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HIGHLIGHTS

e A hybrid power plant concept aiming simultaneous decarbonization of electricity and water sectors is proposed.
e An energy management system integrating physics informed machine learning forecasts is presented.
e Synergies between electrical, water and heat sectors are exploited, improving renewable integration.
o The stochastic dispatcher is suitable for real time implementation and presents a robust performance.

ARTICLE INFO ABSTRACT
Keywords: The ongoing energy transition and incoming water scarcity crisis demand coordinated research to ensure a fossil-
SMR free future for humankind. Aiming to increase energy efficiency, reduce curtailment and decarbonize water

Stochastic dispatch
Desalination
Hybrid power plant
Machine learning

production, this paper proposes a novel energy management system (EMS) for a hybrid plant compound by a
small modular nuclear reactor acting as cogeneration unit, a wind and solar farms as generators. Additionally
reverse osmosis and multi-stage flash desalination plants are included as demand responsive units along with a
freshwater storage. Mixed integer linear programming (MILP) is employed to formulate this stochastic optimi-
zation problem, where piecewise linear functions define operational costs and efficiencies of SMR and desali-
nation motivating energy efficiency and safety. Renewable availability point forecasts are obtained with physics
informed machine learning models whose error is characterised by fitting the predictor's residuals to different
statistical distributions following an unsupervised methodology. The suitability of the EMS is addressed in two
study cases, one exploring the flexibility exploitation of the algorithm and another proving its suitability for real-
time implementation. The dispatcher manages to keep unaltered the SMR's core reaction while satisfying both
electrical and water demand in different renewable availability regimes by fully exploiting sector coupling
flexibility. Simultaneously, renewable curtailment is kept to a minimum.

pose additional strain in the energy sector, thus representing significant
greenhouse emissions [3].

A number of scientific contributions proposed methods to reduce the
energy impact and emissions of desalination. Some focus directly on the
energy efficiency of the desalination process such as Tian et al. [4], who
explore the usage of microwave radiation in flash evaporation processes,
reaching nearly 80% efficiency. Zhang et al. [5] performed an analysis
on osmotically-assisted reverse osmosis and batch-operated vacuum-air-
gap distillation concluding on its good economic performance

1. Introduction

Water scarcity crisis is expected to directly affect 40% of human
population by 2030 [1]. Despite alternatives such as groundwater uti-
lization, reclaimed wastewater, or rain harvesting; desalination is an
inevitable solution in many areas such as Australia, US, Spain, Africa,
and the Middle East [2]. Disregarding the specific approach, desalina-
tion is an energy intensive process whose current and future demand

* Corresponding author at: Wind and Energy Systems, Technical University of Denmark (DTU), Frederikborsvej 399, Roskilde 4000, Denmark.
E-mail address: dvapo@elektro.dtu.dk (D.V. Pombo).

https://doi.org/10.1016/j.desal.2022.115871
Received 25 February 2022; Received in revised form 14 May 2022; Accepted 19 May 2022

Available online 9 June 2022
0011-9164/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).



D.V. Pombo et al.

Desalination 537 (2022) 115871

Nomenclature

Sets and Indices

0 Initial

a, b, c,d, f Operation, on, off, ramping, and deviation
g Demand response technologies

@ C & Reverse osmosis desalination plants

& C Z Multi-stage flash desalination plants

2 Generators

ZR

C 2 Renewable source generators
2% C 7 SMR units generators

n, w Electricity, heat, nuclear, and water
u/D Up/down

yevyvy Non-linear value y of function Y

lel Segment of the piecewise linear function
teT Time periods

@€ ®  Scenarios

) Set of all variables

Parameters

AY Piecewise linear coefficient

IT]R Maximum ramp-down limit [MW]

D_j Maximum power before shut-down [MW]
ET,ET Maximum/minimum freshwater requirements
F., ¢, r Forecasted renewable available power
Hn/d Maximum heat power limit [MW]

v Electric/water demand [MW] or [m®]

15:, Renewable power availability [MW]

ﬁj,P j Maximum/minimum power limit [MW]
PCC Point of common coupling capacity [MW]
T}i”W” Minimum off time [periods t]

T}’if Number of periods t until decommission
Jﬁ, TJ“P Maximum/minimum on time [periods t]

