Root Cause Analysis (RCA)

An essential element of Asset Integrity Management and Reliability Centered Maintenance Procedures

Dr Jens P. Tronskar

Definition of Root Cause Analysis (RCA)

Root Cause Analysis (RCA) is a structured process that uncovers the physical, human, and latent causes of any undesirable event in the workplace.

Can be;

- Single or multidiscipline cases
- Small or large cases

Some other definitions

Failure Cause -

- processes, design defects, quality defects, part misapplication, or other processes that are the basic reason for failure or that initiate the physical process by which deterioration proceeds to failure.
- The circumstances during design, manufacture, or operation that have led to a failure.

Failure Effect – The consequence(s) a failure mode has on the operation, function, or status of an item.

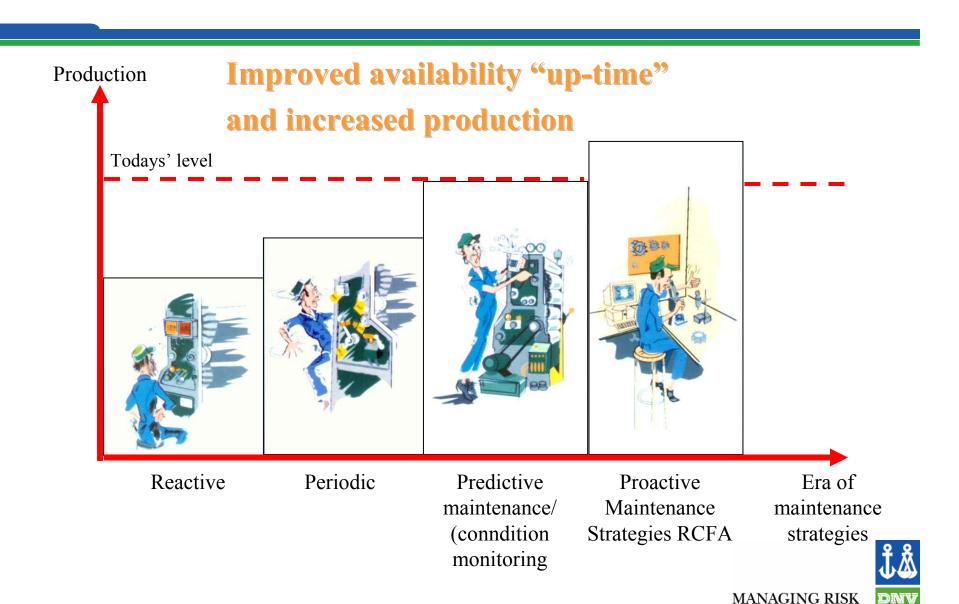
Failure – The termination of its ability to perform a required function

Failure Mode – The effect by which a failure is observed on the failed item

Root Cause (RCA)

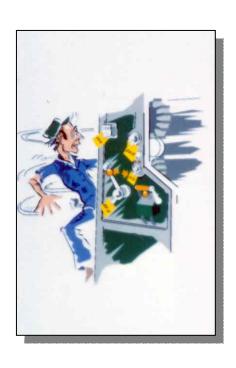
- Indispensible component of proactive and reliability centred maintenance
- Uses advanced investigative techniques
- Apply correctives
- Eliminates early life failures
- Extends equipment lifetime
- Minimizes maintenance

Traditional maintenance strategies tend to neglect something important:

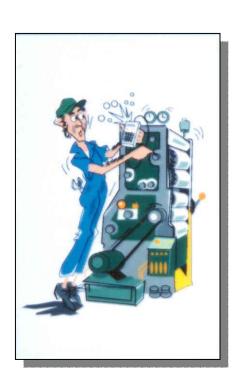

Identification and correction of the underlying problem.

A Root Cause Analysis will disclose:

- Why the incident, failure or breakdown occurred
- How future failures can be eliminated by:
 - changes to procedures
 - changes to operation
 - training of staff
 - design modifications
 - verification that new or rebuilt equipment is free of defects which may shorten life
 - repair and reinstallation is performed to acceptance standards
 - identification of any factors adversely affecting service life and implementation of mitigating actions

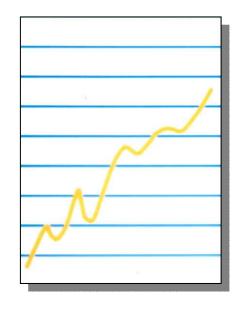


Reactive maintenance


- Run the equipment until breakdown
- Overhaul and repair
- Extensive unplanned downtime and recurrent repair

Periodic maintenance

- Scheduled calendar or interval-based maintenance
- Expensive components exchanged even without signs of wear or degradation
- Unexpected failures with incorrect schedules and component change-out


Predictive maintenance by condition monitoring

- Apply technologies to measure the condition of machines
- Predict when corrective action should be performed before extensive damage to the machinery occurs

Short and long-term benefits of Proactive Maintenance Strategies involving RCFA:

Optimization of service conditions:

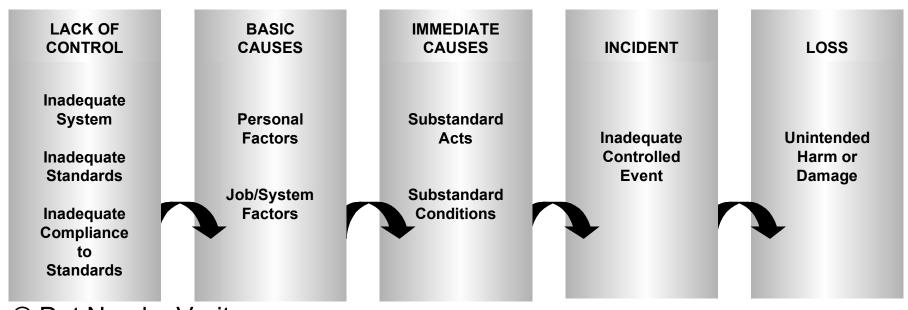
- Increased production
- Reduced downtime
- Reduced cost of maintenance
- Increased safety

Experience and statistical data

MMS DATABASE

- Information on equipment design and service conditions
- Failure statistics i.e. MTBF
- Description of service failures, approach and methods for failure investigation
- Consequences of failure:
 - Downtime/pollution and spillage/secondary damages
- Causes of failures
- Recommendations and remedial actions

Methods and analytical tools to identify the causes of failure or breakdown


- Review background data
- Loss Causation Model and RCA methods and working process

Detailed analyses of failed parts/components:

- Analyse service conditions
- Utilise experience data from data bases or other sources
- Laboratory investigation

The Loss Causation Model

© Det Norske Veritas

The main causes...

