

FUNDAMENTALS OF ULTRAFILTRATION FRANS KNOPS

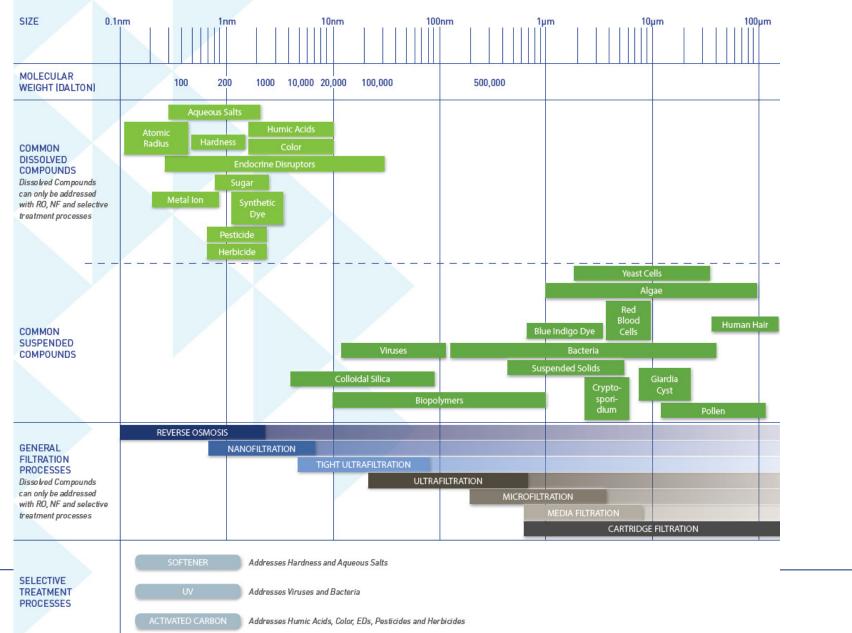
CONTENTS

- 1) INTRODUCTION
- 2) ULTRAFILTRATION
- 3) MEMBRANE FOULING AND CLEANING
- 4) COMPONENTS OF AN UF PLANT
- 5) DESIGNING AN UF SYSTEM
- 6) NEW DEVELOPMENTS
- 7) CASE STUDY COMPARISON MEDIA FILTERS AND UF
- 8) TYPICAL APPLICATIONS OF UF IN WATER AND WASTE WATER
- 9) EXAMPLES OF POTABLE WATER UF PLANTS
- 10) QUESTIONS?

INTRODUCTION (1)

WHAT IS A MEMBRANE?

- A membrane is a selective physical barrier used to separate a stream (gases or liquids and slurries) into its components based on their permeability through the barrier.


COMMON MEMBRANES PROCESSES FOR WATER TREATMENT:

- Microfiltration (MF)
- Ultrafiltration (UF)
- Nanofiltration (NF)
- Reverse Osmosis (RO)

OTHER MEMBRANE PROCESSES:

- Pervaporisation
- Membrane distillation
- Diffusion Dialysis
- Ion-exchange membranes
- Hybrid membranes

INTRODUCTION (2)

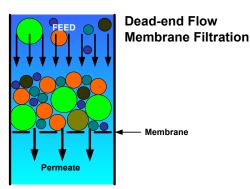
4

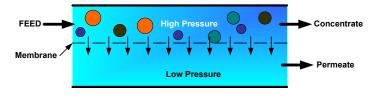
INTRODUCTION (3)

CLASSIFICATION OF MF, UF, NF AND RO:

	MF	UF	NF	RO
Pore size range (microns)	0.1 to 1	0.01 to 0.1	0.001 to 0.01	-
Typical operating pressure (bar)	0.1 to 1.0	0.1 to 2.0	5 to 30	5 to 60
Solutes removed	 Particles Bacteria Large microorganisms (yeast, algae) 	 Colloids Bacteria Viruses Partial removal of colour Large proteins 	 Polyvalent ions Colour Hardness EDCs Small proteins 	Monovalent and polyvalent ionsEDCs
Classification	• Pore size	• Pore size • MWCO	Pressure ratingMWCO	• Pressure rating
Common applications	 Gardia/Crytosporidium removal Clarification MBR Beer filtration RO pre-treatment 	 RO pre-treatment Drinking water production Clarification MBR Protein removal 	SofteningSilica removalMetal recovery	 Desalination Boiler feed water production Effluent reuse Ultrapure water production

INTRODUCTION (4)


	MF	UF	NF	RO
Bacteria removal	Up to Log 4	Up to Log 6	> Log 3	> Log 3
Viruses removal	Up to Log 1	Up to Log 4	> Log 3	> Log 3
Typical filtration mode	• Dead-end	• Dead-end • Bleed	• Cross-flow	• Cross-flow


NOTES:

- EDCS: ENDOCRINE DISRUPTING CHEMICALS
- MWCO: MOLECULAR WEIGHT CUT-OFF
- MBR: MEMBRANE BIOREACTORS
- REMOVAL: VERIFIABLE REMOVAL EITHER BY INTEGRITY TEST (MF AND UF) OR BY CONDUCTIVITY / SULPHATE REDUCTION (NF AND RO)

INTRODUCTION (5)

DEAD-END VS CROSS-FLOW FILTRATION

Crossflow Membrane Filtration

	Dead-end	Cross-flow
Recovery	High (90 – 95%)	Low to moderate (40 – 80%)
Risk of fouling	High	Low
Energy requirements	Low (< 0.1 kW hr / m3)	High (0.5 – 4 kW hr / m3)
Feed pump capacity	Low (105% of permeate)	High (125 – 200% of permeate flow)
Susceptibility to feed quality fluctuations	High	Lower
Continuous operation	Discontinuous (BW + CEB)	Continuous (CIP)

