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Potential exposure to active pharmaceutical ingredients (APIs) in the aquatic environment is a subject of ongoing
concern. We recently published maximum likely exposure rates for several hundred human prescription
pharmaceuticals commonly used in the US. These rates were estimated from nationally aggregated marketing
data and wastewater production rates. The accuracy of these estimates is unclear, and it is unclear how to use the
national-level estimates of exposure to predict local exposure rates. In this study we compare our previous

Ilfﬁjgrvrg;‘iiutical predicted environmental concentrations (PECs), which were based on marketing data, with PECs based on
Antibiotic regulatory data. We then use local dispensing rates for 12 APIs along with local wastewater production rates to
Wastewater estimate the distribution of local PECs relative to national averages, in order to identify an ‘application factor’
Aquatic suitable for converting national-level PECs into reliable bounds for local concentrations. We compare the

Drinking water national-level PECs and the proposed application factor with measured environmental concentrations (MECs)
published in 62 recent peer-reviewed publications. Regulatory data-based national average PECs are uniformly
lower than marketing data-based national average PECs, corroborating the intended conservative nature of the
marketing data-based PECs. Variability in local APl usage and wastewater production rates suggest local PECs may
occasionally exceed national averages by about 10-fold. Multiplying national average PECs by an ‘application
factor’ of 10 and comparing the resulting predicted maximum local PECs to published MEC data for 83 APIs
corroborates the usefulness of 10-fold adjusted national PECs as a reasonable ceiling for measured environmental
concentrations.

Published by Elsevier B.V.

1. Introduction

Active pharmaceutical ingredients (APIs) have been detected at
low concentrations (typically below 10 pg/l) in municipal wastewater
effluents and surface waters for more than three decades (Hignite and
Azaznoff, 1977; Richardson and Bowron, 1985; Kolpin et al., 2002a).
The primary route for their introduction into the environment is
thought to be excretion from humans into wastewater collection
systems, persistence through wastewater treatment, and subsequent
discharge into surface or ground water (Fent et al., 2006). Risks posed

Abbreviations: AIC, Akaike Information Criterion; aPEC, ARCOS-based national
average PEC; APJ, active pharmaceutical ingredient; ARCOS, Automation of Reports and
Consolidated Orders System; bMOA, broad mechanism of action; CWNS, Clean
Watersheds Needs Survey; DDmin, minimum daily dose; DPD, doses per decade;
EE2, ethinyl estradiol; LOEC, lowest observable effect concentration; MEC, measured
environmental concentration; MOA, mechanism of action; mPEC, marketing data-
based national average PEC; MRL, method reporting limit; nMOA, narrow mechanism of
action; PEC, predicted environmental concentration; POCIS, polar organic chemical
integrative sampler; WWTP, wastewater treatment plant; ZCTA, zip-code tabulation
area.
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by these contaminants to humans and aquatic life are of ongoing
concern (Daughton and Ternes, 1999). Characterizing aquatic expo-
sure rates is complicated by the large number of APIs in use, which can
vary greatly from one another with regard to usage rate, transport,
fate, and potency. Although about 1800 APIs are currently approved
for prescription use in the US (US FDA, 2009) individual monitoring
efforts have been limited to about 50 analytes each, with most studies
looking at fewer than 10 analytes (Gros et al., 2006). This fact suggests
exhaustive monitoring of all APIs is impractical and instead indirect
means of estimating potential exposure rates are needed in order to
prioritize future investigation as well as estimate overall risks.

We recently estimated (Kostich and Lazorchak, 2008) relative
maximum likely risks, at the national level, posed by waterborne APIs
originating from US municipal wastewater. Marketing data-based
predicted environmental concentrations (mPECs) were conservative-
ly estimated from nationally aggregated API sales and wastewater
production rates. Lowest observable effect concentrations (LOECs)
for humans were assumed proportional to the minimum daily dose
(DDmin) recommended for therapeutic use. Relative aquatic risk for
each API was expressed as the ratio of each API's mPEC to its DDmin.
Because of uncertainties in fate parameters, such as partitioning,
breakdown, and in-stream dilution, we did not attempt to make
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central estimates of water-column associated exposure. Instead, each
mPEC was calculated making the conservative assumption that these
dissipative processes were negligible. The resulting mPECs therefore
estimate the upper end of possible national average environmental
concentrations, rather than the most likely national average concen-
trations. However, reliance on marketing data of unknown quality,
together with uncertainties in factors for converting marketing data
from dollars sold or numbers of prescriptions written into mass of
API dispensed, introduces uncertainties into the mPECs. In addition,
evaluating the approach by comparing mPECs to measured environ-
mental concentrations (MECs) is not straightforward, as MECs reflect
local variation. For similar reasons, it is unclear how to use national-
level mPECs to estimate local hazards posed by an API.

