
Level 1 Fundamental Training

Contents

Topics:	Slide No:	
 Why measure temperature? 	3 - 5	
 Temperature terminology 	6 - 8	
 Temperature measurement technology 	9 - 13	
 Temperature sensors 	14 - 40	
 Sensor accessories 	41 - 52	
 Temperature transmitter 	53 - 64	
• Exercise	65 - 67	

- Because temperature affects:
 - rate of reaction
 - viscosity
 - state of a matter
 - strength of materials
 - quality & taste of food
 - safety of a process
- Temperature is critical to the following process:
 - Pulp & Paper
 - Food Industry Pasteurisation
 - Vacuum Packaging
 - Chemical Industry

Safety

- to prevent explosion as a result of excessive temperature

Efficiency

- example:- Air -Conditioning
 - » accurate temperature measurement prevent the supplier from overcooling the air, which saves energy and increases efficiency

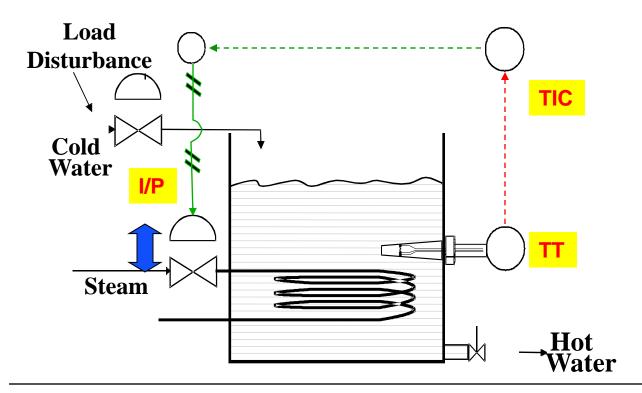
Product Quality & Yield

- variation from optimum temperature result in
 - » very little production of the desired product
 - » creation of waste product
- precise temperature measurement ensures efective separation of products in
 - » distillation column
 - » catalytic cracking processes

Why measure temperature?

4 Common Reasons

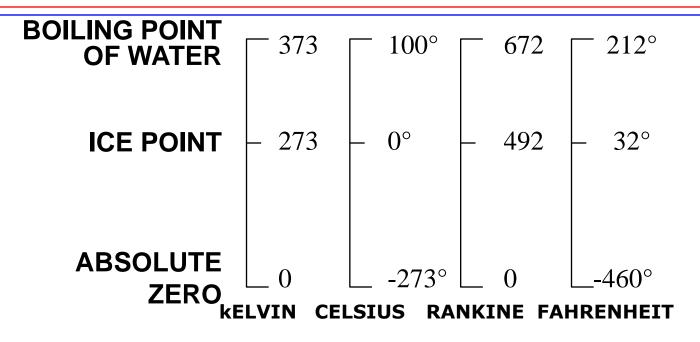
5


Custody Transfer

- amount of material that is bought & sold
- extremely important to know exact temperature when determining volumetric flow rate of gas
- amount of material contained in a specific volume of gas
 - » decreases with rising temperatures
 - » increases with falling temperatures
- inaccurate temperature measurement result in
 - » over or under-charging customers during custody transfer

Temperature Control Loop

Temperature Loop Issues:


- Fluid response slowly to change in input heat
- Requires advanced control strategies
 - Feedforward Control

Temperature terminology

Temperature Measurement Scales

-

Kelvin & Rankine are absolute scales

$$^{\circ}C = 5/9 (^{\circ}F - 32)$$

$$^{\circ}F = 9/5 (^{\circ}C) + 32$$

$$K = 273 + {^{\circ}C}$$

$$R = 460 + {}^{\circ}F$$

Example #1

$$20^{\circ}\text{C} = 20 + 273 = 293K$$

$$20^{\circ}C = 9/5*(20) + 32 = 68^{\circ}F$$

Differential Temperature

$$^{\circ}C = 5/9 ^{\circ}F$$

$$K = {}^{\circ}C$$

$$^{\circ}R = ^{\circ}F$$

Example: 2 points in a process differ in temperature by 100 °C. These 2 points differ by 180 °F

Whereas, they also differ by 100K

METALS change in VOLUME in response to change in TEMPERATURE & DISSIMILAR METAL STRIPS having different COEFFICIENT of VOLUME CHANGE.

Example: Bimetallic Thermometer

Thermocouple (discussed later)

Bimetallic Thermometer

The degree of deflection of 2 dissimilar metals is proportional to the change in temperature.

One end of the spiral (wounded from a long strip of material) is immersed in the process fluid and the other end attached to a pointer.

Expansion & Contraction of FILLED THERMAL FLUIDS

Example: Vapour Pressure Thermometer

A bulb connected to a small bore capillary which is connected to an indicating device.

Indicating device consist of a spiral bourdon gauge attached to a pointer.

The bulb is filled with a volatile liquid and the entire mechanism is gas tight and filled with gas or liquid under pressure.

Basically the system converts pressure at constant volume to a mechanical movement.

Change in RESONANT FREQUENCY of crystal in response to change in TEMPERATURE

Example: Quartz Crystal Thermometers

Quartz crystal hermetically sealed in a stainless steel cylinder, similar to a thermocouple or RTD sheath but, larger.

Quartz crystal converts temperature into a frequency.

They provide good accuracy and response time with excellent stability.

Hence, this technology is expensive.

Collection of THERMAL RADIATION from an object subjected to HEAT

Example: Radiation Pyrometry

Infers temperature by collecting thermal radiation from process and focusing it on a photon detector sensor.

The sensor produces and output signal as radiant energy striking it releases electrical charges.

Change in RESISTANCE with response to change in TEMPERATURE

Example: Thermistors

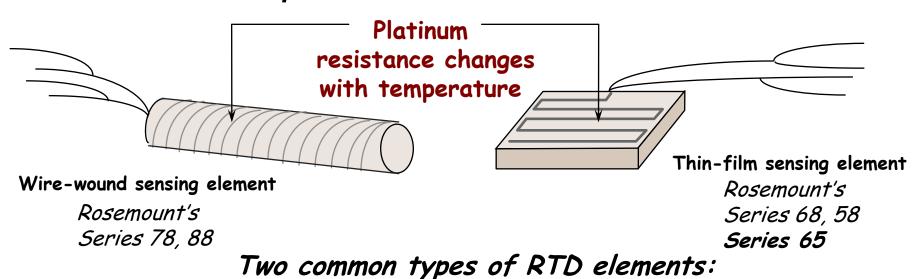
RTD (discussed later)

Thermistors

Semi-conductors made from specific mixtures of pure oxides of nickel, manganese, copper, cobalt, and other metals sintered at very high temperature.