ULTRAFILTRATION (1)

MEMBRANE ELEMENT TYPES:

- Pressurised vs Submerged
- Pressurised UF
 - Pentair X-Flow
 Legacy Norit
 - Evoqua Memcor
 Legacy Siemens
 - Dow/Omexell
 - Asahi/Pall
 - Toray
 - Inge
- Submerged UF
 - GE Zenon
 - Evoqua Memcor

ULTRAFILTRATION (2)

Company				Membrane					Module							Configur	ation	
	P	olymer	Rating	мисо	Pore size	id	od	Designation ^{*1}	Diamet	er	Length		Fibre le	ngth	Surf Area		PDv, PDh or SUB	In or
		Hydrophil	UF/MF	kda	Micron	mm	mm		mm	inch	mm	inch	mm	inch	m ²	ft ²	orsub	Out
Aquasource	CA	1	UF	35-100	0.01	0.93		DN 450	450	18	1320	52	1200	47	125	1345	PDv	In
Aquasource	PS	1	UF	35-100	0.01	1											PDv	In
Dow/Omexell	PVDF	1	UF?	20	0.01	0.65	1.25	SFP 2680	165	6.5	2210	87	2030	80	47.1	507	PDv	Out
Hydranautics	PES	1	UF	100-150	0.02-0.025	0.8	1.3	HYDRAcap 60	225	9	1680	66	1500	60	46	500	PDv	In
Inge	PES	1	UF	100-150	0.01-0.025	0.9	4.2	Dizzer 5000	250	10	1680	66	1500	60	50	538	PDv	In
Koch	PS		UF	100		0.89	1.4	PMPW-10	273	10 NB	1830	72			80.9	870	PDv	In
Memcor	PVDF	1	MF		0.04-0.10	0.5	0.8	CMF-S(L)-S(L) 10V	150	6	1190	47	1050	40	27.9	300	SUBv(PDv)	Out
Memcor	PP		MF		0.2	0.3	0.6	CMF-M10C-PP	150	6			1050	40	35	372	PDv/SUBv	Out
Norit	PES	1	UF	100-150	0.02-0.025	0.8	1.3	SXL-225	200	8	1500	60	1500	60	40	430	PDh	In
Pall/Asahi	PVDF		MF		0.1	0.7	1.3	Microza USV-6023	165	6 NB	2338	92	2216	87	50	538	PDv	Out
PalVAsahi	PAN	1	UF	80	0.01	0.8	1.4	LOV 5210	140	5NB	2227	88	2210	87	41	441	PDv	Out
Polymem	PS	1		100			0.72	UF120S2	315	12 NB	980	38	800	31	114	1227	PDv	Out
Toray	PVDF		MF		0.1	0.8	1.35	HFM-2020	200	8	2160	85	2000	79	80	860	PDv	Out
Toray	PAN	√?	UF		0.01			PAN HF 4*	100	4			1000	39	10	115	PDv	Out
Zenon	PVDF	√?	MF		0.2-0.4	0.8	1.9	ZW 500d	1750	69	2.54 x 2.11m	100 x 83	1900	75	31.6	340	SUBv	Out
Zenon	PVDF	1?	UF?		0.02-0.025	0.4	0.7	ZW 1000	890	35	2.6 x 1.82m	102 x 72	600	24	37-56	4-600	SUBh	Out

Adapted from "Introduction to membranes: Manufacturers' comparison: part 1", *Filtration + Separation*, October 2007

ULTRAFILTRATION (3)

Table 1: Summary of the product offering of 11 international UF/MF suppliers								
Company	Customer	Market Position			Product			
		Leader	2nd Tier	New Entrant	Rating	Polymer	Config	
Aquasource	In house		1		UF	CA & PS	PDI	
Dow/Omexell	OEM/System		1		UF?	PVDF	PDO	
Hydranautics	OEM		1		UF	PES	PDI	
Inge	OEM		1		UF	PES	PDI	
Koch	System		1		UF	PS	PDI	
Memcor	System	1			MF	PVDF	SUB/PDO	
Norit	System & OEM	1			UF	PES	PDI	
Pall/Asahi	System	1			MF	PVDF	PDO	
Polymem	System			1	UF	PS	PDO	
Toray	OEM			1	MF	PVDF	PDO	
Zenon	System	1			UF?	PVDF	SUB	
PDO -	NB: PDI – Pressure driven, inside feed PDO – Pressure driven, outside feed SUB – Submerged, vacuum driven, outside feed				vn in bold type.			

