| TE | ECHNICAL AND TRADE INFORMATION  |                              |                                   |     |  |  |  |  |
|----|---------------------------------|------------------------------|-----------------------------------|-----|--|--|--|--|
|    | Technical and Trade Information |                              |                                   |     |  |  |  |  |
|    | 12.1                            | Terms & D                    | efinitions                        | 215 |  |  |  |  |
|    | 12.2                            | Basic type                   | 219                               |     |  |  |  |  |
|    | 12.3                            | Welding Positions & Symbols  |                                   |     |  |  |  |  |
|    | 12.4                            | Defects in welding           |                                   |     |  |  |  |  |
|    | 12.5                            | Distortion, causes & control |                                   |     |  |  |  |  |
|    | 12.6                            | Safety in V                  | Velding                           | 240 |  |  |  |  |
|    | 12.7                            | Consumab                     | les Classification Tables         | 244 |  |  |  |  |
|    | 12.8                            | Shielding                    | Gas Information                   | 259 |  |  |  |  |
|    | 12.9                            | Welding G                    | uide                              | 266 |  |  |  |  |
|    |                                 | 12.9.1                       | Welding of Steel                  | 266 |  |  |  |  |
|    |                                 | 12.9.2                       | Welding of Stainless Steel        | 290 |  |  |  |  |
|    |                                 | 12.9.3                       | Welding of Aluminium              | 300 |  |  |  |  |
|    |                                 | 12.9.4                       | Welding of Cast Iron              | 328 |  |  |  |  |
|    |                                 | 12.9.5                       | Welding of Copper & Copper Alloys | 337 |  |  |  |  |
|    |                                 | 12.9.6                       | Welding of Dissimilar Metals      | 348 |  |  |  |  |
|    | 12.10                           | Hardfacing                   | g Information                     | 350 |  |  |  |  |
|    | 12.11                           | Depositior                   | n Data                            | 372 |  |  |  |  |
|    | 12.12                           | Technical Facts & Figures    |                                   |     |  |  |  |  |

Notice about the Technical Information and Copyright in this section.

CIGWELD Pty. Ltd. A.B.N. 56 007 226 815 authorise the use of the following CIGWELD printed material to be used as an aid in educational training and teaching.

This authority recognises that this printed material may be reproduced by printing or other means, electronic or otherwise in whole or in part for educational purposes only.

When reproduced material is printed or copied in whole or in part CIGWELD require that the original document from which this material was reproduced to be named in credits or references.

Where material is reproduced in part every effort shall be made to ensure that the extract is not misleading and that all associated safety information is included.

CIGWELD does not authorise the reproduction of this material, electronic or otherwise, for sale or commercial use by competitors or other like companies.

The use of CIGWELD printed material, reproduced in print or other forms for commercial use, may be subject to the payment of a royalty.



### Email: cigweldsales@cigweld.com.au

# **EXPLANATION OF TERMS RELATING TO ...**

# MECHANICAL PROPERTIES OF WELD METAL

The mechanical properties of a metal describe its suitability for any given application and provide a performance forecast. Mechanical properties are of the utmost concern in welding consumable qualification since weld deposits must often provide service characteristics equal to or better than those of the base metal. The properties considered most often (and those that are frequently cited in Welding Consumable Specification requirements) are **Strength**, **Hardness**, **Ductility and Impact Resistance**.

### 1. Strength:

A metal's "strength" is its capacity to withstand external forces without breaking. In a tension test, under stretch loading, a specimen reveals several features - including elastic limit, elongation, yield point, yield strength, tensils terength and reduction in area. During the test, load is increased gradually and the specimen stretches in direct proportion to the load until it reaches its **Yield** Point. At any point up to the yield point, if the load is relaxed, the specimen will return to its original dimensions. Beyond the yield point, the specimen continues to elongate without an increase in load. An increase in load after the yield point brings the specimen to another critical point - **Tensile Strength**, or **Ultimate Tensile Strength** - at which the specimen breaks. Yield point and tensile strength values (in psi or MPa) are obtained by dividing the load at these points by the original cross-sectional area of the specimen.

### 2. Hardness:

A metal's hardness is its capacity to resist surface indentation by a contacting medium. Measuring the indent size of a hardened steel ball or a diamond upon the surface of a specimen assigns value to a metal's hardness. Indent size is translated to a hardness value. Typical units of measure being

Rockwell Hardness (HR<sub>A</sub>, HR<sub>B</sub> & HR<sub>C</sub> Scales), Vickers Hardness (HV<sub>20</sub> & HV<sub>30</sub> Scales) and Brinel Hardness.

### 3. Ductility:

Ductility is the characteristic of metal that allows it to withstand stretching and other deformation without breaking and to hold a new shape after external forces have been removed. Determined in a tensile test, **Percent of Elongation** is the measure of ductility. Gauge marks are made 50 mm (2 inches) apart, bounding the point at which fracture will occur, on a test specimen. The increase in gauge length, divided by the original length, x 100, equals the elongation percentage. Ductility can also be measured in a bend test.

### 4. Impact Resistance

This property is assessed in terms of **Impact Strength or Impact Toughness**, determined most often in a **Charpy Vee Notch (CVN) or Charpy Test**. The specimen, a beam with a notch at its centre ("V-notch" preparation is most common), is supported at both ends and struck with a pendulum on the side opposite the notch. Measuring the energy absorbed during the test, (weight of pendulum x height of pendulum upon release x height to which pendulum swings after striking specimen) gives an impact-strength value in **joules or foot-pounds**. Since steels often become more brittle (less able to absorb energy) at lower temperatures, impact tests are often carried out at a range of low temperatures.



# **TECHNICAL AND TRADE INFORMATION**

# TERMS AND DEFINITIONS IN WELDING

| A. | Arc Blow             | The deflection of an arc from its normal path<br>because of magnetic forces. Normally occurs on<br>DC current when welding carbon steel.                                                    |
|----|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Arc Voltage          | The voltage across the welding arc.                                                                                                                                                         |
|    | Arc Length           | The distance from the tip of the welding<br>electrode to the adjacent surface of the weld<br>pool. Also known as "Arc Gap".                                                                 |
|    | Arc Time             | The time during which an arc is maintained in making an arc weld.                                                                                                                           |
|    | As-welded            | Pertaining to the condition of weld metal,<br>welded joints and weldments after welding,<br>but prior to any subsequent thermal, mechanical<br>or chemical treatments.                      |
|    | Autogeneous Weld     | A fusion weld made without filler metal.                                                                                                                                                    |
| В. | Back bead            | A weld resulting from a back weld pass.<br>Also known as "Back Filling" or "Backing Pass"                                                                                                   |
|    | Backgouging          | The removal of weld metal and base metal<br>from the weld root side of a welded joint to<br>allow complete fusion and complete joint<br>penetration upon subsequent welding from that side. |
|    | Backing Strip        | A material (metal, carbon, ceramic etc.) for backing up a joint during welding to help obtain a sound weld.                                                                                 |
|    | Backing Ring         | As above, but in the form of a ring, generally used in pipe welding.                                                                                                                        |
|    | Backstep<br>Sequence | Weld passes are made in the opposite direction to the progress of welding.                                                                                                                  |
|    | A Base Metal         | The metal alloy that is being welded.<br>Also known as "Base Material" or Work Piece".                                                                                                      |
|    | A Bevel Angle        | The angle formed between the prepared edges of two plates.                                                                                                                                  |
|    | ▲ Build up           | Layers of weld metal deposited when surfacing<br>material to achieve a required dimension. Also<br>known as "Buttering" and "Cladding".                                                     |
|    | Buffer Layer         | Layers of weld metal on components which prevent<br>crack formation or dilution effects in subsequent weld<br>layers. See also "build up".                                                  |
| C. | Consumable insert    | Preplaced filler metal that is completely fused<br>into the root of a joint and becomes part of the<br>finished weld.                                                                       |



# TERMS AND DEFINITIONS IN WELDING CONT.

|    |         | Crater                                     | A depression at the termination of the weld bead.                                                                                                                                      |
|----|---------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D. | <b></b> | Deposition<br>Efficiency                   | The ratio of the weight of filler metal<br>deposited in the weld metal to the weight of<br>filler metal melted, expressed in percent.                                                  |
|    | <b></b> | Deposition<br>Rate                         | The weight of material deposited in a unit of time.                                                                                                                                    |
|    | <b></b> | Depth of<br>Fusion                         | Distance that fusion extends into the base metal from the surface being welded.                                                                                                        |
|    |         | Dilution                                   | A chemical composition change of the deposited weld metal due to admixture of the filler metal and base metal.                                                                         |
|    | <b></b> | Direct<br>Current<br>Electrode<br>Negative | The electrode lead and welding electrode are<br>connected to the negative pole on the welding<br>machine. Also known as DC - or DCEN and<br>DC straight polarity (Negative = 1/3 Heat) |
|    | <b></b> | Direct Current<br>Electrode<br>Positive    | The electrode lead and welding electrode are<br>connected to the positive pole on the welding<br>machine. Also known as DC+ or DCEP and<br>DC reverse polarity. (Positive = 2/3 Heat)  |
| E. |         | Edge<br>Preparation                        | The surface prepared on the edge of a joint for welding.                                                                                                                               |
|    | <b></b> | Electrode<br>Lead                          | Conductor between source of current and electrode holder.                                                                                                                              |
| F. | <b></b> | Flux                                       | Fusible material for removal of oxides impurities and to create gas for shielding and slag for shape and contour.                                                                      |
|    |         | Fusion                                     | The melting together of filler metal and base metal or a base metal only to produce a weld.                                                                                            |
| G. |         | Ground Lead                                | The electrical conductor between the arc<br>welding current source and work piece<br>connection. Also known as "Work Lead".                                                            |
| H. |         | Hardfacing                                 | The process of covering a surface with<br>wear-resistant metal by welding to reduce wear.                                                                                              |
|    |         | Heat affected<br>Zone                      | The region beneath or around the weld bead which<br>has not melted, but whose mechanical properties or<br>microstructure has been altered by the heat of welding.                      |
| l. | <b></b> | Infra-Red<br>Radiation                     | Electromagnetic energy with wavelengths from 770 to 12,000 nanometers.                                                                                                                 |
|    | <b></b> | Intermittent<br>Welding                    | Is welding wherein continuity is broken by<br>recurring unwelded spaces.                                                                                                               |



# **TECHNICAL AND TRADE INFORMATION**

# TERMS AND DEFINITIONS IN WELDING CONT.

|    | Interpass<br>Temperature                                          | In a multiple run weld, the lowest temperature<br>of deposited metal before the next pass is started.<br>Normally measured 25mm from the weld metal centre line. |
|----|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L. | Liquidus                                                          | The lowest temperature at which a metal or an<br>alloy is completely liquid.                                                                                     |
|    | Longitudinal Sequence                                             | The order in which weld passes of a continuous<br>weld are made along its length.                                                                                |
| М. | Melt-Through                                                      | Is the visible root re-inforcement obtained in a<br>one sided weld joint.                                                                                        |
| 0. | <ul> <li>Open Circuit</li> <li>Voltage</li> </ul>                 | The voltage between terminals of a power<br>source when no current is flowing.                                                                                   |
| Р. | A Parent Metal                                                    | Same as "Base Metal".                                                                                                                                            |
|    | A Peening                                                         | The mechanical working of metals by light hammering.                                                                                                             |
|    | Penetration                                                       | The depth a weld extends into a joint from the metal surface                                                                                                     |
|    | Post-heating                                                      | Application of heat to the weldment after welding is completed.                                                                                                  |
|    | Preheating                                                        | Application of heat to the base metal before welding commences.                                                                                                  |
|    | Procedure<br>Qualification                                        | To establish that welds made by a defined method can meet prescribed standards.                                                                                  |
| R. | Residual Stress                                                   | Stress that is present in a joint member or material that is free of external forces.                                                                            |
|    | A Root Bead                                                       | A weld which is part or all of the root joint.                                                                                                                   |
|    | Root Bend<br>Test                                                 | A test in which the root surface is bent around a specified radius.                                                                                              |
|    | Runoff /<br>Runon<br>Weld Tab                                     | Is additional plate that extends beyond the<br>end of the weld joint on which the weld<br>is finished or started. (Also known as an End Tab)                     |
| S. | Seal Weld                                                         | A weld made primarily to seal a joint for tightness against leakage.                                                                                             |
|    | <ul> <li>Short Arc<br/>(short circuiting)<br/>transfer</li> </ul> | Is metal transfer where molten metal from an<br>electrode is deposited during repeated short circuits.                                                           |
|    | ▲ Sidewall                                                        | The surface of a joint wall included inside the preparation of a butt weld.                                                                                      |
|    | Side Bend<br>Test                                                 | A test in which the side of a transverse section of<br>the weld is bent around a specified radius.                                                               |



## Email: cigweldsales@cigweld.com.au

# TERMS AND DEFINITIONS IN WELDING CONT.

| Slag Inclusion          | Non-metallic solid material trapped in weld<br>metal or between weld and base metal.                                                                                                                           |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Spatter                 | Metal particles expelled during welding which do not form part of the weld.                                                                                                                                    |
| Spray Transfer          | Metal transfer where molten metal from an electrode is propelled across the arc in small droplets.                                                                                                             |
| Stringer Bead           | A weld bead made without weaving.                                                                                                                                                                              |
| Suck-Back               | A concave root surface.                                                                                                                                                                                        |
| Tack Weld               | A small weld made to hold parts in proper<br>alignment until final welds are made.                                                                                                                             |
| Underbead<br>Crack      | A crack in the heat affected zone which may or may not extend to the surface of the base metal.                                                                                                                |
| Underfill               | A depression on the weld face dropping below the surface of the base metal.                                                                                                                                    |
| Vertical-down           | Welding in a downhill direction.                                                                                                                                                                               |
| Vertical-up             | Welding in an uphill direction.                                                                                                                                                                                |
| Weave Bead              | A weld bead made with slow oscillation motion<br>of the electrode, best limited in width to 2-3 times the<br>diameter of the electrode.                                                                        |
| Welder<br>Certification | Written verification that a welder has produced<br>welds meeting a prescribed standard of weld<br>performance.                                                                                                 |
| Welding Arc             | A controlled electrical discharge between the<br>electrode and the work piece that is formed and<br>sustained by the establishment of a gaseous<br>conductive medium, called an arc plasma.                    |
| Welding Procedure Qual  | ification Record (WPQR)<br>A record of welding variables used to produce an<br>acceptable test weld and the results of the tests<br>conducted on that weld which qualify a welding<br>procedure specification. |
| Welding Procedure Spec  | ification (WPS)<br>A document providing the detailed variables for<br>a specific welding application to ensure<br>reproduction by trained welders.                                                             |
| Work Lead               | The conductor between source of current and the work piece or work table.                                                                                                                                      |
| Work Piece              | The job, part or component being welded.                                                                                                                                                                       |



T.

U.

V.

W.