Used with Wheatstone Bridge which amplifies small change in resistance - in a simple circuit with a battery and a micro-ammeter.

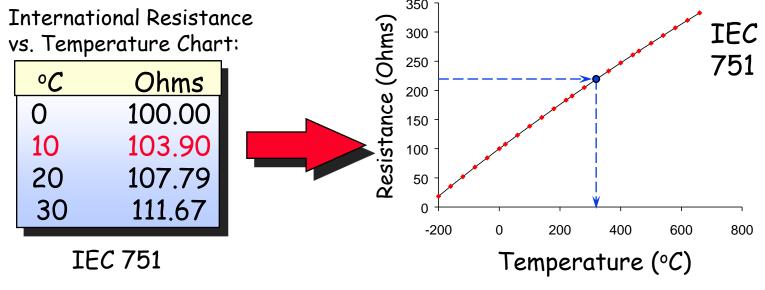
Stability - Moderate


Linearity - Poor (Logarithmic)

Slope of Output - Negative

What is an RTD?

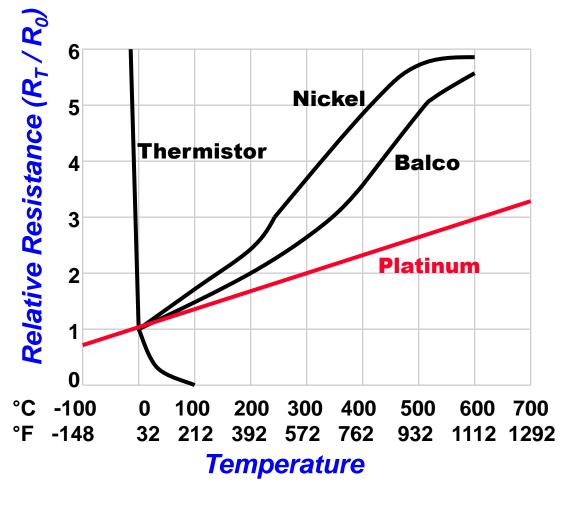
-Resistance Temperature Detector


- Operation depends on inherent characteristic of metal (Platinum usually): electrical resistance to current flow changes when a metal undergoes a change in temperature.
- » If we can measure the resistance in the metal, we know the temperature!

Temperature Sensors RTDs

How does a RTD works?

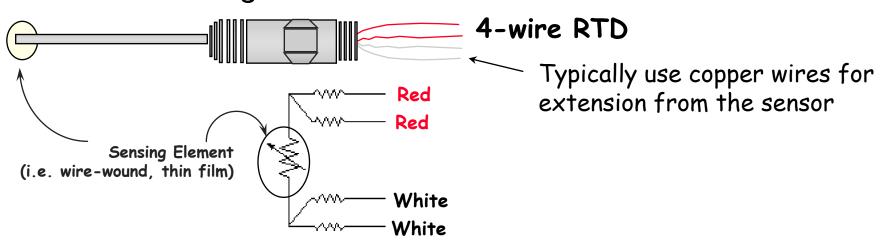
- Resistance changes are Repeatable
- The resistance changes of the platinum wiring can be approximated by an ideal curve -- the IEC 751



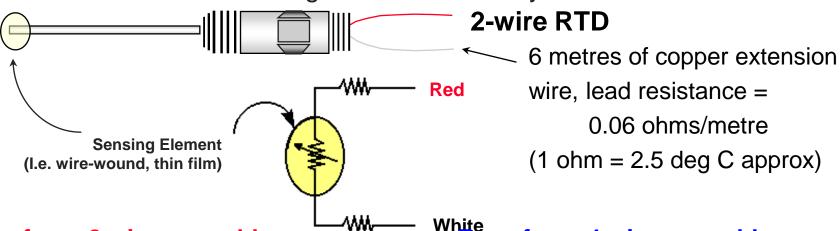
IEC 751 Constants are :- A = 0.0039083, $B = -5.775 \times 10^{-7}$, If $t>=0^{\circ}$ C, C=0, If t<0, C = -4.183 x 10 -12

Example:

 $R_T = R_0 [1 + At + Bt^2 + C(t-100)t^3]$ = 103.90

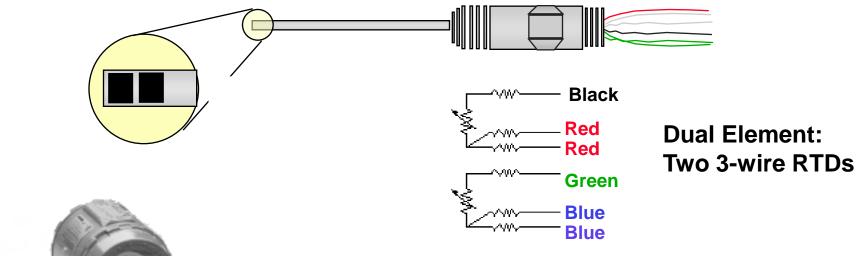

Platinum vs other RTD materials

- Most linear
- Most Repeatable
- Most Stable
- Positive Slope

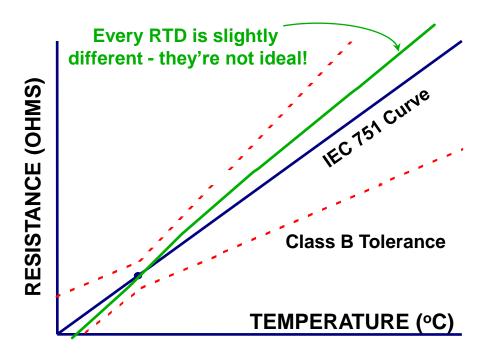

Why use a 2-, 3-, or 4- wire RTD?

- -2-wire: Lowest cost -- rarely used due to high error from lead wire resistance
- 3-wire: Good balance of cost and performance. Good lead wire compensation.
- 4-wire: Theoretically the best lead wire compensation method (fully compensates); the most accurate solution. Highest cost.

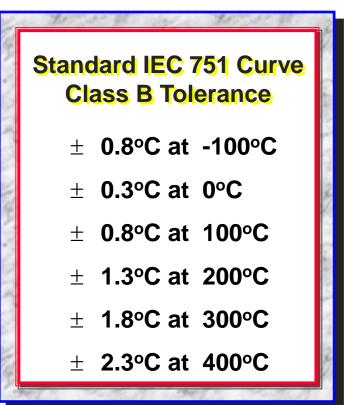
2-wire or 4-wire RTD?


