
Process Fundamentals 



Chemical, biological and physical reaction in 

engineered systems usually take place in 

"reactors".  Reactors represent some sort of 

containment that physically define the processes.  

It is important to know the mixing level and 

residence time in reactors since both affect the 

degree of process reaction that occurs while the 

fluid (usually water) and its components pass 

through the reactor.  

 



Reactor Classification: 

Mixing levels give rise to three categories of 

reactors: 

 

•completely mixed flow (CMF) 

 

•plug flow (PF) 

 

•flow with dispersion (FD).  

 



The first two are idealized extremes not 

attainable in practice, but serve as convenient 

mathematical models.  

 

All real reactors fall under the category of 

FD. 

 



Fluid Transport 

Depending on the level of mixing, fluid transport 

of contaminants (pollutants) can be by: 

 

• Advection 

 

•Molecular Diffusion 

 

•Turbulent Diffusion 

 

•Shear Flow Dispersion 



ADVECTION 

Advection is movement of the contaminant with the 

fluid (concurrently). 

  

Consider a conservative material, in the absence of 

any diffusive mechanisms, moving in one direction, 

say the x-direction.    The absence of any diffusive 

activity means that the pollutant remains associated 

with the same water ―packet‖ with which it was 

initially associated. 





If we do a mass balance on an elemental volume: 

Mass flow in – mass flow out = time rate of 

accumulation in the elemental volume. 

 

Let Q = flow rate = u(Dz)(Dy).     

 

 

Where u = fluid flow rate  (m/sec). 
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Let (Cout – Cin) = DC 
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In the limit, the size of the elemental volume 

can be set infinitely small so that: 
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In three dimensions: 

 



MOLECULAR DIFFUSION 

 

In the absence of bulk fluid motion we can still get net 

mass transport via diffusive phenomena.   First look at 

molecular diffusion . 

 



In typical treatment processes molecular diffusion 

is overwhelmed by turbulence (another type of 

diffusive transport property).   But at interfaces 

(water- air and water-solid) molecular diffusion 

can become important.  In addition, we can use 

the same mathematical model as we use to 

describe molecular diffusion for general diffusion 

processes. 

 



Molecular diffusion is a phenomenon caused by 

kinetic energy of molecules and by concentration 

gradients.   Molecules undergo random motion which 

is caused by internal energy of the molecules.  Each 

molecule possesses at least three types of energy.  

1) translational (only significant one in the diffusion 

process) 

2) rotational 

3) vibrational 

 



As long as there are no concentration gradients 

motion is random and there is no internal flux in 

the system.   Collisions of particles ( molecules) 

will occur randomly resulting in random changes 

in particle motion and position. 

 



      Mathematical Model (Fick's Law) 

 

Consider the situation where a concentration 

gradient exists (by some set of initial 

conditions).  Molecular collisions will now be 

less frequent in the direction of lower molecular 

concentration.  Therefore, there will be a net 

movement (flux) of molecules from high to low 

concentration regions as shown in the figure 

below.  





Groups of molecules move at velocity of wm (in the 

z direction).  Define lm as the average distance 

molecules (or particles) travel before they collide 

with other particles. This is called the mean free 

path. Of course, the mean free path and the average 

velocity are function of the concentration of 

molecules.  But for dilute solutions we can assume 

that they are constant at a constant temperature. The 

net mass flux into the shaded region is given by (on 

a unit area basis): 
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J ( flux) has typical  units of mass/m2-sec 

C usually has units of mass/volume.  

 

 



If the distance and concentration are small enough: 
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(second order terms in Taylor expansion are 

approximately zero if the distance and the 

concentration gradient are small). So that:  
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The product wmlm = D (coefficient of 

molecular diffusivity).  D has typical units of 

cm2/ sec. D is a function of temperature, 

solvent and molecule type and size.  

 

In three dimensions (assuming uniform D): 
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Now look at transport with just molecular 

diffusion ,  i.e., assume no advection. Again a 

mass balance can be performed on an elemental 

volume for a conservative material.  Again 

assume that diffusion occurs in only the x-

direction (both positive and negative). 
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Again using in – out = mass rate of 

accumulation in the elemental volume gives: 
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mathematically: 
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After dividing through by dA: 
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This results in Fick’s Second law in 1 

dimension and 3 dimensions, respectively:  
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         Advection plus Diffusion: 

Both advection and diffusion are usually active 

simultaneously and they are linear processes, 

therefore, their governing equations are additive 

yielding what’s known as the advective diffusion 

equation. 
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Additionally there are two other diffusive type 

transport mechanisms active in most environmental 

engineering processes.   

