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H I G H L I G H T S  

• A hybrid power plant concept aiming simultaneous decarbonization of electricity and water sectors is proposed. 
• An energy management system integrating physics informed machine learning forecasts is presented. 
• Synergies between electrical, water and heat sectors are exploited, improving renewable integration. 
• The stochastic dispatcher is suitable for real time implementation and presents a robust performance.  
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A B S T R A C T   

The ongoing energy transition and incoming water scarcity crisis demand coordinated research to ensure a fossil- 
free future for humankind. Aiming to increase energy efficiency, reduce curtailment and decarbonize water 
production, this paper proposes a novel energy management system (EMS) for a hybrid plant compound by a 
small modular nuclear reactor acting as cogeneration unit, a wind and solar farms as generators. Additionally 
reverse osmosis and multi-stage flash desalination plants are included as demand responsive units along with a 
freshwater storage. Mixed integer linear programming (MILP) is employed to formulate this stochastic optimi
zation problem, where piecewise linear functions define operational costs and efficiencies of SMR and desali
nation motivating energy efficiency and safety. Renewable availability point forecasts are obtained with physics 
informed machine learning models whose error is characterised by fitting the predictor's residuals to different 
statistical distributions following an unsupervised methodology. The suitability of the EMS is addressed in two 
study cases, one exploring the flexibility exploitation of the algorithm and another proving its suitability for real- 
time implementation. The dispatcher manages to keep unaltered the SMR's core reaction while satisfying both 
electrical and water demand in different renewable availability regimes by fully exploiting sector coupling 
flexibility. Simultaneously, renewable curtailment is kept to a minimum.   

1. Introduction 

Water scarcity crisis is expected to directly affect 40% of human 
population by 2030 [1]. Despite alternatives such as groundwater uti
lization, reclaimed wastewater, or rain harvesting; desalination is an 
inevitable solution in many areas such as Australia, US, Spain, Africa, 
and the Middle East [2]. Disregarding the specific approach, desalina
tion is an energy intensive process whose current and future demand 

pose additional strain in the energy sector, thus representing significant 
greenhouse emissions [3]. 

A number of scientific contributions proposed methods to reduce the 
energy impact and emissions of desalination. Some focus directly on the 
energy efficiency of the desalination process such as Tian et al. [4], who 
explore the usage of microwave radiation in flash evaporation processes, 
reaching nearly 80% efficiency. Zhang et al. [5] performed an analysis 
on osmotically-assisted reverse osmosis and batch-operated vacuum-air- 
gap distillation concluding on its good economic performance 
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particularly when using renewable energy. On the other hand, others 
focus on coupling renewable energy source (RES) with different desa
lination technologies. For instance, Moharram et al. [6]; employed a 
solar powered Rankine cycle operating at full efficiency using excess 
heat to run a desalination stage. Others like Mo et al. [7] studied the 
influence of variable energy prices in the cost of freshwater and the 
possibilities for demand response. More recently, Mito et al. [8] pro
posed using model predictive control to integrate reverse osmosis (RO) 
with renewable energy. However, there has been a shift towards hybrid 
power plants (HyPP) given their higher efficiency, increased function
alities, and dispatchability [9]. In this direction, Sadeghi et al. [10] 
performed an economic assessment of desalinated water for scenarios in 
which energy is obtained from solar, small modular reactor (SMR) or 
both; concluding on the superiority of the HyPP structure. While Liu 
et al. [11] integrate freshwater storage, wind and solar power in a 
coastal desalination installation to reduce the water production costs. 

Despite their advantages, HyPP present challenges regarding asset 
coordination, which has motivated extensive research in energy man
agement systems (EMS). For instance, the dispatchability of a wind and 
concentrated solar HyPP is discussed in [12] including operational risk 
in the EMS. While Yang et al. [13] use stochastic unit commitment (SUC) 
to deal with extreme weather at system level. Furthermore, Le et al. [14] 
highlight the capability of SUC of enabling load-shifting in the day- 
ahead (DA) stage and reserve-capacity in the real-time (RT). While 
Van der Meer, et al. [15] coordinate solar PV, batteries and 

uncontrollable load in a prosumer building using SUC. However, SUC 
limitations are the forecast need, scenario definition and characterisa
tion, which caused authors like Amabile et al. [16] to use rule-based 
dispatchers to coordinate a smart building with solar, storage and de
mand responsive (DR) units. Nevertheless, off-the-shelf forecasters 
based on machine learning (ML) wide availability and their documented 
suitability for wind and solar prediction [17] justifies the need for 
methods translating point forecasts into stochastic scenarios [18]. Yet, 
uncertainty characterisation and validation is far from trivial [19]. 
Existing methods combine point and uncertainty forecasts into hybrid 
models [20], whose main disadvantage is requiring two separate 
models. 