Something
Is <u>done</u> wrong
or <u>gone</u> wrong

A failure

Here the losses occur

Data Collection

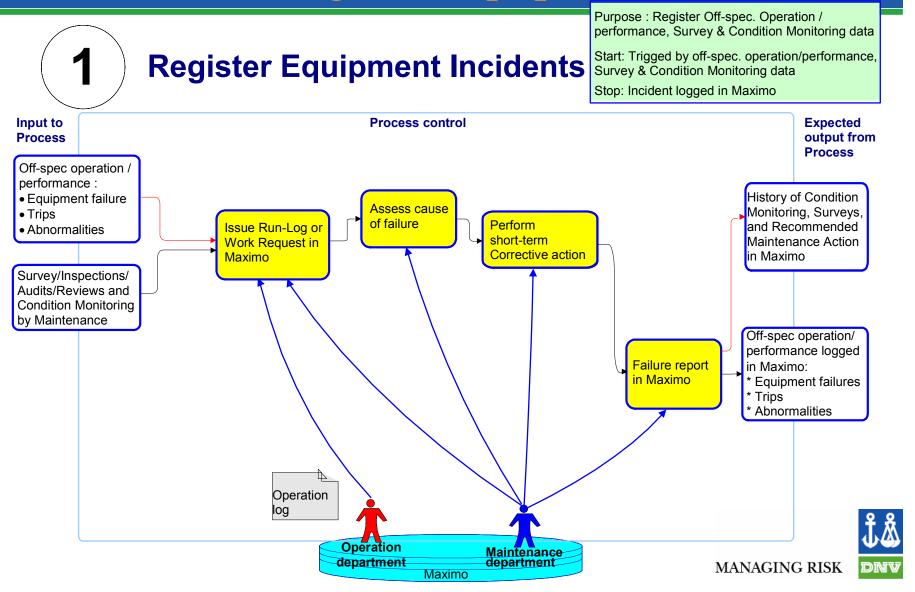
- •Interviews
- Documents (paper) evidence
- Parts/component evidence

Interviewing Considerations

- Where to interview
- Who to interview
- Condition of people at the scene
- How to handle multiple witnesses
- How to handle after the incident
- How to work with teams

Investigation techniques

- A number of named techniques that are commonly used within RCA:
 - Step-method
 - FMEA
 - Bow-tie
 - Event Tree
 - Failure Tree
 - Interview
 - Fish Bone
 - Why-Why
- The techniques have strength and weaknesses depending on the situation.



Methods for RCA; Content

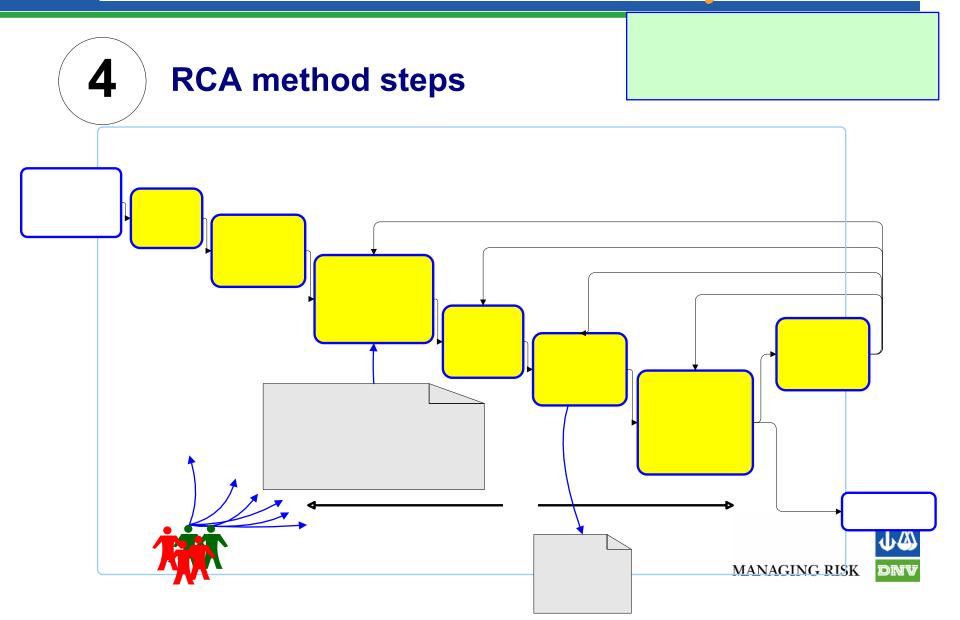
- Data Collection
 - Interviews
 - Paper and technical evidence
- Methods for RCA
 - STEP
 - FMEA
 - FTA

STEP 1: Register Equipment Incidents

STEP 2: Trigger Mechanism for RCA

Purpose: Evaluate need for RCA Start: Registered HSE issues or off-spec operation/ performance incidents Trigger mechanism for RCA Stop: Start RCA **Expected** Input to output Process control process from process Incidents above trigger level Off-spec operation/ Single operation Single incidents **RAM** incidents with production performance: with high loss/repair cost > X Equipment production loss or failures repair cost Off-spec operation vis-à-Prepare Trips vis (KPI) Recommended monthly report Abnormalities **RCA Case** per site Multiple operating incidents per Tag no./ Do Preliminary Equipment type LCC: Actual Loss/ Cost vs Investment Prepare High risk findings from (Replacement) quarterly report survey/CM for HQ Surveys, Audits, Inspection, Reviews Incidents below trigger level, and Condition and mitigation not cost No Action monitoring by effective Maintenance MANAGING RISK **HQ Senior** Plant Reliability Engineer/ Reliability Engineer Reliability Engineer Senior Planning Engineer (Plant/HQ)

Resources


STEP 3: Appoint the RCA Team

- Minor RCAs:
 - Run within a department, using the procedure
- Larger RCAs:
 - Leader appointed by the Plant manager
 - Facilitator reliability engineer.
 - Discipline(s) or specialists at specific plant
- Optional to involve:
 - Disciplines from other sister plants
 - HQ-Engineering support and technical staff
 - Vendor
 - Failure laboratories
 - Other 3rd parties
 - Specialist

STEP 4: The Root Cause Analysis

The main RCA report

1 Description of the Incident(s)

An incident is the event that precedes the loss or potential loss. This section should include a description of what happened. Include all aspects related to the incidents, like outage time, cost of repair, people involved, tools in use, operational status, weather conditions etc.

2 Immediate Cause(s)

The immediate causes of an incident are the circumstances that immediately preceded the contact and can usually be seen or sensed. For example if the incident is an oil spill, the immediate cause could be a broken sealing. The Immediate Causes often are the same as the failure codes registered in Maximo.

3 Basic Cause(s)

Basic Causes are the real causes behind the immediate causes: the reasons why the substandard acts and conditions occurred, the factors that, when identified, permit meaningful management control. In case of an oil spill caused by a broken sealing, the Basic Causes could be that the sealing used was of wrong type, it had a design failure or it might be installed wrong.