TO}‘P , TOjd"W" Maximum on/off time from initial t

TO;.‘p , TO}iOW" Minimum on/off time from initial t

U; Maximum start-up power [MW]
U73 Maximum ramp-up limit [MW]
Wis Water storage discharge limit [m3/h]
Ws7 W*  Maximum, minimum state of charge

a, f, 9  Quadratic function coefficients
Ve Heat to electricity conversion factor [%]
Frdd Selling prize [a,-/MWh] or [a,~/m?]
Yo Probability of scenario ¢ [%]
Variables
¢t Operational cost of time t [€/MWh]
Z? Start-up cost of time t [€/MWh]
; Shut-down cost of time t [€/MWh]
7;1 Reactor ramping cost of time t [€/MWh]
7{ Reactor derating cost of time t [€/MWh]
I Electricity market income [€/MWh]
B4 Freshwater market income [€/MWh]
Pi b Curtailed renewable power [MW]
e Scheduled DA electric power [MW]
PQ’ n Scheduled DA reactor power [MW]
Pf,l nw Scheduled DA heat power [MW]
Q,j Max available electric power [MW]
Rf j Scheduled DA downward reserve [MW]
rE b RT downward reserve [MW]
Rg j Scheduled DA upward reserve [MW]

s RT upward reserve [MW]
W% Charged/discharged water from storage [m®]

W’t/ Water storage state of charge [m3]

s Value from x piecewise linear parameter
M, j Electricity to water conversion factor [%]
Vg j Binary. 1 if online, and 0 otherwise

P j Cost [€/MWh]

particularly when using renewable energy. On the other hand, others
focus on coupling renewable energy source (RES) with different desa-
lination technologies. For instance, Moharram et al. [6]; employed a
solar powered Rankine cycle operating at full efficiency using excess
heat to run a desalination stage. Others like Mo et al. [7] studied the
influence of variable energy prices in the cost of freshwater and the
possibilities for demand response. More recently, Mito et al. [8] pro-
posed using model predictive control to integrate reverse osmosis (RO)
with renewable energy. However, there has been a shift towards hybrid
power plants (HyPP) given their higher efficiency, increased function-
alities, and dispatchability [9]. In this direction, Sadeghi et al. [10]
performed an economic assessment of desalinated water for scenarios in
which energy is obtained from solar, small modular reactor (SMR) or
both; concluding on the superiority of the HyPP structure. While Liu
et al. [11] integrate freshwater storage, wind and solar power in a
coastal desalination installation to reduce the water production costs.
Despite their advantages, HyPP present challenges regarding asset
coordination, which has motivated extensive research in energy man-
agement systems (EMS). For instance, the dispatchability of a wind and
concentrated solar HyPP is discussed in [12] including operational risk
in the EMS. While Yang et al. [13] use stochastic unit commitment (SUC)
to deal with extreme weather at system level. Furthermore, Le et al. [14]
highlight the capability of SUC of enabling load-shifting in the day-
ahead (DA) stage and reserve-capacity in the real-time (RT). While
Van der Meer, et al. [15] coordinate solar PV, batteries and

uncontrollable load in a prosumer building using SUC. However, SUC
limitations are the forecast need, scenario definition and characterisa-
tion, which caused authors like Amabile et al. [16] to use rule-based
dispatchers to coordinate a smart building with solar, storage and de-
mand responsive (DR) units. Nevertheless, off-the-shelf forecasters
based on machine learning (ML) wide availability and their documented
suitability for wind and solar prediction [17] justifies the need for
methods translating point forecasts into stochastic scenarios [18]. Yet,
uncertainty characterisation and validation is far from trivial [19].
Existing methods combine point and uncertainty forecasts into hybrid
models [20], whose main disadvantage is requiring two separate
models.

This work aims to contribute the scientific community by proposing
an EMS for a HyPP compound by an SMR, a PV plant, a wind farm (WF),
and two different desalination technologies; one requiring only elec-
trical input, and the other demanding also thermal. The objective is to
enable carbon-free electricity and freshwater production for any given
region, as the HyPP could also operate as an isolated system. The
dispatcher is formulated as an optimal SUC where the uncertainty is
assumed caused by the wind and solar resource. The available RES
power is estimated using physics informed ML to train of-the-shelf point
forecasters. Then, stochastic scenarios are characterised based on the
probability distribution of the forecast residuals, by fitting them to a
known statistical distribution with an unsupervised approach. The
suitability of the proposed HyPP, EMS, forecast, and uncertainty
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modeling is evaluated in different study cases studying the influence of
RES availability, forecast accuracy and scenario characterisation.