This work aims to contribute the scientific community by proposing 
an EMS for a HyPP compound by an SMR, a PV plant, a wind farm (WF), 
and two different desalination technologies; one requiring only elec
trical input, and the other demanding also thermal. The objective is to 
enable carbon-free electricity and freshwater production for any given 
region, as the HyPP could also operate as an isolated system. The 
dispatcher is formulated as an optimal SUC where the uncertainty is 
assumed caused by the wind and solar resource. The available RES 
power is estimated using physics informed ML to train of-the-shelf point 
forecasters. Then, stochastic scenarios are characterised based on the 
probability distribution of the forecast residuals, by fitting them to a 
known statistical distribution with an unsupervised approach. The 
suitability of the proposed HyPP, EMS, forecast, and uncertainty 

Nomenclature 

Sets and Indices 
0 Initial 
a, b, c, d, f Operation, on, off, ramping, and deviation 
D Demand response technologies 
O ⊆ D Reverse osmosis desalination plants 
ℰ ⊆ D Multi-stage flash desalination plants 
G Generators 
G

R ⊆ G Renewable source generators 
G

N ⊆ G SMR units generators 
e, h, n, w Electricity, heat, nuclear, and water 
U/D Up/down 
y ∈ Y Non-linear value y of function Y 
l ∈ L Segment of the piecewise linear function 
t ∈ T Time periods 
∅ ∈ Φ Scenarios 
Ξ Set of all variables 

Parameters 
Aj

y Piecewise linear coefficient 
DR

j Maximum ramp-down limit [MW] 

Ds
j Maximum power before shut-down [MW] 

ET
,E

_
T Maximum/minimum freshwater requirements 

F t, ϕ, r Forecasted renewable available power 
Hn/d Maximum heat power limit [MW] 
L t

e/w Electric/water demand [MW] or [m3] 
P̃t,r Renewable power availability [MW] 
Pj,P_ j Maximum/minimum power limit [MW] 

PCC Point of common coupling capacity [MW] 
Tdown

j
_ 

Minimum off time [periods t] 
Tj

off Number of periods t until decommission 
Tup

j ,Tup
j
_ 

Maximum/minimum on time [periods t] 

T0up
j ,T0down

j Maximum on/off time from initial t 

T0up
j

_
,T0down

j
_

Minimum on/off time from initial t 

Us
j Maximum start-up power [MW] 

UR
j Maximum ramp-up limit [MW] 

Wds Water storage discharge limit [m3/h] 
WS

,W
_

S Maximum, minimum state of charge 
α, β, θ Quadratic function coefficients 
γε Heat to electricity conversion factor [%] 
σt

e/w Selling prize [â‚¬/MWh] or [â‚¬/m3] 
χϕ Probability of scenario ϕ [%] 

Variables 
C

a
t Operational cost of time t [€/MWh] 

C
b
t Start-up cost of time t [€/MWh] 

C
c
t Shut-down cost of time t [€/MWh] 

C
d
t Reactor ramping cost of time t [€/MWh] 

C
f
t Reactor derating cost of time t [€/MWh] 

ℐt
e Electricity market income [€/MWh] 

ℐt
w Freshwater market income [€/MWh] 

Pt, ϕ, j
c Curtailed renewable power [MW] 

Pt, j
e Scheduled DA electric power [MW] 

Pt, n
N Scheduled DA reactor power [MW] 

Pt, n/w
H Scheduled DA heat power [MW] 

Qt, j Max available electric power [MW] 
Rt, j

D Scheduled DA downward reserve [MW] 
rt, ϕ, j
D RT downward reserve [MW] 

Rt, j
U Scheduled DA upward reserve [MW] 

rt, ϕ, j
U RT upward reserve [MW] 

Wt
ch/ds Charged/discharged water from storage [m3] 

WS
t Water storage state of charge [m3] 

δt, j
l, x Value from x piecewise linear parameter 

ηt, j Electricity to water conversion factor [%] 
νt, j Binary. 1 if online, and 0 otherwise 
ρt, j Cost [€/MWh]  
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modeling is evaluated in different study cases studying the influence of 
RES availability, forecast accuracy and scenario characterisation. 

The paper is structured as follows: Section 2 presents the HyPP 
concept object of study, Section 3 presents the formulation of the EMS, 
Section 3.2 introduces the employed physics informed ML applied to 
wind and solar forecasting and the scenario generation process. Then, 
Section 4 presents the study cases, and Section 5 concludes the paper. 

2. Background 

The considered nuclear reactor and desalination technologies are 
integrated into the HyPP concept in this section. 

2.1. Small Modular Reactors 

The main features characterising SMR are: to have an output power 
lower than 300 MWe, to have a design allowing them to be manufac
tured, and fueled at a factory and, then, be delivered to their definitive 
site. Furthermore, they offer enhanced security, safety and are, by 
design, able to offer de-rated operation and load-following capabilities. 
[21] 

Load following mode allows to continuously modify the reactor 
output power in order to follow electric demand. This is achieved by 
controlling the reactor's reactivity by modifying the position of the 
control rods in the core [22]. This operational mode contributes to 
poisoning traditional reactors, due to the apparition of undesired fission 
products that act as parasitic neutron absorbers, introducing negative 
reactivity. Those products accumulate in the reactor over time eventu
ally preventing achieving supercriticality. SMR design and fuel selection 
minimizes the apparition of such products, however, de-rated operation 
results still economically inefficient as reducing the output does not 
significantly affect the fuel consumption rate nor the operating ex
penses. In addition, they suffer thermo-mechanical stresses derived from 
frequent rampings. Hence, even if SMR are capable of derated operation, 
it is desirable to avoid it [23]. 

There are two alternatives to de-rating the core in order to perform 
load following. One is to couple it with a dump load, or demand 
responsive unit that will allow to effectively derate the electric output 
without affecting the SMR's operation. Another alternative is to bypass 
some of the steam from the turbine into a heat sink. In that sense, 
cogeneration of hydrogen, desalination and district heating have been 
deemed suitable in different studies [24,25]. 

