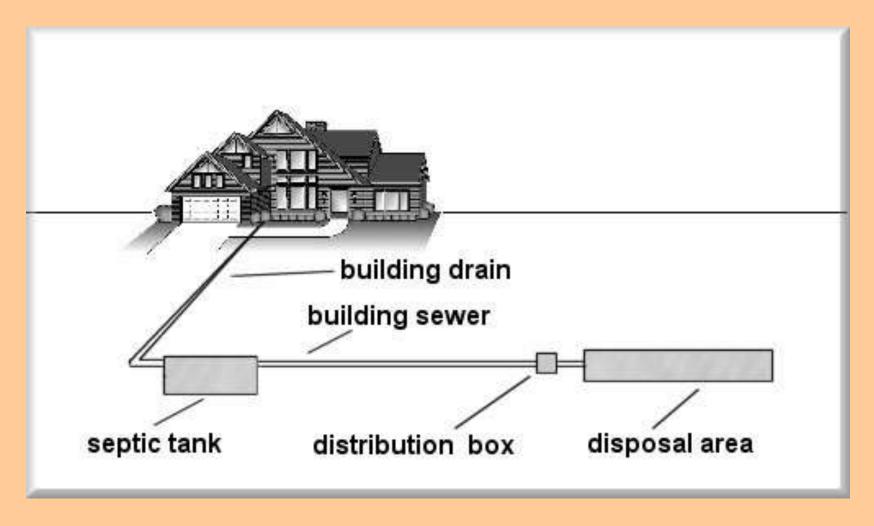
# Land Application Wastewater Systems

- Provides 2º Treatment (Biological)
- Used in combination with pretreatment and primary treatment
- Often called Natural Treatment Systems

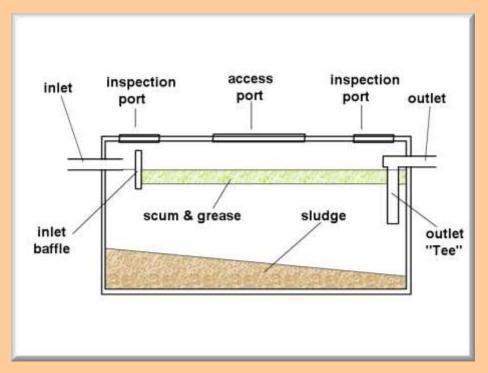
## Typical Treatment Systems

- Leach field (combined with septic tank for home systems)
- Overland Flow
- Rapid Rate Infiltration
- Slow Rate Infiltration treatment and irrigation

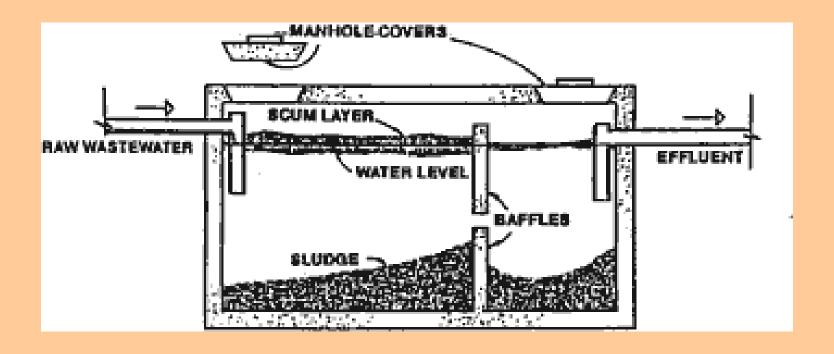

### **Summary of WW Characteristics and Removal Mechanisms in Land Applications**

| Wastewater<br>Constituent | Mechanisms for Removal                                                           |  |  |  |
|---------------------------|----------------------------------------------------------------------------------|--|--|--|
| Suspended Solids          | Typical pretreatment and primary treatment methods, filtration through soil      |  |  |  |
| Organic Matter (BOD)      | Microbial degradation by attached biofilms on soil, rocks, vegetation            |  |  |  |
| Organic Nitrogen          | Microbial degradation by attached biofilms on soil, rocks, vegetation to ammonia |  |  |  |
| Ammonia                   | Nitrification, plant uptake, some volatilization, soil adsorption                |  |  |  |
| Phosphorus                | Adsorption to soil, plant uptake, chemical precipitation in soil (natural)       |  |  |  |
| Pathogens                 | Die off, filtration, dessication, predation, radiation                           |  |  |  |
| Trace metals              | Adsorption to soil, plant uptake, chemical precipitation in soil (natural)       |  |  |  |