4 Lack of Control

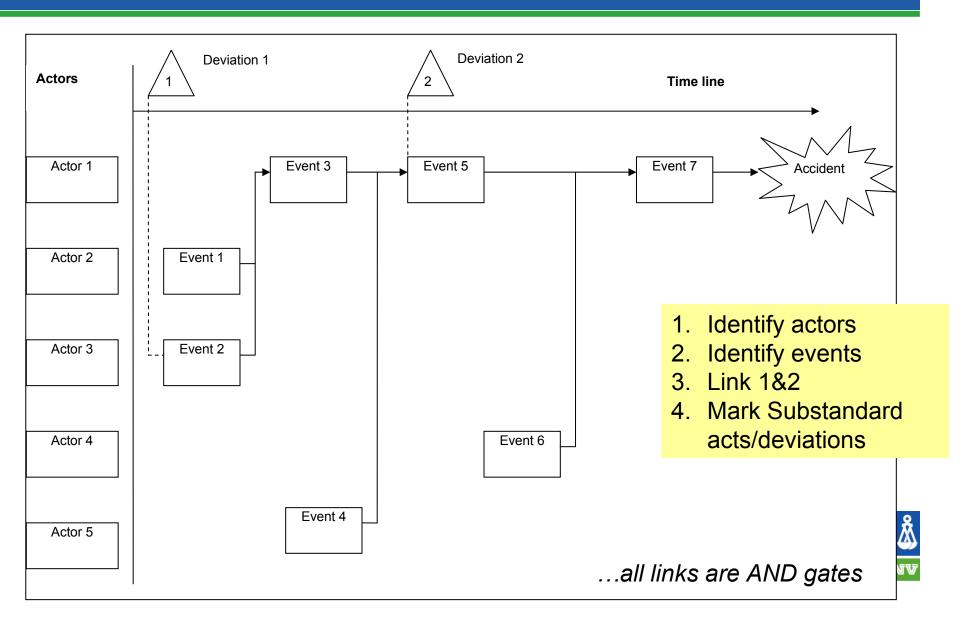
Lack of Control means insufficient oversight of the activities from design to planning and operation. Control is achieved through standards and procedures for operation, maintenance and acquisition, and follow-up of these. If an oil spill has occurred because of wrong installation of a sealing, the Lack of Control could be related to inadequate procedures for checking after maintenance.

RO	CA TEMPLATE	STUDY:						
TIT	LE: Root Cause Reporting Form RCA	#:	☐ Pending	우 옳				
	Incident Date: System	n/Component/Tag:		₩				
			MANAGING RISK	DNV				
Loss / Incident	Loss: Description of the Incident LOSS/	/Incident			89	Unintended Harmor	Dermage	
	Failure Code from Maximo Group: Failure Class:							
	Risk Assessment Matrix – RAM Potential Consequence (1-5) Assets:	Production Los	s:		INCIDENT	Inadequate Controlled	Event .	
Immediate Cause	7. Modification of equipment 8. Deterioration / Corrosion	13. Violation of 15. Ineffective	nce n of equipment outside design se of equipment of procedures		IMEDATE	Substandard Ads	Substandard Conditions	
ause	Personal Factors(B): 1. Inadequate knowledge of the working process 2. Inadequate Competence	☐ 10. Inadequat	o the work (B) te management and control of allure (or lack of design)	work	BASIC	Personal Factors	do/System Factors	
Basic Cause	3. Motivation 4. Physical and psychological load during work Sub Category:	12. Purchasin 13. Maintenar 14. Ageing / C	ng nœ					
ack of Control	Lack of Control (C): 1. Inadequate Management System 2. Inadequate system standards 3. Inadequate compliance with routines	4. Inadequate I	Maintenance Procedures Operational Procedures Design Procedures		MANA	GING F	RISK	ĴÅ DNV

RCA reporting system

RC	A TEMPLATE	STATUS OF THE STUD' ☐ In-progress ☐ Completed ☐ Pending			
ITL	E: Root Cause Reporting Form RCA#:				
	Incident Date: System/C	Component/Tag:			
	Loss: Description of the Incident				
	Failure Code from Maximo Group: Failure Class:	Problem Code: Cause Code:			
	Risk Assessment Matrix – RAM Potential Consequence (1-5) Assets:	Production Loss:			
	Sub-Standard Condition (A): 1. DetectE quipment & Tools 2. Working Environment 3. External Weather 4. Control / Operation 5. Production Profile 6. Mobilization of equipment 7. Modification of equipment 8. Deterioration / Corrosion	Sub-Standard Acts (A): 10. Maintenance 11. Operation of equipment outside design boundaries 12. Wrong use of equipment 13. Violation of procedures 14. Process Control 15. Ineffectiveness / Inadequate protection			
	Sub Category:	Sub Category:			
	Personal Factors(B): 1. Inadequate knowledge of the working process 2. Inadequate Competence 3. Motivation 4. Physical and psychological load during work	Causes related to the work (B) 10. Inadequate management and control of work 11. Design Failure (or lack of design) 12. Purchasing 13. Maintenance 14. Ageing / Obsolescence			
	Sub Category:	Sub Category:			
	Lack of Control (C): 1. Inadequate Management System 2. Inadequate system standards 3. Inadequate compliance with routines	4. Inadequate Maintenance Procedures 5. Inadequate Operational Procedures 6. Inadequate Design Procedures			