 

Turbulent Diffusion and Shear Flow Dispersion.  



TURBULENT DIFFUSION 
 

Basically turbulent diffusion is due to random 

fluctuation in advective velocity.   A typical one 

dimensional velocity history at a single point in a 

turbulent velocity field  might look like the figure 

below. 

 





It’s very difficult to mathematically describe 

instantaneous velocity since it has a random 

component. Instantaneous velocity (u) has two 

components: 

 

u = avg. velocity

u' = perturbation velocity

u = instantaneous velocity

u u u ' 



The effect of these velocity perturbations is 

increased mixing in the form of increased diffusion. 

We can model this increased diffusion as follows: 
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On the average there is no increase in the net 

advective velocity due to turbulent flucuations so we 

model the effect in the diffusional term. 
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Where ―e‖ = turbulent diffusion coefficient. 
 



SHEAR FLOW DISPERSION 

If a velocity profile exists and if there is molecular 

or turbulent diffusion we get shear flow dispersion.  

Shear flow dispersion occurs even under laminar 

flow conditions.  (laminar flow means no turbulence 

– flow streamlines are parallel). Shear flow 

dispersion is a result of the interaction of turbulent 

and molecular diffusion and shear velocity.  



A typical velocity profile (in the x-direction) is shown 

below.   The differential velocity at each depth, 

coupled with molecular diffusion  and/or turbulent 

diffusion and  a concentration profile (of the material 

being mixed) transverse to this velocity results in 

shear flow dispersion (mixing in the direction of flow).   
 





Once again this type of diffusion is included in the 

diffusive term of the advective diffusion equation.  So 

the resulting advective-diffusion equation finally looks 

like: 
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Where EL  is the longitudinal dispersion coefficient 

(i.e., dispersion in the direction of flow). 

 



All types of diffusion and dispersion  are often 

combined into an overall diffusion coefficient call Dd 

because it is difficult to separate the individual 

contributions of each. 

 

Where Dd = D + e +EL   In many reactors longitudinal 

dispersion dominates so Dd  is approximated by  EL. 

 



Determination of Reactor Characteristics 

Mass transfer in reactors results from advection 

(bulk fluid transport) and diffusion (mostly 

dispersion)  Mixing level is quantified by the 

diffusion (dispersion) coefficient, Dd [cm2/sec, or 

similar units]).  

The relative importance of advective transport vs. 

dispersion is characterized by a dimensionless 

parameter called the Peclet Number (Pe), defined 

as: 
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Where: 

 

L = characteristic length (usually reactor 

length) [L]; 

U = advective velocity [L/T]; 

Dd = dispersion coefficient [L2/T]. 

 



As discussed previously, mixing levels give 

rise to three categories of reactors.   
 

•Plug-flow (PF) represents no axial dispersion,  

  Pe  

 

•Complete-mix flow (CMF) with infinite dispersion, 

 Pe  0.  

 

• Flow with dispersion (FD),  0 < Pe <   

 

 







One of the easiest methods to determine reactor 

mixing characteristics is to input a  spike or 

instantaneous slug of conservative material at t = 0 

and then monitor the reactor  effluent response.  

 

Start with the most realistic type of reactor - flow 

with dispersion (FD).  

 



Analysis of this problem can begin by spiking 

the reactor with a mass M of conservative 

material at t = 0.  First assume that there is no 

advection and that the only mixing mode is 

molecular diffusion in the x-direction. 1-D 

solution to the advective-diffusion equation  

with no advection  and Dd = D.   is  given by:  
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Note that this 1-D solution implies that there is 

uniform concentration "distribution" in the y-z 

plane (cross-sectional area A) and diffusional 

transport in the x ( axial) direction only. In other 

words the initial mass M of conservative material 

is distributed uniformly over cross-sectional area 

(A) so that the "concentration" is actually  mass/ 

area.   This implies that there is zero thickness to 

the input.  Physically this is impossible but it is 

mathematically convenient and the approximation 

does not impact the solution greatly.  



The boundary conditions used to find the above 

solution assumes that the diffusion coefficient at 

the exit and entrance to the reactor are the same 

as in the reactor. This is called an "open" reactor.  