The paper is structured as follows: Section 2 presents the HyPP
concept object of study, Section 3 presents the formulation of the EMS,
Section 3.2 introduces the employed physics informed ML applied to
wind and solar forecasting and the scenario generation process. Then,
Section 4 presents the study cases, and Section 5 concludes the paper.

2. Background

The considered nuclear reactor and desalination technologies are
integrated into the HyPP concept in this section.

2.1. Small Modular Reactors

The main features characterising SMR are: to have an output power
lower than 300 MWe, to have a design allowing them to be manufac-
tured, and fueled at a factory and, then, be delivered to their definitive
site. Furthermore, they offer enhanced security, safety and are, by
design, able to offer de-rated operation and load-following capabilities.
[21]

Load following mode allows to continuously modify the reactor
output power in order to follow electric demand. This is achieved by
controlling the reactor's reactivity by modifying the position of the
control rods in the core [22]. This operational mode contributes to
poisoning traditional reactors, due to the apparition of undesired fission
products that act as parasitic neutron absorbers, introducing negative
reactivity. Those products accumulate in the reactor over time eventu-
ally preventing achieving supercriticality. SMR design and fuel selection
minimizes the apparition of such products, however, de-rated operation
results still economically inefficient as reducing the output does not
significantly affect the fuel consumption rate nor the operating ex-
penses. In addition, they suffer thermo-mechanical stresses derived from
frequent rampings. Hence, even if SMR are capable of derated operation,
it is desirable to avoid it [23].

There are two alternatives to de-rating the core in order to perform
load following. One is to couple it with a dump load, or demand
responsive unit that will allow to effectively derate the electric output
without affecting the SMR's operation. Another alternative is to bypass
some of the steam from the turbine into a heat sink. In that sense,
cogeneration of hydrogen, desalination and district heating have been
deemed suitable in different studies [24,25].

There are a few SMR designs available such as CAREM-25, CANDU,
and NuScale. However, the latter presents higher technology readiness
level as it received design approval in 2021 and targets first commercial
operation in 2027 [21]. NuScale, focus of this study, is a small, light-
water pressurized-water reactor with natural circulation employing
UO; pellets with >4.95% U?% enrichment. NuScale design power is 160
MWt and 45 MWe, is scalable up to 12 modules in a single facility, and is
suitable for cogeneration [26].

2.2. Desalination technologies

The most important desalination processes at commercial stage can
be divided into distillation and membrane based. The first require
mainly thermal energy to be complemented with electricity while the
second only employs electricity. Rather than an exhaustive review, this
section presents the most important technology of each category.

Reverse Osmosis is a process in which a semi-permeable membrane
separates desalinated water from a saline concentrate stream. The
applied pressure must overcome the osmotic as determined by the feed
water salinity. It usually includes two compression stages, requiring in
total about 2-5 kWh/m? of electricity. Furthermore, inlet water requires
pretreatment to maintain production capacity over time. As the most
efficient and flexible desalination method (whose rampings are dis-
regarded in hour scale), RO represents 50% of the global capacity. [27]
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Multi-Stage Flash Distillation (MSF) is the most representative
distillation technology by global installed capacity. A typical setup
consists of two sections, brine heater and flashing stages. The in-feed is
preheated in a series of heat exchangers prior to entering a brine heater
for further heating and pressure increase. The hot and pressurized water
passes into a flash stage where pressure is lower causing a fast vapor-
ization followed by condensation on a heat exchanger. There, the heat is
recovered by new in-feed water and the distillate is collected. The
remaining saline water continues repeating this process in up to 25
successive flashing stages, until it is discharged back to the inlet source.
Net energy wise, MSF requires 2.5-5 kWh/m? of electric input to operate
pumps and other devices, and 15.8-23.5 kWh/m? of heat [28]. To in-
crease efficiency and due to their thermal requirements, MSF are usually
integrated in co-generation systems. There, exergy-rich steam is tur-
bined for electricity generation, while its counterpart is employed in the
MSF [29]. In such systems, the thermal generator is the most constrained
in terms of ramping, startup and shutdown dynamics, thus dismissing
those of the MSF. However, based on the studies from Al-Fulaij et al.
[30], we can establish a conservative estimation of 60%/h ramping, a
minimum running of 30% and a minimum on period of 4 hours.