There are a few SMR designs available such as CAREM-25, CANDU, 
and NuScale. However, the latter presents higher technology readiness 
level as it received design approval in 2021 and targets first commercial 
operation in 2027 [21]. NuScale, focus of this study, is a small, light- 
water pressurized-water reactor with natural circulation employing 
UO2 pellets with >4.95% U235 enrichment. NuScale design power is 160 
MWt and 45 MWe, is scalable up to 12 modules in a single facility, and is 
suitable for cogeneration [26]. 

2.2. Desalination technologies 

The most important desalination processes at commercial stage can 
be divided into distillation and membrane based. The first require 
mainly thermal energy to be complemented with electricity while the 
second only employs electricity. Rather than an exhaustive review, this 
section presents the most important technology of each category. 

Reverse Osmosis is a process in which a semi-permeable membrane 
separates desalinated water from a saline concentrate stream. The 
applied pressure must overcome the osmotic as determined by the feed 
water salinity. It usually includes two compression stages, requiring in 
total about 2–5 kWh/m3 of electricity. Furthermore, inlet water requires 
pretreatment to maintain production capacity over time. As the most 
efficient and flexible desalination method (whose rampings are dis
regarded in hour scale), RO represents 50% of the global capacity. [27] 

Multi-Stage Flash Distillation (MSF) is the most representative 
distillation technology by global installed capacity. A typical setup 
consists of two sections, brine heater and flashing stages. The in-feed is 
preheated in a series of heat exchangers prior to entering a brine heater 
for further heating and pressure increase. The hot and pressurized water 
passes into a flash stage where pressure is lower causing a fast vapor
ization followed by condensation on a heat exchanger. There, the heat is 
recovered by new in-feed water and the distillate is collected. The 
remaining saline water continues repeating this process in up to 25 
successive flashing stages, until it is discharged back to the inlet source. 
Net energy wise, MSF requires 2.5–5 kWh/m3 of electric input to operate 
pumps and other devices, and 15.8–23.5 kWh/m3 of heat [28]. To in
crease efficiency and due to their thermal requirements, MSF are usually 
integrated in co-generation systems. There, exergy-rich steam is tur
bined for electricity generation, while its counterpart is employed in the 
MSF [29]. In such systems, the thermal generator is the most constrained 
in terms of ramping, startup and shutdown dynamics, thus dismissing 
those of the MSF. However, based on the studies from Al-Fulaij et al. 
[30], we can establish a conservative estimation of 60%/h ramping, a 
minimum running of 30% and a minimum on period of 4 hours. 

The main advantages of RO are lower energy needs, faster ramping, 
and modularity, while being more prone to failures. MSF presents slower 
dynamics due to thermal inertias, but is more robust, less affected by 
infed variations, and produces higher quality freshwater. In [31] RO and 
MSF are studied as combined units by feeding seawater to each process 
separately and mixing the output. Besides reducing costs related to 
construction, pre-, and post-treatment, the RO process is simplified 
increasing reliability. [6,32] 

2.3. Hybrid power plant 

The aggregation of different generation technologies is a topic 
gaining increasing interests, particularly in the context of RES integra
tion. The main objective is to coordinate dispatch, reduce construction 
costs, increase the plant's efficiency, overinstallation at the same point- 
of-common-coupling (PCC), etc. However, they present other advan
tages as reducing stochasticity impact of the renewable units [33]. 
Furthermore, besides generation units, the HyPP concept allows to 
integrate demand responsive units such as desalination [34]. Fig. 1 de
picts a HyPP combining a SMR, a WF and a PV plant as generators, with 
RO and MSF as DR units. Note how the output steam from the generator 
can be redirected to the MSF via a heat exchanger. In that way, the 
desalination system is protected from neutron leaks. 

3. Methodology 

We propose a coordinated EMS approach formulated as a stochastic 
MILP maximizing the HyPP profits. The algorithm assumes DA market 
prices as given and integrates RES-related uncertainty with a number of 
scenarios. These, are generated based on the output of physics informed 
ML forecasters and their error characterisation. Fig. 2 presents the EMS 
architecture and data flow. In general, the inputs to the EMS are com
mands sent by the system operator, Market signals such as prices, point 
forecasts and their associated probability. Since we employ a ML-based 
approach, said forecasts are of course computed based on current and 
historical measurements. This section gently introduces the optimiza
tion problem and the forecasters. However, the interested reader is 
referred to Annex A for a full description of the mathematical 
formulation. 

3.1. EMS stochastic optimization 

In general, the objective function of the EMS aims to maximize profit 
by minimize the difference between costs and income. Costs are in 
general related to usage, initialization, start-up, and shutdown, but in 
particular for the SMR, a term accounting for the additional stressed 
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posed by de-rated operation is included. On the other hand, income is 
related to selling the scheduled water and electricity production 
including reserve. Constraints are then related to the operational limits 
of the connection point and the individual units, such as the minimum 
and maximum power capabilities, ramping, minimum and maximum 
on/off periods, etc. In the case of the SMR, additional equations are 
needed to bound the heat and electrical production with the core's re
action, and with the heat requirements of the MSF. Similarly, the cost 
function of the SMR and the efficiency curves of desalination plants are 
accounted for using a piecewise linearization of their typical curves. 
Furthermore, it is possible to consider the inclusion of a water storage 
which adds an additional level of flexibility to the system. 