In this study we assess our previously derived national average
mPECs, and estimate the range of local variability in API concentrations
relative to the mPEC. We use regulatory data on legal distribution of
APIs classified in the US as ‘controlled substances’ (Doig and Cordy,
2004) to examine the accuracy of national estimates arrived at using
marketing data. Then data on local distribution of APIs classified as
controlled substances is combined with census data to estimate local
per capita rates of API use. Local API usage rates and local wastewater
production rates are combined to estimate an upper 99th percentile
wastewater concentration, relative to the national average. This upper
99th percentile is proposed as a general ‘application factor’ suitable
for converting predicted national average mPECs into reliable upper
bounds for local concentrations. This factor is then applied to mPECs,
and the resulting predicted local concentration ceilings are compared
to MECs for a range of APIs reported in recent peer-reviewed studies.
This comparison serves as an evaluation of the generality of the
application factor and the usefulness of the marketing data-derived
national PECs.

2. Materials and methods
2.1. Data analysis

Data analysis was performed using R 2.8.1 (R Development Core
Team, 2008). In addition to the base package, functions from the stats
(cor, cor.test, Im, summary.lm, plot.Im), boot (boot, boot.ci, plot.boot)
and MASS (dropterm) packages were used.

Variables were log-transformed prior to linear regression or cal-
culation of Pearson's r, in order to stabilize variances, moderate the
effects of outliers on parameter estimation, and extend the range of
variables below zero. Regression was performed by ordinary least-
squares fitting. Semi-partial correlations (Section 3.2) between variables
A and variable B after removing the effects of variable C were calculated
as Pearson's r between variable A and the residuals from bivariate linear
regression with B dependent upon C.

Akaike Information Criterion (AIC) changes were calculated using
the MASS::dropterm function (Venables and Ripley, 2002). Hypothesis
tests were conducted at p<=0.05. Testing whether a sample value of
Pearson's r arose from random assortment of unassociated variables
assumes a Student's t (df=n—2) sampling distribution of r, and
was conducted with the function stats::cor.test. The Bias Correction-
accelerated algorithm (Davison and Hinkley, 1997) was used to esti-
mate 95% confidence intervals for Pearson's r, using boot::boot.ci
on 9999 bootstrap samples generated with boot::boot. Permutation
analysis in Section 3.3 was conducted using 1 million permutations
generated with the function base::sample.

2.2. APl usage rates

The Automation of Reports and Consolidated Orders System (ARCOS,
US DEA, 2004) documents legally regulated distribution within the US
of 12 APIs classified as controlled substances, and is organized by state
and three-digit zip code. A three-digit zip code identifies a region

corresponding to the union of the regions whose postal zip codes share
the same first three digits. Geographic coordinates of postal zip codes
were estimated using the coordinates of the centroids of zip-code
tabulation areas (ZCTA, US Census Bureau, 2000), which approximate
the region served by a postal zip code.

2.3. Wastewater production rates

The Clean Watershed Needs Survey (CWNS, US EPA, 2004) lists the
size of the population served and the flow rate for most wastewater
treatment plants (WWTPs) in the US. WWTPs listed in CWNS were
included in our variability predictions if they served a population
greater than 100, at least 75% of their flow was of municipal origin, at
least 75% of their served population was local residents, and per capita
wastewater production was between 50 and 1000 I/person per day.

CWNS contains state identifiers for all listed WWTPs, geographical
coordinates of discharge outfalls for many WWTPs, and zip codes
(included as part of the WWTP mailing address) for many WWTPs.
When the outfall location was available, the facility was assigned
the zip code corresponding to the closest (calculated with haversine
formula — Sinnott, 1984) ZCTA centroid within the same state. If
outfall location was unavailable, but a mailing address was listed, the
mailing zip code was assigned to the facility.

Of the 16,521 discharging facilities listed in CWNS, 7176 met
inclusion criteria listed above and could also be assigned a zip code.
These WWTPs, on which our distributional analysis is based, produce
14.6 billion gallons of wastewater per day (out of a CWNS total of
33.7 billion gallons), and serve 114,136,107 people (out of a CWNS
total of 229,071,206 people).