The main advantages of RO are lower energy needs, faster ramping,
and modularity, while being more prone to failures. MSF presents slower
dynamics due to thermal inertias, but is more robust, less affected by
infed variations, and produces higher quality freshwater. In [31] RO and
MSF are studied as combined units by feeding seawater to each process
separately and mixing the output. Besides reducing costs related to
construction, pre-, and post-treatment, the RO process is simplified
increasing reliability. [6,32]

2.3. Hybrid power plant

The aggregation of different generation technologies is a topic
gaining increasing interests, particularly in the context of RES integra-
tion. The main objective is to coordinate dispatch, reduce construction
costs, increase the plant's efficiency, overinstallation at the same point-
of-common-coupling (PCC), etc. However, they present other advan-
tages as reducing stochasticity impact of the renewable units [33].
Furthermore, besides generation units, the HyPP concept allows to
integrate demand responsive units such as desalination [34]. Fig. 1 de-
picts a HyPP combining a SMR, a WF and a PV plant as generators, with
RO and MSF as DR units. Note how the output steam from the generator
can be redirected to the MSF via a heat exchanger. In that way, the
desalination system is protected from neutron leaks.

3. Methodology

We propose a coordinated EMS approach formulated as a stochastic
MILP maximizing the HyPP profits. The algorithm assumes DA market
prices as given and integrates RES-related uncertainty with a number of
scenarios. These, are generated based on the output of physics informed
ML forecasters and their error characterisation. Fig. 2 presents the EMS
architecture and data flow. In general, the inputs to the EMS are com-
mands sent by the system operator, Market signals such as prices, point
forecasts and their associated probability. Since we employ a ML-based
approach, said forecasts are of course computed based on current and
historical measurements. This section gently introduces the optimiza-
tion problem and the forecasters. However, the interested reader is
referred to Annex A for a full description of the mathematical
formulation.

3.1. EMS stochastic optimization

In general, the objective function of the EMS aims to maximize profit
by minimize the difference between costs and income. Costs are in
general related to usage, initialization, start-up, and shutdown, but in
particular for the SMR, a term accounting for the additional stressed
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Fig. 2. Concept of a data-driven stochastic EMS.

posed by de-rated operation is included. On the other hand, income is
related to selling the scheduled water and electricity production
including reserve. Constraints are then related to the operational limits
of the connection point and the individual units, such as the minimum
and maximum power capabilities, ramping, minimum and maximum
on/off periods, etc. In the case of the SMR, additional equations are
needed to bound the heat and electrical production with the core's re-
action, and with the heat requirements of the MSF. Similarly, the cost
function of the SMR and the efficiency curves of desalination plants are
accounted for using a piecewise linearization of their typical curves.
Furthermore, it is possible to consider the inclusion of a water storage
which adds an additional level of flexibility to the system.

3.2. Physics informed forecasting

Physics informed ML is a sub-set of data-driven forecasting methods
that can be applied to time series. Its main characteristic is to introduce
knowledge of the physical dependencies among the different metrics
available in the dataset in the ML model [35]. In this work, data with
hourly resolution was used to train two different ML models for pre-
dicting wind and PV power. The ML methods were RF and a hybrid CNN-
LSTM artificial neural networks as they are two of the best predictors
reported in the literature [17]. The employed dataset, SOLETE, includes
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metrics such as: irradiance, wind speed, humidity, etc. from 1st June
2018 to 1st September 2019 [36].

The, ML models were trained using mean absolute error (MAE) as the
optimizer metric (1). While root mean squared error (RMSE) is used in
their evaluation (2). All the models were developed in Python using
open access libraries such as Scikit-learn and TensorFlow.

MAE, Vh e # (€D)]

_ ST Ful
- a7

(2)

where #, 7, n, and h stand for observation, prediction, sample number
and time step.

3.2.1. Solar

The Solar forecaster was developed according to the physics-
informed approach described in [37]. That is, by integrating the King's
PV performance [38] in the ML-model. King's model allows estimating
the operating temperature, and available power, while requiring basic
meteorological metrics and datasheet parameters from the PV panels
and the inverter. The resulting RF model was trained using: humidity,
irradiance in the plain of array, estimated panel temperature, and hour
of the day.