# BASIC TYPES OF WELDED JOINTS



Email: cigweldsales@cigweld.com.au

CIGWELD A THERMADYNE. Company

# BASIC TYPES OF WELDED JOINTS CONT.

# FILLET WELD DEFINITIONS:



### **BUTT WELD - PREPARATIONS:**





# BASIC TYPES OF WELDED JOINTS CONT.



**TECHNICAL AND TRADE INFORMATION** 

Email: cigweldsales@cigweld.com.au

# BASIC TYPES OF WELDED JOINTS CONT.

# **OTHER WELDS:**





PLUG WELDS

SLOT WELDS



### PLATE AND PIPE POSITIONS TO ISO AND AS/AWS STANDARDS:

- ISO STANDARD 6947
- AUSTRALIAN STANDARD AS 3545
  - AMERICAN WELDING SOCIETY AWS A3.0

# PLATE AND PIPE WELDING POSITIONS TO ISO:



# PLATE POSITIONS:

| WELD   | FLAT    | HORIZONTAL | VERTICAL      | OVERHEAD |
|--------|---------|------------|---------------|----------|
| BUTT   |         |            |               |          |
|        | 1G / PA | 2G / PC    | 3G / PF<br>9G | 4G / PE  |
| FILLET |         |            |               |          |
|        | 1F / PA | 2F / PB    | 3F / PF<br>PG | 4F/ PE   |





## PIPE POSITIONS - ROTATED OR ROLLED:



\* ONLY APPLIES TO AS 3545 and ISO 6947

### **PIPE POSITIONS - FIXED POSITION:**



\* NOTE: ONLY APPLIES TO AS 3545 and ISO 6947



# WELDING DIRECTIONS OR POSITIONS:



COMPARISON OF BASIC DRAWING (PRINTS) WELDING SYMBOLS:

(i) AS 1101.3 /AWS A2.4

AS 1101.3 BUTT WELD / AWS A2.4 GROOVE WELD

|                                     | BUTT WELD |      |  |               |           |           |                |  |  |
|-------------------------------------|-----------|------|--|---------------|-----------|-----------|----------------|--|--|
| SQUARE SCARF V BEVEL U J FLARE-V BE |           |      |  |               |           |           | FLARE<br>BEVEL |  |  |
| ll<br>rı                            | . <i></i> | <br> |  | <u>.</u><br>Ж | <u>к.</u> | אר.<br>שר |                |  |  |

### (ii) AS 1101.3

| FILLET | PLUG WELD | SPOT WELD<br>OR SEAM |                | BACKING<br>RUN OR |                     | FLANGE WELD |        |
|--------|-----------|----------------------|----------------|-------------------|---------------------|-------------|--------|
| WELD   | SLOT WELD | PROJECTION W         | WELD           | BACKING<br>WELD   | SURFACING           | EDGE        | CORNER |
|        |           | O                    | . <del>Q</del> | - 4 -             |                     | Л           | π      |
|        |           | ·.O                  | ·⊕·            | .م.               | $\overline{\Sigma}$ | -7.7        | יזיי   |
|        |           | <u>O.</u> .          | •              |                   |                     | 11          |        |



## Email: cigweldsales@cigweld.com.au

# COMPARISON OF BASIC DRAWING (PRINTS) WELDING SYMBOLS cont.:

AWS A2.4

|        | PLUG | CTUD  | SPOT OR    | CEAL4            | BACK OR |           | FLAN | GE     |
|--------|------|-------|------------|------------------|---------|-----------|------|--------|
| FILLET | SLOT | SIUD  | PROJECTION | SEAM             | BACKING | SURFACING | EDGE | CORNER |
|        |      |       | 0          | . <del>Q</del> . |         |           | Л    | П      |
|        | -11- | <br>Ø | ·-O        | ٠Ð٠              |         |           |      |        |
|        |      |       | O          | . <del>.Q</del>  |         |           | 11   | 11     |

AS 1101.3

| WELD          |           | Complete<br>Penetration<br>From one<br>Side | BACKING               | CONTOUR  |        |         |
|---------------|-----------|---------------------------------------------|-----------------------|----------|--------|---------|
| ALL<br>AROUND | SITE WELD |                                             | or spacer<br>Material | FLUSH    | CONVEX | CONCAVE |
| JO-           |           | ~                                           |                       | <u> </u> | ,<br>x | )       |

AWS A2.4

| WELD          |           | MEIT     | CONSUM.            | BACKING                  | CONTOUR          |        |         |
|---------------|-----------|----------|--------------------|--------------------------|------------------|--------|---------|
| ALL<br>AROUND | SITE WELD | THROUGH  | INSERT<br>(SQUARE) | OR SPACER<br>(RECTANGLE) | FLUSH<br>OR FLAT | CONVEX | CONCAVE |
| ,o-           |           | <b>,</b> | ц,∕                | Ū ↓                      | ×                | (      | )       |



# HOW WELDING SYMBOLS ARE USED:

| TYPE OF WELD         | SKETCH OF WELD                                                       | SYMBOL    | INDICATION OF DRAWING              |
|----------------------|----------------------------------------------------------------------|-----------|------------------------------------|
| FILLET WELD          |                                                                      | $\square$ |                                    |
| BEAD                 |                                                                      | Ω         | EDGE SEAL BACKING<br>WELD WELD RUN |
| BUTT WELDS           |                                                                      |           |                                    |
| general<br>BUTT      | FULL PENETRATION BUTT<br>Weld by A Welding<br>Procedure to be Agreed | 2         |                                    |
| SQUARE<br>BUTT       | ~                                                                    | =         |                                    |
| SINGLE<br>√′ BUTT    | $\{ \bigcirc \}$                                                     | <         |                                    |
| SINGLE<br>BEVEL BUTT |                                                                      | V         |                                    |
| SINGLE<br>'U' BUTT   |                                                                      | Ŷ         |                                    |
| SINGLE<br>'J' BUTT   |                                                                      | Y         |                                    |



# HOW WELDING SYMBOLS ARE USED cont.:





# **DEFECTS IN WELDING**

### **Types of Defects:**





Result: A str

# A stress concentration site and a potential site for fatigue



# **DEFECTS IN WELDING CONT.**

Overlap or over-roll:



# DEFECTS IN WELDING CONT.

### Porosity:



INTERNAL POROSITY AND START-OF-RUN POROSITY ARE VERY COMMON

Other Causes: - Unclean parent metal surface ie. oil, dust, dirt or rust contamination.

- Incorrect electrode for parent metal.
- Inadequate gas shielding of the arc.
- Parent metals with a high percentage of sulphur and phosphorus.
- Result: Severely reduces the strength of the welded joint. Surface porosity can allow a corrosive atmosphere to attack the weld metal which may cause failure.

## Lack of Fusion:



### Email: cigweldsales@cigweld.com.au

# **TECHNICAL AND TRADE INFORMATION**

# DEFECTS IN WELDING CONT.

### Lack of Fusion cont.:

| Causes: | <ul> <li>Small electrodes used on cold and thick steel.</li> <li>Insufficient amperage.</li> <li>Incorrect electrode angle and manipulation.</li> <li>Rate of travel too fast, not allowing proper fusion.</li> <li>Unclean surface (mill scale, dirt, grease etc.).</li> </ul> |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Result: | Weakens the welded joint and becomes a potential fatigue initiation site.                                                                                                                                                                                                       |

### **Incomplete Penetration:**



fracturing when cold (cold shortness).

There are many types of cracks that can occur in the base



# **DEFECTS IN WELDING CONT.**

# Weld cracking cont.:

Some common types of cracking include:

|    | Crater Cracking:                                                                                                                                                                                                                 | Hot cracking mainly caused by a failure to fill up<br>the crater depression at the end of a weld pass.<br>Shrinkage stresses and inadequate weld metal in the<br>crater causes crater cracking.                                                       |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Underbead Cracks:                                                                                                                                                                                                                | Cold cracking that is usually in the<br>Heat-affected zone (HAZ) of the parent metal.                                                                                                                                                                 |
|    | Longitudinal Crack:                                                                                                                                                                                                              | Usually a hot cracking phenomenon.<br>Cracking runs along the length of the weld.                                                                                                                                                                     |
|    | Main Causes: - Incorrect welding procedur<br>(eg. Wrong consumabl<br>- Weld size may be too s<br>- Base metal may contai<br>- Metals which contain<br>phosphorus tend to cra<br>electrodes are recomm<br>- Electrodes may be wet | res and techniques.<br>e or welding current, inadequate preheat etc.)<br>small for the parts being welded.<br>in a high carbon content (over 0.45%).<br>high percentages of sulphur or<br>ack easily , so Hydrogen controlled<br>ended.<br>to r damp. |
| CR | ACK TYPES:                                                                                                                                                                                                                       | B                                                                                                                                                                                                                                                     |
| 1. | CRATER CRACK                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                       |
| 2. | FACE CRACK                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |
| 3. | HEAT-AFFECTED ZONE CRACK                                                                                                                                                                                                         |                                                                                                                                                                                                                                                       |
| 4. | LAMELLAR TEAR                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                       |
| 5. | LONGITUDINAL CRACK                                                                                                                                                                                                               |                                                                                                                                                                                                                                                       |
| 6. | ROOT CRACK                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |
| 7. | ROOT SURFACE CRACK                                                                                                                                                                                                               | - 2, 5, 8, 13                                                                                                                                                                                                                                         |
| 8. | THROAT CRACK                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                       |

8. THROA 9. TOE CRACK

- 10. TRANSVERSE CRACK
- 11. UNDERBEAD CRACK
- 12. WELD INTERFACE CRACK
- 13. WELD METAL CRACK 12



2,5,13,

2,10,13



# DEFECTS IN WELDING CONT.



edges of the root will result in stress concentration sites which in service may lead to premature fatigue failure of the joint.



# DISTORTION, CAUSES AND CONTROL

### **Distortion:**

Distortion to some degree is present in all forms of welding. In many cases it is so small that it is barely noticeable, but in other cases allowance has to be made before welding commences for the distortion that will subsequently occur.

The study of distortion is very complex and the following is a brief outline of the subject.

A) The cause of distortion - when under load metals strain or move and change shape.

- Under light loading metals remain elastic (they return to their original shape or form after the load has been removed). This is known as the "elastic range".
- Under very high load, metals may be stressed to the point where they will not return to their original shape or form and this point is known as the "yield point". (YIELD STRESS)
- As metals are heated they expand and when cooled they contract. During welding, heating and cooling of metals occurs unevenly resulting in high stresses and the metal distorts.

If these high stresses pass the elastic range and go over the yield point, some permanent distortion of the metals will occur. A metals yield stress is reduced at high temperatures.

\*Distortion is the result of uneven expansion and contraction of heated metals.

Distortion Types - the three main types of distortion are:-

Angular
 Longitudinal
 Transverse









# DISTORTION, CAUSE AND CONTROL CONT.

### Distortion:

### (ii) LONGITUDINAL DISTORTION



(iii) TRANSVERSE DISTORTION



B) The Control of distortion can be broken up into three areas:-

- (i) Before welding
- (ii) During welding
- (iii) After welding

(i) The control of distortion **before** welding can be facilitated by:





# **TECHNICAL AND TRADE INFORMATION**

# DISTORTION, CAUSES AND CONTROL CONT.



(ii) The Control of distortion during welding can be facilitated by:





INTERMITTENT CHAIN WELDING



BALANCED SEQUENCE WELDING



### Email: cigweldsales@cigweld.com.au

# DISTORTION, CAUSES AND CONTROL CONT.

### Distortion cont.:

The correct welding procedure uses a greater number of weld runs positioned to refine the grain size of the weld metal in the previous layer.

A small number of heavy runs will cause more distortion due to the greater heat input, and the contraction stresses set up by the cooling of the larger deposit of weld metal.



WELD BEADS

MORE DISTORTION

(iii) The control of distortion after welding can be facilitated by:

- ▲ Slow Cooling
- Flame straightening (also known as contra-heating)
- Annealing
- Stress Relieving
- Normalising
- Mechanical straightening



# DISTORTION, CAUSES AND CONTROL CONT.

# Distortion cont.:

| Annealing -           | is a heat treatment process designed to soften metals<br>for cold working or machining purposes. The job or finished<br>work is normally heated in a furnace so as the metal reaches<br>its critical range (for .025% carbon steel @ 723-820°C) and then<br>the work is very slowly cooled. |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stress Relieving -    | is the uniform heating of welded parts to a temperature<br>below the critical range, followed by slow cooling. This<br>process allows the yield point of the metal to be lowered<br>allowing it to stretch or yield, so reducing the residual stresses in the work.                         |
| Normalising - is a pr | ocess used to refine the grain structure of the metal so it improves its resistance to shock and fatigue.                                                                                                                                                                                   |
|                       | In normalising the welded parts are heated just above the<br>critical point (820°C for .025% carbon steel) for approximately<br>1 hour per 25mm thickness and then allowed to cool in still air.                                                                                            |

Mechanical Straightening includes:

- Bend Pressing
- Hammering
- Rolling



# SAFETY IN WELDING

### A) ARC RADIATION:

Arc radiation is a result of ULTRA-VIOLET (UV) and INFRA-RED (IR) RAYS and exposure can cause the following:-

- A Skin Cancer
- A Thermal Skin Burns (severe sun burn)
- ARC FLASH (Welders Flash) or EYE BURN which can result in inflammation of the cornea, cataracts or blindness.

### (i) PROTECTION REQUIRED INCLUDES:

- An approved welding helmet with the correct filter and shade number.
- Safety glasses which will help to refract (bend away) the UV and IR rays away reducing the chances of Arc Flash.
- Always wear protective full covering clothing to shield your body from potential burns eq.
  - Overalls/flame resistant wool or cotton.
  - Leather apron and jackets.
  - Always wear leather gloves.
  - Skull cap (for overhead welding).
  - Screen the welding zone when welding in open spaces.
- N.B. A welding flash can occur by indirectly viewing the arc even for a relatively short time eg.
  - Unconsciously looking out the corner of the eye
  - Looking away from the arc (close eyes then turn away).
  - Reflections of the arc from shiny surfaces in the welding area.

### B) ELECTRIC SHOCK - "PREVENTION":

- Never touch live metal parts with bare skin or wet clothing. Repair any damaged or loose connections, especially bare cables, before welding.
- Keep gloves and protective clothing dry and free of oil and grease.
- Never coil or loop welding cables around your body.
- Don't weld while standing on a wet surface or while standing in water.



# SAFETY IN WELDING CONT.

### C) FUMES & GASES:

Caused by the melting, vapourisation and other reactions of the consumables, base metals and gases (where applicable) involved in the welding arc.

Some common contaminants:

| Contaminant                           | Source                                                                                                                |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Iron fume                             | Vaporisation of iron from base metal and electrode coatings.                                                          |
| Chromium                              | Stainless steel, electrode coatings, platings.                                                                        |
| Nickel                                | Stainless steel, nickel-clad steel.                                                                                   |
| Zinc fume                             | Vaporisation of zinc alloys, electrode coatings<br>galvanised steel, zinc-primed steel.                               |
| Copper fume                           | Vaporisation of coatings on electrode wires,<br>sheaths on air carbon arc gouging electrodes,<br>copper alloys.       |
| Vanadium,<br>Manganese,<br>Molybdenum | Welding rods, alloying elements in steels.                                                                            |
| Tin                                   | Tin-coated steel, some nonferrous alloys.                                                                             |
| Cadmium                               | Plating                                                                                                               |
| Lead                                  | Fluxes, coatings on electrodes, flux in wires                                                                         |
| Carbon Monoxide                       | Combustion products of gas metal arc welding,<br>air carbon arc gouging, oxyfuel flames; exhaust<br>from car engines. |
| Ozone                                 | Gas metal arc welding, air carbon arc gouging;<br>titanium and aluminium welding in inert gas<br>atmospheres          |
| Nitrogen dioxide                      | Gas metal arc welding; oxyfuel flame processes.                                                                       |
| Phosgene                              | Welding of metal covered with chlorinated<br>hydrocarbon solvents.                                                    |

Exposure to fumes and gases can damage the lungs and respiratory system or cause asphyxiation.