- If the sensing element is at 20°C,
 - What would be the temperature measured at the end of the extension wire using a 2-wire assembly
 - What would be the temperature measured at the end of the extension wire using a 4-wire assembly

Error for a 2 wire assembly
0.06 x 6 x 2 = 0.72 ohms or 1.8Deg C
This means that the temperature
measured at the end of the cable
would be 21.8 Deg C


White Error for a 4 wire assembly As the lead resistances can be accounted for the temperature measured at the end of the cable would be 20.0 Deg C

Dual Element RTDs available



- Supports Hot Backup capability
- Dual element adds only \$5 over single element RTD
 - » Reduce the risk of a temperature point failure
- Supports Differential Temperature Measurement

The IEC 751 standard curve (programmed into all our transmitters) describes an IDEAL Resistance vs Temperature relationship for Pt100 α = 0.00385 RTDs.

The goal is to find out what the real RTD curve looks like, and reprogram the transmitter to use the "real" curve!

(Sensor Interchangeability Error)

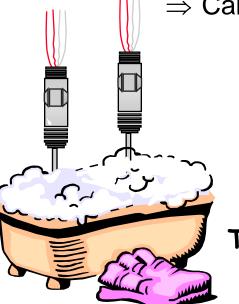
EN 60751 Tolerances

- Pt 100, $\alpha = 0.00385$

		Accuracy			
Temperature	Resistance	Grade A	Grade A	Grade B	Grade B
°C	Ohms	± °C	± Ohms	± °C	± Ohms
-200	18.52	0.55	0.24	1.3	0.56
-100	60.26	0.35	0.14	0.8	0.32
0	100.00	0.15	0.06	0.3	0.12
100	138.51	0.35	0.13	0.8	0.30
200	175.85	0.55	0.2	1.3	0.48
300	212.05	0.75	0.27	1.8	0.64
400	247.09	0.95	0.33	2.3	0.79
500	280.98	1.15	0.38	2.8	0.93
600	313.71	1.35	0.43	3.3	1.06

Quiz: - Find the Interchangeability Error

Your customer is operating a process at 100°C and is using a Platinum RTD...

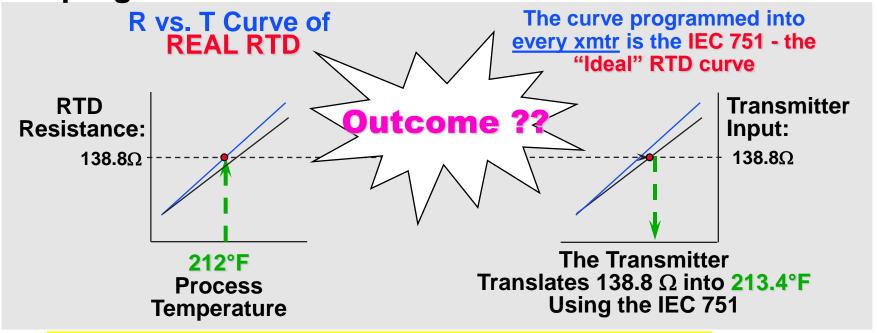

What is the maximum error that will be introduced into the temperature measurement from Sensor Interchangeability?

+/-0.35 deg C for Class A, +/-0.8 deg C for Class B Fortunately, Sensor Interchangeability Error can be reduced or eliminated by Sensor Matching!

What is RTD Calibration?

- The real RTD curve is found by "characterizing" an RTD over a specific temperature range or point.
 - » Temperature Range Characterization
 - ⇒ Calibration certificate provided with sensor
 - » Temperature Point Characterization
 - ⇒ Calibration certificate provided with sensor

Data generated (RTD "characterized")

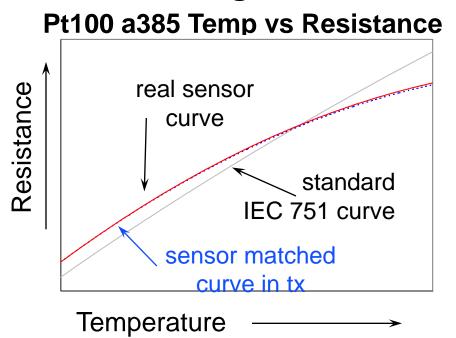


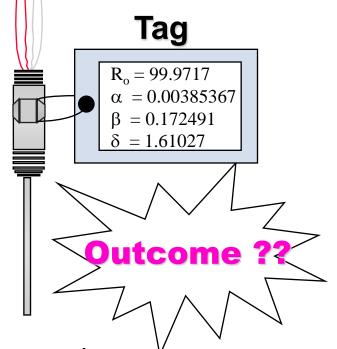
- One temperature
- Multiple temperatures

Customer Receives RTD-specific Resistance vs. Temperature Chart:

°C	Ohms
0.0	99.997
1.0	100.38
2.0	100.77
3.0	101.16

With a Real RTD, the Resistance vs. Temperature relationship of the sensor is NOT the same curve that is programmed into the transmitter

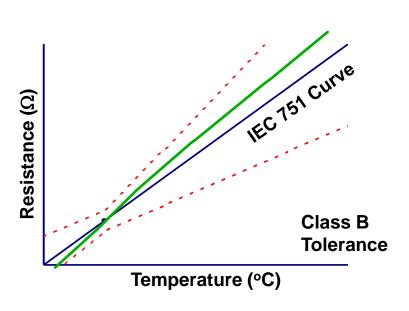



Transmitter curve does **NOT** match RTD curve.

Transmitter reading does **NOT** equal process temperature.

If we could tell the transmitter the shape of the "Real" RTD curve, we could eliminate the interchangeability error!

Sensor Matching - eliminates sensor interchangeability error



A fourth order equation can be programmed into Smart Transmitters to follow non-ideal sensor curvature; simply enter four constants using 275.

Transmitter curve is perfectly matched to "ideal" RTD curveTransmitter reading equals process temperature

Temperature Sensors RTDs

Sensor Matching - Mapping the Real RTD Curve

- The transmitter does not use the IEC 751 standard curve.
- Instead, the Callendar-Van
 Dusen constants can be used in
 the equation below to create
 the true sensor curve.
- Or, the actual IEC 751 constants A,B, and C can be used in the IEC 751 equation if known.