3.2. Physics informed forecasting 

Physics informed ML is a sub-set of data-driven forecasting methods 
that can be applied to time series. Its main characteristic is to introduce 
knowledge of the physical dependencies among the different metrics 
available in the dataset in the ML model [35]. In this work, data with 
hourly resolution was used to train two different ML models for pre
dicting wind and PV power. The ML methods were RF and a hybrid CNN- 
LSTM artificial neural networks as they are two of the best predictors 
reported in the literature [17]. The employed dataset, SOLETE, includes 

metrics such as: irradiance, wind speed, humidity, etc. from 1st June 
2018 to 1st September 2019 [36]. 

The, ML models were trained using mean absolute error (MAE) as the 
optimizer metric (1). While root mean squared error (RMSE) is used in 
their evaluation (2). All the models were developed in Python using 
open access libraries such as Scikit-learn and TensorFlow. 

MAEh =

∑n
i

⃒
⃒F i,h − F̂ i,h

⃒
⃒

n
, ∀h ∈ H (1)  

RMSEh =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

i

(
F i,h − F̂ i,h

)2

n

√

, ∀h ∈ H
(2)  

where F , F̂ , n, and h stand for observation, prediction, sample number 
and time step. 

3.2.1. Solar 
The Solar forecaster was developed according to the physics- 

informed approach described in [37]. That is, by integrating the King's 
PV performance [38] in the ML-model. King's model allows estimating 
the operating temperature, and available power, while requiring basic 
meteorological metrics and datasheet parameters from the PV panels 
and the inverter. The resulting RF model was trained using: humidity, 
irradiance in the plain of array, estimated panel temperature, and hour 
of the day. 

3.2.2. Wind 
On the other hand, the turbine's datasheet power curve is avoided to 

estimate available power as the wind speed measurement point and the 
turbine are located about 200 m apart. The effective power curve is then 
obtained by training a RF with wind speed, direction, and power as 
features. Then, following the recommendations in [39], a second RF and 
a CNN-LSTM models were trained to predict power. The RF used mean 
and standard deviation of the previous 24 hours, while CNN-LSTM 
included humidity in addition. Stacking is a special case of model 
averaging aiming to improve response time, stability and accuracy of ML 
models [40]. The wind forecaster is built by stacking the effective power 
curve of the turbine with either the second RF or the CNN-LSTM model. 

3.3. Scenario characterisation 

From an stochastic optimization perspective, scenarios are charac
terised by their occurrence likelihood. However, the proposed point 
forecasters, the most commonly encountered in scientific literature, 
return an average or median expected value, not a probability density 
function (pdf). Yet, fundamental statistics allow to fit recordings to a 
number of well-established probability distributions. For instance, 
Hodge et al. [41] used Gaussian, Weibull and Cauchi distributions to 
study wind power forecast errors; concluding that the effective distri
bution cannot be assumed. Then, Wu et al. [42] developed a mixed 
LaPlace-Gaussian distribution to model persistence-based forecasts for 
wind power. While Yan et al. [43] consider analysing PV power fore
casting error distribution using a Gauss model. Note that the common 
limitation of the aforementioned work is to limit their analysis to few 
distributions, or to develop complex tailor-made solutions. 

In order to generate different scenarios and their respective proba
bilities, we characterise the error distribution per sample based on the 
ML-model's performance. First, the residuals are computed for each t ∈ T 
of the validation set in p.u. based on the installation size. Then, these are 
fitted to the 100 different distributions available in SciPy [44] such as: 
Gaussian, Weibull, Beta, Cauchi, etc. and their pdfs are obtained. Af
terwards, the residual sum of squares (RSS), (3), is used to rank the 
methods, while the coefficient of determination (R2), (4), is used as tie- 
breaker. Once the best fit distribution is found for each sample, their pdf 
can be used to obtain the related residuals at given quantiles. Therefore, 
when a new forecast is casted, its computed pdf is used to estimate 

Fig. 1. Considered HyPP layout.  

Fig. 2. Concept of a data-driven stochastic EMS.  
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different scenarios and their probability based on a desired set of 
quantiles. This methodology is depicted in Fig. 3. 

RSS =
∑n

i
|F i − F̂ i|

2
, (3)  

R2 =
RSS

∑n

i

⃒
⃒
⃒
⃒
⃒
F i − yi

⃒
⃒
⃒
⃒
⃒

,
(4) 

The fitted distributions per resource, method and sample are pre
sented in Fig. 4. The maximum R2 was 0.99, the minimum 0.70, and the 
average 0.89; being homogeneous for wind and solar and both fore
casting methods. Left-skewed Levy distribution is the most common but 
it only appears in CNN-LSTM for wind power, in general Gen Normal 
and Cauchi are the most repeated across the rest of the predictors. Still, 
CNN-LSTM presented higher distribution homogeneity, which is 
consistent with the ANN's capacity of capturing temporal correlations. 