# SAFETY IN WELDING CONT.

### **Fumes and Gases:**

(i) PROTECTION REQUIRED FROM FUMES AND GASES:-

- Adequate ventilation.
- Keep your head out and away from the fumes.
- Use a welding fume respirator, or an air supplied respirator (especially in confined space).
- Use a fume extraction unit/or gun.

N.B. Welding fume fever caused by breathing fumes formed by the welding of various metals can occur a few hours after exposure and can last several days.

SYMPTOMS INCLUDE:-

- A Nausea
- Chills
- Weakness
- Dry nose and throat
   Metallic taste in mouth

Fatigue

Joint and muscle pain

Note: If any of these symptoms are observed please seek professional medical attention.

### D) HEAT, FIRE & SPARKS:

- Are caused by welding and related processes, operators are at continual risk of burns by hot and molten metal, sparks and heat radiated from the arc.
- Welding sparks can travel long distances and have been known to reach up to 15 metres away from the source of welding on the ground and even further when working in elevated positions.
- These sparks can reach combustible materials and start fires, as well as burning unprotected skin.
- Burns can result from handling hot just welded work (the most common of welding burns) and molten weld metal (spatter) falling or spitting onto exposed skin.

### (i) PROTECTION REQUIRED FROM HEAT, FIRE AND SPARKS:

- Always wear protective clothing.
- Keep safety glasses on your head where they belong.
- Always mark just welded work with the word "HOT".
- Know where the nearest fire extinguisher or fire hose is and how to use them.
- Remove combustible materials away from the welding area. (at least 15 metres or 50 feet away).
- ▲ If in an elevated position, post a person on the ground as a fire-watcher.
- Never connect the earth lead to electrical circuits of pipes containing gases or flammable liquids.



# SAFETY IN WELDING CONT.

Repair or replace defective cables immediately.



Never watch the arc except through filters of the correct shade.

In confined spaces, adequate ventilation and constant observation are essential.



Keep fire extinguishing equipment at a handy location near the job.

Conduct engine

atmosphere.

exhaust to outside





Keep primary terminals and live parts effectively covered.



Leads and cables should be kept clear of passageways.



Never strike an electrode on any gas cylinder.



Never use oxygen for venting containers.





### AS/NZS 1553 Part 1-1995 Covered Electrodes for Welding Low Carbon Steel

AS/NZS 1553.1 classifies Manual Metal Arc Welding (MMAW / Stick) electrodes by using a series of letters and digits broken into two alpha numeric groups separated by a hyphen. eg: E4818-4H5R. NB. The second group separated by the hyphen as shown is optional. ie. 4H5R is optional.

The following layout outlines this classification system in part only. For full details CIGWELD recommend you refer to the current published version of ASINZS 1553 Part 1. obtainable from the Standards Association of Australia or Standards New Zealand.



(1) and (2) indicates that for each increase of 1% in the value of elongation over the minimum a decrease of 10 MPa in Tensile and Yield Strength is allowed to the following minimum values. EG: E41XX, Tensile: 410 MPa / Yield: 330 MPa and E48XX, Tensile: 480 MPa / Yield: 400 MPa.



## AS/NZS 1553 Part 1-1995 Covered Electrodes for Welding Low Carbon Steel cont.

# AS/NZS 1553.1 Electrode Classification Summary - Table 1

| Electrode Welding<br>Classification Positions   |                                                  | Type of Current<br>and Polarity            | Type of Flux Covering<br>and Slag Type        | Penetration     |
|-------------------------------------------------|--------------------------------------------------|--------------------------------------------|-----------------------------------------------|-----------------|
| EXX10                                           | F, V, OH, H                                      | D.C. +<br>Fluid Slag                       | High Cellulose                                | Deep            |
| EXX11                                           | F, V, OH, H                                      | A.C. & D.C. +<br>Fluid Slag                | High Cellulose                                | Deep            |
| EXX12                                           | F, V, OH, H                                      | A.C. & D.C. + or -<br>(Viscous)            | High Titania,Stiff Slag                       | Medium          |
| EXX13                                           | F, V, OH, H                                      | A.C. & D.C. + or -                         | High Titania,Fluid Slag                       | Medium          |
| EXX14                                           | F, V, OH, H                                      | A.C. & D.C. + or -<br>Stiff Slag (Viscous) | Low Iron Powder, Titania                      | Low             |
| EXX15                                           | F, V, OH, H                                      | D.C. +<br>Hydrogen Controlled              | Basic,                                        | Medium          |
| EXX16 F, V, OH, H                               |                                                  | A.C. & D.C. +<br>Hydrogen Controlled       | Basic,                                        | Medium          |
| EXX18                                           | EXX18 F, V, OH, H                                |                                            | Basic Hydrogen Controlled,                    | Medium          |
| EXX19                                           | XX19 F, V, OH, H A.C. & Pot                      |                                            | Iron Oxide Titania                            | Medium          |
| EXX20                                           | EXX20 F & H/V-FILLET A.C. &                      |                                            | High Iron Oxide                               | Deep            |
| EXX24 F & H/V-FILLET A.C. & D.C. + (<br>Titania |                                                  | A.C. & D.C. + or -<br>Titania              | High Iron Powder,                             | Low             |
| EXX27 F & H/V-FILLET                            |                                                  | A.C. & D.C. + or -<br>Iron Oxide           | High Iron Powder<br>& Iron Oxide              | Deep            |
| EXX28                                           | F & H/V-FILLET A.C. & D.C. +<br>High Iron Powder |                                            | Basic Hydrogen Controlled,                    | Medium          |
| EXX46                                           | F, V, OH, H<br>V-DOWN                            | A.C. & D.C. +                              | Basic,<br>Hydrogen Controlled                 | Medium          |
| EXX48                                           | F, V, OH, H<br>V-DOWN                            | A.C. & D.C. +                              | Basic Hydrogen Controlled,<br>Low Iron Powder | Medium          |
| EXX99                                           | As Specified by the Manufacturer                 | As Specified by<br>the Manufacturer        | As Described by<br>the Manufacturer           | As<br>Specified |

\* Legend to Abbreviations:

F = Flat V = Vertical H = Horizontal OH = Overhead H/V-FILLET = Horizontal-Vertical Fillet V-DOWN = Vertical-Down



### AWS A5.1-91 Carbon Steel Electrodes for Shielded Metal Arc Welding

AWS A5.1-91 classifies Shielded Metal Arc Welding (SMAW / MMAW) electrodes by using a series of letters and digits broken into two alpha numeric groups separated by a hyphen.

eg: E7018 H4R. NB. The alpha numeric group after the four digit number (or five in the case of E7018-1) is optional. ie. H4R is optional.

The following layout outlines this classification system in part only. For full details CIGWELD recommend you refer to the current published version of AWS A5.1 obtainable from the American Welding Society, 550 N.W. LeJeune Road, Miami, Florida 33126, USA.



(1) Yield on E6022 electrodes is not specified and E7018M may have a range of 53-72 ksi for all diameters other than 3/32≤ (2.4mm) which is 53-77 ksi. <sup>(2)</sup> Minimum elongation for E6012, E6013, E7014 and E7024 types is 17%. Elongation on E6022 electrodes is not specified, and E7018M types are required to meet 24%.



# AWS A5.1-91 Carbon Steel Electrodes for Shielded Metal Arc Welding cont.

AWS A5.1 Electrode Classification Summary - Table 2

| Electrode<br>Classification                                                                                                                     | Welding<br>Positions  | Welding         Type of Current         Type of Flux Covering           Positions         and Polarity         and Slag Type or "Use" |                                                            | Penetration       |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------|--|
| E6010                                                                                                                                           | F, V, OH, H           | D.C. +                                                                                                                                | High Cellulose Sodium<br>Thin Friable Slag                 | Deep              |  |
| E6011                                                                                                                                           | F, V, OH, H           | A.C. & D.C. +                                                                                                                         | High Cellulose Potassium<br>Thin Friable Slag              | Deep              |  |
| E6012                                                                                                                                           | F, V, OH, H           | A.C. & D.C. + or -                                                                                                                    | High Titania Sodium,<br>Dense Slag                         | Medium            |  |
| E6013                                                                                                                                           | F, V, OH, H           | A.C. & D.C. + or -                                                                                                                    | High Titania Potassium,<br>Dense-Fluid Slag                | Medium            |  |
| E7014                                                                                                                                           | F, V, OH, H           | A.C. & D.C. + or -                                                                                                                    | Low Iron Powder, Titania<br>Self Removing Slag             | Low               |  |
| E7015                                                                                                                                           | F, V, OH, H           | D.C. +                                                                                                                                | Low Hydrogen Sodium<br>Basic Slag Heavy & Friable          | Medium            |  |
| E7016                                                                                                                                           | F, V, OH, H           | A.C. & D.C. +                                                                                                                         | Low Hydrogen Potassium<br>Basic Slag Heavy & Friable       | Medium            |  |
| E7018                                                                                                                                           | F, V, OH, H           | A.C. & D.C. +                                                                                                                         | Low Hydrogen Potassium<br>Iron Powder                      | Medium            |  |
| E7018M                                                                                                                                          | F, V, OH, H           | D.C. +                                                                                                                                | Low Hydrogen Iron Powder<br>"Military Hydrogen Controlled" | Medium            |  |
| E6019                                                                                                                                           | F, V, OH, H           | A.C. & D.C. + or -                                                                                                                    | Iron Oxide Titania Potassium<br>Fluid Slag                 | Medium            |  |
| E6020                                                                                                                                           | F & H/V-FILLET        | A.C. & D.C. + or -                                                                                                                    | High Iron Oxide<br>Easily Removable Slag                   | Medium to<br>Deep |  |
| E6022 F & H/V-FILLET A.C. & D.C                                                                                                                 |                       | High Iron Oxide<br>"Single-Pass Welds Only"                                                                                           | Deep                                                       |                   |  |
| E7024 F & H/V-FILLET                                                                                                                            |                       | A.C. & D.C. + or -                                                                                                                    | Iron Powder, Titania<br>"High Deposition Efficiency"       | Low               |  |
| E6027                                                                                                                                           | F & H/V-FILLET        | A.C. & D.C. + or -                                                                                                                    | High Iron Oxide Iron Powder<br>Heavy Honeycombed Slag      | Medium            |  |
| E7027                                                                                                                                           | F & H/V-FILLET        | A.C. & D.C. + or -                                                                                                                    | High Iron Oxide Iron Powder<br>Heavy Honeycombed Slag      | Medium            |  |
| E7028                                                                                                                                           | F & H/V-FILLET        | A.C. & D.C. +                                                                                                                         | Low Hydrogen Potassium,<br>Iron Powder                     | Medium            |  |
| E7048                                                                                                                                           | F, V, OH, H<br>V-DOWN | A.C. & D.C. +                                                                                                                         | Low Hydrogen Potassium,<br>Iron Powder                     | Medium            |  |
| * Legend to Abbreviations: F = Flat OH = Overhead V = Vertical<br>H = Horizontal V-DOWN = Vertical-Down HIV-FILIET = Horizontal-Vertical Fillet |                       |                                                                                                                                       |                                                            |                   |  |

E7018M type electrodes are intended to meet most military requirements and have greater toughness, lower coating moisture content, both as-received and after exposure, and also conform to mandatory diffusible hydrogen limits for deposited weld metal.

### Email: cigweldsales@cigweld.com.au



### AWS A5.5-96 Low Alloy Steel Covered Arc Welding Electrodes

AWS A5.5-96 classifies Shielded Metal Arc Welding (SMAW / MMAW) electrodes by using a series of letters and digits broken into two alpha numeric groups separated by a hyphen. eg: E7010-A1 or E8010-P1. NB. The alpha numeric group after the four digit number indicates chemical analysis requirements. The following layout outlines this classification system in part only. For full details CIGWELD recommend you refer to the current published version of AWS A5.5 obtainable from the American Welding Society, 550 N.W. Leleune Road, Miami, Florida 33126, USA.

| Weld Metal<br>No:                                                                | Min. Tensile<br>Strength (psi) | Yield Strength <sup>(1)</sup><br>(ksi) | Weld Metal<br>No: | Min. Tensile<br>Strength (psi) | Yield Strength<br>(ksi) |  |
|----------------------------------------------------------------------------------|--------------------------------|----------------------------------------|-------------------|--------------------------------|-------------------------|--|
| 7010-P1                                                                          | 70,000                         | 60                                     | 100               | 100,000                        | 87                      |  |
| 70                                                                               | 70,000                         | 57                                     | 10018-M           | 100,000                        | 88-100                  |  |
| 70xx-B2L                                                                         | 75,000                         | 57                                     | 110               | 110,000                        | 97                      |  |
| 80                                                                               | 80,000                         | 67                                     | 11018M            | 110,000                        | 98-110                  |  |
| 80xx-C3                                                                          | 80,000                         | 68-80                                  | 120               | 120,000                        | 107                     |  |
| 90 90,000 77                                                                     |                                | 12018M                                 | 120,000           | 108-120                        |                         |  |
| 9018M 90,000 78-90                                                               |                                | 12018M1                                | 120,000           | 108-120                        |                         |  |
| 80 = the first two digits indicate the minimum required tensile strength in ksi. |                                |                                        |                   |                                |                         |  |



exhibit only a minimum of one (1) element listed. (3) # M dassification chemical limits can vary widely in the case of Mn, Xi, C and Mo, refer to page 5 of AWS A5.5-96 for details. EX018-M electrodes are intended to meet most military requirements and have greater toughness, lower coating moisture content, both as-received and after exposure, and also conform to mandatory diffusible hydrogen limits for deposited weld metal.

