern parts of the area. Both the central and western parts showed a down-
ward trend, especially the western part. The change in SL per unit area in the QTP ranged
from —27.04 kg m~2 to 13.03 kg m~2, with an average change of 0.02 kg m~2. An increase
in SL per unit area mainly occurred in northeastern QTP, on the eastern edge, and in the
central and northern parts. Both the central and western parts showed a downward trend.

The change in WEPS per unit area in the QTP ranged from —14.85 kg m 2 t0 20.40 kg m 2,
with an average change of 0.26 kg m~2. Increases in the WEPS per unit area mainly occurred
in the western part of northeastern QTP, on the eastern edge, and in the central and northern
parts. Both the central and western parts showed a downward tren