Adapted from "Introduction to membranes: Manufacturers' comparison: part 1", *Filtration + Separation*, October 2007

ULTRAFILTRATION (4)

	PES/PS	PVDF	СА	PAN	РР
Mechanical strength	++++	+++	+++	+++	++
Oxidant tolerance	+++	++++	++	+++	+
pH tolerance	+++	+++	+	++	+++
Pore size distribution	++++	++	+++	++++	++
Hydrophilicity	+++	+ / ++	++++	++	+
Biofouling resistance	++++	++++	+	+++	+++

NOTES:

- -PES: POLYETHERSULFONE
- -PS: POLYSULFONE
- -PVDF: POLY VINYLIDENE FLUORIDE
- -CA: CELLULOSE ACETATE
- -PAN: POLYACRYLONITRILE
- -PP: POLYPROPYLENE

- ++++ Very good
 - +++ Good

++

+

-

- Moderate
 - Poor

PRESSURISED VS SUBMERGED

	Pressurised	Submerged
Feed mode	Inside-out OR outside-in Bleed flow is possible	Outside-in
Mechanical requirements	May require air scouring blowers. More complex valve units.	Requires membrane lifting equipment. Requires air scouring blowers.
Civil requirements	Lower, plinth construction only. Shorter construction lead time.	Higher, requires membrane tanks. Longer construction lead-time.
Ease of scale-up	Modular design makes it easier to scale up, especially in operational plant.	Requires additional membrane tanks or advance planning for membrane tanks.
Maintenance/membrane replacement	Easier	Harder, submerged cassettes needs to be lifted
Chemical requirements	Lower	Higher

INSIDE OUT VERSUS OUTSIDE IN

	Inside out	Outside in
Feed mode	Pressurized	Pressurized or submerged
Specific surface area	Lower Based on inside fibre diameter	Higher Based on outside fibre diameter
Membrane material	PES	PVDF
Backwash	Without air scour	With Air scour
Pore size	Small (tight UF)	Larger (open UF or MF)
Susceptible to blocking	Higher (300 micron straining)	Lower (500 micron straining)
Susceptible to skin damage	Lower (skin inside fibre)	Higher (skin rubbing)

ULTRAFILTRATION (7)

Global UF/MF membrane suppliers in plants larger than 10,000m³/d			
Membrane supplier	Market share		
Pentair X-Flow	34,4%		
Asahi	22,5%		
Hyflux	13,0%		
GE	11,5%		
Siemens Memcor	6,3%		
Inge	3,6%		
Metawater	2,6%		
Toray	1,9%		
Koch	1,6%		
Others	2,6%		

Global UF/MF membrane suppliers in				
desalination plants larger than				
10,000m ³ /d				
Membrane supplier	Market share			
Pentair X-Flow	46,7%			
Hyflux	31,7%			
Siemens Memcor	7,5%			
GE	6,0%			
Inge 5,7%				
*installed or under construc	tion ≥ 2011			

ULTRAFILTRATION (8)

One of the main requirements of governments and drinking water companies worldwide in providing drinking water: public safety

REQUIRED REMOVAL

- Bacteria (e.g. Fecal bacteria)
- Protozoa (e.g. Cryptosporidium and giardia)
- Viruses (e.g. Enteric viruses like hepatitis)

DIRECTIVES

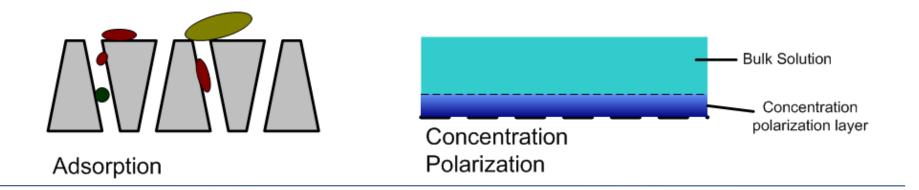
- WHO
- European directive
- Long term 2 surface water treatment (USA)

APPROVALS

• Potable water approvals: UK, USA, F, D, NL, AUS, JAP...

MEMBRANE FOULING AND CLEANING (1)

TYPES OF FOULING ON UF MEMBRANES:


- Cake formation
- Pore blocking
- Adsorption
- Concentration Polarization

Cake Formation

Pore Blocking

MEMBRANE FOULING AND CLEANING (2)

CLEANING MODES:

- Backwash (BW)
- Air-scouring or Air-Flush
- Relaxation
- Chemical Enhanced Backwash (CEB)
- Clean-In-Place (CIP)

MEMBRANE FOULING AND CLEANING (3)

BACKWASHING

- Reverse the flow of filtrate at higher flux for short duration to flush out foulants from membrane surface and pores.
- Effective against surface foulants, loose cake layer and partially effective against adsorbed foulants.

AIR SCOURING/AIR FLUSH

- Air bubbles are passed along the feed surface of membranes to dislodge surface foulants.
- Cannot remove foulants in pores and thick cake layer.
- Sustained during filtration or applied intermittently for submerged UF.

RELAXATION

- Short stoppages of filtration. (air scouring may run concurrently).
- Loosen cake layer and loosely attached foulants.

CHEMICAL ENHANCED BACKWASH

- Chemical cleaning involving a short soak duration.
- Effective against adsorbed foulants.

CLEAN-IN-PLACE

- Long duration, chemical cleaning involving recirculation-soak cycles.
- Use for recovery cleaning or with specialised chemicals for particular foulants.