This is equivalent to letting the reactor be defined 

as a section of a long reactor as shown here:  



A "closed" reactor is one where the reactor has a 

diffusion or dispersion coefficient different than 

those of the entrance or exit.  Typically exit and 

entrance diffusion/dispersion are much less than 

the diffusion/dispersion in the reactor.  This 

system is shown schematically as: 

 



There are no analytical solutions for a ―closed‖ 

system.  Numerical solutions are available for a 

variety of initial conditions. For our analysis we’ll 

work with open system analysis and correct when 

necessary for closed system conditions. So let’s 

continue with an open system analysis by adding 

advection to the process, i.e., let flow pass 

continuously through the reactor. 

  



If we have advection we will most likely get shear 

dispersion and turbulent diffusion in addition to 

molecular diffusion. (i.e., use Dd instead of D).   

Also we can  transform distance (x) by moving with 

the avg. fluid flow by defining x’ = x – ut to get: 
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In a flowing system this is equivalent to injecting 

the conservative material in an infinitely thin 

plane at t = 0  and x = 0 ( at the entrance of the 

reactor) so that the "concentration" at this point 

is M/A.  By transforming distance (x) as we did 

above we are effectively riding with the initial 

spike of material so that we are only observing 

diffusion.  



Note that x' is the relative distance-- in the x 

dimension-- from the position of peak 

concentration; the peak will always be located at  

x = u t .  Negative values of x' thus represent 

positions upstream from the peak and positive 

values represent positions downstream from the 

peak.  

 



If time (t) is fixed it turns out that the form of 

this equation  for C(x’) is exactly the form of the 

normal frequency distribution (Gaussian) curve 

which has the general form: 
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If  the C(x') function is normalized by (A. M)-1 we 

can write: 
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C'x'  = normalized, x'-dependent concentration  

 =                       (i.e., the mass of constituent per 

unit reactor length per mass of constituent initially 

pulse-discharged)  [L-1]. 

 

1

X'C (A M)

       = variance in x' ( i.e., a measure of the 

Gaussian profile's spread in the x dimension- 

symmetrically on either side of the peak - at a 

fixed time)  [L2].  

2
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In other words if we measure the spread (standard 

deviation) of the response curve (of a spike input) 

we should be able to compute the dispersion 

coefficient for the reactor.  

 

By anaolgy to the C(x’,t) expression: 



There are several ways to measure the response of 

a reactor to a spike input.  The first is a synoptic 

measurement and the second is single point 

sampling.  

 



Synoptic measurements. These measurements 

are taken from the perspective of ―snapshots‖ of 

concentration vs. position (each snapshot at a 

different time), the pulse moves in the direction of 

advective flow (u), as a symmetrical Gaussian 

function, spreading ever wider with each 

successive snapshot.   If we were to measure the 

variance with respect to x´ in any fixed-time 

snapshot, we could estimate the applicable 

dispersion coefficient, Dd, via: 
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Such measurements taken at fixed times are 

called synoptic.  In practice, they are difficult 

to make. They require coordination, as well as 

access to multiple sampling locations.  The 

latter requirement is particularly difficult in 

many reactors.  
 



Single-point sampling.  A more convenient option 

is to monitor the concentration vs. time at a fixed 

position along the x axis of the reactor — usually 

at the effluent end.  Then x is no longer a variable 

and C(x,t) becomes  C(t) only.   In general, 

however, the resulting C vs. t data will not be 

symmetrical about the peak concentration value.   



If dispersion is significant, our curve (which 

appears Gaussian if examined vs. x´ at any 

constant time) will have ―spread and slumped‖ 

significantly in the time it takes to pass the 

monitoring point.  This makes the leading edge of 

the concentration profile appear steeper, sharper 

than the trailing edge.  
 



For example look at the single point sampling 

results for two different diffusion coefficients.  

First, a relatively low diffusion coefficient  

(high Pe): 
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Then for a relatively high diffusion 

coefficient (low Pe): 
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If the dispersion coefficient is relatively small, 

the symmetry of the response curve is not upset 

at the sampling point. However, if we have high 

dispersion the curve "spread" changes 

dramatically during the sampling period and we 

get a skewed response curve.   The variance in 

the data may still be defined as follows — in this 

case, it is 2
t, the variance in time from the mean 

hydraulic retention time,    . t
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For discrete data points: 
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Detention Time Determination for Real Reactors: 

 

Given the possible skewness of the C vs. t  profile 

for single point sampling, the mean predicted 

retention time,   ,  will, in general, be greater 

than the time at which the peak concentration passes 

the monitoring point, q = V/Q  (i.e., reactor volume 

divided by flowrate, or reactor length divided by 

advective velocity).   

t



   

        is predicted by : 
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Integration of this expression is difficult but a 

numerical technique can be used to show the 

effect of Pe on the ratio of     to q.  
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The reason for ratio values greater than unity is the 

nature of an open system.  An open system will 

allow material to diffuse upstream from the reactor 

inlet boundary.  This effectively increases the 

material residence time within the prescribed 

boundaries of the reactor.  