## Leach Field, Tile Field, Soil Absorption System


- Combined with septic tank for home treatment
- Trenches filled with gravel or plastic chambers in unsaturated zone
- Gravel or plastic chambers allows WW to infiltrate into soil (aerobic), above water table
- Bacteria growing in soil consume organic matter
- Nitrification can also occur
- Filtration of solids in soil including pathogenic organisms
- Pathogens die in soil because not a conducive environment
- Phosphorus adsorption to soil

## Schematic of Septic Tank/Leach Field




### **Septic Tank**

- Septic tank acts as settling basin, oil/water separator and unheated, unmixed anaerobic digester
- Contrary to popular belief it is not a water storage tank
- Typical detention times
   2+ days
- Design based on number of bedrooms, minimum size 1000 gallons in VT
- Pre-cast concrete or fiberglass typical



### **Septic Tank with Baffle**





#### **Distribution Box**

Critical for maintaining uniform flow to leach field



#### Leach Field

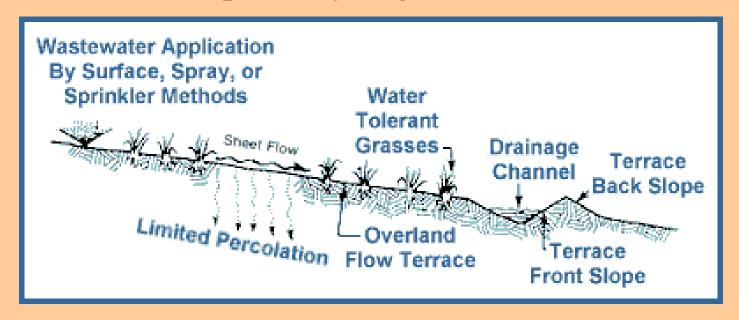


- Series of trenches filled with gravel or plastic chambers
- Gravel/chambers maintain structure of trenches and distribute effluent to soil
- Trenches provide storage during high flows
- Bacterial biofilm primarily in soil environment

### Infiltrator<sup>TM</sup> System



- Alternative to traditional gravel leach field systems
- Placed in trenches and backfilled
- Easy to install


#### **Biomat Inside Chamber**



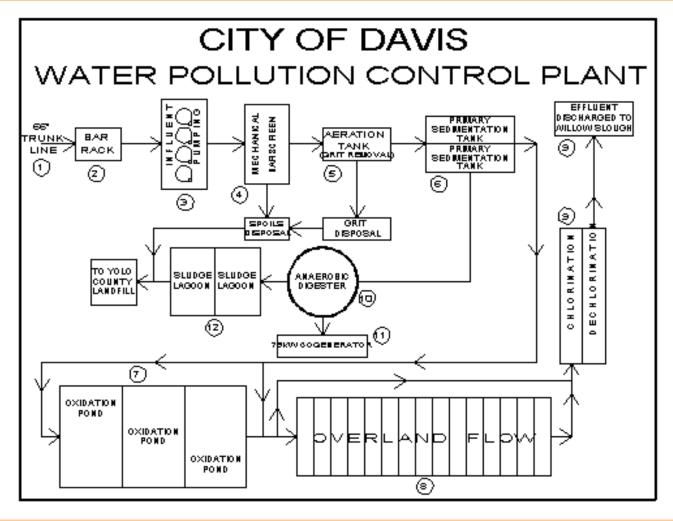
- Biomat grows on soil at bottom of chamber
- Chamber provides storage for WW and allows WW infiltration

#### **Overland Flow**

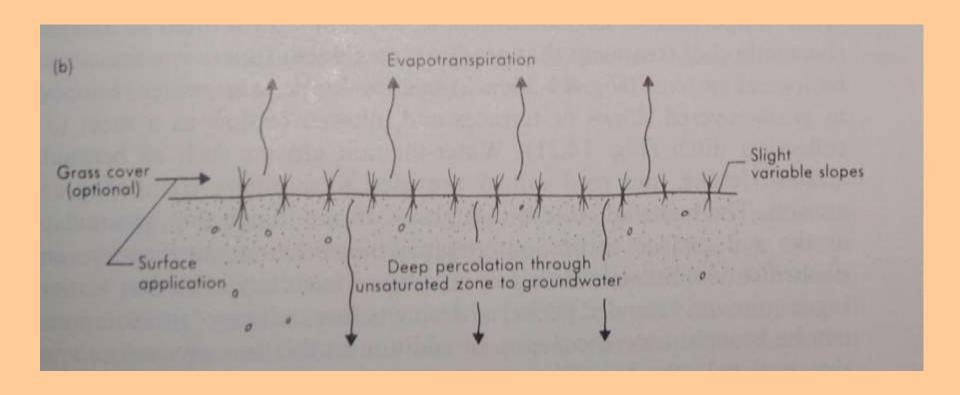
- Wastewater flows through a vegetative mat down slope and is collected in trenches
- Biofilm in the vegetative mat treats WW
- Filtration and settling of solids also occurs in mat
- Some nutrient uptake by vegetation