By estimating error distribution for each sample independently, 
temporal correlations within the time-series are diluted. This might lead 
to defining scenarios presenting higher error sparsity than those natu
rally occurring. This limitation is however only relevant for systems 
where energy dispatch is severely constricted, such as those critically 
dependent on energy storage-based load shifting [45]. Furthermore, 
several studies point towards the general lack of temporal correlation of 
short term wind power measurements [46], which allows dismissing 
them. The advantages of the proposed method are related to the unsu
pervised fit that avoids preconceptions and guesses related to the re
sidual distribution. In addition, it is suitable for any time-series and thus 
can be applied to both wind and solar power as well as to other fields. 

4. Study case 

This section presents two study cases using the HyPP from Fig. 1: A 
explores the influence of available RES and forecaster accuracy in the 
EMS; while B explores the effect of including larger number of quantiles 
in the accuracy and computational performance. Note that the optimi
zation problem has been formulated in Pyomo, and solved using a 
commercial solver called Gurobi [47]. 

The considered generation units are a NuScale SMR of 45/160 MWe/ 
MWth, a 20 MW WF, and a 10 MW PV, while the DR units are a 20 MW 
RO, and a 150/30 MWt/MWe MSF; and a 100 m3 WS with an initial level 
of 30%. A summary of implemented parameters is made available to the 
reader in the Complementary Data section. The operational costs of each 
technology have been estimated based on a survey of different docu
ments [48–51]. Lastly, the PCC is limited to 50 MW, which can be 
objectively considered as a small interconnection capacity. This value is 
selected to highlight the flexibility provided by the proposed EMS. Even 
though such value is usually related to the substation capacity, in the 
context of energy islands or isolated regions, it can be used as a dynamic 
parameter representing the allocation capacity limit of the local grid. In 
that case, the PCC limitation can be used to maximize grid usage 

efficiency. Lastly, the scheduled DA electrical and water demand are 
presented in Fig. 5; while hourly prices are presented in Fig. 6 based on 
typical days of the Iberian market during 2019 (to avoid COVID-related 
price disruptions). Note that the reserve requirements are assumed to be 
symmetric and 25% of the scheduled production which is paid at 10% of 
the DA rate. There is a penalty of 300 €/MWh for unserved energy, and 
water price is assumed at a flat rate, however, the associated production 
cost vary along with the HyPP operation. 

4.1. Study case A: forecaster influence 

The RES resource of 2 representative days are presented in Fig. 7, 
along with the confidence interval obtained from the predictors using 5 
quantile bins. The results are presented in Table 1. The optimization 
performance is best when implementing the CNN-LSTM predictor 
despite its slightly lower accuracy. This is not particularly surprising as 
lower accuracy predictors have already been reported as better candi
dates for optimization systems in [52]. The solving time is quite fast for 
all scenarios and their differences of about 1 second are negligible as this 
optimization is run for 24 hours ahead. Given the higher RES availability 
of the winter day it is expected to present higher curtailment. An 
observed limitation is the final SOC of the water deposit. Since it reaches 
100% a simulation with a longer horizon will not be able to exploit its 
flexibility unless it is followed by low RES availability periods. However, 
since the proposed dispatcher can be round at higher sampling rates, for 
instance once every few minutes, it would be possible to adapt the 
plant's operation live. 

Fig. 8 presents the operational DA setpoints of the different units 
during each day using the CNN-LSTM forecaster; RF is omitted to avoid 
over-repetition and RT values due to the large number of scenarios. 
Briefly, during summer day the WS SOC is increased progressively until 
hour 7 then discharged until hour 12 and then filled up to 100% by the 

R
es
id
u
al

0

t1 t2 tn
Samples

q0.5q0.25 qn

qn

Fig. 3. Residual distribution characterisation concept.  

Fig. 4. Error distribution per method and resource.  

Fig. 5. Scheduled DA production.  
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end of the day. Regarding the DA scheduling of desalination, MSF takes 
constant mid-low values slowly ramping up and down, while RO stays in 
a support role; only turning on when the ramping capabilities of the MSF 
are not sufficient. In this sense, MSF satisfies the bulk water demand, 
while RO adjusts matches the production. This operational synergies 
result particularly useful to accommodate renewables; presenting be
tween 3 and 4% curtailment by the end of the optimization. Further
more, the SMR maintains nominal output power during the whole day, 
simply adjusting its electric and heat ratios trying to match the 
remaining electrical production based on the available RES. On the 
other hand, in the winter scenario, the WS fills up slowly and continu
ously during the whole simulation solely fed by the MSF; which is able to 
accommodate all production and provide all the necessary rampings. 
This is due to the higher RES availability, since in this scenario a bigger 
fraction of the reactor's heat can be supplied to the desalination. 
Nevertheless, the curtailment also increases during this scenario ranging 
from 8 to 10% affecting mostly the WF. 

4.2. Study case B: quantile number influence 

In this study case the winter day is recalculated using 3, 5, 10, 50, 
and 100 quantile uncertainty bins for the RF forecaster. The number of 
scenarios grows quadratically with increasing bins, hence the solving 
speed is expected to deteriorate relatively fast. Clearly, the optimization 
exactness also increases with the number of considered scenarios, 
however the actual result does not necessary have to improve. Hence, an 
uncertainty free scenario is included as a deterministic (Det) case to 
assess what would be the systems behaviour with perfect information. 

The results of this study case are presented in Table 2. There it can be 
seen how the cases with lower number of bins get an objective closer to 
the deterministic. Regarding curtailment, this is reduced along with the 
increasing number of bins as the error distribution is better captured; 
while the solving time grows with an opposite relation. A practical 
implementation should carefully asses the number of bins to be included 
based on the obtained accuracy and additional computational time 
required. In principle, the proposed formulation can be easily adapted to 
higher sampling rates in the minute scale, however, that will limit the 
bin number significantly and might not be translated into additional 
revenue. 