2.4. PECs and spatial variation

The likely upper bound for the average US PEC for each API was
calculated by dividing the mass of API dispensed nationwide each year
by an estimate of annual US wastewater production (6.8 x 10'3 L/yr —
adapted from Kostich and Lazorchak, 2008):

PEC for an APl in ng / L = (mass of that API dispensed in kg / yr)
*(10”ng/1<g) / (6.8 x 10”L/yr)

Degradation of parent drug by patient metabolism or wastewater
treatment was not accounted for, so the resulting estimates should be
conservative for many APIs. In order to express potential exposure
in units with an intuitive relationship to risk, and also adaptable
to describing exposure rates to mixtures, PECs were converted into
doses per decade (DPD). DPD are the equivalent number of DDmin
that would be consumed in one decade, assuming consumption of 2 |
of water per day with API present at the PEC:

DPD = (PEC*2*3650) / (DDmin* 10°)

where PEC is in ng/l, 2 is the number of liters consumed per day,
DDmin is in mg/day, and the factor 10° is used to convert mg to ng.
Each CWNS facility to which a zip code was assigned (Section 2.3)
was associated with 12 local per capita API usage rates (one for each
of the 12 APIs in ARCOS — Section 2.2) by matching three digit zip
codes and state identifiers. The local usage rate for each API was
divided by the per capita wastewater production rate for that facility
(Section 2.3), to yield a local PEC for that particular WWTP. Local PECs
were normalized by division by the ARCOS-based national average PEC
(aPEC) of the corresponding APJ, resulting in a local PEC expressed as a
multiple of the corresponding API's national average aPEC. For each
API, the distribution of local PECs was expressed in terms of the
proportion of all wastewater produced by WWTPs with PECs lower
than a given PEC: WWTPs were sorted by their associated local PECs;
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for each local PEC, the total volume of wastewater produced by all
WWTPs with lower local PECs was divided by the total volume of
wastewater produced by all WWTPs, yielding the wastewater volume
percentile for that local PEC.

2.5. Comparison to MECs

Peer-reviewed publications reporting MECs for any API (controlled
substance or not) were identified via literature search. Studies were
included if they were conducted in the US, published between January
2001 and January 2009, and reported some mass spectrometry data.
Only data on human prescription pharmaceutical active ingredients
that are currently used and are not naturally occurring hormones
were summarized. Measurements from wastewater, surface water,
and ground water were included. MECs from hospital effluents and
treated drinking water were excluded. POCIS data were excluded.
Non-detections and detections that could not be quantified were
recoded as the method reporting limit (MRL). Estimated concentra-
tions reported as a range of possible values were recoded as the lower
end of the range.

For DPD calculations, metabolites were considered equipotent with
the parent on a mass basis. For metabolites with MECs (Section 3.3),
this simplification results in differences of 7.5% or less relative to DPD
calculations performed on a molar basis. Levofloxacin was recoded as
ofloxacin, since none of the studies summarized here used methods
that distinguish enantiomers. Data reported in Kolpin et al. (2002a)
were corrected per Kolpin et al. (2002b). DDmin and MOA are adapted
from Kostich and Lazorchak (2008), if available, or from product
prescribing information.

An error in our previous mPEC calculations was corrected: the
minimum price of erythromycin had been transcribed as $0.0687/mg.
The original marketing data source actually listed $0.0006164/mg.
As a result, the erythromycin mPEC is underestimated by 111-fold
in Kostich and Lazorchak (2008). The corrected mPEC was used in
the present analysis and reported in Appendix 2 of the supporting
information.

3. Results and discussion
3.1. National average PECs

Ofthe 12 APIs in ARCOS, only nine (Table 1) are dispensed frequently
enough to be included in the marketing data for ‘top drugs’ that
was previously used (Kostich and Lazorchak, 2008) to estimate mPECs
for 371 APIs. These nine APIs span the marketing data-based risk
rankings from #8 (codeine) to #158 (methadone). mPECs exceeded the
corresponding ARCOS-based national-level PECs (aPECs) by 1.2- to
13.5-fold (Table 1), depending on the API, corroborating the intended
conservative nature of the mPECs. Within this sample, a modest linear

Table 1

Comparing national average PECs. Marketing data-based mPECs compared to ARCOS-
based aPECs. Market rank is based on mPECs expressed as days per dose (DPD). Kg/yr is
the nationwide mass of API dispensed annually, estimated from marketing data or
ARCOS. Ratio is the ratio of the marketing data-based estimate to the ARCOS-based
estimate. DDmin is the minimum daily therapeutic dose.