	IMMEDIATE CAUSES			BASIC CAUSES					
A	A Substandard conditions		В	Personal Fact	is .				
Al	Defect	A1.1: Defect fabrication or use of the equipment for this service			B1.1: Lack of experience				
AI	equipment and tools:	A1.2: Defect material used in tool and equipment	B1	Inadequate knowledge of the working process	B1.2: Lack of information				
		A1.3: Equipment failure during operation			B1.3: Lack of training for new employee				
П	Working environment	A2.1: Excessive noise level			B1.4: Lack of training related to modification/change in process conditions				
A2		A2.2: Too little space to do work			B1.5: Misunderstanding				
AZ.		A2.3: Fire and explosion risk in the area	B2	Inadequate competence	B2.1: Lack of basic training				
		A2.4: Bad general household			B2.2: Long period between each time the knowledge is used/required				
A3	External weather	A3.1: Failure caused by bad weather conditions			B2.3: Lack of instruction/Missing instruction				
	Control/ operation	A4.1: Wrong set point (pressure, temperature, vibration,)	В3	Motivation	B3.1: Lack of feedback (positive/negative) for conducted work				
A4		A4.2: Lack of instrumentation			B3.2: Lack of feedback related to quality when that is required				
		A4.3: Lack of logic in the instrument function			B3.3: Lack of follow-up during work execution				
		A4.4: Defect controller devices			B3.4: General frustration of working conditions				
A5	Production profiles	A5.1: Chang in production not communicated in the organisation		Physical and	B4.1: Stress due to psychological pressure				
A6	Change of operation conditions	A6.1: Change in operation conditions not verified	B4	logical load during work	B4.2: High physical demand				
A7	Modification of equipment	A7.1: Modification of equipment not verified against the system.	Causes related to the work						
A8	Deterioration / Corrosion	A8.1: Deterioration of the equipment due to corrosion, erosion, fatigue			B10.1: Unclear communication lines				
	Substandard	acts	1	į.	B10.2: Unclear guidance for responsibility				
	Maintenance	A 10.1: Cleaning, lubrication, adjustment or replacement of components during operation	B10	Inadequate management and control of work	B10.3: Unclear goals for executed work				
A10		A10.2: Welding and hot work without proper preparation			B 10.4: Lack of instructions, proceduses, reference documentation				
		A 10.3: Defect initiated by maintenance or inspection			B10.5: Lack of identification/focus on possible loses/damages				
		A 10.3: Wrong replacement kit installed.	1		B10.6: Managers lack knowledge about execution of work				
	Operation of equipment outside design boundaries	All.1: Operation outside rated capacity			B10.7: Unqualified personnel used for the work				
785		A11.2: Operated outside pressure limits			B10.8: Lack of overall goals for the work				
All		A11.3: Operation outside temperature limits			B 10.9: Lack of experience feedback				
	Wrong use of equipment	A12.1: Operation with defect equipment	B11	Design failure (or lack of design)	B11.1: Missing/not complete design requirement and specification				
A12		A12.2: Equipment/tools used for a purpose not designed for			B11 2: Lack of operational response				
		A12.3: Equipment/tools overloaded during operation			B11.3: Lack of start-up procedures				
		A13.1: Operational procedures			B11.4: Change in design not verified against the rest of the process				
A13	Violation of Procedure	A13.2: Safety procedures			B12.1: Lack of needs analysis and specification of system/equipment requirement				
		A14.3: Procedures for maintenance			B12.2: Inadequate specification to vendor				
		A14.4: Work permit	B12	Purchasing	B12.3: Inadequate handling of equipment				
A14	control	A14.1: Defect/error in overall operation control initiated by operator			B12.4: Inadequate storage of equipment				
		A14.2:initiated automatically by system			B12.5: Inadequate transport of equipment				
A15	Ineffective/ Inadequate protection	A15.1: Ineffective/Inadequate protection system for the equipment/ system/machinery			B12.6: Inadequate quality control/testing of equipment				
			D10	Main	B13:1: Lack/not sufficient maintenance				
			B13	Maintenance	B13.2: Inadequate planning of maintenance				
			B14	Ageing/ Obsolescent	B14.1: Equipment in use is obsolescent				
_	_			-					


Methods for RCA

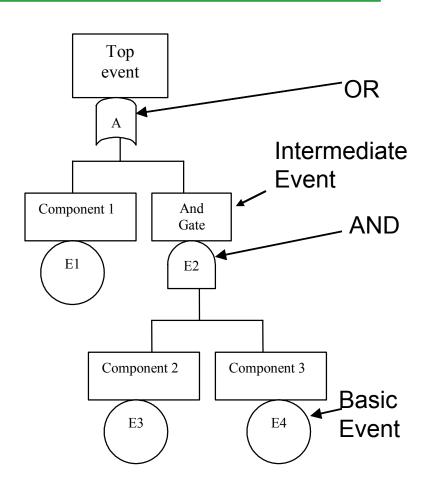
- STEP; Sequential Time Event Plotting
- FMEA; Failure Mode Effect Analysis
- FTA; Fault Tree

• + common sense, engineering/operational experience

STEP; Sequentially Time Event Plotting

FMEA; Failure Mode and Effect Analysis

Loss/Consequence:


Pump not started

Function/ Object	Failure Mode	Failure Cause	Consequence System/ Component	Detection	Likelihood (low – possible- high)	Comment
	Broken axel	Fatigue		None		
Pump	Impeller	Corrosion /Wear	Loss of Pressure	Pressure Indicator		
El. Motor	Winding			None		
Soft-starter	Fail to Operate	Unknown		None		
Switch	In off position			None		
Signal				Alarm		
Sensor	Fail to operate		Wrong signal to control unit	None		
High Temp. Protection	Fail to operate		No detection of failure and larger damage			የ &

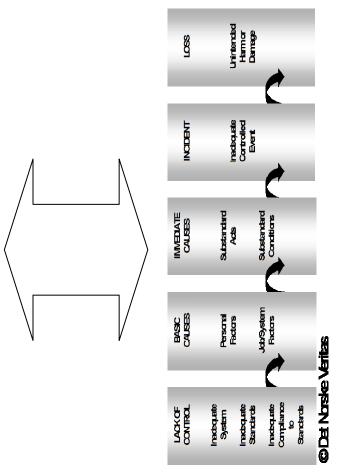
Fault Tree

What is a Fault Tree?

- Identifies causes for an assumed failure (top event)
- A logical structure linking causes and effects
- *Deductive* method
- Suitable for potential risks
- Suitable for failure events

Which one to use?

• STEP:


- For complex events with many actors
- When time sequence is important

• FMEA:

- Getting overview of all potential failure
- Easy to use

• FTA:

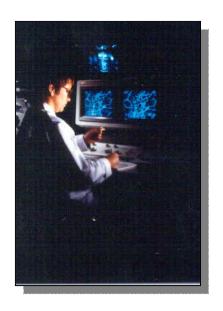
- Identifies structure between many different failure causes
- Non-homogenous case (different disciplines)

Detailed analyzes of failed parts/components

Typical examples of systems/equipment that can be analyzed:

- Electrical generators
- Heat exchangers
- Subsea equipment
- Valves
- Control systems
- Pumps

- Fire and gas-detectors
- Sensors and measuring devices
- Components of gasturbines
- Compressors
- Cranes and lifting equipment
- Well and down hole drilling equipment


Proactive maintenance through Root Cause Failure Analysis (RCFA)

Maintenance strategy based on systematic and detailed knowledge of the causes of failure and breakdown

- Systematic removal of failure sources
- Prevent repetitive problems
- Minimise maintenance down-time
- Extend equipment life

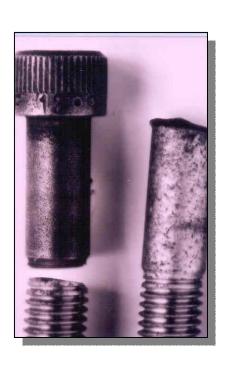
RCFA evaluates factors affecting service performance such as:

- Materials/corrosion/environment
- Changes in operational conditions
- Stresses and strains
- Presence of defects and their origin, nature and consequences
- Design
- Welding procedures and material weldability

The most common causes of service failures or breakdown:

- Poorly performed or inadequate maintenance
- Incorrect installation and bad workmanship
- Incorrect repair introducing new defects
- Poor quality manufacture leading to substandard components
- Poor design

Examples of problems disclosed by the laboratory investigation as part of the RCFA:


GEARS

- Incorrect material
- Incorrect heat treatment
- Incorrect design
- Incorrect assembly
- Corrosion
- Lubricating problems

- Vibration
- Incorrect surface treatment
- Geometric imperfections
- Incorrect operation
- Fatigue or overloading

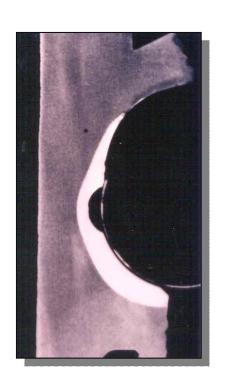
Examples of problems disclosed by the laboratory investigation as part of the RCFA:

BOLTS

- Indoor material
- Poor design
- Manufacturing defects
- Incorrect assembly
- Corrosion
- Vibration

- Poor or incorrect surface treatment
- Geometric imperfections
- Incorrect application
- Incorrect torque or overloading

Examples of problems disclosed by the laboratory investigation as part of the RCFA:


BALL-/ROLLER BEARING

- Poor design
- Manufacturing defects
- Poor alignment and balance
- Seal failure
- Electrical discharge (arcing)

- Overload
- Inadequate lubrication
- Vibration
- Contamination
- Fretting
- Corrosion

Root Cause Failure Analysis Disclosed Failure of:

MAIN BEARING

- Heavily worn raceway, cracking of casehardened surface, plastic deformation of sealing groove
- The main cause of failure was overloading of the bearing.

Actions/recommendation:

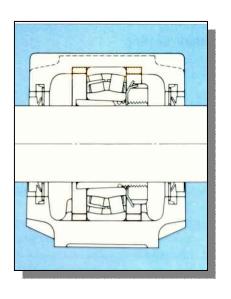
Reanalysis by FEM and redesign

Root Cause Failure Analysis Disclosed Failure of:

O-RING

- Four gas leaks on TLP platform equipment in HP & IP service
- Caused by explosive decompression (ED) of O-Ring
- Actions/recommendation:
 Change to another O-Ring type with other elastomer

Examples of problems disclosed by the laboratory investigation as part of the RCFA:

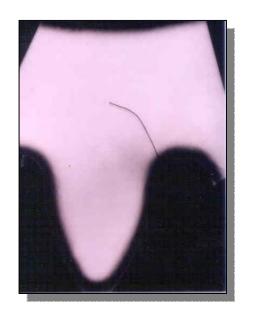

DRIVE SHAFTS

- Incorrect material quality
- Incorrect design
- Poor quality manufacture
- Geometric imperfections
- Incorrect operation

- Surface defects
- Corrosion
- Incorrect balance and alignment
- Incorrect assembly
- Fatigue or overloading

ROOT CAUSE FAILURE ANALYSIS DISCLOSED:

Bearing Breakdown

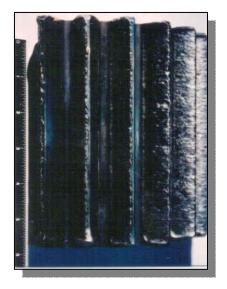

- Axial overloading
- Thrust washers fitted in both bearing housings
- Incorrect assembly

Actions/recommendation:

Remove thrust washers from one bearing housings

ROOT CAUSE FAILURE ANALYSIS DISCLOSED:

Gear Breakdown


- Broken gear tooth. Fatigue initiated from quench cracks.
- Fabrication induced defects (Basis for discussion of liability and subsequent claims against manufacturer)

Actions/recommendation:

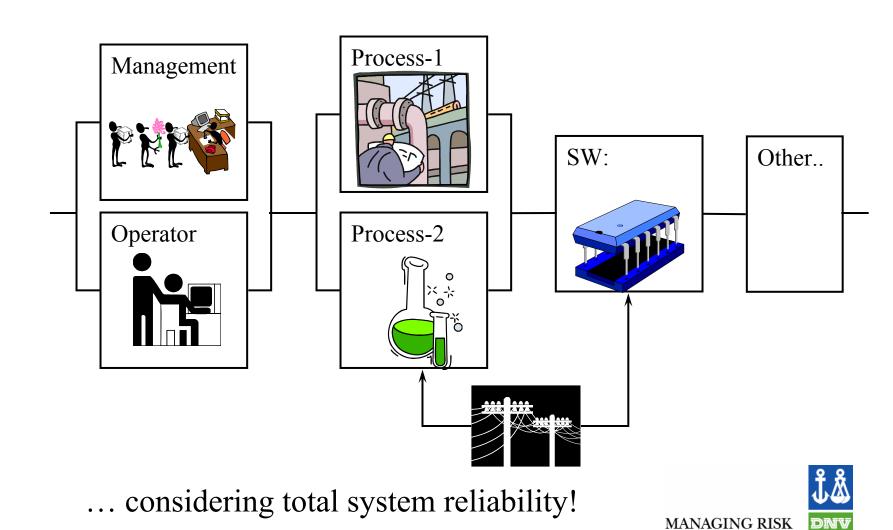
Fitting of new gears where heat treatment and case hardening procedure had been verified to be correct

ROOT CAUSE FAILURE ANALYSIS DISCLOSED:

Damaged pinion and gear wheel

- Severe surface deformation on one side of teeth
- No surface hardening
- Incorrect lubricationActions/recommendations:

Renew gear wheel and pinion with components that have been verified to have correct surface hardening. Change lubricant and revise lubrication procedure.