4.3. Discussion 

In general, the EMS has proven to effectively coordinate all the 
different generation and demand responsive units in order to satisfy the 
required demand and the different operational constraints. It is clear 
how the different temporal inertias of the different desalination tech
nologies are exploited to accommodate higher rates of renewables and 
limit the effect on the core's reaction. Study Case A focused on the 
forecaster accuracy influence over the EMS performance while B 

Fig. 6. Electricity and water prices.  

Fig. 7. Solar and wind resources.  

Table 1 
Results of Study Case A.  

Day A B A B 

Forecasters RF RF CNN-LSTM CNN-LSTM 
Time [s] 6.4 6.7 6.3 7.1 
Objective [€] 23.5 26.8 23.6 27.1 
WS level [%] 100 100 100 100 
Curtailment [%] 7.6 15 7.3 20  

Fig. 8. Study Case A: Operational Summary.  

Table 2 
Results of Study Case B.  

Bin # 3 5 10 50 100 Det 

Day A A A A A A 
Forecasters RF RF RF RF RF – 
Time [s] 3.9 6.4 23.1 112.7 896.5 0.9 
Objective [€] 23.4 23.5 21.2 21.9 22.0 26.8 
WS level [%] 100 100 84 100 100 100 
Curtailment [%] 14.4 7.6 7.1 6.7 5.3 0  
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explored the influence of the uncertainty characterisation over the 
optimization results. 

Since this is a purely theoretical study it is tough to validate the 
quantitative impact this approach could have on a real system. However, 
we can provide an estimation considering the case of a typical warm 
island such as Santiago, Cape Verde. There, desalination is the most 
energy intensive process which requires about a third of the overall 
electricity production and its associated emissions (50 kt of CO2 in 
2019). With a peak load of around 40 MW, Santiago cover its energy 
needs with a 99 MW of fossil fueled generators, 9 MW of WF and 4.4 MW 
of SF, however its RES-rates have been limited below 20% due to sta
bility concerns. Therefore a HyPP such as the proposed in this work will 
contribute both in terms of inertia, RES, and decarbonization; being able 
to power the whole island assuming enough transmission capacity. 
Overall, the proposed configuration could save between 46 and 59 tons 
of CO2 annually. The commissioning, and construction of such a HyPP 
present of course a number of challenges specially for a developing 
country, however those concerns fall beyond the scope of this work. 
[53,54] 

5. Conclusion 

The scientific community has the duty to address the incoming water 
crisis and ongoing energy transition simultaneously. Aiming to facilitate 
carbon-free and freshwater production for any global region; this paper 
proposed a coordination strategy for a HyPP in the form of an EMS 
formulated as an optimal SUC. The HyPP concept combines an SMR, WF, 
PV plant, two different desalination plants (RO and MSF) and freshwater 
storage. The dispatcher coordinates the SMR's core reaction, heat, water 
and electric systems to satisfy hourly water and electricity demand. In 
this sense, the EMS benefits the full power operation of the SMR in order 
to increase its lifetime and reliability, which causes renewables and 
sector coupling to provide the necessary flexibility. 

The EMS assumes a MILP stochastic formulation to address RES 
uncertainty, hence requiring forecasts and scenario modeling. The 
former is address using ML, while the later are characterised by fitting 
the forecast's residual to statistical distribution following an unsuper
vised approach. The proposed EMS is evaluated with two different study 

cases. The first focused on validating the flexibility enabling capacity 
using different reference days. While the second focuses on exploring the 
computational performance and accuracy of the scenario characterisa
tion method by varying the complexity of the residual fitting strategy. 
The results show how the proposed EMS effectively achieves a high 
degree of renewable integration, minimizing curtailment, by fully 
exploiting the synergies between electricity, heat, and water sectors, 
while smoothly operating the SMR. 

Based on the presented results, the dispatcher appears suitable for 
larger resolution than 1 hour. However, the specific number of scenarios 
must be addressed to ensure achieving a satisfactory threshold between 
computational complexity and solving time. Future work will involve 
the implementation of the proposed formulation in a real microgrid 
environment. 

Complementary data 

The interested reader can access the full description of the implemented 
parameters for each unit, renewable resource curves, demand and price 
profiles in https://doi.org/10.11583/DTU.19222434.v1 [56]. 
Note to reviewers, the link will be updated to a DOI upon acceptance, the url 
is a private link for review purposes only. 
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Annex A. EMS Mathematical Formulation 

The problem is conceptualised as a MILP stochastic formulation coordinating the different subplants conforming the HyPP as an optimal dispatcher 
to maximize its profits. DA market prices are given, and RES-related uncertainty is integrated using scenarios. The objective function defined in (5) is 
expressed as the minimization of the costs (C ) minus the income (ℐ). The costs are related to operation (a), start-up (b), shut-down (c), and deviation 
from nominal power of the fission reaction (d); as covered in (6)–(12). 

min
Ξ

∑T

t
C

a
t +C

b
t +C

c
t +C

d
t +C

f
t − ℐe

t − ℐw
t , ∀t ∈ T (5)  