API Market Market ARCOS Ratio DDmin Market ARCOS
rank keg/yr keg/yr mg DPD DPD
Fentanyl 108 463 371 1.2 0.29 0.17 0.14
Methylphenidate 63 34988 14053 25 10 0.38 0.15
Hydromorphone 186 1825 655 2.8 4 0.049 0.018
Oxycodone 51 86660 29178 3.0 20 0.47 0.16
Methadone 157 14875 4730 3.1 20 0.080  0.025
Amphetamine 32 32839 6485 5.1 5 0.71 0.14
Hydrocodone 7 177184 24082 7.4 5 3.8 0.52
Morphine 60 108786 14319 76 30 0.39 0.051
Codeine 69 274219 20265 135 90 0.33 0.024

relationship was found between log-transformed mPECs and log-
transformed aPECs, with Pearson'’s correlation r for this sample equal
to 0.82. The hypothesis that this sample value of r arose by chance
assortment of variables with no real association was rejected with a one-
sided (only positive associations are expected) p-value of 0.003.
Assuming that this set of 9 APIs can be considered a simple random
sample from the larger population of 371 ‘top drugs’, a 95% confidence
interval for Pearson's r in the corresponding population was found to be
0.21-0.97.1tis not clear how representative these APIs are of all the APIs
in use in the US, but consistency of local PECs based on this assumption
with MECs for a much broader range of APIs (Sections 3.3 and 3.4)
suggests the assumption is approximately correct.

3.2. Predicting spatial variation

Combining local per capita wastewater production rates with local
per capita API distribution rates for all 12 APIs in ARCOS (Table 2)
suggests that 99% of municipal wastewater (on a volume basis) contains
API residue concentrations less than ten times the corresponding
API's national average aPEC. Given the small sample size on which this
estimate is based, perhaps 15 or 20 would be a more prudent application
factor for converting national average mPECs into reliable upper bounds
for local concentrations. Nevertheless, we use ten as an application
factor for comparing national-level mPECs to MECs in Section 3.3, since
this is the factor suggested by our limited data. Log-transformed local
wastewater production and API usage rates showed little correlation
with one another (sample Pearson's R-squared was consistently<=
0.03), providing a nearly additive partition of local PEC variability
between these drivers. Local API usage rates had greater coefficients of
variation than local wastewater production rates (0.5-1.2, depending
on AP, vs. 0.3 for wastewater production). This variability in API usage
accounted for most of the variation in local PECs (squared semi-partial
correlations of 0.64-0.93, depending on AP], after removing effects of
wastewater production) compared to variations in wastewater produc-
tion (squared semi-partial correlations of 0.05-0.32, after removing
effects of API usage). This means that for these 12 APIs, most variability
between locales in the PEC for any single API is accounted for by
variations in local per capita APl usage, with substantially less accounted
for by variability in local per capita wastewater production.

3.3. Comparing predictions to measurements

A search of peer-reviewed literature identified 62 studies meeting
criteria for inclusion (Section 2.5). In aggregate, these studies report
MECs for 133 API-related analytes corresponding to 111 APIs found in
prescription drugs (Appendix 1). Individual studies measured between 1
and 51 (median study=6.5, when ranked by number of analytes)
analytes, corresponding to between 1 and 45 (median study =6) APIs.
Individual studies reported between 1 and 336 (median study = 12.5)
independent (with respect to time or site of sample collection) mea-
surements per analyte, on samples collected from between 1 and 115
(median study=6) sites. For each API, the combined set of studies
provided between 1 and 1237 (median API=42) independent mea-
surements from between 1 and 542 (median API = 23) distinct sites.

MECs and mPECs (adapted from Kostich and Lazorchak, 2008) for
each APl were potency normalized and expressed as DPD (Section 2.4).
The highest MEC for each API was compared with the corresponding
mPEC (Appendix 2). Of the 111 APIs for which MECs were found, 87
are among the 362 APIs which have mPECs but are not natural
hormones. Natural hormones were not considered, as they have
substantial sources other than pharmaceutical use which were not
accounted for during generation of the mPECs. Of the remaining
87 APIs with both mPECs and MECs, one (digoxin) has never been
detected (all reported MECs are less than corresponding MRLs) in the
studies considered (Section 2.5), but MRLs are more than 10-fold
greater than the corresponding mPEC, limiting the utility of comparing
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PEC variability. PEC wastewater volume percentiles, relative to the national average ARCOS-based aPEC. DPD is the national average ARCOS-based aPEC, marketing data-based mPEC,
or maximum MEC, expressed as doses per decade. The sums represent sums of DPD across stimulants (stim), opiates, or all 12 APIs.