Typical components that can be analysed

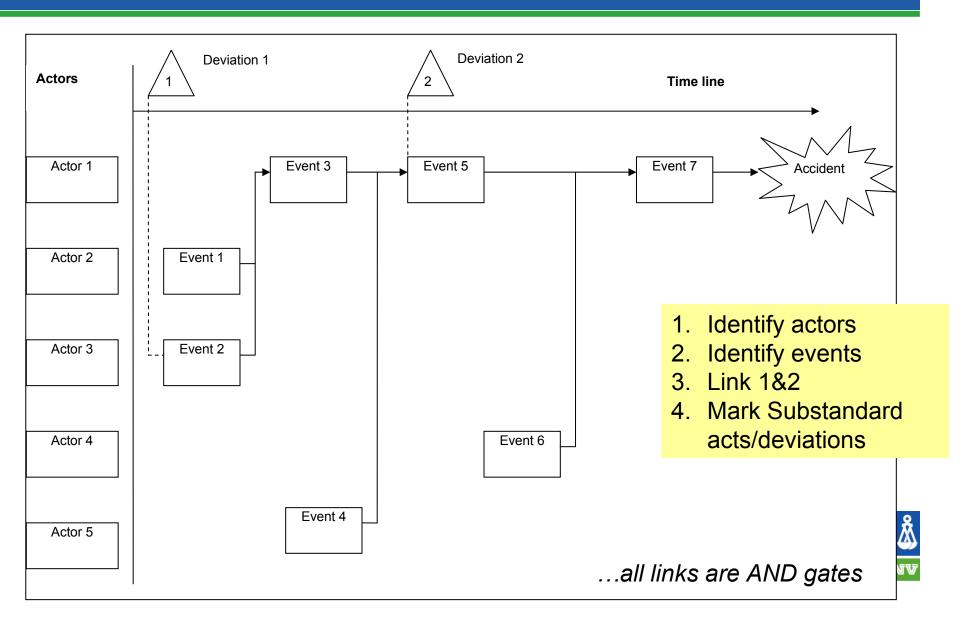
- Gears
- Bearings
- Bolted connections
- Shafts
- Impellers
- Pistons/cylinders

- Motor rotors/stators
- Pressurized components and pressure vessels
- Steel wire ropes
- Hydraulic components
- Welded joints

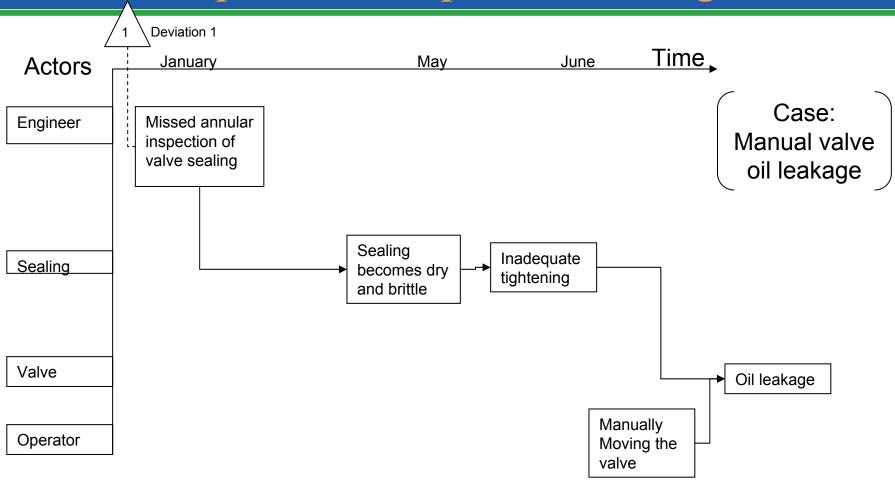
Reliability assessment

STEP

(Sequentially Time Event Plotting)


STEP Method

(Sequentially Time Event Plotting)

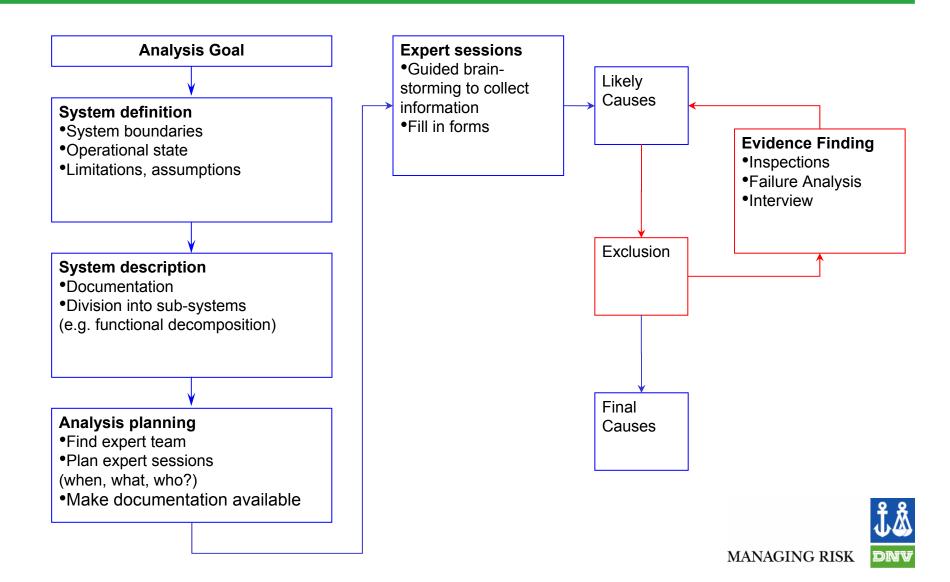

- Capturing of the sequential events leading up to an accident.
- Can be a simple timeline
- Investigation of larger incidents/accidents where the time sequence is important
- Handles complex events with:
 - several actors
 - several events in parallel
 - a longer time horizon
- Should include both equipment, control and human actions

STEP; Sequentially Time Event Plotting

Example of a simple STEP diagram

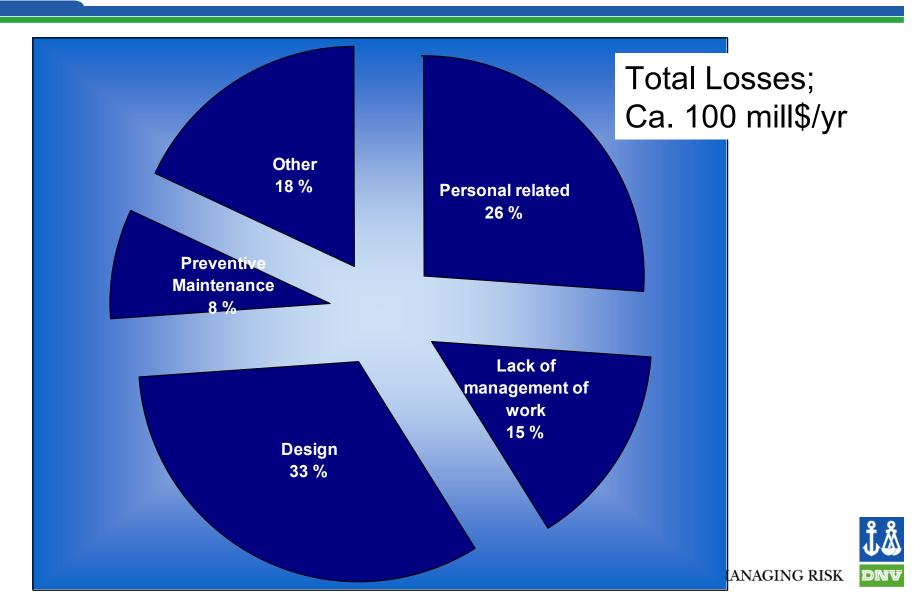
FMEA Failure Mode and Effect Analysis

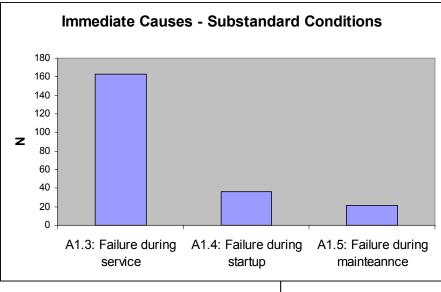
FMECA Failure Mode and Effect Criticality Analysis