To estimate the reactor residence time using time 

of peak tracer concentration at the effluent 

sampling site only works with low dispersion for 

open or closed systems. As dispersion increases an 

adjustment must be made.   



For open systems the magnitude of this 

adjustment can be determined by differentiating 

the C(t) expression with respect to t and setting 

the result equal to zero to find the time of 

maximum concentration, tpeak.  The result of this 

is: 
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As Pe  becomes large (low dispersion)  the time 

to peak approaches q.  The plot below 

demonstrates this. 
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For closed systems there is still a shift in observed 

peak concentration time relative to q as dispersion 

increases.  However, since there is no analytical 

solution to the closed system problem we can't easily 

differentiate the response curve. Qualitatively the shift 

is greater than the open system shift. For example, for 

Pe = 5 the open system shift is 0.82 (the peak is 

observed at 0.82 of q) while the closed system shift 

(calculated numerically) is 0.65 (the peak is observed 

at 0.65 of q). For Pe = 40 the shifts are closer; 0.92 for 

the closed system and 0.975 for the open system. 



Note that for synoptic sampling there is no skewness 

to the C(t) curve and hence no corrections are needed. 

Since real reactors lie somewhere between "open" and 

"closed" estimation of true residence time can be 

difficult. The best estimation of true residence time 

comes from analysis of tracer data using.   

 

 

 

 

This equation will give good estimates of "effective" 

residence time for both open and closed systems.  
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Estimation of Dd using  variance of  C(t) 

 

In synoptic monitoring, x´
2 can be used to 

estimate Dd in a rather direct manner, as earlier 

presented.  In analogous fashion, t
2 can be used, 

from single-point monitoring, to estimate Dd; 

however, response curve skewness makes the 

symmetrical normal distribution curve 

inappropriate and a new relationship between  the 

variance and the dispersion coefficient (or Pe) has 

to be determined.  Boundary conditions (where and 

how the dye is injected and sampled) affect the 

dispersion (or at least the determination of it).   



To determine t
2  (variance for a single point 

sampling)  use:   

 

 

 

with 

 

 

 

and  
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Again the integration of C(t) is difficult and 

requires a Gamma function to solve. The result 

of these computations is a relationship between 

Pe and t
2  given by: 
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For a closed system the C(t) response curve and 

the  calculations are done numerically to give: 
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Note that the units of t  are time. 



The estimation of true q is sometimes 

problematic because estimating the effective 

volume is difficult because of possible short-

circuiting.  One method to detect short-circuiting 

is to check that: 

 

 

 

i.e., you should be able to account for all the 

mass added as a spike.  If measured mass in the 

effluent is less than M added there is probably 

some short-circuiting.  
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Most real reactors are of the arbitrary flow (i.e., 

FD), and the above analysis is appropriate.  In 

some cases a reactor will approach the extremes in 

Pe  where Pe approaches zero (CMF) or infinity 

(PF). In both these cases, analysis of the reactors 

is much easier than for a FD reactor.  So, when 

possible, we try to approximate reactors by the 

CMF or PF  type. 



Plug  Flow and Complete Mix Reactors 

 

Using the advective diffusion equation to model 

and characterize transport in these reactors  (which 

recall are only limiting cases) is difficult because 

Dd is either infinite or zero.  Rather than try to 

solve the advection-diffusion equation for a 

variety of boundary conditions a more convenient 

(and easier) method is to perform mass balances 

about the reactor. 



For the  CMF reactor: 

 

Perform a mass balance on a conservative 

substance: 
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This differential equation can be solved for a 

variety of  system inputs.   For example,  consider  

an impulse (spike input) loading.   A mass M is 

discharged instantly into the reactor at t = 0 so that 

the initial concentration in the reactor is C0 = M/V. 