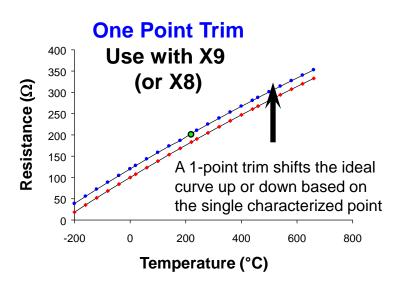
$$R_{t} = R_{o} + R_{o}\alpha[t-\delta(0.01t-1)(0.01t)-\beta(0.01t-1)(0.01t)^{3}]$$

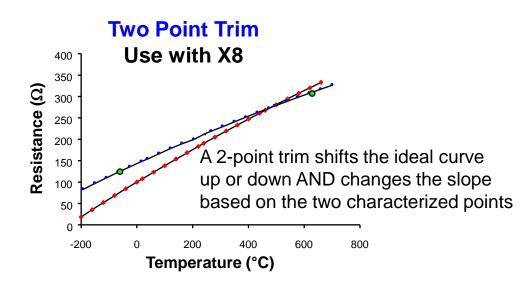
4th Order
Callendar-Van
Dusen Equation

 R_t = Resistance at Temperature t (°C)

 \mathbf{R}_{0} = Sensor-Specific Constant (Resistance at t = 0°C)

α = Sensor-Specific Constant

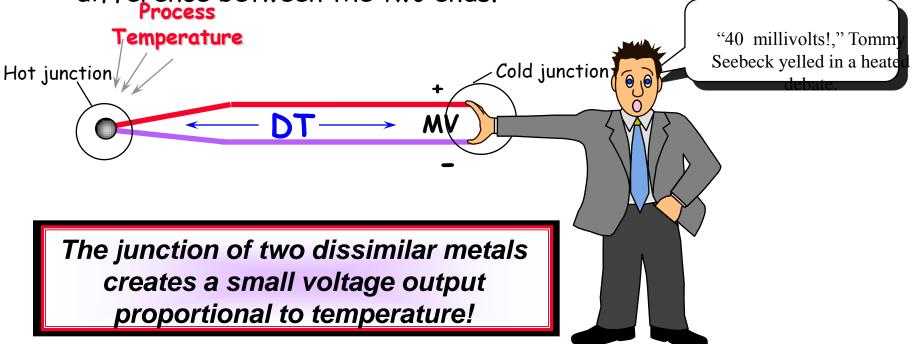

 δ = Sensor-Specific Constant


 β = Sensor-Specific Constant (If t>=0°C, then β = 0)

Temperature Sensors RTDs

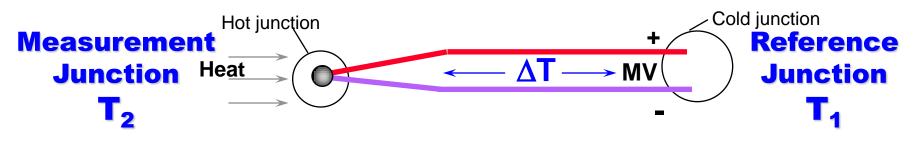
Sensor Trimming

- Data from the resistance vs. temp. chart can be used to reduce sensor interchangeability error
- Use one or two points to trim the sensor to a transmitter



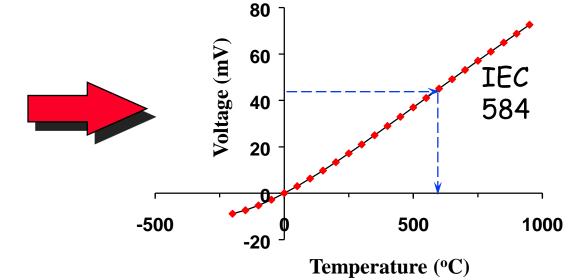
Thermocouples

What is a Thermocouple?


- Two dissimilar metals joined at a "Hot" junction

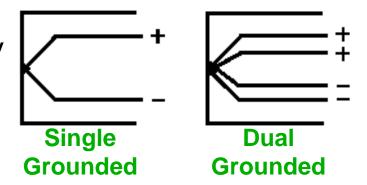
 The wires are connected to an instrument (voltmeter) that measures the potential created by the temperature difference between the two ends.

How does a Thermocouple work?

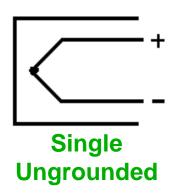

- The measured voltage is proportional to the temperature difference between the hot and cold junction! $(T_2 - T_1) = \Delta T$.

Thermoelectric Voltage vs. Temperature Chart:

°С	Millivolts
0	0.000
10	0.591
20	1.192
30	1.801

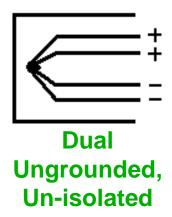


Hot-Junction Configurations

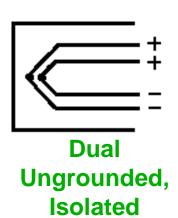

Grounded

- improved thermal conductivity
- quickest response times
- susceptible to electrical noise