3.2.2. Wind

On the other hand, the turbine's datasheet power curve is avoided to
estimate available power as the wind speed measurement point and the
turbine are located about 200 m apart. The effective power curve is then
obtained by training a RF with wind speed, direction, and power as
features. Then, following the recommendations in [39], a second RF and
a CNN-LSTM models were trained to predict power. The RF used mean
and standard deviation of the previous 24 hours, while CNN-LSTM
included humidity in addition. Stacking is a special case of model
averaging aiming to improve response time, stability and accuracy of ML
models [40]. The wind forecaster is built by stacking the effective power
curve of the turbine with either the second RF or the CNN-LSTM model.

3.3. Scenario characterisation

From an stochastic optimization perspective, scenarios are charac-
terised by their occurrence likelihood. However, the proposed point
forecasters, the most commonly encountered in scientific literature,
return an average or median expected value, not a probability density
function (pdf). Yet, fundamental statistics allow to fit recordings to a
number of well-established probability distributions. For instance,
Hodge et al. [41] used Gaussian, Weibull and Cauchi distributions to
study wind power forecast errors; concluding that the effective distri-
bution cannot be assumed. Then, Wu et al. [42] developed a mixed
LaPlace-Gaussian distribution to model persistence-based forecasts for
wind power. While Yan et al. [43] consider analysing PV power fore-
casting error distribution using a Gauss model. Note that the common
limitation of the aforementioned work is to limit their analysis to few
distributions, or to develop complex tailor-made solutions.

In order to generate different scenarios and their respective proba-
bilities, we characterise the error distribution per sample based on the
ML-model's performance. First, the residuals are computed for eachte T
of the validation set in p.u. based on the installation size. Then, these are
fitted to the 100 different distributions available in SciPy [44] such as:
Gaussian, Weibull, Beta, Cauchi, etc. and their pdfs are obtained. Af-
terwards, the residual sum of squares (RSS), (3), is used to rank the
methods, while the coefficient of determination (Rz), (4), is used as tie-
breaker. Once the best fit distribution is found for each sample, their pdf
can be used to obtain the related residuals at given quantiles. Therefore,
when a new forecast is casted, its computed pdf is used to estimate
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different scenarios and their probability based on a desired set of
quantiles. This methodology is depicted in Fig. 3.

RSS=>"|7,— 7, 3)

e Rss

>

The fitted distributions per resource, method and sample are pre-
sented in Fig. 4. The maximum R? was 0.99, the minimum 0.70, and the
average 0.89; being homogeneous for wind and solar and both fore-
casting methods. Left-skewed Levy distribution is the most common but
it only appears in CNN-LSTM for wind power, in general Gen Normal
and Cauchi are the most repeated across the rest of the predictors. Still,
CNN-LSTM presented higher distribution homogeneity, which is
consistent with the ANN's capacity of capturing temporal correlations.

By estimating error distribution for each sample independently,
temporal correlations within the time-series are diluted. This might lead
to defining scenarios presenting higher error sparsity than those natu-
rally occurring. This limitation is however only relevant for systems
where energy dispatch is severely constricted, such as those critically
dependent on energy storage-based load shifting [45]. Furthermore,
several studies point towards the general lack of temporal correlation of
short term wind power measurements [46], which allows dismissing
them. The advantages of the proposed method are related to the unsu-
pervised fit that avoids preconceptions and guesses related to the re-
sidual distribution. In addition, it is suitable for any time-series and thus
can be applied to both wind and solar power as well as to other fields.

4

Fi -3,

4. Study case

This section presents two study cases using the HyPP from Fig. 1: A
explores the influence of available RES and forecaster accuracy in the
EMS; while B explores the effect of including larger number of quantiles
in the accuracy and computational performance. Note that the optimi-
zation problem has been formulated in Pyomo, and solved using a
commercial solver called Gurobi [47].