FMEA (Cause-Consequence)

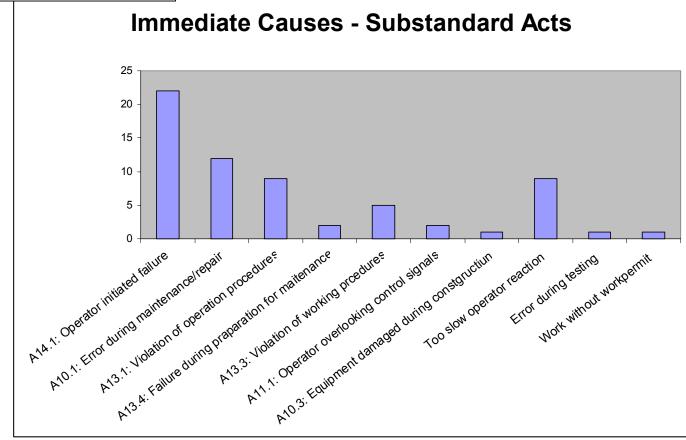
(Failure Mode and Effects Analysis)

- Overview of failure mode and effect for a complex machinery/operation
- Getting an overview of all potential failure causes and effects at an initial stage of an investigation
- Requires detailed knowledge of the problem in question
- Easy to use for both events and for potential losses where risk is included
- Not good at handling time series

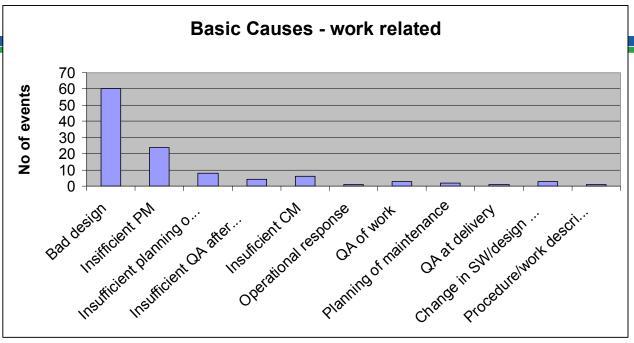

Technique/Working Process

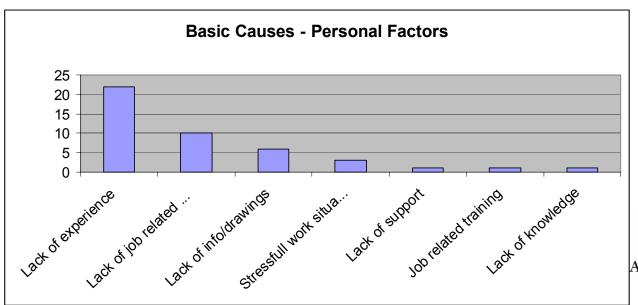


Cases/Examples



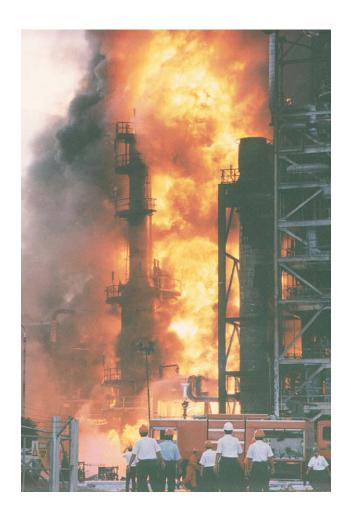
Offshore Gas production Statistics from 320 incidents/ "RCA" cases