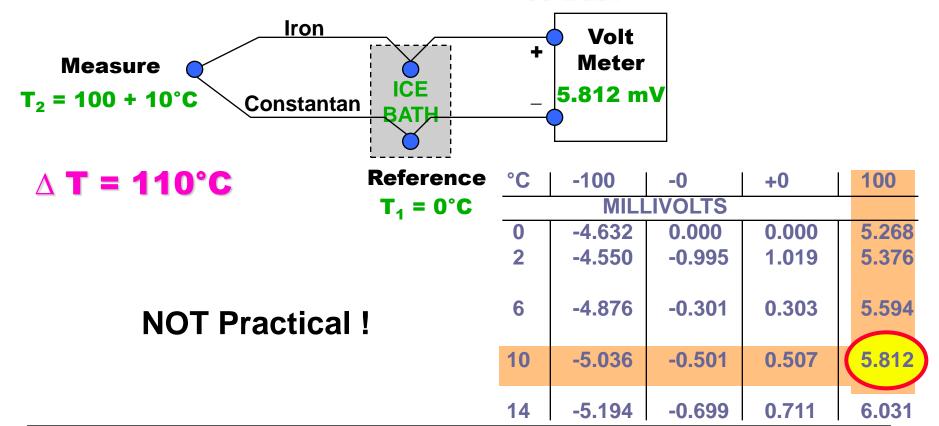
Ungrounded

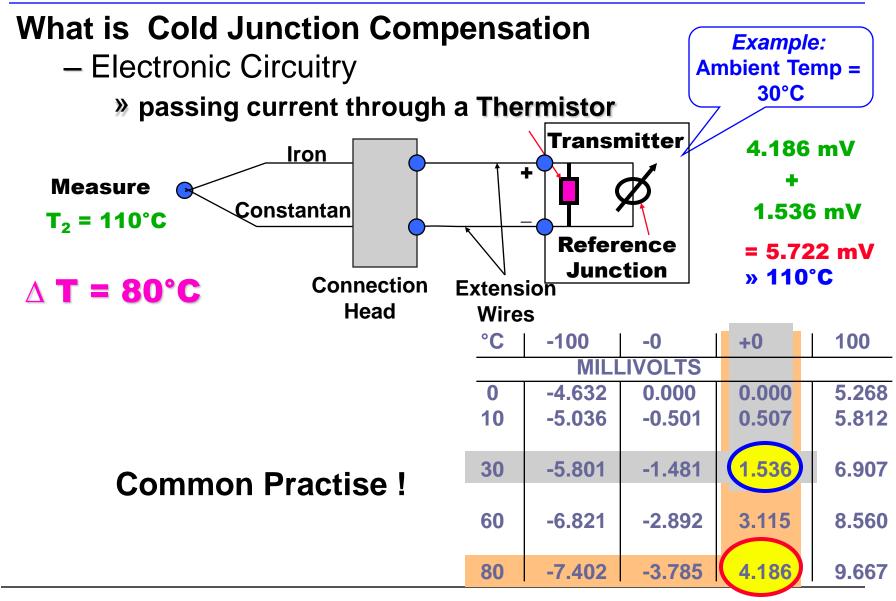

- slightly slower response time
- not susceptible to electrical noise

Hot-Junction Configurations


- Unisolated

- junctions at the same temperature
- both junctions will typically fail at the same time


Isolated


- junctions may/may not be at the same temperature
- increased reliability for each junction
- failure of one junction does not affect the other

Why is Cold Junction Compensation needed?


- Reference Junction must be kept constant.
- » 2 Methods used to accomplished this :
 - Place Reference Junction in Ice Bath

Thermocouples

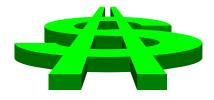
Types of Thermocouple

Type J

- Iron / Constantan
 - White, Red
 - 0 to 760 °C
 - Least Expensive

Type K

- Chromel / Alumel
 - » Yellow, Red
 - » 0 to 1150 °C
 - » Most Linear



Type T

- Copper /Constantan
 - » Blue, Red
 - » -180 to 371 °C
 - » Highly resistant to corrosion from moisture

Other Types

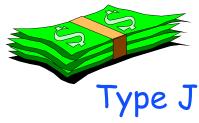
- High temperature range
- Industrial/laboratory standards
- LOW EMF output! (Not very sensitive)
- Expensive!

Type B

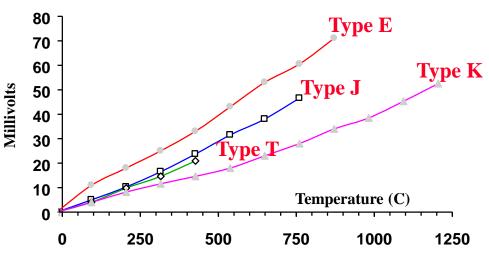
- Pt, 6% Rh / Pt, 30% Rh
 - » 38 to 1800 °C

Type R

- Pt, 13% Rh / Pt
 - » -50 to 1540 °C

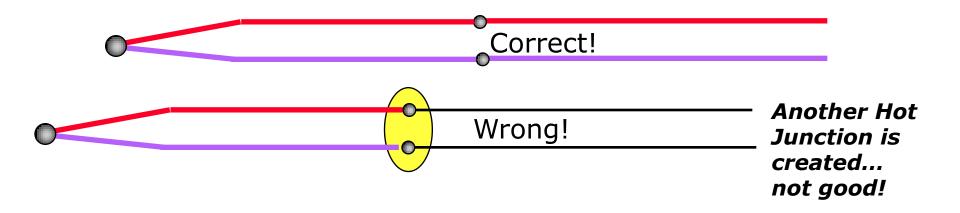

Type S

- Pt, 10% Rh / Pt
 - » -50 to 1540°C


Thermocouples

Why use one type over another?

- Temperature range
- Cost



- Signal level
- Linearity of the range

All thermocouple lead wire extensions MUST be with the same type of wire!

Cannot use copper wire for extensions! T/C wire is more expensive to run and much harder to install!

Why choose RTD over Thermocouple?

Better Accuracy & Repeatability

- RTD signal less susceptible to noise
- Better linearity
- RTD can be "matched" to transmitter (Interchangeability error eliminated)
- CJC error inherent with T/C's; RTD's lead wire resistance errors can be eliminated

Better Stability

- T/C drift is erratic and unpredictable; RTD's drift predictably
- T/C's cannot be re-calibrated

Greater Flexibility

- Special extension wires not needed
- Don't need to be careful with cold junctions

Why choose thermocouple over RTD?

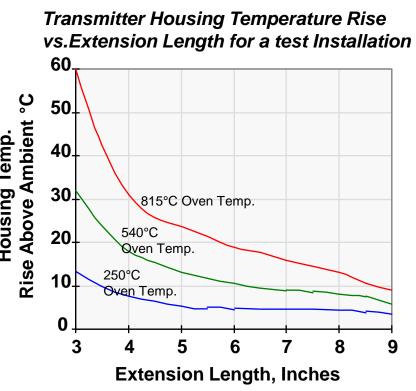
Applications for Higher Temperatures

Above 1100°F

Lower Element Cost

 Cost is the same when considering temperature point performance requirements

Faster response time


 Insignificant compared to response time for T-Well and process

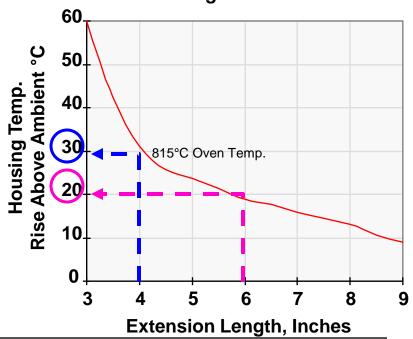
Perceived as more rugged

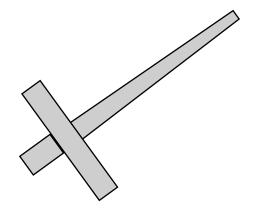
 Rosemount construction techniques produce extremely rugged RTD

RANGE	OFFER
-200 to 500° C	RTD
500 to 1100° C	Thermocouple Type K
>1100° C	Special Thermocouple R, S or B

- **Extension fittings are used for** a number of reasons:
 - Heat dissipation from the process to the transmitter
 - Extend sensor through tank jacket or pipe insulation
 - Ease of accessibility through
 - Disconnect sensor from process → without full disasser!
 - Two types of Assembly
 - Coupling and nipple assembly
 - Union and nipple assembly

Extension Fittings


Example of Application


- Example #1
 - 4 inch

- Example #2
 - 6 inch

Lets say: Temp Limit of Transmitter is 70°C Amb. Temp is 32°C

Transmitter Housing Temperature Rise vs.Extension Length for a test Installation

What is a thermowell (T-well)?