API 50% 75% 90% 95% 99% ARCOS ng/l ARCOS DPD Market DPD MEC DPD
Amphetamine 0.94 1.49 2.30 2.82 6.06 65 0.14 0.71 0.00044
Cocaine 1.02 1.94 3.10 4.10 724 0.96 0.00014

Codeine 1.35 212 339 4.18 4.71 298 0.024 0.33 0.081
Fentanyl 1.11 1.64 228 2.85 4.69 5.45 0.14 0.17

Hydrocodone 1.12 1.73 2.58 3.06 8.28 354 0.52 3.8 0.28
Hydromorphone 1.10 1.78 290 3.65 6.41 10 0.018 0.049

Meperidine 0.85 1.34 245 3.37 5.78 71 0.0017

Methadone 0.95 1.77 3.05 3.82 5.92 70 0.026 0.080

Methamphetamine 1.09 2.66 5.15 6.11 9.73 0.18 0.00026 0.050
Methylphenidate 0.97 1.48 2.12 59 4.33 207 0.15 0.38

Morphine 1.19 1.80 277 3.77 5.83 211 0.051 0.39

Oxycodone 1.07 1.61 2,50 3.42 5.77 429 0.16 0.47 0.055
Sum (stim) N=4 0.97 1.49 218 2.70 5.18 0.29 1.1

Sum (opiates) N=8 1.17 1.65 S5 3.02 6.29 0.93 5.3

Sum (all) N=12 1.14 1.66 2.17 2.86 5.10 12 6.4

MECs to the digoxin mPEC. For an additional three APIs (fluticasone,
methotrexate, and norgestrel) with mPECs and reported MECs, MECs
have been below the corresponding MRL, but MRLs exceeded the
API's mPEC. In addition to these 87 APIs, MECs were found for 24 APIs
without corresponding mPECs, and no MECs were found for 275 APIs
with mPECs. APIs with MECs span the marketing data-based risk
rankings from #3 (hydrochlorothiazide) to #309 (lindane) out of the
362 APIs with mPECs.

For 14 of 83 APIs that have been detected or have MRLs less than the
corresponding mPEC, the highest reported MEC exceeds the mPEC
(Table 3). The most prominent among these 14 APIs is ethinyl estradiol
(EE2), for which the MEC exceeds the mPEC by a factor of 41 (see
below). In all other cases, the highest MEC is less than the mPEC or
exceeds the mPEC by less than the proposed application factor of 10.
By contrast, 30 of 83 APIs have a maximum MEC less than one tenth
of their mPEC, 11 have a MEC less than one percent of their mPEC,
and three have a MEC less than 0.1% of their mPEC. ARCOS-based aPECs
agree more closely with MECs (Table 2), with the exception of
methamphetamine, whose highest MEC exceeds the aPEC by 190-fold.
This discrepancy is not surprising, since nationwide therapeutic use
of methamphetamine is only about 12 kg/yr, while illicit supply
is probably in excess of 120 t/yr (National Drug Intelligence Center,
2005).

APIs were sorted in descending order by maximum MEC
(measured in DPD), with the highest ranking APIs listed in Table 4.
The only APIs whose MECs correspond to greater than 3 doses per
decade are EE2 (100 DPD), mestranol (59 DPD), and norethindrone/

Table 3

Top MEC/mPEC ratios. Highest reported MECs compared to mPECs. DPD is the con-
centration expressed as doses per decade. Sample count is the number of samples on
which the maximum MEC is based.

API MEC mPEC MEC/ MEC mPEC Sample
ng/l ng/l mPEC DPD DPD count
Ethinyl estradiol 273 6.7 41 100 24 495
Ofloxacin 23,500 2505 9.4 14 0.15 124
Azithromycin 14,900 1631 9.1 0.44 0.048 101
Norethindrone 872 124 7.0 6.4 091 78
Trimethoprim 37,000 8934 4.1 1.7 0.41 995
Atenolol 14,200 4343 33 2.1 0.63 386
Ciprofloxacin 5600 1908 2.9 0.082  0.028 538
Warfarin 330 162 2.0 1.2 0.59 381
Citalopram 600 327 1.8 0.22 0.12 22
Naproxen 24,600 16212 1.5 0.36 0.24 293
Ibuprofen 68,700 48001 14 2.5 1.8 1027
Metformin 47,253 36331 13 14 1.1 144
Gemfibrozil 4770 4264 1.1 0.029 0.026 527
Propranolol 1900 2075 0.9 0.46 0.50 117

norethisterone (6 DPD). Maximum MECs for these structurally related
contraceptive APIs were reported in the same study (Kolpin et al.,
2002a) and measured using the same method (Barber et al., 2002).
Although the majority of measurements reported in this extensive
study appear reasonable, concerns have been raised (Ericson et al,
2002; responses in Kolpin et al., 2002b) that measurements for these
three APIs (particularly EE2) are too high to reflect typical human
use, and might result from isobaric interfering substances in the
samples. The highest EE2 MEC reported in other US studies (N=10
other studies) has been 6 ng/l (compared with 273 ng/l in Kolpin
et al.,, 2002a), while norethindrone and mestranol, whose monitoring
has not been as extensive (N=1 other study for each API), have not
been detected in the other studies summarized here. Nevertheless,
the high MECs might also be explained by unorthodox use of these
compounds, for instance in livestock production. Further investiga-
tion is strongly warranted to determine if the surprisingly high (and
correspondingly worrisome) measurements for these three APIs are
correct.