#### Easton, MD



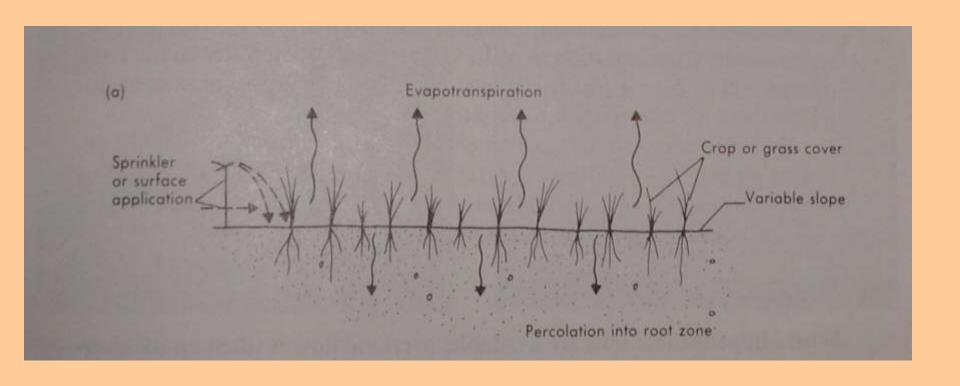

- Facultative
   Lagoons for
   pre and
   primary
   treatment
- 68 acre overland flow
- Chlorine disinfection


# Sprinklers common method of WW application



## Schematic of WWTP with Overland Flow




### **Rapid Rate Infiltration**



# HLR and OLR Design Parameters (T&S)

| CHARACTERISTICS                                               | SLOW RATE                          | RAPID INFILTRATION | OVERLAND<br>FLOW                      | WETLANDS                              | SEPTIC TANK-<br>LEACH FIELD |
|---------------------------------------------------------------|------------------------------------|--------------------|---------------------------------------|---------------------------------------|-----------------------------|
| Hydraulic loading rate, m³/m² · wk                            | 0.01-0.1                           | 0.1-2.0            | 0.1-0.3                               |                                       |                             |
| Organic loading rate, g BOD <sub>5</sub> /m <sup>2</sup> · wk | 2-20                               | 50-400             | 20-60                                 | 60-80                                 |                             |
| Application method                                            | Sprinkler<br>or surface            | Surface            | Sprinkler<br>or surface               | Surface                               | Subsurface                  |
| Minimum preapplication treatment                              | Sedimentation                      | Sedimentation      | Grit removal<br>and<br>comminution    | Screening<br>and/or<br>sedimentation  | Sedimentation               |
| Need for vegetation                                           | Required                           | Optional           | Required                              | Required                              |                             |
| Disposition of wastewater                                     | Evapotranspiration and percolation | Percolation        | Surface runoff and evapotranspiration | Surface runoff and evapotranspiration |                             |
| ffluent BOD <sub>5</sub> , g/m <sup>3</sup>                   | 2-5<br>1-5                         | 5-10<br>2-5        | 10-15<br>10-20                        | 5-20<br>5-20                          |                             |

#### **Slow Rate Infiltration**



## Slow Rate Infiltration Principal Steps in Design

- Site evaluation and selection, regulatory requirements
- Necessary pretreatment levels
- Crop selection
- Distribution system selection
- Loading rates (HLR and OLR)
- Land requirements, Storage volume required
- Monitoring requirements
- Economics

#### Muskegon WWTF, Muskegon, MI

- Slow rate system
- Opened 1975
- Design capacity 42 mgd
- 5000 acres
- 3 8 acre aerated lagoons for settling
- 2 WW storage lagoons (850 acres each holds 5.1 billion gallons), additional settling

- April-Nov water taken for irrigation of corn and other animal feed
- WW applied by 54 center pivot irrigation machines
- 350 monitoring wells to monitor groundwater
- Construction costs \$42.7 million (12 mil for sewer and pumping)
- Corn, wheat revenue offsets O&M costs