- A unit that protects a sensor from process flow, pressure, vibrations, and corrosion
- Allows for sensor removal without process shutdown
- Slows response time (by 5 times)

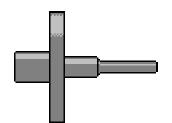
Why are there different material types?

- To handle different corrosive environments
- To handle different temperature and pressure limits

Thermowell Design Styles - Comparison Table

Rating: 1= Best	Process Pressure	Time Response	Wake Frequency	Price	Drag Force
Tapered	1	2	1 or 2	3	2
Stepped	1	1	3	1	1
Straight	1	3	1 or 2	1	2

Thermowell Mounting Styles


- Threaded
 - Most common
 - Easy to remove and install
- Welded
 - Non-removable

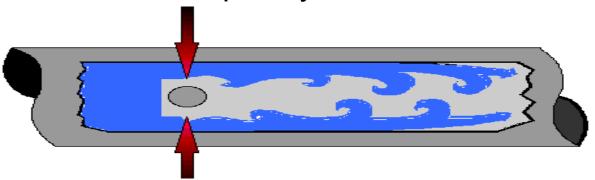
- Used in non-leak applications
- Flanged
 - Used in corrosive environments
 - Used in high velocity, and high temperatures

What is thermowell analysis?

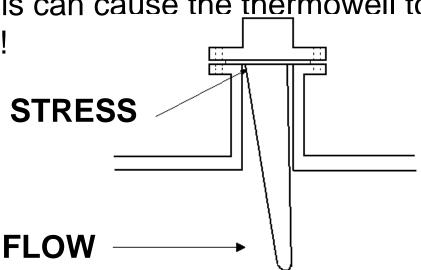
- A method used to determine if a thermowell is physically capable of withstanding the process conditions.
- It includes wake frequency, resonance, or Murdock calculations.
- Stress calculations.

What we do not want is damage to the

customer's


Plant

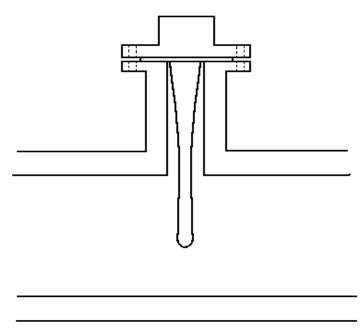
RMT Training - 05/98


Thermowell Failures

- T-wells can fail under certain conditions
- Fluid flowing around the T-well forms a turbulent wake called the Von Karman trail
- The wake alternates from side to side at a specific frequency dependent on many variables
- If that frequency exceeds 80% of the Twell's natural frequency, the T-well can fail!

Stress Failure

- T-wells can fail under stress conditions
- Fluid flowing past the T-well creates a stress on the thermowell where it is attached to the pipe
- This can cause the <u>ther</u>mowell to snap off!



Static Pressure Failure

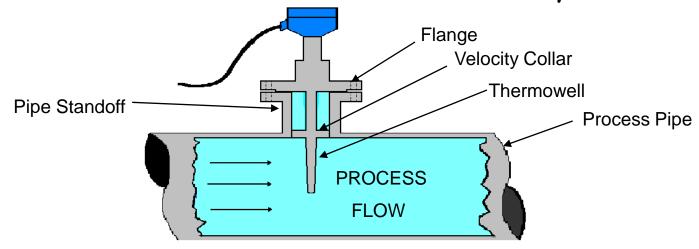
 T-wells can fail due to excess process pressure

 Excess process pressure can cause the thermowell to collapse!

Checking For Thermowell Suitability

- Thermowell calculations can be carried out provided we have information on the following:
 - Thermowell Style
 - Thermowell Material
 - Thermowell Dimensions
 - Fluid Velocity or Flow Rate
 - Process Pressure
 - Process Temperature
 - Fluid Density
 - Fluid Viscosity
 - Various Process Pipe Dimensions
 - T-well calculations can be carried out by Rosemount Temperature Applications Groups

Look on the back of your Sensor PDS!

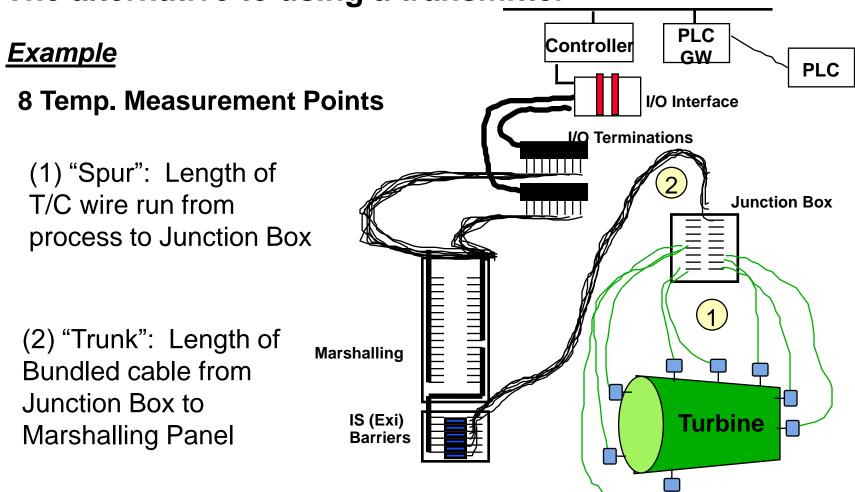

Why do we need all this information???