Although the level of agreement described above between mPEC-
based ceilings and maximum MECs is encouraging, it is not clear how
specific the assignment of mPEC-based ceilings to individual APIs is.
For example, perhaps all the mPECs are too high to be reached by any
API, in which case the assignment of individual mPECs to APIs for
ranking purposes would have little value. In order to test for this
sort of trivial agreement between MECs and mPECs, mPECs were
randomly re-associated with APIs, after which agreement between
MECs and mPECs in the permuted dataset was compared to agree-
ment in the unpermuted data. Including data for all 87 APIs except
digoxin (which cannot be informatively compared to ten times its
mPEC — see Section 3.1), and expressing concentrations as DPD

Table 4
Top MEC by DPD. DPD is the concentration expressed as doses per decade. Sample
count is the number of samples on which the maximum MEC is based.

API MEC mPEC MEC/ MEC mPEC  Sample
ng/l ng/l mPEC  DPD DPD count
Ethinyl estradiol 273 6.7 41 100 24 495
Mestranol 407 NA NA 59 NA 72
Norethindrone 872 124 7.0 6.4 0.91 78
Ibuprofen 68,700 48,001 1.4 2.5 1.8 1027
Atenolol 14,200 4343 33 2.1 0.63 386
Hydrochlorothiazide 2950 13,947 0.2 1.7 8.1 8
Trimethoprim 37,000 8934 4.1 1.7 0.41 995
Metformin 47253 36,331 1.3 14 1.1 144
Ofloxacin 23,500 2505 9.4 14 0.15 124
Metoprolol 2269 7536 0.3 13 44 88
Warfarin 330 162 2.0 1.2 0.59 381
Betamethasone 25 93 0.3 073 2.7 8
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results in one disagreement between mPEC-based ceilings and MECs
in the unpermuted data (EE2), a level of agreement only reached in
about 1 in 10,000 random permutations. Expressing concentrations as
mass per unit volume (ng/l) results in a more dramatic contrast, with
only about one in one million random permutations reaching the level
of agreement seen in the unpermuted data. This suggests meaningful,
specific association of mPECs with APIs.

Pearson's r was calculated between log-transformed MECs and
mPECs (expressed as DPD) for the 83 APIs that have either been
detected and have mPECs, or have not been detected (despite having
been looked for) but have a MRL less than the corresponding mPEC.
Pearson's r for this sample was very modest (0.47), but the possibility
that this value arose from chance assortment of unassociated variables
was rejected with a one-sided p-value<4x 1075, A 95% confidence
interval for the population value of r was estimated at 0.30-0.60.

The highest reported MEC for any given API summarizes results
from a varying (by API) number of environmental samples, and will
reliably approach the true upper limits of environmental concentra-
tions (what we are trying to estimate by multiplying the mPEC for that
API by an application factor of 10) only when the number of samples
is large. Including sample number as a predictor variable might
therefore improve prediction of maximum MECs from mPECs, even
though sample number might not be a good predictor on its own.
Modeling log-transformed maximum MECs across APIs as a linear
function of the corresponding log-transformed mPECs and the log of
the sample number on which each maximum MEC is based shows a
fair fit with well-behaved residuals. Deletion of either explanatory
variable (mPEC or sample number) is accompanied by a rise in AIC
(signaling a loss of useful information), and estimated coefficients for
both explanatory variables are positive and significantly different
from zero (p<7x 10~ for mPEC, and p<7 x 10> for sample number),
suggesting both variables contribute significantly to prediction of
maximum MECs. Sample values of Pearson's r between log-trans-
formed maximum MECs and the fitted values from the linear model
rose to 0.60 when both variables are included in the regression.
Consistent with expectations, sample number appears to be a poor
predictor of MECs on its own (sample R-squared =0.08), but
improves prediction more than this would imply (adjusted sample
R-squared improves by about 0.14 with inclusion of sample number,
compared to a model with mPECs as the only predictor of MECs).