The solution to the differential equation with C = C0  

at t = 0 as initial conditions is: 
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Since: 

 

 

 

 

 

 

We can easily show  that:    

 

 

  

i.e., the  measured hydraulic residence time should 

equal the theoretical detention time. 
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Another common initial condition, a step input, 

can be defined where: 

Cin = 0  for t< 0 

 

Cin = C0  for  t 0

The solution to the governing differential equation 

for the CMF for this step input is given by: 
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Plug Flow Reactors: 

Plug Flow regimes are impossible to attain in 

practice because mass transport must be by 

advection alone. (There can be no differential 

displacement of material relative to the average 

advective velocity).  This type of flow is often 

referred to as ―piston-type flow‖.  In practice some 

mixing will always occur because molecular 

diffusion, turbulent diffusion and fluid shear 

always exist in flowing systems.  For the case of a 

plug-flow reactor, the advective diffusion equation 

reduces to:  



C C
u

t x

 


 

The velocity, u, serves to relate the directional 

concentration gradient into a temporal 

concentration  gradient.  In other words, a 

conservative substance moves with the advective 

flow of the fluid.  The solution to the differential 

equation for a pulse input and for a step input are 

shown graphically in the following figure. 





Reactor Transport and Reactions. 

Most of the situations that we encounter in process 

engineering involve reactions (biological, chemical 

or physical).   In many cases the reaction rate is 

either first order or can be linearized as a first order 

reaction.  

This means: 

C
kC

t rxn

 
 

 



If the reaction term is linear it can be added to the 

advection-diffusion equation by the principle of 

superposition.  The result is: 

2C C C
u D Rd 2t x x

  
  

  

where R is a  first order decay reaction. 



Application to reactors 

 

First consider the PDF reactor.   The governing 

equation is again the advective-diffusion 

equation: 

2C C C
D u kCd 2t xx

  
  

 



The steady-state  (dC/dt =0) solution of this 

equation for a steady input of C = C0 for t > 0 for 

reactor of length L is given by the Werner -

Wilhelm equation: 

1
4 a exp

C 2dout
a aC 2 20 (1 a) exp (1 a) exp

2d 2 d

 
   

 
   

     
   

a 1 4 k t d    

D1 dd
Pe L u

 


(t = L/u = q for the  the effluent 

end of the reactor.) 



CMF Reactors: 

As before the advective diffusion equation is not 

very useful for CMF or PF reactors.   For the 

case of CMF reactor the mass balance approach 

can be used. If we apply a first order reaction in a 

CMF reactor the governing equation (derived 

from a mass balance) is: 

dC
VkC Q C Q C Vin

dt
     



The solution to this differential equation for the 

initial condition that C = Cinitial  at  t = 0 in the tank 

and C = C0  for the continuous inflow concentration 

(which is maintained for t >0) is given by: 

1 1
t k t kQ C0C 1 e C einit

1
V k

    
        

q q      
    q 



Most of our process design and analysis is for 

steady-state where there is no net accumulation 

(or depletion) of mass in the reactor. In other 

words: 

dC
0

dt


Therefore at steady-state: 

Q(C C) V k C 00     



C k C
1

C C0 0

q 
 

C 1

C 1 k0


 q

or: 

or: 

(this result can also be attained by allowing   

in the non-steady-state equation shown above). 

t



PF Reactor: 

Since dispersion is zero in a plug flow reactor we 

can write:  

C C

t x
 u kC   

 
  

 

The steady-state  governing equation (      ) is given by:  C
0

t






C
u kC

x








u C
x

k C


  

or: 

For a continuous flow input with concentration 

Cin = C0   and C = 0 in the reactor for  t < 0 

(although this doesn’t matter at steady-state) 

and for reactor length L and C = Cout  at x = L 

we can write:  

C Loutu C
x

k C
C 00


   



Integration yields: 

u Coutln L
k C0

  
  

  

 
C L kout exp exp k
C u0

  
  q 

 



In  a similar manner C at any other point along 

the reactor axis can be found by: 

C x kx exp
C u0

  
  

 



Note that this solution also works for a pulse input 

discharged at x = 0, t = 0  at C = C0 because the pulse 

input is just a snapshot of a segment of the continuous 

input solution. 

Note for a pulse input inflow is always continuous, but 

the concentration of material in the inflow is not. The 

input pulse moves with the flow of at velocity u.  

Location of the pulse at any time is thus found by x = 

(u)(t).  At that time and location Cx is given by the 

above equation. At all other values for x in the reactor 

C = 0.   

  