MEMBRANE FOULING AND CLEANING (4)

UF CLEANING CHEMICALS

	Туре	Effective against
NaOH KOH	Caustic	Organic/biological foulants
H ₂ SO ₄ HCl	Inorganic acids	Inorganic foulants Inorganic scaling
NaOCl H ₂ O ₂	Oxidants	Organic/biological foulants
EDTA	Chelating agents	Hardness scaling
Organic acids (citric, oxalic, ascorbic acid etc)	Organic acids	Fe and Mn fouling, Other specific types of foulants
Surfactants	Surface active agents	Oil and grease Certain organic polymers

* It is important to check back with UF supplier on chemical compatibility and dosage

COMPONENTS OF AN UF PLANT (1)

COMPONENTS OF AN UF PLANT

- Pre-treatment
- Pre-screen
- UF skid
- Chemical dosing unit(s)
- Neutralisation unit
- Backwash unit
- Air-scouring unit
- CIP unit
- Membrane integrity test unit (esp. drinking water application)
- Post treatment (disinfection, RO etc)

COMPONENTS OF AN UF PLANT (2)

PRE-TREATMENT

- Pre-treatment is installed to:
 - » Remove particular foulants that UF is susceptible to. (e.g. Mn, Fe, FOG)
 - » Reduce size of UF plant by reducing TSS load.
- Typical UF pre-treatment processes:
 - » DAF \rightarrow removal /reduction of FOG, COD and TSS
 - » Green sand filter \rightarrow Mn and Fe removal, reduce TSS
 - » Coagulation/Flocculation → Reduce TSS load, remove oxidised Fe and Mn
 - » Activated carbon (GAC/PAC) \rightarrow colour, odour, TOC
 - » Oxidation \rightarrow oxidation of Mn and Fe, reduction of TOC

COMPONENTS OF AN UF PLANT (3)

SCREEN

- A pre-screen is required to remove large particles for membrane protection.
- Specifications:
 - » Surface water
 - » Sea brackish water → 100 microns
 - » Effluent water
- → 100 to 300 microns

→ 200 to 300 microns

- Considerations:
 - » UF feed pump should also consider head loss across strainers
 - » For large plants, strainers should be self-cleaning type

COMPONENTS OF AN UF PLANT (4)

CHEMICAL DOSING UNITS

- For pH adjustment, CEB, in-line coagulant dosing and chemical neutralisation
- Typical dosing sets required:
 - » In-line coagulation: FeCl₃, alum, PACl + pH adjustment
 - » CEB: Caustic + NaOCl + acid
 - » Neutralisation: Reducing agent (SBS) + acid/caustic
- Considerations:
 - » Chemical dosing sets should be overdesigned to cater for deterioration in chemical stock concentration and fluctuating water quality

COMPONENTS OF AN UF PLANT (5)

AIR SCOURING/AIR FLUSH UNIT

- Optional, based on membrane design
- Considerations:


Air quality for scouring should be oil-free. Pressure and temperature considerations.

MEMBRANE INTEGRITY TEST UNIT

- To test for leaks in membrane fibers
- Usually a requirement for drinking water applications

CIP UNIT

- Optional for small plants but CIP connections on UF skids recommended.
- RO CIP units can be shared if available.

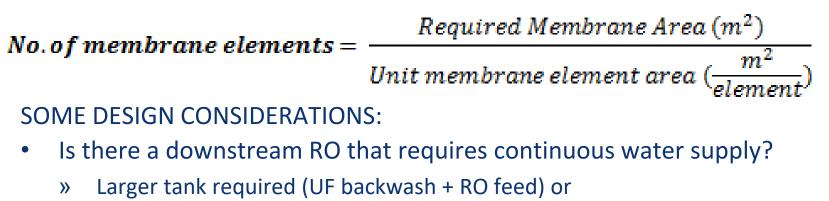
DESIGNING AN UF SYSTEM (1)

INFORMATION REQUIRED:

- Feed Quality:
 - » Turbidity, TSS, COD, TOC, FOG, dissolved metals, alkalinity, silica, colour etc.)
- Capacity:
 - » Nominal flow
 - » Peak flow
- Required filtrate quality
- Other considerations:
 - » Footprint

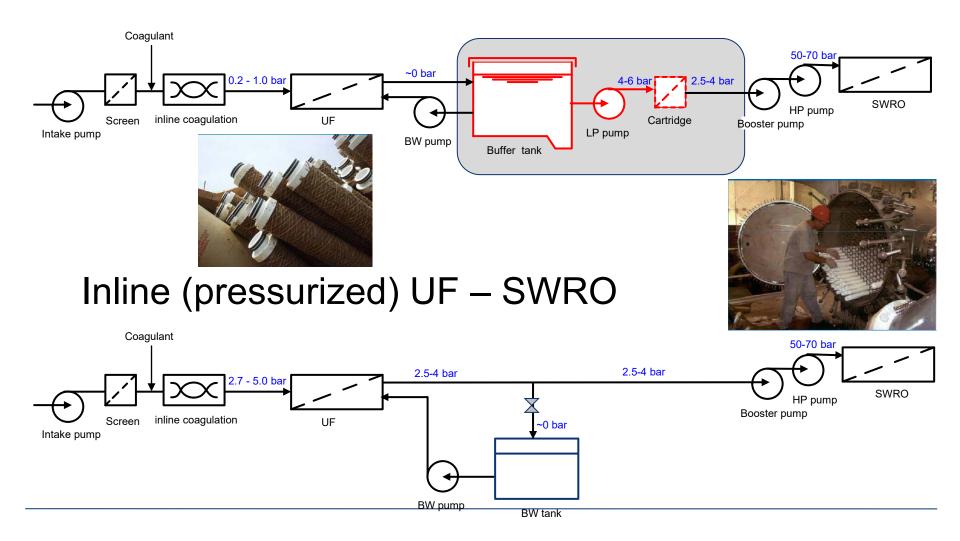
DESIGNING AN UF SYSTEM (2)

SIZING UF UNITS:


Required Membrane Area (m^2)

Required Capacity $\left(\frac{m^3}{h}\right) \times 1000(\frac{L}{m^3})$

 $Filtration Flux(\frac{L}{m^2 \cdot h}) \times Percentage of Filtration Time \times Recovery$