| riequieu tensile su'engui ili ksi.                     |                    |                |                 |                      |           |           |  |
|--------------------------------------------------------|--------------------|----------------|-----------------|----------------------|-----------|-----------|--|
| Classification Suffixes by Maior Chemical Analysis (%) |                    |                |                 |                      |           |           |  |
| Type                                                   | C                  | Mn             | Ni              | Cr                   | Mo        | V         |  |
| Carbon-Molybdenum Steel Electrodes                     |                    |                |                 |                      |           |           |  |
| A1                                                     | 0.12               | 0.60-1.00      |                 |                      | 0.40-0.65 |           |  |
|                                                        | Chr                | omium-Molybde  | num Steel Ele   | ctrodes              |           |           |  |
| B1                                                     | 0.05-0.12          | 0.90           |                 | 0.40-0.65            | 0.40-0.65 |           |  |
| B2                                                     | 0.05-0.12          | 0.90           |                 | 1.00-1.50            | 0.40-0.65 |           |  |
| B2L                                                    | 0.05               | 0.90           |                 | 1.00-1.50            | 0.40-0.65 |           |  |
| B3                                                     | 0.05-0.12          | 0.90           |                 | 2.00-2.50            | 0.90-1.20 |           |  |
| B3L                                                    | 0.05               | 0.90           |                 | 2.00-2.50            | 0.90-1.20 |           |  |
| B4L                                                    | 0.05               | 0.90           |                 | 1.75-2.25            | 0.40-0.65 |           |  |
| B5                                                     | 0.07-0.15          | 0.40-0.70      |                 | 0.40-0.60            | 1.00-1.25 | 0.05      |  |
| B6                                                     | 0.05-0.10          | 1.00           |                 | 4.00-6.00            | 0.45-0.65 |           |  |
| B6L                                                    | 0.05               | 1.00           |                 | 4.00-6.00            | 0.45-0.65 |           |  |
| B7                                                     | 0.05-0.10          | 1.00           |                 | 6.00-8.00            | 0.45-0.65 |           |  |
| B7L                                                    | 0.05               | 1.00           |                 | 6.00-8.00            | 0.45-0.65 |           |  |
| B8                                                     | 0.05-0.10          | 1.00           |                 | 8.00-10.50           | 0.85-1.20 |           |  |
| B8L                                                    | 0.05               | 1.00           |                 | 8.00-10.50           | 0.85-1.20 | 0.05      |  |
| B9                                                     | 0.08-0.13          | 1.25           |                 | 8.00-10.50           | 0.85-1.20 | 0.15-0.30 |  |
| L                                                      |                    | Nick           | el Steel Electi | rodes                |           |           |  |
| C1                                                     | 0.12               | 1.25           | 2.00-2.75       |                      |           |           |  |
| C1L                                                    | 0.05               | 1.25           | 2.00-2.75       |                      |           |           |  |
| C2                                                     | 0.12               | 1.25           | 3.00-3.75       |                      |           |           |  |
| (2)                                                    | 0.05               | 1.25           | 3.00-3.75       |                      |           |           |  |
| G                                                      | 0.12               | 0.40-1.25      | 0.80-1.10       | 0.15                 | 0.35      | 0.05      |  |
| GL                                                     | 0.08               | 0.40-1.40      | 0.80-1.10       | 0.15                 | 0.35      | 0.05      |  |
| (4                                                     | 0.10               | 1.25           | 1.10-2.00       |                      |           |           |  |
| GL                                                     | 0.05               | 0.40-1.00      | 6.00-7.25       |                      |           |           |  |
|                                                        | 0.10               | NICKEI-N       | lolybdenum S    | teel Electrodes      | 0.40.0.05 | 0.02      |  |
| NM                                                     | 0.10               | 0.80-1.25      | 0.80-1.10       | 0.10                 | 0.40-0.65 | 0.02      |  |
| D1                                                     | 0.12               | Manganese      | - woybaéhu      | III SLEET FIECTLODES | 0.25.0.45 |           |  |
|                                                        | 0.12               | 1.00-1.75      | 0.90            |                      | 0.25*0.45 |           |  |
| D2                                                     | 0.15               | 1.03-2.00      | 0.90            |                      | 0.23-0.45 |           |  |
| 03                                                     | 0.12               | 1.00-1.00      | Pineline Flor   | trodec               | 0.40-0.00 |           |  |
| P1                                                     | ripenne Electiones |                |                 |                      |           |           |  |
|                                                        | 0.20               | 1.20<br>(i – i | General and I   | M = Military         | 0.30      | 0.10      |  |
| 6*                                                     |                    | 1 00 min       | 0.50 min        | 0.30 min             | 0.20 min  | 0.10 min  |  |
| м#                                                     | 0.10               | 0.60-2.25      | 1 25-2 50       | 0.15-1.50            | 0.25-0.55 | 0.05      |  |
| M1                                                     | 0.10               | 0.80-1.60      | 3 00-3 80       | 0.65                 | 0 20-0 30 | 0.05      |  |
|                                                        | 0.10               | 0.00 1.00      | 5.00-5.00       | 0.05                 | 0.20 0.30 | 0.00      |  |


# AWS A5.5-96 Low Alloy Steel Covered Arc Welding Electrodes cont.

| AWS A5.5 Electrode Classification Summary - Table 3 |                |                                    |                                    |                |  |  |  |  |
|-----------------------------------------------------|----------------|------------------------------------|------------------------------------|----------------|--|--|--|--|
| Electrode                                           | Welding        | Type of Current                    | Type of Flux Covering              | Penetration    |  |  |  |  |
| Classification                                      | Positions      | and Polarity                       | and Slag Type or "Use"             |                |  |  |  |  |
|                                                     |                | E70 Series, 70,000                 | psi (480 MPa)                      | _              |  |  |  |  |
| E7010-X                                             | F, V, OH, H    | D.C. +                             | High Cellulose Sodium              | Deep           |  |  |  |  |
| E7011-X                                             | F, V, OH, H    | A.C. & D.C. +                      | High Cellulose Potassium           | Deep           |  |  |  |  |
| E7015-X                                             | F, V, OH, H    | D.C. +                             | Low Hydrogen Sodium                | Medium         |  |  |  |  |
| E7016-X                                             | F, V, OH, H    | A.C. & D.C. +                      | Low Hydrogen Potassium             | Medium         |  |  |  |  |
| E7018-X                                             | F, V, OH, H    | A.C. & D.C. +                      | Iron Powder, Low Hydrogen          | Medium         |  |  |  |  |
| E7020-X                                             | F & H/V-FILLET | A.C. & D.C. + or -                 | High Iron Oxide                    | Medium to Deep |  |  |  |  |
| E7027-X                                             | F & H/V-FILLET | A.C. & D.C. + or -                 | High Iron Oxide, Iron Powder       | Medium         |  |  |  |  |
| E80 Series, 80,000 psi (550 MPa)                    |                |                                    |                                    |                |  |  |  |  |
| E8010-X                                             | F, V, OH, H    | D.C. +                             | High Cellulose Sodium              | Deep           |  |  |  |  |
| E8011-G                                             | F, V, OH, H    | A.C. & D.C. +                      | High Cellulose Potassium           | Deep           |  |  |  |  |
| E8013-G                                             | F, V, OH, H    | A.C. & D.C. + or -                 | High Titania Potassium,            | Medium         |  |  |  |  |
| E8015-X                                             | F, V, OH, H    | D.C. +                             | Low Hydrogen Sodium                | Medium         |  |  |  |  |
| E8016-X                                             | F, V, OH, H    | A.C. & D.C. +                      | Low Hydrogen Potassium             | Medium         |  |  |  |  |
| E8018-X                                             | F, V, OH, H    | A.C. & D.C. +                      | Low Hydrogen, Iron Powder          | Medium         |  |  |  |  |
|                                                     |                | E90 Series, 90,000                 | psi (620 MPa)                      |                |  |  |  |  |
| E9010-G                                             | F, V, OH, H    | D.C. +                             | High Cellulose Sodium              | Deep           |  |  |  |  |
| E9011-G                                             | F, V, OH, H    | A.C. & D.C. +                      | High Cellulose Potassium           | Deep           |  |  |  |  |
| E9013-G                                             | F, V, OH, H    | A.C. & D.C. + or -                 | High Titania Potassium,            | Medium         |  |  |  |  |
| E9015-X                                             | F, V, OH, H    | D.C. +                             | Low Hydrogen Sodium                | Medium         |  |  |  |  |
| E9016-X                                             | F, V, OH, H    | A.C. & D.C. +                      | Low Hydrogen Potassium             | Medium         |  |  |  |  |
| E9018-X                                             | F, V, OH, H    | A.C. & D.C. +                      | Low Hydrogen, Iron Powder          | Medium         |  |  |  |  |
| E9018M                                              | F, V, OH, H    | D.C. +                             | Low Hydrogen, Iron Powder          | Medium         |  |  |  |  |
|                                                     |                | E100 Series, 100,00                | 0 psi (690 MPa)                    |                |  |  |  |  |
| E10010-G                                            | F, V, OH, H    | D.C. +                             | High Cellulose Sodium              | Deep           |  |  |  |  |
| E10011-G                                            | F, V, OH, H    | A.C. & D.C. +                      | High Cellulose Potassium           | Deep           |  |  |  |  |
| E10013-G                                            | F, V, OH, H    | A.C. & D.C. + or -                 | High Titania Potassium,            | Medium         |  |  |  |  |
| E10015-X                                            | F, V, OH, H    | D.C. +                             | Low Hydrogen Sodium                | Medium         |  |  |  |  |
| E10016-X                                            | F, V, OH, H    | A.C. & D.C. +                      | Low Hydrogen Potassium             | Medium         |  |  |  |  |
| E10018-X                                            | F, V, OH, H    | A.C. & D.C. +                      | Low Hydrogen, Iron Powder          | Medium         |  |  |  |  |
| E10018M                                             | F, V, OH, H    | D.C. +                             | Low Hydrogen, Iron Powder          | Medium         |  |  |  |  |
|                                                     | E110 Series    | <u>; 110,000 psi (760 MPa) anc</u> | E120 Series, 120,000 psi (830 MPa) |                |  |  |  |  |
| E11010-G                                            | F, V, OH, H    | D.C. +                             | High Cellulose Sodium              | Deep           |  |  |  |  |
| E11011-G                                            | F, V, OH, H    | A.C. & D.C. +                      | High Cellulose Potassium           | Deep           |  |  |  |  |
| E11013-G                                            | F, V, OH, H    | A.C. & D.C. + or -                 | High Titania Potassium,            | Medium         |  |  |  |  |
| E11015-G                                            | F, V, OH, H    | D.C. +                             | Low Hydrogen Sodium                | Medium         |  |  |  |  |
| E11016-G                                            | F, V, OH, H    | A.C. & D.C. +                      | Low Hydrogen Potassium             | Medium         |  |  |  |  |
| E11018-G                                            | F, V, OH, H    | A.C. & D.C. +                      | Low Hydrogen, Iron Powder          | Medium         |  |  |  |  |
| E11018M                                             | F, V, OH, H    | D.C. +                             | Low Hydrogen, Iron Powder          | Medium         |  |  |  |  |
| E12010-G                                            | F, V, OH, H    | D.C. +                             | High Cellulose Sodium              | Deep           |  |  |  |  |
| E12011-G                                            | F, V, OH, H    | A.C. & D.C. +                      | High Cellulose Potassium           | Deep           |  |  |  |  |
| E12013-G                                            | F, V, OH, H    | A.C. & D.C. + or -                 | High Titania Potassium,            | Medium         |  |  |  |  |
| E12015-G                                            | F, V, OH, H    | D.C. +                             | Low Hydrogen Sodium                | Medium         |  |  |  |  |
| E12016-G                                            | F, V, OH, H    | A.C. & D.C. +                      | Low Hydrogen Potassium             | Medium         |  |  |  |  |
| E12018-G                                            | F, V, OH, H    | A.C. & D.C. +                      | Low Hydrogen, Iron Powder          | Medium         |  |  |  |  |
| E12016M                                             | F, V, OH, H    | A.C. & D.C. +                      | Low Hydrogen Potassium             | Medium         |  |  |  |  |
| E12018M1                                            | F. V. OH. H    | A.C. & D.C. +                      | Low Hydrogen, Iron Powder          | Medium         |  |  |  |  |

Legend to Abbreviations: F = Flat, V = Vertical, H = Horizontal, OH = Overhead, H/V-FILLET = Horizontal-Vertical Fillet

# Email: cigweldsales@cigweld.com.au



# AS/NZS 2717 Part 1-1996 Ferritic Steel Electrodes For Gas Metal Arc Welding

ASINZS 2717.1 classifies Gas Metal Arc Welding (GMAW / MIG) wires by using a series of letters and digits broken into three (3) alpha numeric groups separated by hyphens. e.g.: ES4-GM-W503AH. The following table outlines this classification system in part only. For full details CIGWELD recommends that you refer to the current published version of ASINZS 2717 Part 1. obtainable from the Standards Association of Australia or Standards New Zealand.