C
a
t =

∑G

g

(
Pe

t,gρa
t,g +RU

t,gρU
t,g +RD

t,gρD
t,g

)
+
∑D

d

(
Pe

t,dρa
t,d +RU

t,dρU
t,d +RD

t,dρD
t,d

)
+
∑Φ

ϕ
χϕ

[

ρa
t,g

(
rU

t,ϕ,g − rD
t,ϕ,g

)
+ ρa

t,d

(
rD

t,ϕ,d − rU
t,ϕ,d

)
+
∑G

R

r
ρc

t,rP
c
t,ϕ,r

]

, ∀t (6)  

C
b
t ≥

∑J

j
ρb( νt,j − νt− 1,j

)
, ∀t ∕= 0, ∀j ∈ G ∪ D (7)  

C
c
t ≥

∑J

j
ρc( νt− 1,j − νt,j

)
, ∀t ∕= 0∀j ∈ G ∪ D (8)  

C
d
t ≥

∑G
N

n
ρd( Pt,n − Pt− 1,n

)
, ∀t < T∀n ∈ G

N (9)  

C
d
t ≥

∑G
N

n
ρd( Pt− 1,n − Pt,n

)
, ∀t < T∀n ∈ G

N (10) 
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C
f
t ≥

∑G
N

n
ρf

n

(
Hn − PN

t,n

)
, ∀t∀n ∈ G

N (11)  

C
b
t,j,C

c
t,j,C

d
t ,C

f
t ≥ 0, ∀t, ∀j ∈ G ∪ D (12) 

The HyPP's income is related to selling electricity (e) and freshwater (w) as per eqs. (13)–(14). Alternatively, systems without water storage (WS) 
reformulate (14) as (15). 

ℐe
t = σe,d

t

[
∑G

g
Pe

t,g +
∑Φ

ϕ
χϕ

(
rU

t,ϕ,g − rD
t,ϕ,g

)
−
∑D

d
Pe

t,d −
∑Φ

ϕ
χϕ

(
rU

t,ϕ,d − rD
t,ϕ,d

)
]

+ σe,U
t

(
∑G

g
RU

t,g +
∑D

d
RD

t,d

)

+ σe,D
t

(
∑G

g
RD

t,g +
∑D

d
RU

t,d

)

, ∀t, (13)  

ℐw
t = σw

t Wds
t , ∀t, (14)  

ℐw
t = σw

t

∑D

d

[

Pe
t,d +

∑Φ

ϕ
χϕ

(
rD

t,ϕ,d − rU
t,ϕ,d

)
]

ηt,d , ∀t, (15) 

Upper and lower operational bounds are defined in (16)–(17), which are then coupled to the reserves with (18)–(21). 

0 ≤ Pa
t,j ≤ Qt,j, ∀t,∀j ∈ G ∪ D (16)  

Pjνt,j ≤ Pa
t,j, ∀t,∀j ∈ G ∪ D (17)  

Pa
t,g + RU

t,g ≤ Qt,g, ∀t, ∀g ∈ G (18)  

Pa
t,g − RD

t,g ≥ 0, ∀t,∀g ∈ G (19)  

Pa
t,d + RD

t,d ≤ Qt,d , ∀t, ∀d ∈ D (20)  

Pa
t,d − RU

t,d ≥ 0, ∀t,∀d ∈ D (21) 

The maximum possible production (Q) is coupled to the on/off state with (22)–(23). This state is defined with a binary variable ν (24), where 1 
corresponds to the on state and vice versa. 

0 ≤ Qt,j ≤ Pjνt,j, ∀t,∀j ∈ G ∪ D (22)  

Qt,r ≤ Pr νt,r P̃t,r , ∀t,∀r ∈ G
R (23)  

νt,j,∈ {0, 1}, ∀t, ∀j ∈ G ∪ D (24) 

Dynamics related to upward and downward rampings, startup and stopping limits are defined with (25)–(27). 

Qt,j ≤ Pa
t− 1,j +UR

j νt− 1,j +Us
j
(
νt,j − νt− 1,j

)
+Pj

(
1 − νt,j

)
, ∀t > 1, ∀j ∈ G ∪ D (25)  

Qt,j ≤ Pj νt+1,j +Ds
j
(
νt,j − νt+1,j

)
,∀t < T, ∀j ∈ G ∪ D (26)  

Pa
t− 1,j − Pa

t,j ≤ DR
j νt,j +Ds

j
(
νt− 1,j − νt,j

)
+Pj

(
1 − νt− 1,j

)
,∀t > 1, ∀j ∈ G ∪ D (27) 

Limits related to on and off periods are defined in (28)–(30), and (31)–(33), respectively. 

∑
T0up

j

k=1

(
1 − νk,j

)
= 0, ∀j ∈ G ∪ D (28)  

∑
k+Tup

j − 1

n=k
νn,j ≥ Tup

j
(
νk,j − νk− 1,j

)
, ∀j ∈ G ∪ S ∪ D ,∀k = T0up

j + 1…T − Tup
j + 1 (29)  

∑T

n=k

(
νn,j −

(
νk,j − νk− 1,j

) )
≥ 0, ∀j ∈ G ∪ S ∪ D , ∀k = T − Tup

j + 2…T (30)  

∑
T0down

j

k=1
νk,j = 0, ∀j ∈ G ∪ S ∪ D (31)  

∑
k+Tdown

j − 1

n=k

(
1 − νn,j

)
≥ Tdown

j

(
νk− 1,j − νk,j

)
,∀j ∈ G ∪ S ∪ D , ∀k = T0down

j + 1…T − Tdown
j + 1 (32)  

∑T

n=k

(
1 − νn,j −

(
νk− 1,j − νk,j

) )
≥ 0,∀j ∈ G ∪ S ∪ D , ∀k = T − Tdown

j + 2…T (33) 
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Power balance, in DA and RT operations are established with (34)–(35). 