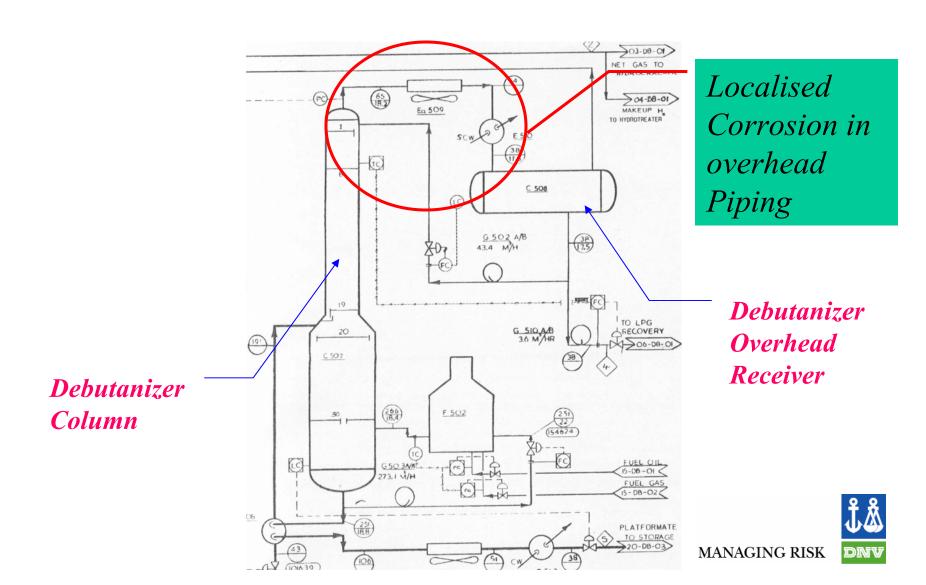


Immediate causes

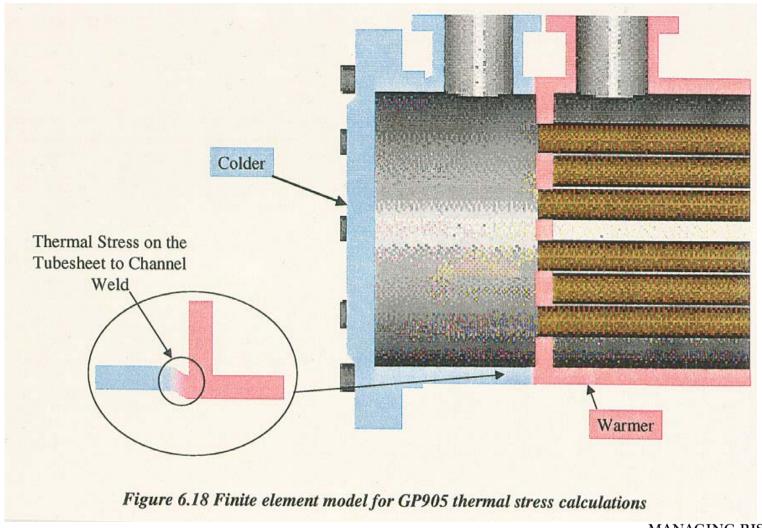
Basic Causes



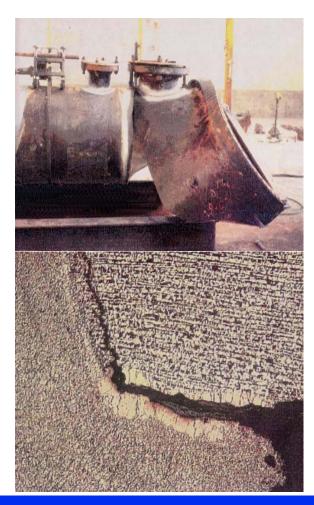
ANAGING RISK


Explosion and fire at refinery

Refinery Explosion & Fire



Longford Gasplant



Rich oil de-ethanizer reboiler

Root Cause Failure Analysis

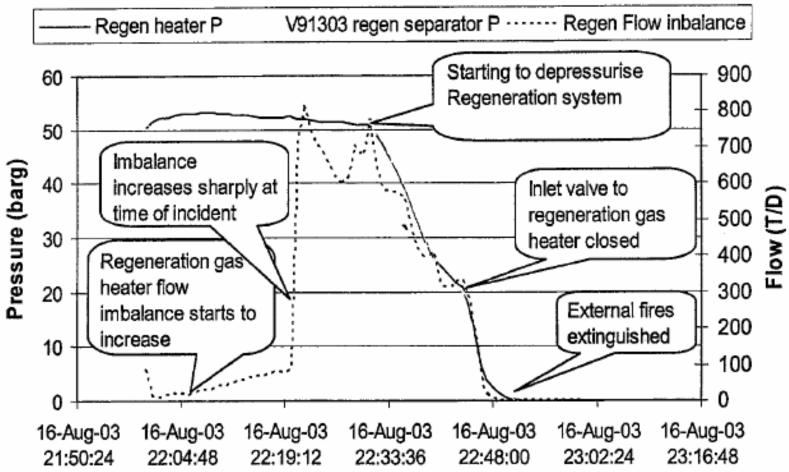
Damage mechanism: Brittle fracture

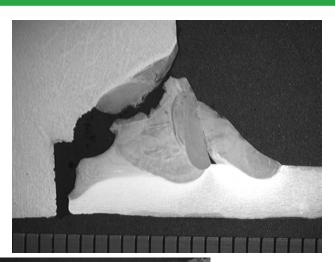
DISCLOSED:

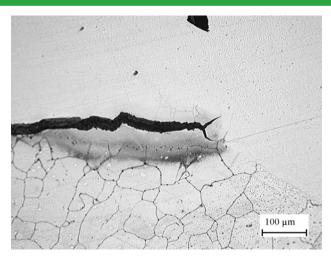
BRITTLE FRACTURE IN CHANNEL TO TUBESHEET WELD

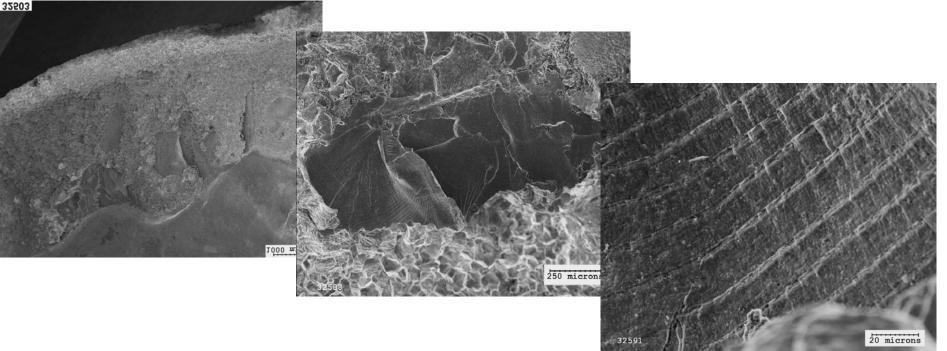
- Low temperature due to process upset
- caused brittle fracture initiation from root
- of weld containing lack of fusion defect
- Actions/recommendations:
- Reconstruct using low temperature steel
- grade, carry out proper UT. Modify operation
- procedure and controls to prevent
- future process upsets.

RCFA of LNG Plant Failure


RCFA of LNG Plant Failure




RCFA of WHRU



Metallurgical investigation

Findings

- Explosion caused by trip of turbine and leak from WHRU gas coil to header weld
- Following gas leak, auto-ignition of air/gas mixture occurred. The auto-ignition temperature was equal to the surface temperature of the equipment based on instrument readings
- Weld failure due to creep/fatigue and time dependent embrittlement of weld HAZ
- Damage was caused by air/gas mixture explosion equivalent to 68 kg TNT

Failure of 24" OD subsea clad pipeline

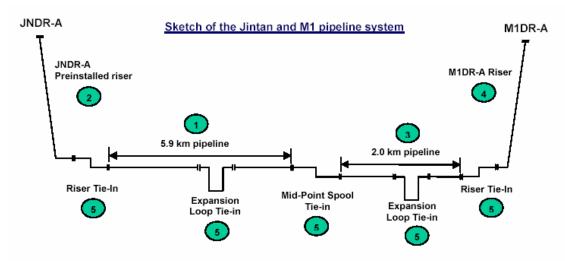
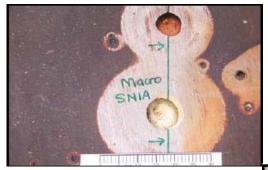
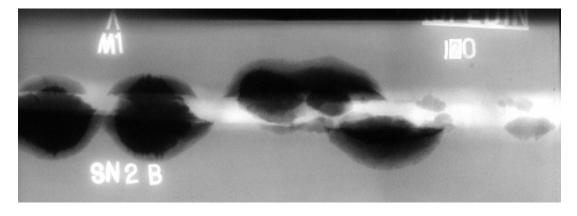
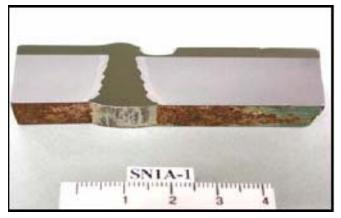



Figure 1: Schematic representation of the pipeline and riser system




Corrosion in 24" OD clad pipeline