|                                                                                    |                                                                                          |                      |                    |                               | The trind digit indicates impact energy grade No. |                                            |  |  |
|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------|--------------------|-------------------------------|---------------------------------------------------|--------------------------------------------|--|--|
| Weld metal properties.                                                             |                                                                                          |                      |                    |                               | Impact energy<br>grade No:                        | Min. average<br>CVN impacts                |  |  |
| The first two di                                                                   | gits indicate app                                                                        | roximately 1/10th th | ne tensile strengt | h                             | Z                                                 | Not required.                              |  |  |
| of the weld filetal in wifa.                                                       |                                                                                          |                      | A                  | 4/J@+20°C                     |                                                   |                                            |  |  |
| Weld Metal                                                                         | Minimum                                                                                  | Minimum              | Minimum            |                               | 0                                                 | 4/J@U <sup>-</sup> C                       |  |  |
| Classification                                                                     | Tensile                                                                                  | Yield                | Elongation         |                               | 2                                                 | 4/J@-20 C                                  |  |  |
| W41                                                                                | 420 MPa                                                                                  | not applicable       | 20%                |                               | 3                                                 | 4/J @ -30 C                                |  |  |
| W50                                                                                | 500 MPa                                                                                  | 360 MPa              | 22%                |                               | 4                                                 | 47J@-40 C                                  |  |  |
| W55                                                                                | 550 MPa                                                                                  | 470 MPa              | 19%                |                               | 5                                                 | 4/J @ -50 C                                |  |  |
| W62                                                                                | 620 MPa                                                                                  | 540 MPa              | 17%                |                               |                                                   | 4/J @ -00 C                                |  |  |
| W69                                                                                | 690 MPa                                                                                  | 610-700 MPa          | 16%                |                               |                                                   | 27J @ -45 C                                |  |  |
| W76                                                                                | 760 MPa                                                                                  | 660-740 MPa          | 15%                |                               |                                                   | 27J @ -00 C                                |  |  |
| W83                                                                                | 830 MPa                                                                                  | 730-840 MPa          | 14%                |                               |                                                   | 27J@-75 C                                  |  |  |
|                                                                                    | 000 111 0                                                                                |                      |                    |                               | W600YH_M2                                         | 27J @ -50 C                                |  |  |
|                                                                                    |                                                                                          |                      |                    |                               | W769XH-M3                                         | 681@-50°C                                  |  |  |
| F S 6 - 0                                                                          | GC/M                                                                                     | - W 5 0 3            | ΔН                 |                               | W839XH-M4                                         | 681@-50°C                                  |  |  |
| <u></u>                                                                            |                                                                                          |                      | ~ II               |                               | W699XH-M5                                         | 681 @ -50°C                                |  |  |
|                                                                                    |                                                                                          |                      |                    | 1                             | WOJJAIT MJ                                        | 00 6 30 6                                  |  |  |
| Type of                                                                            | external shieldin                                                                        | g.                   |                    | Indicatir                     | ng the applicable heat treatm                     | nent condition.                            |  |  |
| G = Gas                                                                            | followed by eitl                                                                         | her of these listed: |                    | A = as-I                      | welded condition.                                 |                                            |  |  |
| C = Car                                                                            | bon dioxide.                                                                             |                      |                    | P = nostwelded heat treatment |                                                   |                                            |  |  |
| M = Mi                                                                             | M = Mixed shielding gas eq: Argoshield 51 H - hydrogen controlled weld metal < 15 mls of |                      |                    |                               | < 15 mls of                                       |                                            |  |  |
| I - Inort                                                                          | H = Inju                                                                                 |                      |                    | Doms of deposited weld metal. |                                                   |                                            |  |  |
|                                                                                    | . sillelulliy yas.                                                                       |                      |                    | 2/100                         | ignis er acpesitea meta                           |                                            |  |  |
| E = Electrode, S = Solid Wire followed by a number or letter which defines the che |                                                                                          |                      |                    |                               | mical composition of the wire.                    |                                            |  |  |
| Wire                                                                               | Carbon                                                                                   | Manganese            | Silicon            |                               | Other Elem                                        | ents                                       |  |  |
| Classification                                                                     | (C)                                                                                      | (Mn)                 | (Si)               |                               | Nominal Ran                                       | ge %                                       |  |  |
| ES2                                                                                | 0.07                                                                                     | 0.90-1.40            | 0.40-0.70          |                               | 0.25Cu / 0.10Ti / 0.0                             | 07Zr / 0.10Al                              |  |  |
| ES3                                                                                | 0.06-0.15                                                                                | 0.90-1.40            | 0.45-0.75          |                               | 0.25Cu                                            |                                            |  |  |
| ES4                                                                                | 0.07-0.15                                                                                | 1.00-1.50            | 0.60-0.85          |                               | 0.25Cu                                            |                                            |  |  |
| ES5                                                                                | 0.07-0.19                                                                                | 0.90-1.40            | 0.30-0.60          |                               | 0.70AI                                            |                                            |  |  |
| ES6                                                                                | 0.06-0.15                                                                                | 1.40-1.85            | 0.80-1.15          |                               | 0.25Cu                                            |                                            |  |  |
| ES7                                                                                | 0.07-0.15                                                                                | 1.50-2.00            | 0.50-0.80          |                               | 0.25Cu                                            |                                            |  |  |
| ESB2                                                                               | 0.07-0.12                                                                                | 0.40-1.2             | 0.40-0.70          |                               | 1.25Cr / 0.50Mo                                   | / 0.1/Cu                                   |  |  |
| ESB2L                                                                              | 0.05                                                                                     | 0.40-1.2             | 0.40-0.70          |                               | 1.25Cr / 0.50Mo                                   | / 0.1/CU                                   |  |  |
| E2R2                                                                               | 0.07-0.12                                                                                | 0.40-1.2             | 0.40-0.70          |                               | 2.50Cr / 1.05Mo                                   | / 0.1/CU                                   |  |  |
| ESB3L                                                                              | 0.05                                                                                     | 0.40-1.Z             | 0.40-0.70          |                               | 2.50Cr / 1.05M0                                   | / U.1/CU                                   |  |  |
| ESDUT<br>FC7Ce                                                                     | 0.10                                                                                     | 1.00                 | 0.90               |                               | U.ZUINI / 5.Z5Cf / U.5                            | 5W0 / 0.5/CU                               |  |  |
| ES/U                                                                               | 0.10                                                                                     | 1.00                 | 0.90               |                               | U.ZUNI / /.UUCI / U.5                             | 2Mo / 0.27Cu                               |  |  |
| ES9UF<br>EGNI1                                                                     | 0.10                                                                                     | 1.00                 | 0.90               |                               | 0.20Ni / 9.25Cr / 1.02Mo / 0.37Cu                 |                                            |  |  |
| EDINI I<br>ECNI()                                                                  | 0.12                                                                                     | 1.20                 | 0.40-0.00          |                               | U.90111/U.U/LT/U.1/MC                             | 7Cii                                       |  |  |
| EDIVIZ<br>ECNID                                                                    | 0.12                                                                                     | 1.20                 | 0.40-0.00          |                               | 2.3/NI/U.I<br>2.27NI:/0.1                         | 7Cu<br>7Cu                                 |  |  |
| ESINIS                                                                             | 0.12                                                                                     | 1.20                 | 0.40-0.00          |                               | 3.3/NI/U.I<br>0.07Ni/0.E0Ma                       | /Cu<br>/ 0.25Cu                            |  |  |
| ESUZ<br>ESM2                                                                       | 0.07-0.12                                                                                | 1.00-2.10            | 0.20-0.00          | 1                             | 75Ni / 0.15Cr / 0.40Mo / 0.02V /                  | / U.2.JCU<br>0.1.2Cu / 0.0Eee Ti / 7r / Al |  |  |
| E2IVIZ<br>ESM2                                                                     | 0.00                                                                                     | 1.23-1.00            | 0.20-0.30          | 1                             | 25Ni / 0.15Ci / 0.40W0 / 0.02V /                  | 0.12Cu / 0.03ed, 11 / 21 / Al              |  |  |
| ESINIS                                                                             | 0.05                                                                                     | 1.25-1.00            | 0.20-0.33          | 4                             | 20Ni / 0.20Cr / 0.20W0 / 0.02V /                  | 0.12Cu / 0.0Jed, 11 / 21 / Al              |  |  |
| ESIVI4                                                                             | 0.10                                                                                     | 1.23-1.00            | 0.20-2.00          | 4                             | 20010 / 0.20C1 / 0.22000 / 0.010 / 2.000          | 0.12Cu / 0.03ed, 11 / 21 / Al              |  |  |
|                                                                                    |                                                                                          | 1 /5-1 811           | 11 /U+/ hU         | . //                          | OUNL/ 0 SULF/ 0 95MD / 0 01V /                    | U 17UU / U USPA 1177F7AL                   |  |  |

ESMG = General, composition is agreed between the supplier & customer



# AWS A5.18-1993 Carbon Steel Electrodes and Rods for Gas Shielded Arc Welding

AWS A5.18-93 classifies Gas Metal Arc Welding (GMAW / MIG) wires by using a series of letters and digits broken into two (2) alpha numeric groups separated by a hyphen. e.g.: ER70S-6 and E70C-6M

The following layout outlines this classification system in part only. For full details CIGWELD recommend you refer to the current published version of AWS A5.18 obtainable from the American Welding Society, 550 N.W. LeJeune Road, Miami, Florida 33126. USA.

| As Welded Mechanical Properties (Minimum) |           |          |               |       |        |                                        |
|-------------------------------------------|-----------|----------|---------------|-------|--------|----------------------------------------|
| AWS                                       | Tensile S | Strength | Yield Str     | ength | %      | Charpy-V-Notch (CVN)                   |
| Class.                                    | psi       | MPa      | psi           | MPa   | Elong. | Impact Requirements                    |
| ER70S-2                                   | 70,000    | 480      | 58,000        | 400   | 22     | 20ft Lb @ -20°F (27J @ -29°C)          |
| ER70S-3                                   | 70,000    | 480      | 58,000        | 400   | 22     | 20ft Lb @ 0°F (27J @ -18°C)            |
| ER70S-4                                   | 70,000    | 480      | 58,000        | 400   | 22     | Not Required                           |
| ER70S-5                                   | 70,000    | 480      | 58,000        | 400   | 22     | Not Required                           |
| ER70S-6                                   | 70,000    | 480      | 58,000        | 400   | 22     | 20ft Lb @ -20°F (27J @ -29°C)          |
| ER70S-7                                   | 70,000    | 480      | 58,000        | 400   | 22     | 20ft Lb @ -20°F (27J @ -29°C)          |
| ER70S-G                                   | 70,000    | 480      | 58,000        | 400   | 22     | As agreed between supplier & purchaser |
| E70C-3X                                   | 70,000    | 480      | 58,000        | 400   | 22     | 20ft Lb @ 0°F (27J @ -18°C)            |
| E70C-6X                                   | 70,000    | 480      | 58,000        | 400   | 22     | 20ft Lb @ -20°F (27J @ -29°C)          |
| E70C-G(X)                                 | 70,000    | 480      | 58,000        | 400   | 22     | As agreed between supplier & purchaser |
| E70C-GS (X)                               | 70,000    | 480      | Not Specified |       |        | Not Required                           |
|                                           |           |          |               |       |        |                                        |

$$ER70S-6 H_4$$

$$E70C-6M H_4$$

Optional Designators

| — т <del>тс</del>                                                                           | The se        | econd letter & sixth number      |
|---------------------------------------------------------------------------------------------|---------------|----------------------------------|
| The third letter indicates "Shielding Gas"                                                  | indica        | tes the Diffusible Hydrogen      |
| M = indicates "Mixed Gas" and is classified for use with Argon + 20-25% CO <sub>2</sub> gas | Conte<br>(DWN | nt of Deposited Weld Metal<br>1) |
| C = indicates "Carbon Dioxide" and is classified for                                        | H4            | $\leq$ 4 mls H2 /100g of DWN     |
| use with 100% CO <sub>2</sub> gas or the wire is self shielded.                             | H8            | $\leq$ 8 mls H2 /100g of DWN     |
| 2 J                                                                                         | <b>⊔</b> 16   | < 16 mlc H2 /100g of DW          |

| indicates the Diffusible Hydrogen<br>Content of Deposited Weld Metal<br>(DWM) |                               |  |  |  |
|-------------------------------------------------------------------------------|-------------------------------|--|--|--|
| H4                                                                            | $\leq$ 4 mls H2 /100g of DWM  |  |  |  |
| H8                                                                            | $\leq$ 8 mls H2 /100g of DWM  |  |  |  |
| H16                                                                           | $\leq$ 16 mls H2 /100g of DWM |  |  |  |

 $\mathbf{E}$  = Electrode,  $\mathbf{R}$  = Rod,  $\mathbf{S}$  = Solid Wire,  $\mathbf{C}$  = Composite Metal Cored Wire, followed by a hyphen then a number or letter which defines the chemical composition of the wire.

| Wire           | Carbon                                                                                         | Manganese                  | Silicon             | Other Elements                          |  |  |  |
|----------------|------------------------------------------------------------------------------------------------|----------------------------|---------------------|-----------------------------------------|--|--|--|
| Classification | (C)                                                                                            | (Mn)                       | (Si)                | Allowable % Range                       |  |  |  |
| ER70S-2        | 0.07                                                                                           | 0.90-1.40                  | 0.40-0.70           | 0.05-0.15Ti / 0.02-0.12Zr / 0.05-0.15Al |  |  |  |
| ER70S-3        | 0.06-0.15                                                                                      | 0.90-1.40                  | 0.45-0.75           | 0.50Cu                                  |  |  |  |
| ER70S-4        | 0.07-0.15                                                                                      | 1.00-1.50                  | 0.60-0.85           | 0.50Cu                                  |  |  |  |
| ER70S-5        | 0.07-0.19                                                                                      | 0.90-1.40                  | 0.30-0.60           | 0.50Cu / 0.50-0.90 Al                   |  |  |  |
| ER70S-6        | 0.06-0.15                                                                                      | 1.40-1.85                  | 0.80-1.15           | 0.50Cu                                  |  |  |  |
| ER70S-7        | 0.07-0.15                                                                                      | 1.50-2.00                  | 0.50-0.80           | 0.50Cu                                  |  |  |  |
| ER70S-G        | G = General, compo                                                                             | sition is not specified ar | d is agreed between | the supplier and the customer.          |  |  |  |
| ER70C-3X       | 0.12                                                                                           | 1.75                       | 0.90                | 0.50Cu                                  |  |  |  |
| ER70C-6X       | 0.12                                                                                           | 1.75                       | 0.90                | 0.50Cu                                  |  |  |  |
| ER70C-G(X)     | G = General, composition is not specified and is agreed between the supplier and the customer. |                            |                     |                                         |  |  |  |
| ER70C-GS(X)    | G = General. Single Pass Only, composition is agreed between the supplier and the customer.    |                            |                     |                                         |  |  |  |

Single values are maximum. X represents shielding gas indicators e.g. "C" indicates CO2 shielding gas and "M" indicates mixed shielding gases in the Argon + 20-25% CO2. (X) is optional for these classifications.

# Email: cigweldsales@cigweld.com.au



### AS 2203 Part 1-1990 Cored Electrodes for Arc Welding Ferritic Steel Electrodes

AS 2203.1 classifies Flux Cored Arc Welding (FCAW / cored) wires by using a series of letters and digits broken into four alpha numeric groups separated by hyphens and the last group separated by a full stop. e.g. ETP-GCp-W504A.CM1 H10.

The following layout outlines this classification system in part only. For full details CIGWELD recommend you refer to the current published version of AS 2203 Part 1. obtainable from the Standards Association of Australia.





# AS 2203 Part 1-1990 Cored Electrodes for Arc Welding Ferritic Steel Electrodes cont.

# AS 2203.1 Weld Metal Chemistry Wt% Summary - Table 4

| Weld      | Carbon                   | Manganese | Silicon       | Nickel          | Chromium    | Molybdenum | Other             |  |  |
|-----------|--------------------------|-----------|---------------|-----------------|-------------|------------|-------------------|--|--|
| Metal No: | (C)                      | (Mn)      | (Si)          | (Ni)            | (Cr)        | (Mo)       | Elements          |  |  |
|           | Carbon Steel Cored Wires |           |               |                 |             |            |                   |  |  |
| CM1       | 0.20                     | 1.75      | 0.90          | 0.50            | 0.20        | 0.30       | 0.08V / 1.8Al     |  |  |
| CM2       | > 0.20                   | 1.75      | 0.90          | 0.50            | 0.20        | 0.30       | 0.08V / 1.8Al     |  |  |
|           |                          | (         | Carbon-Molybo | lenum Steel Co  | pred Wires  |            |                   |  |  |
| A1        | 0.12                     | 1.25      | 0.80          |                 |             | 0.40-0.65  |                   |  |  |
|           |                          | Ch        | romium-Moly   | odenum Steel    | Cored Wires |            |                   |  |  |
| B1        | 0.12                     | 1.25      | 0.80          |                 | 0.40-0.65   | 0.40-0.65  |                   |  |  |
| B2L       | 0.05                     | 1.25      | 0.80          |                 | 1.00-1.50   | 0.40-0.65  |                   |  |  |
| B2        | 0.12                     | 1.25      | 0.80          |                 | 1.00-1.50   | 0.40-0.65  |                   |  |  |
| B2C       | 0.10-0.15                | 1.25      | 0.80          |                 | 1.00-1.50   | 0.40-0.65  |                   |  |  |
| B3L       | 0.05                     | 1.25      | 0.80          |                 | 2.00-2.50   | 0.90-1.20  |                   |  |  |
| B3        | 0.12                     | 1.25      | 0.80          |                 | 2.00-2.50   | 0.90-1.20  |                   |  |  |
| B3C       | 0.10-0.15                | 1.25      | 0.80          |                 | 2.00-2.50   | 0.90-1.20  |                   |  |  |
| 5Cr       | 0.10                     | 1.50      | 1.00          | 0.40            | 4.00-6.00   | 0.45-0.65  | 0.50Cu            |  |  |
| 7Cr       | 0.10                     | 1.50      | 1.00          | 0.40            | 6.00-8.00   | 0.45-0.65  | 0.50Cu            |  |  |
| 9Cr       | 0.10                     | 1.50      | 1.00          | 0.40            | 8.00-10.50  | 0.85-1.20  | 0.50Cu            |  |  |
|           |                          |           | Nickel S      | teel Cored Wi   | res         |            |                   |  |  |
| Ni1       | 0.12                     | 1.50      | 0.08          | 0.80-1.10       | 0.15        | 0.35       | 0.05V / 1.8Al     |  |  |
| Ni2       | 0.12                     | 1.50      | 0.08          | 1.75-2.75       |             |            | 0.05V / 1.8Al     |  |  |
| Ni3       | 0.12                     | 1.50      | 0.08          | 2.75-3.75       |             |            |                   |  |  |
|           |                          | Ma        | inganese-Moly | bdenum Steel    | Cored Wires |            |                   |  |  |
| 9X.D1     | 0.12                     | 1.25-2.00 | 0.80          |                 |             | 0.25-0.55  |                   |  |  |
| 9X.D2     | 0.15                     | 1.65-2.25 | 0.80          |                 |             | 0.25-0.55  |                   |  |  |
| 9X.D3     | 0.12                     | 1.00-1.75 | 0.80          |                 |             | 0.40-0.65  |                   |  |  |
|           |                          |           | Other Low A   | lloy Steel Core | d Wires     |            |                   |  |  |
| 9X.K1     | 0.15                     | 0.80-1.40 | 0.80          | 0.80-1.10       | 0.15        | 0.20-0.65  | 0.05V             |  |  |
| 9X.K2     | 0.15                     | 0.50-1.75 | 0.80          | 1.00-2.00       | 0.15        | 0.35       | 0.05V / 1.8Al     |  |  |
| 9X.K3     | 0.15                     | 0.75-2.25 | 0.80          | 1.25-2.60       | 0.15        | 0.25-0.65  | 0.05V             |  |  |
| 9X.K4     | 0.15                     | 1.20-2.25 | 0.80          | 1.75-2.60       | 0.20-0.60   | 0.30-0.65  | 0.05V             |  |  |
| 9X.K5     | 0.10-0.25                | 0.60-1.60 | 0.80          | 0.75-2.00       | 0.20-0.70   | 0.15-0.55  | 0.05V             |  |  |
| 9X.K6     | 0.15                     | 0.50-1.50 | 0.80          | 0.40-1.10       | 0.15        | 0.15       | 0.05V / 1.8Al     |  |  |
| 9X.K7     | 0.15                     | 1.00-1.75 | 0.08          | 2.00-2.75       |             |            |                   |  |  |
| G         |                          | 1.00 min. | 0.80 min.     | 0.50 min.       | 0.30 min.   | 0.20 min.  | 0.10 min. / 1.8Al |  |  |
| 9X.W      | 0.12                     | 0.50-1.30 | 0.35-0.80     | 0.40-0.80       | 0.45-0.70   |            | 0.30-0.75Cu       |  |  |

Single values shown are maximum.