- 1. To calculate the natural frequency
- 2. To calculate the wake frequency
- 3. To calculate the fluid velocity
- 4. To calculate the stress on the T/Well
- 5. To calculate the maximum pressure

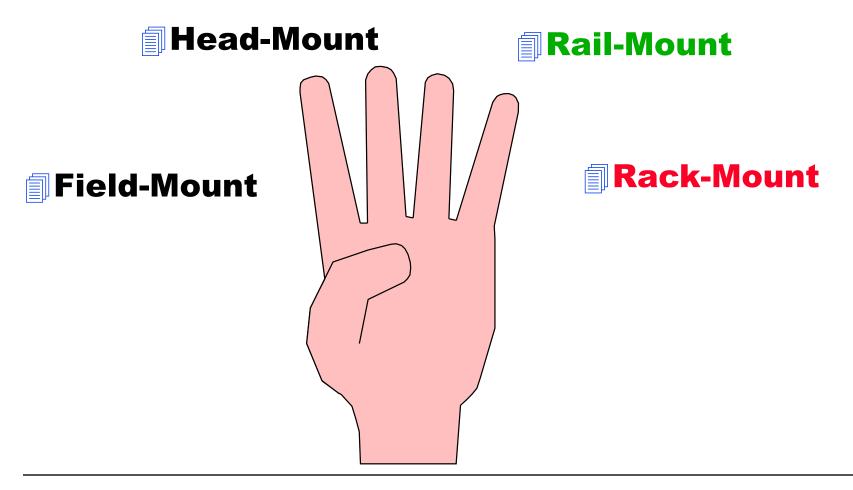
What can we do if the Thermowell fails????

- We can redesign the Thermowell by:-
 - » Changing the style of Thermowell.
 - » Changing the length of the Thermowell.
 - » Changing the diameter of the Thermowell.
 - » Changing the Thermowell material.
 - » If all else fails, we can use a velocity collar.

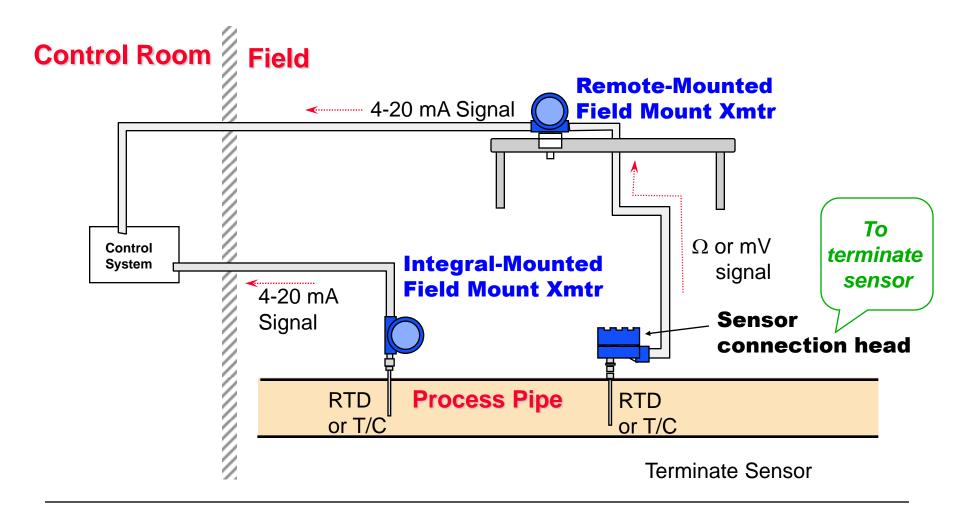
Transmitter converts temperature sensor's signal from resistance or voltage into a common digital or analog 4-20 mA control signal

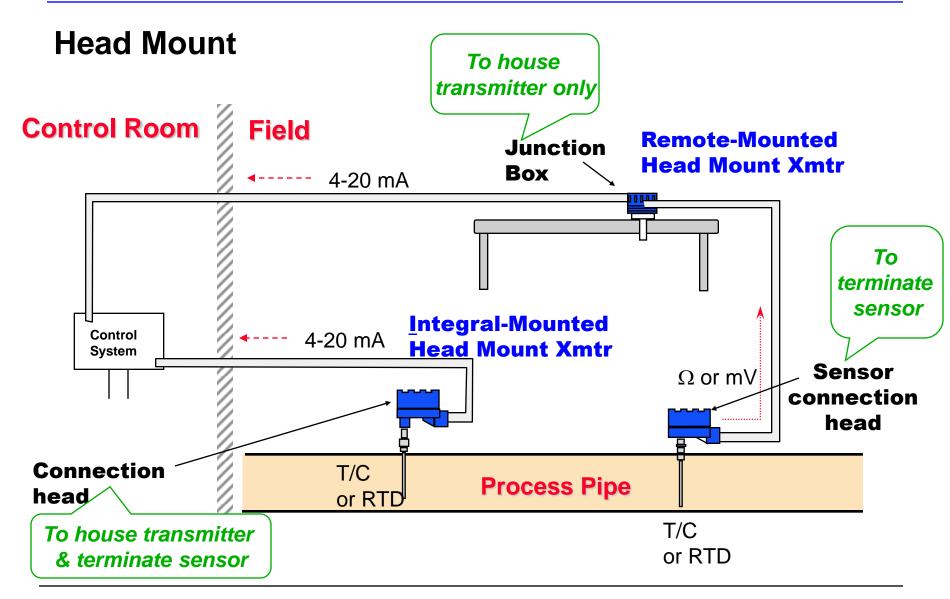


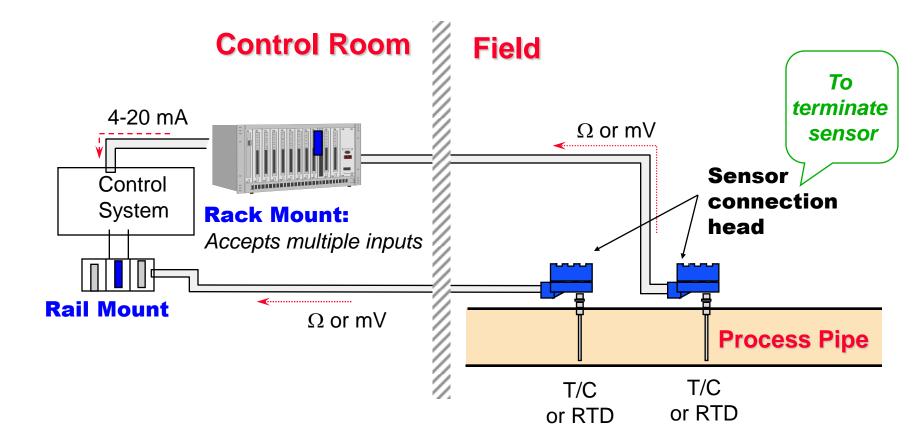
- Converts a noise susceptible signal to a standard, more robust 4-20 mA signal
- Provides local indication of temperature measurement
- Smart transmitter provides ⇒ remote communication & diagnostics