The considered generation units are a NuScale SMR of 45/160 MWe/
MWth, a 20 MW WF, and a 10 MW PV, while the DR units are a 20 MW
RO, and a 150,30 MWt/MWe MSF; and a 100 m® WS with an initial level
of 30%. A summary of implemented parameters is made available to the
reader in the Complementary Data section. The operational costs of each
technology have been estimated based on a survey of different docu-
ments [48-51]. Lastly, the PCC is limited to 50 MW, which can be
objectively considered as a small interconnection capacity. This value is
selected to highlight the flexibility provided by the proposed EMS. Even
though such value is usually related to the substation capacity, in the
context of energy islands or isolated regions, it can be used as a dynamic
parameter representing the allocation capacity limit of the local grid. In
that case, the PCC limitation can be used to maximize grid usage

Residual
(e
1
!_ .
==U>

Qos Qos On
[ [ [ B, (%) =n
t t. tn " . ~

Fig. 3. Residual distribution characterisation concept.
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Fig. 4. Error distribution per method and resource.

efficiency. Lastly, the scheduled DA electrical and water demand are
presented in Fig. 5; while hourly prices are presented in Fig. 6 based on
typical days of the Iberian market during 2019 (to avoid COVID-related
price disruptions). Note that the reserve requirements are assumed to be
symmetric and 25% of the scheduled production which is paid at 10% of
the DA rate. There is a penalty of 300 €/MWh for unserved energy, and
water price is assumed at a flat rate, however, the associated production
cost vary along with the HyPP operation.

4.1. Study case A: forecaster influence

The RES resource of 2 representative days are presented in Fig. 7,
along with the confidence interval obtained from the predictors using 5
quantile bins. The results are presented in Table 1. The optimization
performance is best when implementing the CNN-LSTM predictor
despite its slightly lower accuracy. This is not particularly surprising as
lower accuracy predictors have already been reported as better candi-
dates for optimization systems in [52]. The solving time is quite fast for
all scenarios and their differences of about 1 second are negligible as this
optimization is run for 24 hours ahead. Given the higher RES availability
of the winter day it is expected to present higher curtailment. An
observed limitation is the final SOC of the water deposit. Since it reaches
100% a simulation with a longer horizon will not be able to exploit its
flexibility unless it is followed by low RES availability periods. However,
since the proposed dispatcher can be round at higher sampling rates, for
instance once every few minutes, it would be possible to adapt the
plant's operation live.

Fig. 8 presents the operational DA setpoints of the different units
during each day using the CNN-LSTM forecaster; RF is omitted to avoid
over-repetition and RT values due to the large number of scenarios.
Briefly, during summer day the WS SOC is increased progressively until
hour 7 then discharged until hour 12 and then filled up to 100% by the

50 6
= 40+ -5 r?
2. 30 - -4 =
- [}
% 20 - -3 §
a 10+ Electricity —— Water 2 2

0 1 x w T 1

0 5 10 15 20
Time [h]

Fig. 5. Scheduled DA production.
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Table 1
Results of Study Case A.
Day A B A B
Forecasters RF RF CNN-LSTM CNN-LSTM
Time [s] 6.4 6.7 6.3 7.1
Objective [€] 23.5 26.8 23.6 27.1
WS level [%] 100 100 100 100
Curtailment [%] 7.6 15 7.3 20

end of the day. Regarding the DA scheduling of desalination, MSF takes
constant mid-low values slowly ramping up and down, while RO stays in
a support role; only turning on when the ramping capabilities of the MSF
are not sufficient. In this sense, MSF satisfies the bulk water demand,
while RO adjusts matches the production. This operational synergies
result particularly useful to accommodate renewables; presenting be-
tween 3 and 4% curtailment by the end of the optimization. Further-
more, the SMR maintains nominal output power during the whole day,
simply adjusting its electric and heat ratios trying to match the
remaining electrical production based on the available RES. On the
other hand, in the winter scenario, the WS fills up slowly and continu-
ously during the whole simulation solely fed by the MSF; which is able to
accommodate all production and provide all the necessary rampings.
This is due to the higher RES availability, since in this scenario a bigger
fraction of the reactor's heat can be supplied to the desalination.
Nevertheless, the curtailment also increases during this scenario ranging
from 8 to 10% affecting mostly the WF.
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Fig. 8. Study Case A: Operational Summary.

4.2. Study case B: quantile number influence

In this study case the winter day is recalculated using 3, 5, 10, 50,
and 100 quantile uncertainty bins for the RF forecaster. The number of
scenarios grows quadratically with increasing bins, hence the solving
speed is expected to deteriorate relatively fast. Clearly, the optimization
exactness also increases with the number of considered scenarios,
however the actual result does not necessary have to improve. Hence, an
uncertainty free scenario is included as a deterministic (Det) case to
assess what would be the systems behaviour with perfect information.