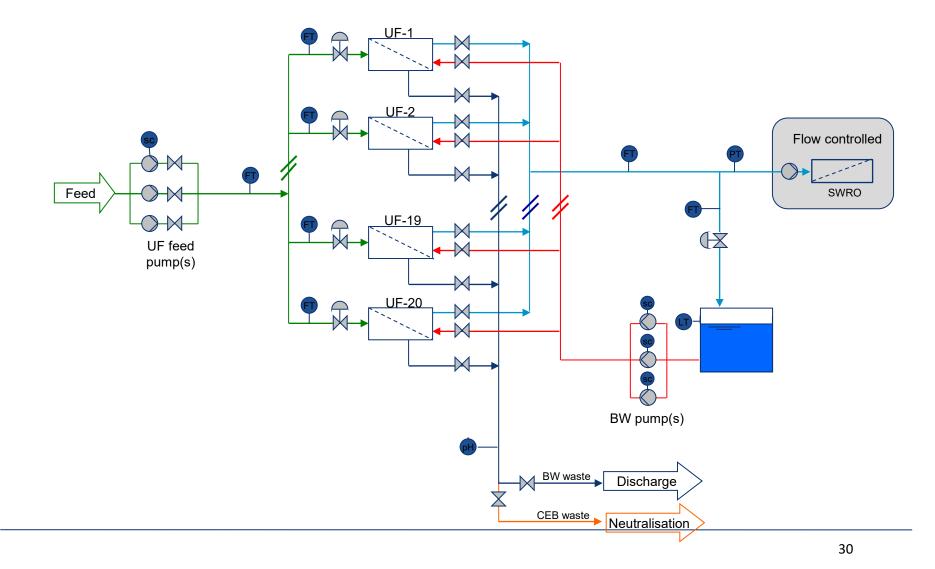

- Filtration Flux:
 - Dependent on:
 - » Pre-treatment processes
 - » Raw water quality
- Percentage of filtration time:
 - Dependent on:
 - » Raw water quality and filtration flux \rightarrow affects duration of single filtration cycle.
 - » Performance of CEB, CIP and MIT
- Recovery:
 - Dependent on frequency and volume of filtrate for membrane cleaning.

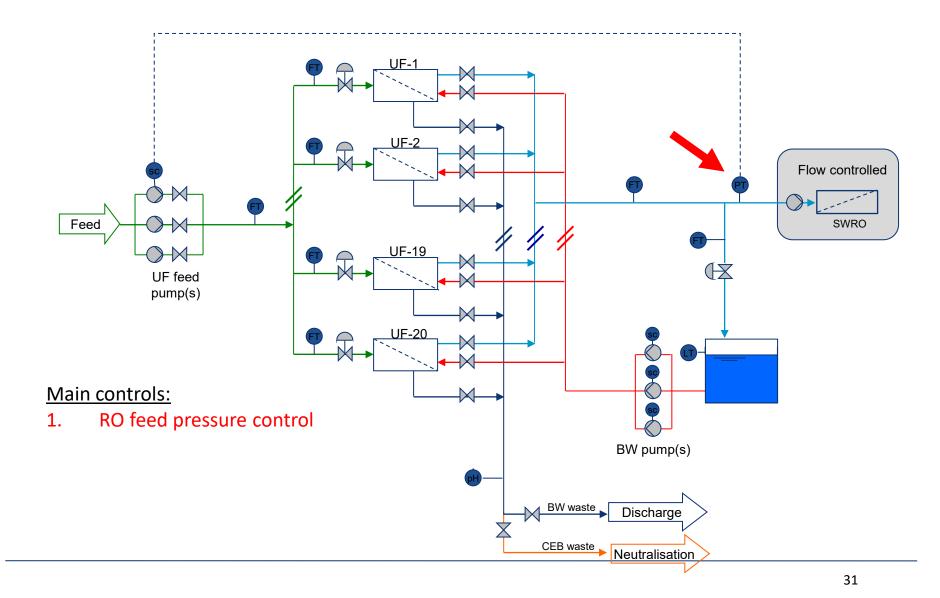
DESIGNING AN UF SYSTEM (3)

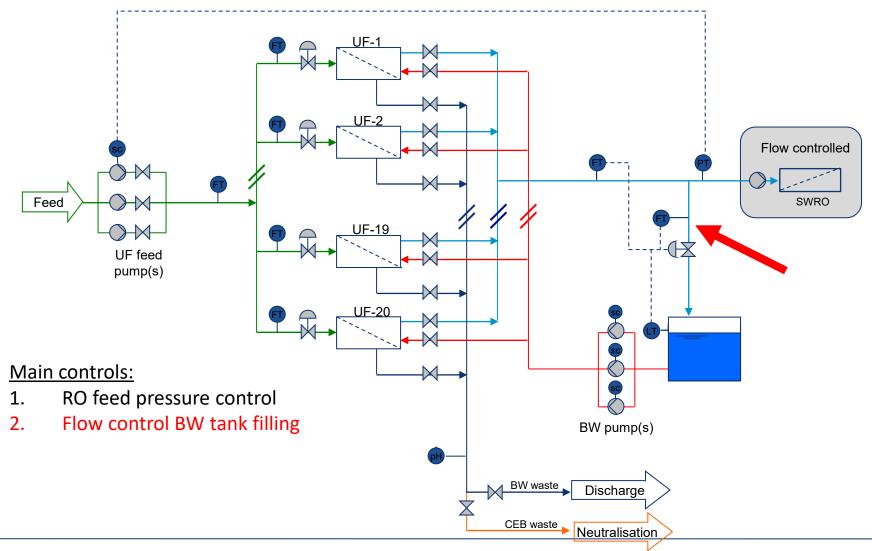
- » Design of UF system for constant flow (in line operation)
- Peak flow occurrences?
 - » Extra UF skids/membranes .
 - » Equalization tank.
- Standby equipment?
 - » Common or dedicated equipment?
 - » Use of standby unit?