### AWS A5.20-95 Carbon Steel Electrodes for Flux Cored Arc Welding

AWS A5.20-95 classifies Flux Cored Arc Welding (FCAW / cored) wires by using a series of letters and digits broken into two alpha numeric groups separated by a hyphen. eg: E70T-1 or E71T-1M J H4.

The following layout outlines this classification system in part only. For full details CIGWELD recommend you refer to the current published version of AWS A5.20 obtainable from the American Welding Society, 550 N.W. LeJeune Road, Miami, Florida 33126, USA.





### AWS A5.20-95 Carbon Steel Electrodes for Flux Cored Arc Welding cont.

### Shielding Gas Types

- F7XT-1 These electrodes are designed primarily for use with CO<sub>2</sub> shielding gas. Argon based gases may be used to improve out-of-position characteristics.
- By using Argon based gas mixtures with these electrode types the following problems may occur: Warning:

1) deoxidiser levels in weld deposits may increase,

2) weld deposit hardness levels may increase.

3) weld deposit manganese and silicon levels may increase which will raise yield and tensile strength, and may degrade impact properties.

- E7XT-1M These electrodes are designed primarily for use with Argon + 20-25% CO<sub>2</sub> shielding gases.
- Higher levels of CO<sub>2</sub> above those recommended, in Ar / CO<sub>2</sub> gases or the use of Warning: 100% CO2 gas with these types of electrodes may result in the following;

1) deterioration of arc and out-of-position characteristics,

2) resultant weld deposits may show decreased levels of manganese and silicon which will reduce yield and tensile strength and may degrade impact properties.

| As Welded Mechanical Properties - Table 5 |         |          |                |      |        |                               |  |  |
|-------------------------------------------|---------|----------|----------------|------|--------|-------------------------------|--|--|
| AWS                                       | Tensile | Strength | Yield Strength |      | %      | Charpy-V-Notch (CVN)          |  |  |
| Class.                                    | ksi     | MPa      | ksi            | MPa  | Elong. | Impact Requirements           |  |  |
| T-1/1M                                    | 70      | 480      | 58             | 400  | 22     | 20ft Lb @ 0°F (27J @ -18°C)   |  |  |
| T-2/2M                                    | 70      | 480      | n.s.           | n.s. | n.s.   | not specified                 |  |  |
| T-3*                                      | 70      | 480      | n.s.           | n.s. | n.s.   | not specified                 |  |  |
| T-4*                                      | 70      | 480      | 58             | 400  | 22     | not specified                 |  |  |
| T-5/5M                                    | 70      | 480      | 58             | 400  | 22     | 20ft Lb @ -20°F (27J @ -29°C) |  |  |
| T-6*                                      | 70      | 480      | 58             | 400  | 22     | 20ft Lb @ -20°F (27J @ -29°C) |  |  |
| T-7*                                      | 70      | 480      | 58             | 400  | 22     | not specified                 |  |  |
| T-8*                                      | 70      | 480      | 58             | 400  | 22     | 20ft Lb @ -20°F (27J @ -29°C) |  |  |
| T-9/9M                                    | 70      | 480      | 58             | 400  | 22     | 20ft Lb @ -20°F (27J @ -29°C) |  |  |
| T-10*                                     | 70      | 480      | n.s.           | n.s. | n.s.   | not specified                 |  |  |
| T-11*                                     | 70      | 480      | 58             | 400  | 20     | not specified                 |  |  |
| T-12/12M                                  | 70-90   | 480-620  | 58             | 400  | 22     | 20ft Lb @ -20°F (27J @ -29°C) |  |  |
| T-13*                                     | 60      | 415      | n.s.           | n.s. | n.s.   | not specified                 |  |  |
| T-13*                                     | 70      | 480      | n.s.           | n.s. | n.s.   | not specified                 |  |  |
| T-14*                                     | 70      | 480      | n.s.           | n.s. | n.s.   | not specified                 |  |  |
| T-G                                       | 60      | 415      | 48             | 330  | 22     | not specified                 |  |  |
| T-G                                       | 70      | 480      | 58             | 400  | 22     | not specified                 |  |  |
| T-GS                                      | 60      | 415      | n.s.           | n.s. | n.s.   | not specified                 |  |  |
| T-GS                                      | 70      | 480      | n.s.           | n.s. | n.s.   | not specified                 |  |  |

The above designations may be classified with the 'J' indicator provided the lower CVN Impact requirements of 20ft Lb @ -40°F (27J @ -40 °C), are met for T-1/1M, T-5/5M, T-6, T-8, T-9/M and T-12/12M types.

\* Self Shielded wire types.



# AWS A5.20-95 Carbon Steel Electrodes for Flux Cored Arc Welding cont.

AWS A5.20 Electrode Classification Summary - Table 6 No. of Weld AWS A5.20 Arc Transfer Slag Discernible Polarity Passes Features and Applications Class Type Base T-1 Larger diameters (2mm [5/64"] & larger) are used for flat & H/V and DC + Rutile Multiple welding only. Very smooth / guiet arc with low spatter loss, flat to Sprav T-1M slightly convex weld bead contour, full covering easy removed slag, and high deposition rates. Essentially the same as T-1 / T-1M types, but with higher manganese or T-2 DC +silicon or both. Higher levels of deoxidisers allow welding of heavily Sprav Rutile Sinale and oxidised steels such as, rimmed, rusty and mill scaled steels. SINGLE T-2M pass only. # High speed gasless welding in flat & H/V and 20° down inclined DC + Spray Rutile Single T-3\* Fluoride positions on sheet metal. Limited mech. props. DC + Globular Alumina Multiple Very low Sulphur weld deposits (resistant to hot cracking) & very high T-4\* Fluoride deposition rates. Bridging of poor fit-up joints. Larger diameters (>2mm) are used for flat & H/V welding. Good T-5 DC + / -Globular Multiple mechanical properties (eq. impacts 27J @ -29°C / Basic and 20ft Lb @ -20°F ) Slightly convex weld bead contour, easy removed T-5M thin slag, resistant to hot & cold cracking. Good low temperature impact properties (eg. 27J @ -29°C / 20ft Lb @ Rutile DC + Multiple -20°F). Excellent slag removal in deep groove joints. Good root run Spray T-6\* Basic penetration. Flat & H/V only. DC -Multiple Dia. (>2mm) used for flat & H/V welding. High deposition rates and Spray Alumina very low sulphur weld metal resistant to cracking. T-7\* Fluoride DC -Alumina Multiple Very good low temperature strength, notch toughness and crack Sprav resistance (eq. 27J @ -29°C / 20ft Lb @ -20°F ). Fluoride T-8\* DC + Spray Rutile Multiple Essentially the same as T-1 / T-1M types, but deposit weld metal with T-9 improved impact properties (eq. 27J @ -29°C / 20ft Lb @ -20°F ). To and obtain X-Ray quality, joints are to be relatively clean and free of oil, T-9M excessive oxide & mil-scale. small droplet DC -High speed gasless welding in flat & H/V and 20° vertical inclined Single T-10\* Globular positions on larger thickness than the T-3 class. DC -Sprav Multiple General purpose wire for use on material less than 20mm (3/4) unless T-11\* preheat & interpass temp's are maintained. Essentially the same as T-1 / T-1M types, but modified to increase T-12 DC + Rutile Multiple impact properties and to meet lower manganese requirements of the Spray and ASME Boiler and Pressure Vessel code section IX, A-1 analysis group of T-12M 1.6% Mn. DC -Short arc ----Single Root pass welding only on circumferential pipe welds. T-13\* DC -# High speed all positional welding of sheet metal such as, galvanised. Sinale T-14\* Spray zinc and other coated steels  $\leq 6$  mm (1/4). DC + / -N.S. Multiple For electrodes not covered by any present classification. The wire must not T-G specified meet the chemical requirements to ensure a carbon steel deposit and the specified tensile strength. N.S. DC + / -For single pass electrodes not covered by any present classification. The T-GS not Single wire must meet the specified tensile strength requirements. No other specified requirements are specified.

\* Self shielded wire types. # Suitable only for material thickness below 6mm (1/4")



# **TECHNICAL AND TRADE INFORMATION**

# CONSUMABLES CLASSIFICATION TABLES

AS/NZS 2576. 1996 - Classifies Welding Consumables as used for Build-up and wear resistance. The following layout outlines this classification, however for the complete classification CIGWELD recommends that users refer to the current version of the standard. The publication is available from the Standards Association of Australia or Standards New Zealand.





# CONSUMABLES CLASSIFICATION TABLES (TABLE 7)

| Group 1 - Steels                 | Alloy Type                                       | AS/NZS class. |
|----------------------------------|--------------------------------------------------|---------------|
| Cobalarc Mangcraft               | Austenitic manganese steel                       | 1215-A4       |
| Cobalarc Mang. Nickel-O          | ,<br>,                                           | 1215-B1       |
| Cobalarc Austex                  | Austenitic stainless steel                       | 1315-A4       |
| Shieldcrome 309LT                |                                                  | 1315-B5       |
| Cobalarc 350                     | Low carbon martensitic steel                     | 1435-A4       |
| Stoody Super Buildup-G/O         |                                                  | 1435-B5/7     |
| Cobalarc Toolcraft               | Tool steel                                       | 1560-A4       |
| Cobalarc 650                     | High carbon martensitic steel                    | 1855-A4       |
| Cobalarc 750                     | 5                                                | 1860-A4       |
| Stoody 965-G/O                   |                                                  | 1855-B5/B7    |
| Stoody 850-0                     |                                                  | 1865-B7       |
| Group 2 - Cr White Irons         | Alloy Type                                       | AS/NZS class  |
| Cobalarc CR70                    | Austenitic chromium carbide iron                 | 2355-A4       |
| Stoody 101 HC                    |                                                  | 2360-B5/B7    |
| Cobalarc 9                       | Complex chromium carbide iron                    | 2460-A1       |
| Cobalarc Borochrome              | Martensitic chromium carbide iron                | 2560-A4       |
| Stoody Fineclad-O                |                                                  | 2565-B7       |
| Group 3 - Tungsten Carbide Comp. | Alloy Type                                       | AS/NZS class  |
| Cobalarc 4                       | Tungsten carbide granules in an iron rich matrix | 3460-A1       |
| Group 4 - Copper Alloys          | Alloy Type                                       | AS/NZS class  |
| Bronzecraft AC-DC                | Phosphor bronze (7-9% Sn)                        | 6200-A2       |
| Comweld Manganese Bronze         | High tensile brass                               | 6300-C1       |
| Comweld Comcoat C                |                                                  | 6300-C1       |
| Comweld Nickel Bronze            | Nickel bronze (9-13% Ni)                         | 6400-C1       |
| Comweld Comcoat N                |                                                  | 6400-C1       |



### Shielding Gases and Their Properties

The purpose of a shielding gas in the GMA or GTA welding process is to shield the weld pool and molten filler wire from atmospheric Oxygen and Nitrogen, to stabilise the arc, provide the desired depth of penetration, and in GMAW, facilitate the required form of metal transfer. These functions are affected by such factors as:

- material to be welded
- weld position
- process chosen
- weld economics
- material thickness
- type of wire
- metal transfer mode
- finish required.

The main gases used in the formulation of a shielding gas are:

- Argon
- Carbon Dioxide
- Oxygen
- 🔺 Helium
- Hydrogen.

These gases form the basis of the mixtures used in the Argoshield<sup>™</sup> range designed to best meet the needs of the welding industry. While carbon dioxide and argon can be used in their pure form as shielding gases in most applications, a specific mixture of gases will offer improvements in welding productivity and help to reduce the total weld cost.

### Argon

Argon is a chemically inert gas, heavier than air, with an ionisation potential of 15.7 eV giving easy arc starts and a stable welding arc. Argon produces a constricted arc column and has a low thermal conductivity which facilitates easy arc initiation.

The result is a relatively narrow weld bead with deep central penetration of the weld deposit into the base metal giving the 'finger' or 'wine glass' penetration profile. In GMA welding (spray or pulse transfer mode), the main force in the arc is axial to the filler wire and accelerates the molten droplet smoothly across the arc. This allows for virtually spatter-free welding in spray transfer mode.

Argon is used as a GMA welding shielding gas for many non-ferrous metals. It does not, however, provide suitable metal transfer characteristics for steel. There is a marked tendency for the filler metal not to flow out to the toes of the weld causing a very uneven weld shape. This poor weld bead shape is due to low arc energy, low heat input and rapid cooling rate and the high surface tension of liquid iron in argon atmospheres.

Argon is one of the gases available in the Argoshield<sup>™</sup> range and is a standard GTA welding shielding gas. Argon forms 0.8% of air by volume and is produced in the air separation process in addition to oxygen and nitrogen.

The information on this page is reprinted with the permission of BOC Gases Australia Ltd Argoshield is a registered Trade Mark of BOC Gases Australia Ltd.



GMAW Argon arc column



Penetration profile of Argon shielded GMA weld on Carbon steel



# Email: cigweldsales@cigweld.com.au

### **Carbon Dioxide**

Carbon dioxide, or CO<sub>2</sub>, as it is commonly known, is not chemically inert. When energised and subjected to arc temperatures above 6000°C, its molecules dissociate at the top of the arc to form excited species of oxygen and carbon monoxide:

 $2CO_2 = 2CO + O_2$ 

These molecules recombine at the bottom of the arc and in so doing, release a disruptive force upward into the arc causing a stuttering, unstable arc and welding spatter. The oxygen superheats the transferring molten filler metal creating a deep penetrating, fluid weld pool and promoting the deposition of convex weld beads.

Because the CO<sub>2</sub> shielded arc is highly oxidising, it is useful for coping with surface contaminants such as rust, paint and primers. Carbon dioxide can be used for mild and carbon manganese steel welding, where it gives a narrow, peaked weld bead with deep penetration. The normal spray transfer of fine metal droplets does not occur in the CO<sub>2</sub> arc. Globular and dip transfer arc modes only are used with CO<sub>2</sub>.