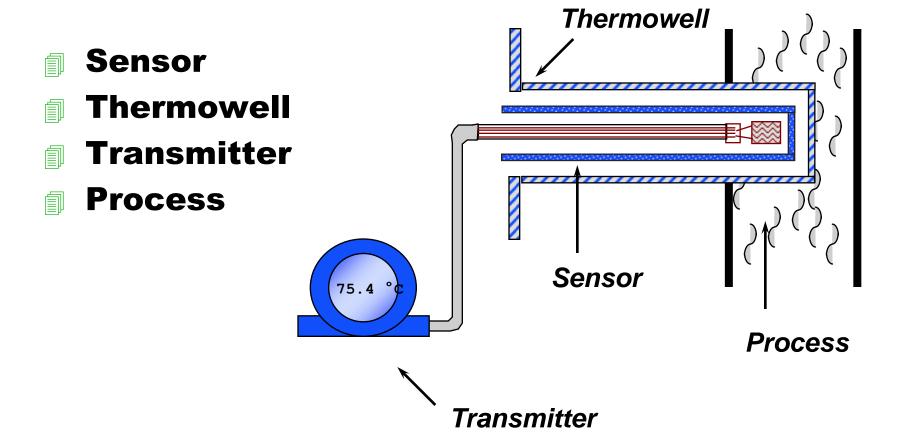

⇒ improved accuracy & stability

⇒ reduced plant inventory


The alternative to using a transmitter


4 main transmitter mounting styles

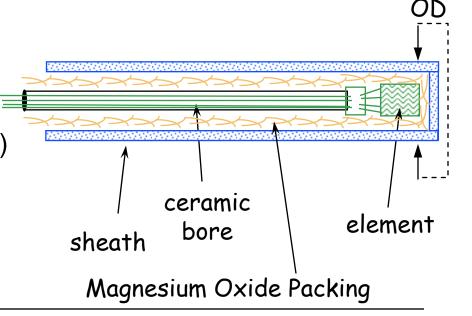

Field Mount


Transmitter Mounting Styles

Rail & Rack Mount - Remote-Mounting Configurations

Factors Affecting Response Time

Type of element

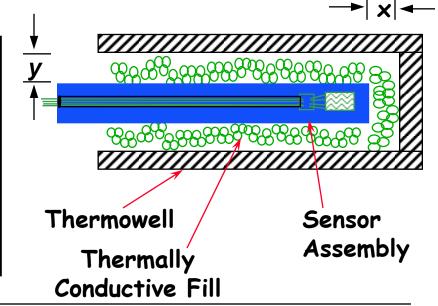

- Thin-film has slightly faster response time than wirewound
- Thermocouples do not vary significantly

Element packaging

- Rosemount RTD's are packed in magnesium oxide to provide optimum thermal conduction within the sheath
- Grounded thermocouples are twice as fast as ungrounded

Sheath thickness and material

Rosemount uses 316SST and¹
 Inconel (for high temperatures)
 for sheath; both are very good
 thermal conductors

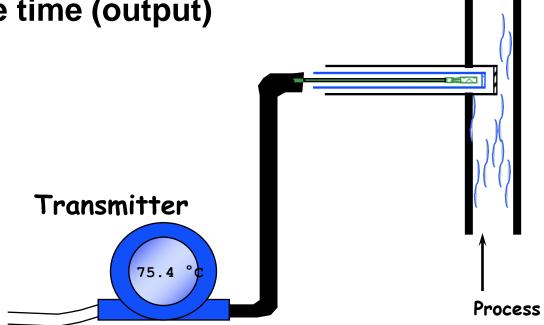


- Thermowell design style (thickness at tip)
 - Stepped is the fastest
- Contact between sensor sheath and thermowell (x and y)
 - Spring loaded sensor ensures contact at the tip (x=0)

 Industry practice suggests using thermally conductive fill can significantly reduce time lag

Tapered thermowell = 26 seconds Stepped thermowell = 22 seconds

Industry data shows stepped t-well with fill = 11 seconds


 Time response depends on element (complexity of calculation)

- 2-wire RTD 440 - 760 ms

- 3 & 4-wire RTD 520 - 920 ms

- Thermocouples 300 - 750 ms

 Transmitter update time (output) every 1/2 second

- Velocity of the material
- Thermal conductivity of the material
- Density and viscosity of the material
- Process time constants can be from seconds to hours:

Water @ 3 fps t = 1 min Air at 50 fps, $40-80^{\circ}C = 11$ minutes Oil agitated in a bath: t = 13 minutes Oil not agitated: t = >45 minutes

Sensor	7 to 10 sec
Sensor in Thermowell	60 to 120 sec
Transmitter	.5 to .9 sec
Process	Seconds to Hours

 Thermowells and process material/conditions have the greatest effect on temperature point response time

Exercise 65

A 4-20 mA transmitter is spanned 50 to 150°C. Express the span in the following units:

- 1. [] to [] °F
- 2. [] to [] K
- 3. What is the temperature reading if the above transmitter outputs 10 mA? [°C]
- 4. An old differential temperature indicator with a scale of 0 100°F is reading 60°F. What is that reading in °C?
- 5. An Pt 100 RTD has the following C.V.D constants $R_0 = 100.00\Omega$, $\alpha = 0.003842$, $\delta = 1.415$, $\beta = 0.11$. If the temperature being measured is 30°C, What will be the resistance value?

Exercise

High accuracy

Faster response time.

6

10.

66

Identify the characteristics for RTD & Thermocouple & indicate them by entering a "R" or a "T" respectively.

O .	ingir accaracy.	L	J
7.	Can handle wider temperature range.	[]
8.	CJC is not required.	[]
9	Can be matched to transmitter	Γ	1

Identify which the sensor or thermowell design that provide faster response time.

11. A. Thin-film RTD
B. Wire Wounded RTD []

Exercise 67

12.	A. B.	Thin-film RTD Wire Wounded RTD	[]
13.	A. B. C.	Straight Thermoell Tapered Thermowell Stepped Thermowell	[]
14.	A. B.	Grounded Thermocouple Un-grounded Thermocouple	[]
15.		Thermowell mounting style can be used velocity and high temperature corrosive ment.		
	A. B. C.	Threaded Welded Flanged	[]