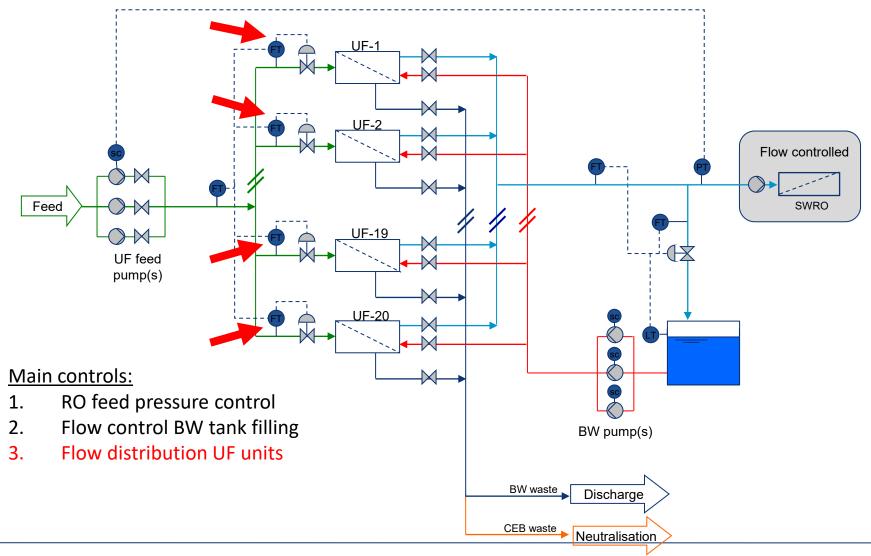
NORMAL (ATMOSPHERIC) UF – SWRO

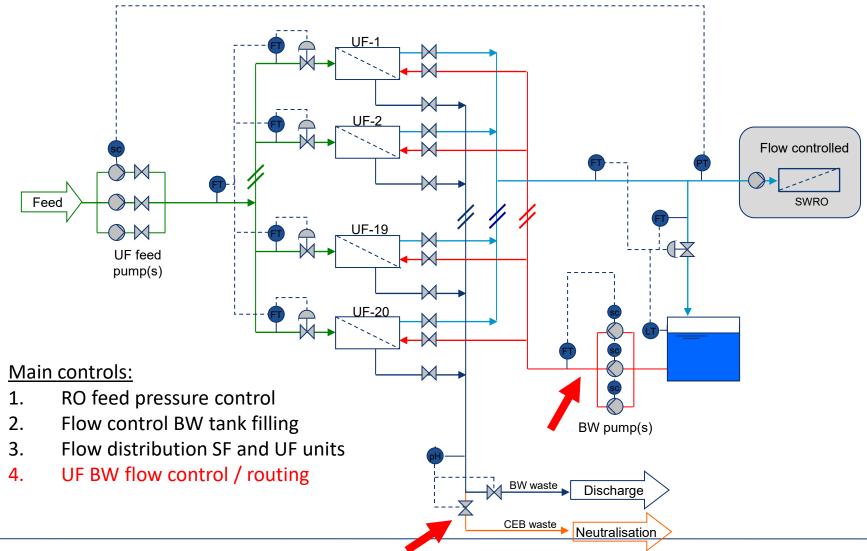
INLINE UF – SWRO

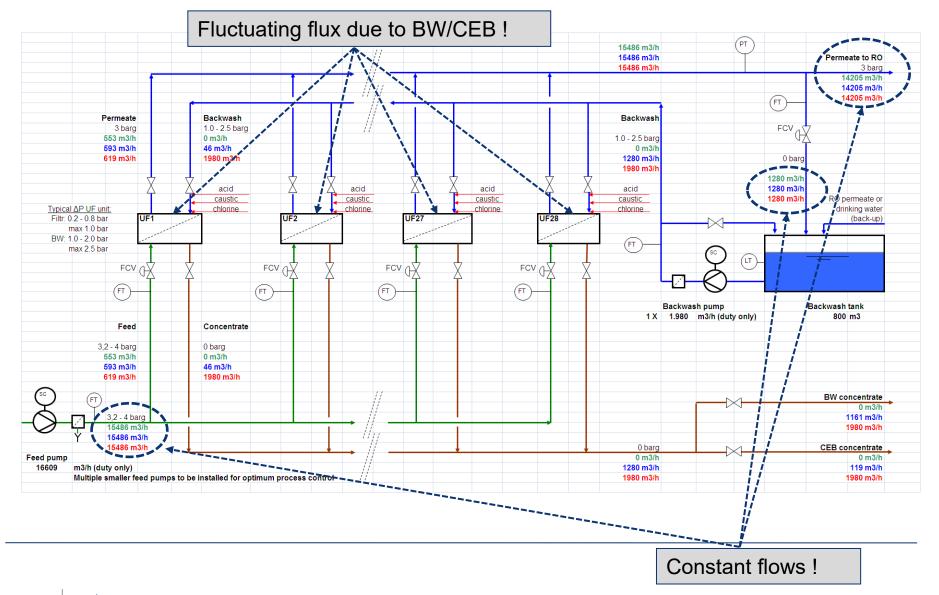

Advantages:


- 1 pumping stage less
- No cartridge-filters
- No buffer tank


 → Lower Capex / Opex (energy) / smaller footprint
 → Lower Capex / Opex (replac.) / smaller footprint
 → Lower Capex / smaller footprint
 No/less biogrowth / RO fouling


However:


- Higher pressure
- \rightarrow Extra attention to be paid to:
 - Design & controls
 - Surge analysis & mitigation



NEW DEVELOPMENTS – TIGHT UF

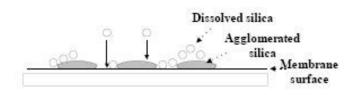
Silica removal

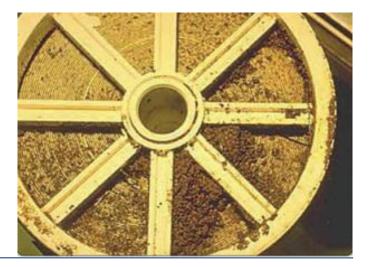
Either stand alone or upstream of reverse osmosis (RO)

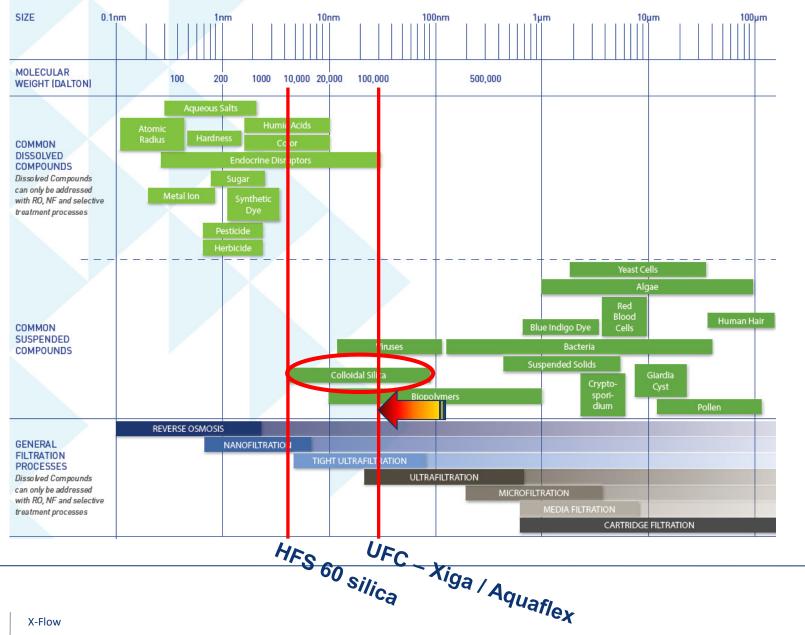
Silica is available in three forms

- 1. Particulate (sand particles)
- 2. Colloidal or polymerized (silicone dioxide)
- 3. Reactive (ionized)
- Pretreatment removes particulate silica.
- IX and RO remove reactive silica.
- IX does not remove colloidal silica.
- RO fouls by colloidal silica.

Colloidal or polymerized (silicone dioxide)

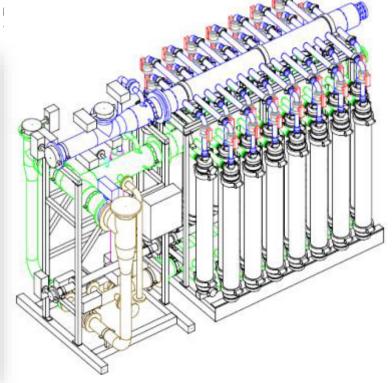

- Complexes with organics
- Agglomerates with deposited silica


Reactive silica


Forms colloidal silica

Silica fouling on RO membranes

- High ph cleaning RO membranes sensitive to caustic
- If combined with inorganic fouling calcium carbonate requires acid



Aquaflex or X-Line skids

- Standardized design
 From 10 to 120 membrane modules per skid
- Dead end operation
- Chemically enhanced backwash

HFS 60 Silica for boilerfeed applications

 Jaypee Nigrie Super Thermal Power Project in Singrauli, Madhya Pradesh, India Electrical output: 2 X 660 MW Boilerfeed: 3,840 m³/day

 J.K. Paper plant in Rayagada, Chhattisgarh, India Paper production: 260,000 tonnes per annum Pulp production: 200,000 tonnes per annum Electrical output: 48.5 MW Boiler feed: 6,000 m³/day

- Lanco Mahagenco, India Water production: 7,200 m³/day (X-Line)
- Hindustan Coca Cola, India Water production: 1,000 m³/day (<20 kDalton requirement)
- Euraqua, UK
 Water production: 1,300 m³/day (<20 kDalton requirement)
- Bushan Steel, India Water production: 3,000 m³/day
- Giza Power Plant, Egypt Water production: 12,000 m³/day
- Banha Power Plant, Egypt Water production: 11,000 m³/day

COMPARISON OF CONVENTIONAL FILTRATION AND ULTRAFILTRATION

Small scale desalination using membrane pretreatment Independent electricity producer in Antofagasta