Because it is oxidising and not inert, CO<sub>2</sub> cannot be used to weld readily oxidisable metals such as aluminium, copper, magnesium or nickel, or for GTA welding. It is not suitable for stainless steels because of carbon pick-up which can give a 200-300% increase in carbon content in the weld metal.

In addition, because of the oxidising characteristics of CO<sub>2</sub> in GMA welding of steel, it is recommended that filler wires with a high manganese and silicon level or triple de-oxidised wires are used.

### Oxygen

Although oxygen itself is not used as a shielding gas, it is a vital component in shielding gas mixtures. When used as a low percentage (i.e. 1-7%) additive to argon or argon/C0<sub>2</sub> mixtures, oxygen can be very beneficial in improving arc characteristics and reducing the surface tension of the weld metal. It is an active gas which dissociates in the arc intensifying the arc plasma, thereby increasing the heat input and travel speed, and improving weld penetration and edge wetting. It promotes the spray transfer mode in GMA welding of steels to give a virtually spatter-free, high productivity process.

### Helium

260

Helium is also inert but has a higher ionisation potential than argon, of 24.5 eV. As a result, helium arcs have a higher arc voltage than argon for a given arc length, translating into higher heat input and weld travel speeds.

**BOC LIMITED** 

The high thermal conductivity of helium produces a wide, low weld bead with good fusion and penetration. High flow rates are necessary to maintain a helium shield because the gas is lighter than air.

The information on this page is reprinted with the permission of BOC Gases Australia Ltd. Argoshield is a registered Trade Mark of BOC Gases Australia Ltd.



Carbon Dioxide arc column



Penetration profile of Carbon Dioxide on Carbon steel



GMAW Helium arc column

### Helium cont.

High concentrations of helium are used in Argoshields' designed to weld thick sections of non-ferous metals or metals where the high heat conductivity of the metal causes problems in maintaining weld pool fluidity. Welding speeds are very high with helium and its use can result in economical advantages over low cost gases, particularly in high conductivity materials.

Helium is a rare gas found in association with certain natural gas streams in low concentrations. It is costly to produce, store and transport as a liquid, because its boiling point is very low - 269°C.



Penetration profile of Helium shielded GMA weld on Carbon steel

### Hydrogen

Hydrogen has a relatively low ionisation potential (13.5 eV), but a high thermal conductivity. This produces a higher arc energy for deeper penetration and weld pool fluidity. Because hydrogen is a reducing agent, its action helps to remove oxide films on the weld pool surface resulting in a cleaner weld bead.

### Argon Based Mixtures

The characteristics of each gas used in a shielding gas mixture affect the way the gas will perform, including the shielding efficiency, arc stability and the shape and strength of the weld. Depending on the application, the right balance of gases in a mixture will produce a shielding gas with the optimum properties for the application and greater tolerance to voltage and current settings.

Argon is an excellent base for GMA welding shielding gas mixtures because it permits the use of spray transfer with all the commonly welded metals. However, when depositing flat or horizontal welds on steel or stainless steel, the quick freeze characteristics of nargon weld does not permit the molten metal to wet out the toes of the weld, causing undercutting at the edges of the weld bead. It is therefore necessary to add active gases to argon, such as oxygen or carbon dioxide, to increase the heat input for GMA welding of steels and stabilise the droplet size.

### Argon + Oxygen Mixtures

Oxygen is added to argon to stabilise the arc, improve the weld bead profile and edge wetting and minimise the tendency to undercut ferrous welds. Discrete percentages of oxygen (i.e. 1-7%) prevent excessive losses of manganese and silicon, as well as increase the temperature of the molten metal transferred across the arc. The molten weld pool has a lower surface tension than with argon, wetting the parent metal to flatten the weld bead profile.

For stainless steels and other corrosion resistant steels (e.g. 3CR12) a mixture of 1-2% oxygen is recommended.

Above 5% oxygen, the surface of the weld bead becomes increasingly oxidised with consequent losses of manganese, silicon and chromium. Argon/oxygen welds have a flatter bead than argon or CO<sub>2</sub> and give awine glass

penetration pattern. Argoshield™ 40 is such an argon/oxygen mixture offering virtually spatter-free beads on sheet steel in spray mode.

The information on this page is reprinted with the permission of BOC Gases Australia Ltd. Argoshield is a registered Trade Mark of BOC Gases Australia Ltd.



Penetration profile of Argon + Oxygen shielded GMA weld on Carbon steel

BOC LIMITED



### Email: cigweldsales@cigweld.com.au

### **Argon Based Mixtures**

Argon + Carbon Dioxide Mixtures

For mild and carbon manganese steels, argon/carbon dioxide mixtures can be used with the CO<sub>2</sub> conventionally ranging from 2-30% by volume. Ideally 25% CO<sub>2</sub> should not be exceeded for best results. With increasing CO<sub>2</sub> content to provide more heat and broader and deeper penetration, the spray transfer mode deteriorates. Argoshield<sup>TM</sup> S2 is a high CO<sub>2</sub> mixture offering excellent penetration. Argon/CO<sub>2</sub> mixtures are successfully used with flux-cored and metal-cored wires.

An  $\operatorname{argon/CO}_2$  weld shows deeper and fuller penetration than  $\operatorname{argon/carbon}$  dioxide shielded and an  $\operatorname{argon/oxygen}$  weld.

Argon + Oxygen + Carbon Dioxide mixtures

The further addition of Oxygen to an argon/CO<sub>2</sub> mixture flattens the weld bead and improves spray transfer characteristics, total heat input, weld bead profile and penetration.

Argon/oxygen/carbon dioxide mixtures allow the fullest flexibility in producing shielding gases best suited to different steel applications. The oxygen and CO<sub>2</sub> mixtures, such as Argoshield<sup>TM</sup> Light, are well suited to dip transfer welding of lighter section metal. In the spray transfer mode, they give an excellent arc with greater welder appeal and minimum spatter that is suitable for welding light and medium section steels.

Low oxygen/high  $CO_2$  mixtures, such as Argoshield<sup>TM</sup> Universal, are best suited to dip and spray transfer welding and display excellent weld bead profiles and penetration. They perform particularly well in all position welding of heavy steel sections. High  $CO_2$  mixtures give spatter levels which are much lower than with carbon dioxide, but with comparable penetration and fusion performance. The addition of the oxygen reduces the droplet diameter and improves the stability of the transfer.

### Argon + Helium Mixtures

Argon/helium mixtures are usually used to obtain the most favourable characteristics of both gases in terms of heat input, weld speed, weld bead profile and penetration. The mixtures are normally used for heavier sections of non-ferrous metals such as aluminium, copper, magnesium and nickel. The heavier the metal thickness and the more heat conductive the metal, the greater the percentage of helium required in the mixture. Typical mixtures contain between 25% and 75% helium. Alushield Light and Alushield Heavy are argon/helium mixtures.

### Argon + Helium + Hydrogen

A mixture of argon/helium/hydrogen, as found in Argoshield™ 71T, produces a very hot arc making this mixture ideal for GTA welding of stainless and nickel steels. The relatively small amount of hydrogen does not cause damage to the tungsten electrode but is desirable to increase the speed of welding while offering cleaner weld beads by the reducing action of the hydrogen onthe weld pool surface oxides. Hydrogen is also known to improve the weld tolerance of variations in austenitic stainless steel castings.

BOC LIMITED

The information on this page is reprinted with the permission of BOC Gases Australia Ltd. Argoshield is a registered Trade Mark of BOC Gases Australia Ltd.

Penetration profile of Argon + Oxygen shielded GMA weld on Carbon steel



Penetration profile of Argon + Oxygen + Carbon Dioxide



Penetration profile of Argon + Helium shielded weld on Carbon steel



# Mild and Medium Tensile Steels - Gas Metal Arc and Flux Cored Arc Welding

| Shielding Gas           | Filler Meta      | als GMAW           | Comments                                                    | Filler Metals FCAW                                                                                                            | Comments                                                                                                                         |
|-------------------------|------------------|--------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Argoshield 40           | Autocraft<br>LW1 | Autocraft<br>LW1-6 | Clean, smooth finish                                        | Metal-Cor XP*                                                                                                                 |                                                                                                                                  |
| Argoshield<br>Light     | Autocraft<br>LW1 | Autocraft<br>LW1-6 | Clean, dip & spray<br>transfer                              | Metal-Cor XP*<br>Verti-Cor XP*                                                                                                |                                                                                                                                  |
| Argoshield<br>Universal | Autocraft<br>LW1 | Autocraft<br>LW1-6 | Higher penetration                                          | Metal-Cor XP                                                                                                                  | Optimum shielding for<br>penetration and<br>travel speeds                                                                        |
|                         |                  |                    |                                                             | Verti-Cor XP<br>Verti-Cor 3XP<br>Supre-Cor 5                                                                                  | Smooth even transfer<br>spatter and fine levels.<br>Adequate penetration.                                                        |
| Argoshield 52           | Autocraft<br>LW1 | Autocraft<br>LW1-6 | Higher CO <sub>2</sub> level,<br>excellent dip<br>and spray | Verti-Cor XP<br>Verti-Cor 3XP<br>Supre-Cor 5<br>Verticor 3XP H4                                                               | Optimum shielding giving<br>excellent edge fusion and<br>penetration, low spatter<br>and fume levels.                            |
|                         |                  |                    |                                                             | Metal-Cor XP                                                                                                                  | Higher CO <sub>2</sub> contents with<br>higher spatter levels.                                                                   |
| Argoshield 54           | Autocraft<br>LW1 | Autocraft<br>LW1-6 | High quality, triple<br>mixture                             | Metal-Cor XP*<br>Verti-Cor XP*                                                                                                |                                                                                                                                  |
| Argoshield 100          | Autocraft<br>LW1 | Autocraft<br>LW1-6 | Helium addition for<br>higher travel speeds                 | Supre-Cor 5                                                                                                                   | Improved arc transfer,<br>better fillet shapes<br>& lower spatter levels                                                         |
| Welding CO <sub>2</sub> | Autocraft<br>LW1 | Autocraft<br>LW1-6 | High penetration,<br>low cost                               | Satin-Cor XP<br>Verti-Cor ULTRA<br>Verti-Cor ULTRA 3<br>Verti-Cor Ultra H4<br>Verti-Cor XP<br>Supre-Cor 5<br>Tensi-Cor 110TXP | Optimum shielding for<br>economy and weld<br>metal quality.<br>Low cost shielding giving<br>deep penetration<br>characteristics. |

\* These shielding gases are not normally recommended due to higher Mn and Si recovery in the weld metal. For single pass fillet welds the results may be acceptable.



| Alloy Steels - Gas Metal Arc and Flux Cored Arc Welding |                                                                                 |                                                                                     |                                                         |                                                                                                                                                 |  |  |  |  |
|---------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Shielding Gas                                           | Filler Metals GMAW                                                              | Comments                                                                            | Filler Metals FCAW                                      | Comments                                                                                                                                        |  |  |  |  |
| Argoshield 52                                           | Autocraft Super Steel<br>Autocraft Mn-Mo<br>Autocraft CrMo1                     | Excellent penetration<br>and usability<br>for dip and spray                         | Supre-Cor 5                                             | For alloy steels where<br>full joint efficiency is not<br>required                                                                              |  |  |  |  |
|                                                         | Autocraft NiCrMo trar<br>Most su<br>dip tr                                      |                                                                                     | Verti-Cor 80Ni 1<br>Verti-Cor 91 K2<br>Verti-Cor 111 K3 | For alloy steels where<br>higher joint strength<br>is required                                                                                  |  |  |  |  |
| Stainshield                                             | Autocraft Super Steel<br>Autocraft Mn-Mo<br>Autocraft CrMo1<br>Autocraft NiCrMo | Optimum choice for<br>smooth transfer in<br>spray mode,<br>higher alloy<br>recovery | N.R.                                                    |                                                                                                                                                 |  |  |  |  |
| Argoshield 100                                          | Autocraft Super Steel<br>Autocraft Mn-Mo<br>Autocraft CrMo1<br>Autocraft NiCrMo | Helium addition<br>for high travel<br>speeds                                        | Supre-Cor 5                                             | Improved arc transfer,<br>better fillet shapes<br>& lower spatter levels.<br>For alloy steels where<br>full joint efficiency is not<br>required |  |  |  |  |

| Stainless Steels - Gas Metal Arc and Gas Tungsten Arc Welding |                                      |                                                                                                                        |                               |                                                                                                           |  |  |  |
|---------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------|--|--|--|
| Shielding Gas                                                 | Filler Metals GMAW                   | Comments                                                                                                               | Filler Wires GTAW             | Comments                                                                                                  |  |  |  |
| Stainshield                                                   | Autocraft 308LSi,<br>316LSi, 309LSi, | Smooth, even<br>transfer, excellent<br>fillet shape, ideal<br>for spray transfer                                       | N.R.                          |                                                                                                           |  |  |  |
| Stainshield<br>Heavy                                          | Autocraft 308LSi,<br>316LSi, 309LSi, | Excellent dip<br>transfer, can also<br>be used for spray<br>For welding heavier<br>section (>9mm)<br>stainless steels. | N.R.                          |                                                                                                           |  |  |  |
| Welding Argon                                                 | N.R.                                 |                                                                                                                        | Comweld 308L ,<br>309L, 316L, | Low cost shielding for<br>all general purpose<br>applications. Also used as<br>purge gas on pipe welding. |  |  |  |



| Aluminium          | Aluminium Alloys - Gas Metal Arc and Gas Tungsten Arc Welding |                                                                                    |                                                                      |                                                                               |  |  |  |  |
|--------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------|--|--|--|--|
| Shielding Gas      | Filler Metals GMAW                                            | Comments                                                                           | Filler Wires GTAW                                                    | Comments                                                                      |  |  |  |  |
| Welding Argon      | Autocraft AL1188<br>Autocraft AL4043<br>Autocraft AL5356      | Excellent shielding for<br>general purpose<br>applications                         | Comweld AL1188<br>Comweld AL4043<br>Comweld AL4047<br>Comweld AL5356 | Excellent shielding for<br>manual applications                                |  |  |  |  |
| Alushield<br>Light | Autocraft AL1188<br>Autocraft AL4043<br>Autocraft AL5356      | Hotter arc to give<br>broader & deeper<br>penetration.                             | Comweld AL1188<br>Comweld AL4043<br>Comweld AL4047<br>Comweld AL5356 | Hotter arc where more<br>penetration is required.                             |  |  |  |  |
| Alushield<br>Heavy | Autocraft AL1188<br>Autocraft AL4043<br>Autocraft AL5356      | Hottest arc, high speed<br>broadest, deepest<br>penetration for heavy<br>sections. | Comweld AL1188<br>Comweld AL4043<br>Comweld AL4047<br>Comweld AL5356 | Hottest arc for heavier<br>sections (>6mm)<br>and mechanised<br>applications. |  |  |  |  |

| Copper Alloys - Gas Metal Arc and Gas Tungsten Arc Welding |                                                    |                                                                                |                    |                                                                        |  |  |  |
|------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------|--|--|--|
| Shielding Gas                                              | Filler Metals GMAW                                 | Comments                                                                       | Filler Wires GTAW  | Comments                                                               |  |  |  |
| Welding Argon                                              | Autocraft Deox. Copper<br>Autocraft Silicon Bronze | For general purpose applications                                               | Comweld Si. Bronze | For general purpose<br>applications                                    |  |  |  |
| Specshield<br>Copper                                       | Autocraft Deox. Copper<br>Autocraft Silicon Bronze | For improved characteristics                                                   | N.R.               |                                                                        |  |  |  |
| Alushield<br>Alushield Heavy                               | Autocraft Deox. Copper<br>Autocraft Silicon Bronze | Hotter arc, reduces<br>preheat temp.<br>requirements. Higher<br>travel speeds. | Comweld Si. Bronze | Hotter arc for<br>mechanised<br>applications.<br>Higher travel speeds. |  |  |  |



The following information is for guidance in determining the weldability of various grades of steel which have been listed under the appropriate steel standard specification or proprietary trade names. For a comprehensive treatment of the "weldability of steels" please refer to the Welding Technology Institute of Australia (WTIA) Technical Note 1.