The results of this study case are presented in Table 2. There it can be
seen how the cases with lower number of bins get an objective closer to
the deterministic. Regarding curtailment, this is reduced along with the
increasing number of bins as the error distribution is better captured;
while the solving time grows with an opposite relation. A practical
implementation should carefully asses the number of bins to be included
based on the obtained accuracy and additional computational time
required. In principle, the proposed formulation can be easily adapted to
higher sampling rates in the minute scale, however, that will limit the
bin number significantly and might not be translated into additional
revenue.

4.3. Discussion

In general, the EMS has proven to effectively coordinate all the
different generation and demand responsive units in order to satisfy the
required demand and the different operational constraints. It is clear
how the different temporal inertias of the different desalination tech-
nologies are exploited to accommodate higher rates of renewables and
limit the effect on the core's reaction. Study Case A focused on the
forecaster accuracy influence over the EMS performance while B

Table 2

Results of Study Case B.
Bin # 3 5 10 50 100 Det
Day A A A A A A
Forecasters RF RF RF RF RF -
Time [s] 3.9 6.4 23.1 112.7 896.5 0.9
Objective [€] 23.4 23.5 21.2 21.9 22.0 26.8
WS level [%] 100 100 84 100 100 100

Curtailment [%] 14.4 7.6 7.1 6.7 5.3 0




D.V. Pombo et al.

explored the influence of the uncertainty characterisation over the
optimization results.

Since this is a purely theoretical study it is tough to validate the
quantitative impact this approach could have on a real system. However,
we can provide an estimation considering the case of a typical warm
island such as Santiago, Cape Verde. There, desalination is the most
energy intensive process which requires about a third of the overall
electricity production and its associated emissions (50 kt of CO2 in
2019). With a peak load of around 40 MW, Santiago cover its energy
needs with a 99 MW of fossil fueled generators, 9 MW of WF and 4.4 MW
of SF, however its RES-rates have been limited below 20% due to sta-
bility concerns. Therefore a HyPP such as the proposed in this work will
contribute both in terms of inertia, RES, and decarbonization; being able
to power the whole island assuming enough transmission capacity.
Overall, the proposed configuration could save between 46 and 59 tons
of CO2 annually. The commissioning, and construction of such a HyPP
present of course a number of challenges specially for a developing
country, however those concerns fall beyond the scope of this work.
[53,54]

5. Conclusion

The scientific community has the duty to address the incoming water
crisis and ongoing energy transition simultaneously. Aiming to facilitate
carbon-free and freshwater production for any global region; this paper
proposed a coordination strategy for a HyPP in the form of an EMS
formulated as an optimal SUC. The HyPP concept combines an SMR, WF,
PV plant, two different desalination plants (RO and MSF) and freshwater
storage. The dispatcher coordinates the SMR's core reaction, heat, water
and electric systems to satisfy hourly water and electricity demand. In
this sense, the EMS benefits the full power operation of the SMR in order
to increase its lifetime and reliability, which causes renewables and
sector coupling to provide the necessary flexibility.

The EMS assumes a MILP stochastic formulation to address RES
uncertainty, hence requiring forecasts and scenario modeling. The
former is address using ML, while the later are characterised by fitting
the forecast's residual to statistical distribution following an unsuper-
vised approach. The proposed EMS is evaluated with two different study

Annex A. EMS Mathematical Formulation
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cases. The first focused on validating the flexibility enabling capacity
using different reference days. While the second focuses on exploring the
computational performance and accuracy of the scenario characterisa-
tion method by varying the complexity of the residual fitting strategy.
The results show how the proposed EMS effectively achieves a high
degree of renewable integration, minimizing curtailment, by fully
exploiting the synergies between electricity, heat, and water sectors,
while smoothly operating the SMR.

Based on the presented results, the dispatcher appears suitable for
larger resolution than 1 hour. However, the specific number of scenarios
must be addressed to ensure achieving a satisfactory threshold between
computational complexity and solving time. Future work will involve
the implementation of the proposed formulation in a real microgrid
environment.