These data suggest that national average mPECs, when adjusted by
a 10-fold application factor to account for spatial variability, provide
reasonable upper bounds on MECs. By contrast, mPECs are only
marginally useful for predicting maximum MECs, with the highest
reported MEC for many APIs falling far below the corresponding

Table 5

mPEC. This can be understood in terms of the conservative nature
of the mPEC calculations, in particular the omission of terms for
dissipative processes, such as transformation, partitioning and in-
stream dilution. It can also be partially explained by the variability
in the maximum MEC that is dependent on the number of samples
analyzed. These explanations are corroborated by the observation
that, within the data sets examined, the mPECs are more strongly
associated with aPECs (see Section 3.1), which are not affected by
these issues, than they are with MECs.

Given that our previously published national mPECs for most APIs
were quite low (there were only 20 APIs with mPECs greater than 1
DPD), the sufficiency of a 10-fold application factor for estimating
maximum local concentrations suggests that potential aquatic
exposure rates to most APIs are far below levels required to elicit
clinical effects. For the 20 APIs with mPECs greater than 1 DPD, MEC
data summarized here also suggests potential aquatic exposure rates
are quite low, but data are not very abundant for many of these APIs.
Even though the 10-fold factor still suggests aquatic exposure rates
for these 20 APIs are well below those resulting from clinical API
administration, the margins of safety are narrower, potentially raising
questions about risks from potential aquatic exposure to particularly
sensitive human sub-populations or sensitive non-human species.
Therefore, we feel further investigation of these APIs is warranted.

It is worth keeping in mind that the scope of the present exposure
study extends only to APIs dissolved in the water column. Greater
exposure rates may be possible through contact with other environ-
mental media in which APIs might become concentrated, including
fish, plants, and sediments. Less data exist on APl distributions in these
media, and more research will be required to determine associated
risks. In addition, the general approach adopted in this work assumes
risks decline monotonically with exposure rates, which has been
disputed in some cases. See Kostich and Lazorchak, 2008, for a more in-
depth discussion of this issue.

3.4. Exposure rates for mixtures

Potential exposure rates to multiple APIs sharing a common MOA
were estimated using a potency-normalized concentration addition
model for each of 15 broad MOA (bMOA) and 40 narrow MOA
(nMOA) categories (Appendix 2; MOA adapted from Kostich and
Lazorchak, 2008) that have associated MEC data. For each MOA, the
highest reported MEC for each API in the MOA category was expressed
as DPD, and MECs were summed across APIs belonging to the MOA.
These MEC-based exposure rate estimates were compared to mixture
exposure rates estimated from mPECs (Table 5). Maximum potential

Broad MOA. MECs and mPECs were expressed as doses per decade (DPD) and summed within broadly defined MOA. mPEC1 represents the sum of DPD across API belonging to the
MOA that have both MECs and mPECs. mPEC2 represents the sum of DPD across API belonging to the MOA that have mPECs, but may or may not have MECs. ‘MEC #API’ is the number
of API within the MOA that have MECs. ‘mPEC1 #API is the number of API represented by mPECT. ‘mPEC2 #API’ is the number of APIs on which mPEC2 is based. All broad MOA with

MECs are shown.

Broad MOA MEC DPD PEC1 DPD MEC #API mPEC1 #API mPEC2 #API MEC/mPEC1 PEC1/mPEC2
Anti-arthropod 0.0027 0.0034 1 1 1 0.79 1
Anti-bacterial 3.8 1.6 26 14 32 23 0.84
Anti-coagulant 1.2 0.59 1 1 5 2.0 0.8
Anti-fungal 0.00066 NA 1 0 8 NA NA
Anti-helminthic 0.0013 NA 1 0 0 NA NA
Anti-hyperglycemic 2.2 33 3 3 6 0.66 0.85
Anti-hypertensive 2.9 18 10 10 36 0.16 0.79
Anti-inflammatory 4.4 13 14 10 30 033 0.91
Bronchodilator 0.00044 0.63 1 1 1 0.001 1
Decreases blood viscosity 0.000026 0.049 1 1 1 0.001 1
Gastric antacid 0.042 0.35 2 2 9 0.12 0.3
h1 anti-histamine 0.034 0.75 2 2 11 0.046 0.39
Lipid modifier 0.45 5.0 6 5 9 0.09 0.92
Neurotransmitter modulator 58 21 34 30 105 0.28 0.74
Reproductive hormone mod. 165 35 4 3 21 47 0.72
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Table 6

Top narrow MOA ratios. MECs and mPECs were expressed as doses per decade (DPD) and summed within narrowly defined MOA. mPEC1 represents the sum of DPD across API that
belongs to the MOA and that has both MECs and mPECs. mPEC2 represents the sum of DPD across API belonging to the MOA that has mPECs. MEC #API is the number of API within
the MOA that has MECs. mPEC1 #API is the number of API on which mPECT is based. mPEC2 #API is the number of APIs on which mPEC2 is based. The top 12 of 38 narrow MOA (by

MEC/mPEC1) are shown.