∑G

j
Pa

t,g −
∑D

d
Pa

t,d − L e
t = 0, ∀t (34)  

∑G
N

n

(
rU

t,ϕ,n − rD
t,ϕ,n

)
+
∑G

R

r

(

F t,ϕ,r − Pa
t,r − rU

t,ϕ,r + rD
t,ϕ,r − Pc

t,ϕ,r

)

+
∑D

d

(
rD

t,ϕ,a − rU
t,ϕ,a

)
= 0, ∀t (35) 

The overloading of the PCC is prevented by limiting the power exchanged as established with (36). While RT reserves are bounded by the scheduled 
bid with (37)–(38). 

∑G

g

(
Pa

t,g + RU
t,g

)
−
∑D

d

(
Pa

t,d − RU
t,d

)
− L e

t ≤ PCC, (36)  

rU
t,ϕ,j ≤ RU

t,j, ∀t, ∀j ∈ G ∪ D (37)  

rD
t,ϕ,j ≤ RD

t,j, ∀t, ∀j ∈ G ∪ D (38) 

SMR operation is defined by eqs. (39)–(41), which bound the operation of the reactor, electrical production, and excess heat, respectively. To avoid 
wasting the excess heat, constraint (42) couples it with the heat demanded by water desalination units (ℰ). Then, the electrical power necessary for 
completing the desalination process is set with eq. (43). 

0 ≤ PN
t,n ≤ Hn, ∀t,∀n ∈ G

N (39)  

0 ≤ PH
t,n ≤ PN

t,n, ∀t,∀n ∈ G
N (40)  

PN
t,n = PH

t,n + Pa
t,nHn

/
Pn, ∀t, ∀n ∈ G

N (41)  

PH
t,n = PH

t,e, ∀t,∀n ∈ G
N
,∀e ∈ ℰ (42)  

PH
t,e = Pa

t,eγe, ∀t,∀e ∈ ℰ (43) 

Water requirements can be set by establishing a set of lower and upper bounds for its daily production using eq. (44). However, if a demand curve 
must be served, water balance is expressed as (45)–(46) or (47)–(48) depending on the WS inclusion. 

ET ≤
∑t+T

t
γdPa

t,d ≤ ET
, ∀t,∀d ∈ D (44)  

Wch
t =

∑D

d

[

Pa
t,d +

∑Φ

ϕ
χϕ

(
rD

t,ϕ,d − rU
t,ϕ,d

)
]

ηt,d ,∀t (45)  

Wds
t − L w

t = 0, ∀t (46)  

L w
t =

∑D

d
Pa

t,dηt,d (47)  

L w
t =

∑D

d

[

Pa
t,d +

∑Φ

ϕ
χϕ

(
rD

t,ϕ,d − rU
t,ϕ,d

)
]

ηt,d (48) 

The WS discharging and charging dynamics are covered by (49)–(50), note that unlike other types of storage, WS can charge and discharge 
simultaneously due to piping redundancy. The stored volume is monitored with (51), whose minimum and maximum limits are established with (52), 
while its initial and final states are constrained with (53)–(54). These initial and final constraints are added to prevent depletion by the end of the 
horizon, and it is common practice for any type of storage. 

0 ≤ Wds
t ≤ Wds (49)  

0 ≤ Wch
t ≤

∑D

d
Pe

d ηd (50)  

WS
t = WS

t− 1 + Wch
t − Wds

t (51)  

WS ≤ WS
t ≤ WS (52)  

WS
t = WS 0 , ∀t = 0, (53)  

WS
t ≥ WS 0 , ∀t = T, (54) 

The cost function of nuclear generators (ρa) and efficiency curves of desalination plants (η) are conceptually represented in Fig. 9. These are 
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quadratic expressions of the form (55), that can be approximated with a set of a linear piecewise blocks, whose analytic formulation is covered in (56)– 
(60); where Y and y stand for the variable and its corresponding linearized value. The reader is recommended to check the work by Carrion et al. [55], 
which further elaborate this formulation. 

Yt,j = αjνt,j + βjPt,j + θjP2
t,j, ∀t, ∀j (55)  

Yt,j = Ay
j νt,j +

∑L

l
πl,jδl

t,j, ∀t, ∀j (56)  

Yt,j =
∑L

l
δl

t,j + yjνt,j, ∀t,∀j (57)  

0 ≤ δl
t,j ≤ Tl,j − y

j , ∀l = 1,∀t, j (58)  

0 ≤ δl
t,j ≤ Tl,j − Tl− 1,jyj

,∀l = 2⋯Lj − 1,∀t, j (59)  

0 ≤ δl
t,j ≤ y

j − TL− 1,j, ∀l = Lj, ∀t, j (60)  

0

,
1

,
1

,
1

,
1

,
1

Fig. 9. Piecewise linear cost and efficiency representation.  
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