Complementary data

The interested reader can access the full description of the implemented
parameters for each unit, renewable resource curves, demand and price
profiles in https://doi.org/10.11583/DTU.19222434.v1 [56].
Note to reviewers, the link will be updated to a DOI upon acceptance, the url
is a private link for review purposes only.
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The problem is conceptualised as a MILP stochastic formulation coordinating the different subplants conforming the HyPP as an optimal dispatcher
to maximize its profits. DA market prices are given, and RES-related uncertainty is integrated using scenarios. The objective function defined in (5) is
expressed as the minimization of the costs ( #) minus the income (.#). The costs are related to operation (a), start-up (b), shut-down (c), and deviation

from nominal power of the fission reaction (d); as covered in (6)-(12).
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>3 pfn(ﬁn - p{;), Vivn e 2V an
Cr,C LT =0, ViNje TuT 12)

The HyPP's income is related to selling electricity (e) and freshwater (w) as per egs. (13)-(14). Alternatively, systems without water storage (WS)
reformulate (14) as (15).

4 [ 7 [
3 d U D U
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Upper and lower operational bounds are defined in (16)-(17), which are then coupled to the reserves with (18)-(21).
0<P;;<Qy, VVjeZTUT (16)
Py <Py, VL€ TUT a7
Pl +R), <O, VI,VgEZ (18)
Pl —R> >0, ViVge ¥ 19)
P+ R < Quay, VELVdE T (20)
P —RY >0, Vi,Vde T 2D

The maximum possible production (Q) is coupled to the on/off state with (22)-(23). This state is defined with a binary variable v (24), where 1
corresponds to the on state and vice versa.

0<0,<Pu,;, VLVjeZUZ (22)
0., <Pu,P.,, VivreZ* (23)
v, €{0,1}, VLYje ZUZ 24

Dynamics related to upward and downward rampings, startup and stopping limits are defined with (25)-(27).
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Limits related to on and off periods are defined in (28)-(30), and (31)-(33), respectively.
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Power balance, in DA and RT operations are established with (34)-(35).

z

g
S P =Y P =0, Vi (34
d

j

7 7
Z(’ﬁﬁ,n - rfd),n) + Z (gui),r —P - ”Zp,r + ’f) T Prc,qﬁ.r) + Z(r!l—.)qﬁ.a - r!l./qﬁ.a) =0,vr (35)
T a

The overloading of the PCC is prevented by limiting the power exchanged as established with (36). While RT reserves are bounded by the scheduled
bid with (37)-(38).

4 7
So(Pe+RY) =S (P~ RY) - 7 < PCC, (36)
8 d
ro SR, VLNje ZUT 37
o SR, ViNje U (38)

SMR operation is defined by egs. (39)—(41), which bound the operation of the reactor, electrical production, and excess heat, respectively. To avoid
wasting the excess heat, constraint (42) couples it with the heat demanded by water desalination units (&). Then, the electrical power necessary for
completing the desalination process is set with eq. (43).

0<PY <H, V,vneZ" (39)
0<Pt <PV, vi,Vne &V (40)
Py =P+ P‘,{nﬁn/ﬁn, vi,¥ne oV (41)
Pl =Pl ViVne 5V Vee & (42)
Pl =Py, ViVeec® (43)

Water requirements can be set by establishing a set of lower and upper bounds for its daily production using eq. (44). However, if a demand curve
must be served, water balance is expressed as (45)-(46) or (47)-(48) depending on the WS inclusion.

+T

E' <Ny P, <E., ViVde 44
t
7 [

th = Z P+ ZZ(/; ("f,)(/;,d - ’fip,d) }’hde (45)
d 4

WE —@r =0, Vt (46)
9

7= Pl 7)
]
o @

= Z P+ Zﬂ(qs <r€¢.d - rr.U(/;,d) ]ﬂm (48)
] )

The WS discharging and charging dynamics are covered by (49)-(50), note that unlike other types of storage, WS can charge and discharge
simultaneously due to piping redundancy. The stored volume is monitored with (51), whose minimum and maximum limits are established with (52),
while its initial and final states are constrained with (53)—(54). These initial and final constraints are added to prevent depletion by the end of the
horizon, and it is common practice for any type of storage.

0< Wh < w* (49)
2

0< W< P, (50
d

W =W/, + W — w G

W <w/ <w’ (52)

W/ =W’ V=0, (53)

WS> w7 V=T, (54

The cost function of nuclear generators (p®) and efficiency curves of desalination plants (5) are conceptually represented in Fig. 9. These are
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quadratic expressions of the form (55), that can be approximated with a set of a linear piecewise blocks, whose analytic formulation is covered in (56)—
(60); where Y and y stand for the variable and its corresponding linearized value. The reader is recommended to check the work by Carrion et al. [55],
which further elaborate this formulation.
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Fig. 9. Piecewise linear cost and efficiency representation.
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