Narrow MOA MEC DPD mPEC1 DPD MEC #API mPEC1 #API mPEC2 #API MEC/mPEC1 PEC1/mPEC2
Estrogen 159 24 2 1 1 65 1
Quinolone 1.5 0.17 4 2 4 8.4 0.95
Progestin 6.4 1.0 2 2 10 6.1 0.5
Macrolide 0.47 0.087 3 3 3 5.4 1
Folate synthesis inhibitor 1.7 0.74 4 2 2 23 1
Anti-clotting factor 1.2 0.59 1 1 2 2.0 0.98
pkaa activator 14 1.1 1 1 1 13 1
Tetracycline 0.090 0.094 5 3 3 0.96 1
NSAID 3.6 4.1 9 5 10 0.88 0.97
Beta-blocker (adrenergic) 0.54 0.63 3 3 5 0.85 0.66
Anti-arthropod 0.0027 0.0034 1 1 1 0.79 1
Beta-1-blocker (adrenergic) 34 5.0 2 2 3 0.68 0.95

cumulative exposure along each bMOA was estimated at less than
6 DPD for all bMOA except for ‘reproductive hormone modulator’
(165 DPD; but see discussion of EE2, mestranol, and norethindrone in
Section 3.3). Although MEC-based estimates occasionally exceeded
the mPEC-based estimates for bMOA (MECs and mPECs could be
compared for 13 bMOA), they do so to a lesser degree than was seen
for individual APIs. The ratio was less than three for all 13 bMOA
categories except ‘reproductive hormone modulator’, for which the
ratio was 47. The exposure rate for the bMOA ‘reproductive hormone
modulator’ is reduced to 68 DPD, and the MEC/mPEC ratio is reduced
to 19 if the highest EE2 MEC is adjusted to 6 ng/l (see Section 3.3
for rationale). The exposure rate for this bMOA is reduced to 2.2 DPD,
and the MEC/mPEC ratio is reduced to 0.86 when mestranol and
norethindrone are also deleted (we could not adjust these to the next
highest value, as other reported measurements for these APIs are non-
detects) from the analysis.

The ratio of MEC-based estimates to mPEC-based estimates for
nMOA (MECs and mPECs could be compared for 38 nMOA; Table 6
shows the 12 nMOA with the highest MEC/mPEC ratio) was more
variable, often approaching the ratio seen for individual APIs. This
may be explained by the smaller number of APIs being averaged into
each nMOA mPEC, compared to the larger bMOA categories. Estimated
maximum cumulative exposure along each nMOA was less than four
DPD for all 40 nMOA categories with MEC data, except estrogens (159
DPD) and progestins (six DPD). Adjusting EE2 MECs to 6 ng/l and
deleting mestranol along with norethindrone results in exposure rates
for estrogens of 2.2 DPD, and progestin exposure rates of 0.022 DPD.
MEC/mPEC ratios after these adjustments are 0.90 for estrogens, and
0.16 for progestins.

Pearson's r between log-transformed MECs and mPECs (expressed
as DPD) for the 13 bMOA which include APIs with both MECs and
mPECs was significantly greater than zero (one-sided p-value<0.003),
and the central estimate suggested a stronger association (sample
r=0.73, with a 95% confidence interval for the population value of r
being 0.41-0.86) than the mPEC:MEC association seen for individual
APIs. Pearson's r between log-transformed MECs and mPECs for the 38
nMOA which include API with both MECs and mPECs was significantly
greater than zero (one-sided p-value<0.0001), with the central esti-
mate (sample r=0.57, with a 95% confidence interval of 0.34-0.70)
falling between the mPEC:MEC association seen for bMOA and that
seen for individual APL

4. Conclusions

Examination of the ARCOS database suggests previously published
(Kostich and Lazorchak, 2008) marketing data-based national average
mPECs exceed regulatory data-based estimates, corroborating the

intended conservative nature of the marketing data-based estimates.
Analysis of ARCOS spatially explicit usage data for 12 APIs, along
with CWNS data on local wastewater production rates, suggests local
PECs may on occasion exceed national average PECs by about 10-
fold. Multiplying national average marketing data-based PECs by an
‘application factor’ of 10 and comparing the resulting predicted maxi-
mum local PECs to published MEC data for 83 APIs corroborates the
usefulness of the adjusted mPECs as a reasonable ceiling for measured
environmental concentrations.
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