Main customers

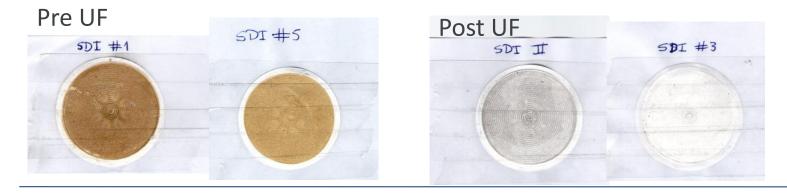
- Municipalities & industries (through distributor)
- Mining (90% of consumption)

Water needed for

- Boiler feed
- Cooling of gas turbines
- Supply of potable water
- Fire fighting

Existing desalination plants:

- Thermal: 2 X 700 m³/day High energy consumption
- Reverse Osmosis: 2 X 500 m³/day Insufficient pretreatment
- Total capacity: 2,400 m³/day


Expansion needed:

- Total capacity: 2,590 m³/day (3 X 863 m³/day)
- Lower energy consumption
- Lower chemical consumption
- Lower waste production

Design for compact and robust system

- Open intake (- 5 meters)
- Automatic strainers 200 micron
- Seaguard ultrafiltration
- Buffertank
- Reverse osmosis

Comparison existing DAF + MMF versus new UF plant

	DAF + MMF	Seaguard UF
Chemical consumption	25 ppm coag + polymer	1 ppm coag, no polymer
SWRO CIP	1 – 2 X /month	none
5 micron cartridge filter replacement	1 – 2 X / month	none

PENTAIR X-FLOW MEMBRANES FOR WATER & WASTEWATER TREATMENT

X-FLOW HISTORY

1984	1985	1995	1997	2011	2011
Membrane Technology X-Flow	Separation University Twente	Launching customer PWN	Acquisition Norit	Water Technology Company of the Year (GWI)	Acquisition Pentair

WATER & WASTEWATER TREATMENT

POTABLE / PROCESS WATER

- Clean & safe
 water
- Reliable barrier for bacteria & viruses
- High performance & integrity

DESALINATION PRETREATMENT

- Optimum pretreatment for RO
- Removal of fine silt & turbidity
- High fluxes
- Small plant design

MUNICIPAL WASTEWATER

- Fully enclosed, robust system
- Limited energy consumption
- Safe working
 environment
- Compact & flexible design

INDUSTRIAL WASTEWATER

- Primary treatment
- Secondary treatment
- Robust & reliable
- Clean & dry
 systems

XIGA – FINAL BARRIER POTABLE WATER

Clay Lane - London (UK) 6,700 m³/h

South West - Moscow (RUS) 10,000 m³/h

XIGA – POTABLE WATER FROM SURFACEWATER

Minneapolis (USA) 11,000 m³/h

Roetgen (Germany) 6,000 m³/h

XIGA – MUNICIPAL EFFLUENT POLISHING

Al Wathba (Abu Dhabi) 1125 m³/h Sulaibiya (Kuwait) 15,600 m³/h

XIGA/AQUAFLEX – PROCESS WATER

Mosenergo, PP Russia 250 m3/h Zaynskaya PP, Russia 600 m3/h

SEAGUARD - SEAWATER PRE-TREATMENT

Jubail (KSA) 10,000 m³/h

Palm Jumeirah (UAE) 7,667 m³/h

MBR – MUNICIPAL WASTEWATER TREATMENT

King Faisal Hospital (KSA) XX m3/h WRD, Ootmarsum (NL) 150 m3/h

MBR – INDUSTRIAL WASTEWATER TREATMENT

Russky Solod, Russia 1600 m³/day

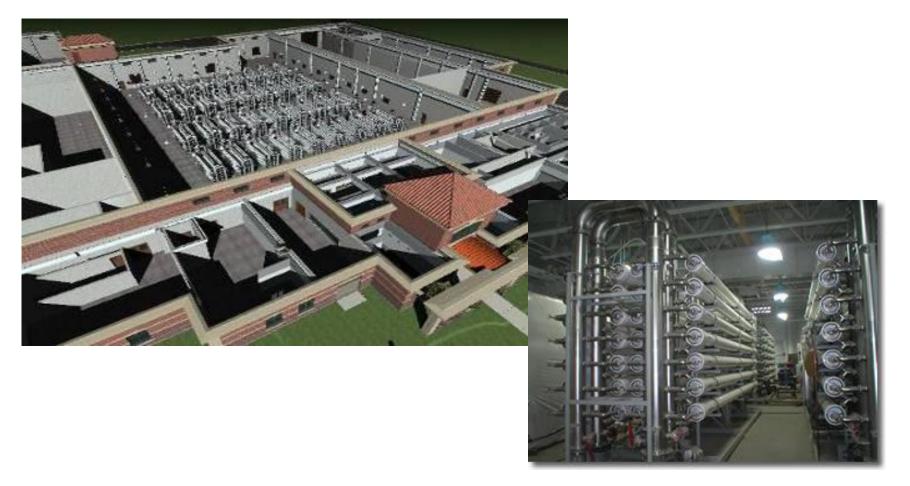
Obolon, Ukraine 2000 m³/day

ULTRAFILTRATION DRINKING WATER PRODUCTION

CLAYLANE WTW, UK

Design UF product flow rate 162.000m³/d

PWN HEEMSKERK, NETHERLANDS


Design UF product flow rate 65.000m³/d

ROETGEN, GERMANY

Design UF product flow rate 145.000 m³/d

MINNEAPOLIS, USA

Design UF product flow rate 265.000 m³/d

MOSCOW SOUTH WEST, RUSSIA

Design UF product flow rate 250.000 m³/d

THANK YOU FOR YOUR ATTENTION!