Factors influencing weldability:

### 1) The effect of Carbon on Steel:

Carbon is a major alloying element in the various grades of steel; increasing the carbon content of a particular steel results in a corresponding increase in hardenability when the material is subject to thermal treatment.

From a welding point of view, the best practice is to adopt a welding procedure which minimises the risk of high hardness in the Heat Affected Zone (HAZ) of the base metal and the weld deposit.

### Determination of carbon equivalent and group number of the steel:

In determining the weldability of a particular grade of steel, consideration must be given to the combined effect of alloying elements, in particular carbon and manganese. The following formula for Carbon equivalent (CE) takes account of the important alloying elements in calculating a number which grades the steel in terms of its relative weldability. Refer to the Carbon Equivalent (CE) table and respective weldability reference numbers detailed in Table 1.

$$CE = C + \frac{Mn}{6} + \frac{Cr + Mo + V}{5} + \frac{Ni + Cu}{15}$$

### 2) Determination of Combined Joint Thickness:

The concept of combined joint thickness (CJT) is required to address the expected cooling rate of adjoining sections - calculations for determining combined thickness are based on the following formula. Please refer to Diagram 1 for CJT's for a range of joint configurations.

 $T_{CJT} = t_1 + t_2 + t_3 + t_4$ 

### 3) Welding Energy or Heat Input:

Welding energy or heat input calculations are dependent upon the practical welding variables used, in particular welding current, arc voltage and welding speed for the specific arc welding processes adopted including manual metal arc, semi-automatic and automatic welding.

Welding energy input is based on the following formula:

 $Q = \frac{I \times E}{V} \times \frac{60}{1000}$ 

where

- Q = Welding energy or heat input (Kilojoules per millimeter, KJ/mm)
  - E = Arc voltage (volts)
  - I = Welding current (Amperes)
  - V = Welding speed or travel rate (mm/min)



### 4) Hydrogen Controlled Consumables and Welding Process Selection:

When determining the weldability of steel, careful consideration must be given to welding consumable selection.

For the purpose of preheat determination, the welding consumable/process combination used can be broadly grouped into two major types. Those which are hydrogen controlled and those which are not hydrogen controlled:

### Non-hydrogen controlled welding consumables:

This group includes cellulose, mild steel and iron powder type electrodes to Australian Standard AS/NZS 1553.1 classifications EXX10, EXX11, EXX12, EXX13, EXX14 and EXX24. For these non-hydrogen controlled electrodes care should be taken to avoid moisture pick-up from exposure to adverse atmospheric conditions (ie excessive heat, humidity etc).

### Hydrogen controlled welding consumables:

Hydrogen controlled types are defined as those consumable/process combinations which produce less than 15 mls of diffusible hydrogen per 100 gms of deposited weld metal. These include hydrogen controlled manual arc electrodes of the EXX16, EXX18, EXX28 and EXX48 types to AS/NZ5 1553 Parts 1 and 2. Many gas shielded metal-cored and flux-cored welding wires to AS 2203.1 and all steel gas metal-arc welding wires to AS/NZ5 2717.1 satisfy the hydrogen controlled requirement provided they are used with the correct shielding gas.

For all hydrogen controlled welding consumables, precautions must be taken in storage and handling to ensure the hydrogen status is not compromised.

For further information on the correct storage and handling of CIGWELD welding consumables, please refer to this handbook or WTIA publication Tech Note 3 "Care and Conditioning of Welding Consumables".

### General Procedure in Determining Weldability and Preheat Requirements.

1. Select the corresponding weldability reference number for the particular grade of steel.

Where a particular grade of steel is not listed, calculate the CE from the formulae given n section 1. Using Table 1 cross reference the CE calculation to determine the appropriate weldability reference number.

- Using Diagram 1 as a guide, determine the combined joint thickness (CJT) for the specific joint being welded.
- Using Figure 1, determine the joint weldability index from the intersection point of the two numbers from 1 & 2 above (ie the weldability reference number and the CJT number).
- Cross reference the joint weldability index, with the expected welding energy input (in KJ/mm) on Figure 2\* or 3\* to calculate the appropriate preheat temperature.

\*Note: if a hydrogen controlled welding consumable is to be used, refer to Figure 2; if a non-hydrogen controlled welding consumable is to be used, refer to Figure 3.



### Email: cigweldsales@cigweld.com.au

### The Need for Preheating of the Steel Joint:

### The beneficial effects of preheating in improving the weldability of the steel joint are:

- Preheating retards the cooling rate in the joint and is beneficial in preventing undesirable metallurgical microstructures from occurring in the heat affected zone (HAZ) of the base metal and in the weld metal of high alloy steel deposits.
- Preheating is used to offset the thermal conductivity of the steel sections and is beneficial in reducing the level of residual stress in the joint after welding.
- Preheat temperatures should be determined in accordance with the requirements of Figure 2 or 3 with the preheat temperature being maintained between subsequent weld passes.
- Preheating assists in the removal of diffusible hydrogen from the weld zone ie. the weld bead and HAZ.

### Tack Welding Procedure:

Best practice requires that the specified preheat is used prior to any tack welding operation regardless of the fact that tack welds will become part of the weldment.

# Weldability Reference Numbers:

The Weldability Reference Numbers used in this guide relate to the carbon equivalent (CE) ranges shown in Table 1 below:

| Carbon Equivalent         | Weldability | Carbon Equivalent  | Weldability |
|---------------------------|-------------|--------------------|-------------|
| (CE)                      | Reference   | (CE)               | Reference   |
|                           | Number      |                    | Number      |
| below 0.30                | 1           | 0.55 to below 0.60 | 7           |
| $\leq$ 0.30 to below 0.35 | 2           | 0.60 to below 0.65 | 8           |
| 0.35 to below 0.40        | 3           | 0.65 to below 0.70 | 9           |
| 0.40 to below 0.45        | 4           | 0.70 to below 0.75 | 10          |
| 0.45 to below 0.50        | 5           | 0.75 to below 0.80 | 11          |
| 0.50 to below 0.55        | 6           | 0.80 and above     | 12          |

### Table 1

Note: Weldability Reference Numbers above 12 (ie. 12A, 12B, 12C & 13) are not related to CE.



# **TECHNICAL AND TRADE INFORMATION**

# WELDING OF STEEL

### **Preheat Determination:**



Diagram 1 - Combined Joint Thickness (CJT) calculations for welds shown in black.



Figure 1 - Determination of joint weldability index using combined joint thickness and weldability reference number.

The information on this page is reprinted with the kind permission of The Welding Technology Institute of Australia (WTIA).





### **Preheat Determination:**



Figure 2 - Determination of preheat requirements for hydrogen controlled electrodes (EXX16, EXX18, EXX28 & EXX48) semi-automatic and automatic welding process.



Figure 3 - Determination of preheat requirements for Manual metal-Arc Welding with other than hydrogen controlled consumables.

The information on this page is reprinted with the kind permission of The Welding Technology Institute of Australia (WTIA).

# Steel Specifications:

| AS 1442 (1992) | Hot Rolled Bar and Semi Finished Product. |
|----------------|-------------------------------------------|
| AS 1443 (1993) | Cold Finished Bars Carbon Steel.          |

|                   | (         | Chemical Analysis | %         |                              |
|-------------------|-----------|-------------------|-----------|------------------------------|
| Steel Designation | С         | Mn                | Si        | Weldability Reference Number |
| 1006              | 0.08      | 0.25/0.50         | 0.10/0.35 | 1                            |
| 1010              | 0.08/0.13 | 0.30/0.60         | 0.10/0.35 | 1                            |
| 1020              | 0.18/0.23 | 0.30/0.60         | 0.10/0.35 | 2                            |
| 1030              | 0.28/0.34 | 0.60/0.90         | 0.10/0.35 | 5                            |
| 1040              | 0.37/0.44 | 0.60/0.90         | 0.10/0.35 | 8                            |
| 1050              | 0.48/0.55 | 0.60/0.90         | 0.10/0.35 | 10                           |
| 1060              | 0.55/0.65 | 0.60/0.90         | 0.10/0.35 | 11                           |
| 1070              | 0.65/0.75 | 0.60/0.90         | 0.10/0.35 | 12                           |

### Free Machine Steels.

| Steel Designation | С         | Mn        | S         | Pb        | Weldability<br>Reference Number |
|-------------------|-----------|-----------|-----------|-----------|---------------------------------|
| X1112             | 0.08/0.15 | 1.10/1.40 | 0.20-0.30 |           | 2A                              |
| 1144              | 0.40/0.48 | 1.35/0.65 | 0.08-0.13 |           | 11A                             |
| X1147             | 0.40/0.47 | 0.60/1.90 | 0.10-0.35 |           | 11A                             |
| 1214              | 0.15 Max  | 0.80/1.20 | 0.25-0.35 |           | 3A                              |
| 12L14             | 0.15 Max  | 0.80/1.20 | 0.25-0.35 | 0.15-0.35 | 3A                              |

### AS 1447 (1991) Hot Rolled Spring Steels.

| Steel Designation | C         | Mn        | Si        | Cr        | Weldability<br>Reference Number |
|-------------------|-----------|-----------|-----------|-----------|---------------------------------|
| K1070S            | 0.65-0.75 | 0.60-0.90 | 0.10-0.35 |           | 12A                             |
| XK5155S           | 0.50-0.60 | 0.70-1.0  | 0.10-0.35 | 0.70-0.90 | 12A                             |
| XK5160S           | 0.55-0.65 | 0.70-1.0  | 0.10-0.35 | 0.70-0.90 | 12A                             |
| XK9261S           | 0.55-0.65 | 0.70-1.0  | 1.8-2.20  |           | 12A                             |

AS 1663 (1991) Structural Steel Hollow Sections.

|                   | (    | Chemical Analysis | %    |                              |
|-------------------|------|-------------------|------|------------------------------|
| Steel Designation | С    | Mn                | Si   | Weldability Reference Number |
| C250-C250L0*      | 0.12 | 0.50              | 0.05 | 1                            |
| C350-C350L0*      | 0.20 | 1.60              | 0.05 | 3                            |
| C450-C450L0*      | 0.20 | 1.60              | 0.35 | 3                            |

\* Nb + V + Ti = 0.15



# Steel Specifications:

### Carbon Manganese Steels.

|                   | Chemical A | Analysis % |                              |
|-------------------|------------|------------|------------------------------|
| Steel Designation | С          | Mn         | Weldability Reference Number |
| X1315             | 0.12-0.18  | 1.40-1.70  | 5                            |
| X1320             | 0.18-0.23  | 1.40-1.70  | 5                            |
| X1325             | 0.23-0.28  | 1.40-1.70  | 6                            |
| X1340             | 0.38-0.43  | 1.40-1.70  | 10                           |
| X1345             | 0.43-0.48  | 1.40-1.70  | 11                           |

AS 1444 (1986) AS 2506 (1990) Fully Killed Alloy Steels. Wrought Alloy Steels.

| Chemical Analysis %  |           |           |           |           |           |           |                                    |  |
|----------------------|-----------|-----------|-----------|-----------|-----------|-----------|------------------------------------|--|
| Steel<br>Designation | C         | Mn        | Si        | Ni        | Cr        | Мо        | Weldability<br>Reference<br>Number |  |
| XK3312(EN36A)        | 0.10-0.16 | 0.35-0.60 | 0.10-0.35 | 3.0-3.75  | 0.70-1.0  |           | 6                                  |  |
| 4130                 | 0.28-0.33 | 0.40-0.60 |           |           | 0.80-1.10 | 0.15-0.25 | 9                                  |  |
| 4140                 | 0.30-0.43 | 0.75-1.0  |           |           | 0.80-1.10 | 0.15-0.25 | 12                                 |  |
| XK4150               | 0.47-0.55 | 1.0-1.40  | 0.10-0.40 |           | 0.40-0.80 | 0.10-0.20 | 12                                 |  |
| XK4340               | 0.37-0.44 | 0.55-0.90 | 0.10-0.35 | 1.55-2.0  | 0.65-0.95 | 0.20-0.35 | 12                                 |  |
| 4620                 | 0.17-0.23 | 0.45-0.65 | 0.10-0.35 | 1.65-2.0  |           | 0.20-0.30 | 6                                  |  |
| 5140                 | 0.38-0.43 | 0.70-0.90 |           |           | 0.70-0.90 |           | 11                                 |  |
| 8620                 | 0.18-0.23 | 0.70-0.90 | 0.10-0.35 | 0.40-0.70 | 0.40-0.60 | 0.15-0.25 | 6                                  |  |
| 9050                 | 0.45-0.55 | 0.90-1.20 | 0.60-0.90 |           |           |           | 11                                 |  |
| XK9315               | 0.12-0.18 | 0.25-0.50 | 1.10-0.35 | 3.90-4.30 | 1.0-1.40  | 0.15-0.30 | 10                                 |  |
| XK9931               | 0.27-0.35 | 0.45-0.70 | 0.10-0.35 | 2.30-2.80 | 0.50-0.80 | 0.45-0.65 | 12                                 |  |
| XK9940               | 0.36-0.44 | 0.45-0.70 | 0.10-0.35 | 2.3-2.80  | 0.50-0.80 | 0.45-0.65 | 12                                 |  |



# Steel Specifications:

### **BS STEEL SPECIFICATION.**

| Chemical Analysis %  |                                                    |                |              |                |              |           |       |       |                                    |
|----------------------|----------------------------------------------------|----------------|--------------|----------------|--------------|-----------|-------|-------|------------------------------------|
| Steel<br>Designation | С                                                  | Mn             | Si           | Ŋ              | Ni           | Мо        | S     | Р     | Weldability<br>Reference<br>Number |
| BS 1501 (1980)       | Steels                                             | for Fired and  | Unfired Pres | sure Vessels   |              |           |       |       |                                    |
| Grade 360            | 0.17                                               | 0.40 - 1.20    |              |                |              |           |       |       | 3                                  |
| Grade 400            | 0.22                                               | 0.50 - 130     |              |                |              |           |       |       | 4                                  |
| Grade 430            | 0.25                                               | 0.60 - 1.40    |              |                |              |           |       |       | 5                                  |
| BS EN 10028-2 (1     | BS EN 10028-2 (1993) Steels for Pressure Purposes. |                |              |                |              |           |       |       |                                    |
|                      | Non-a                                              | loy and Alloy  | Steels with  | Elevated Tem   | perature Pro | perties   |       |       |                                    |
| Grade P235GH         | 0.16                                               | 0.40 - 1.20    |              |                |              |           |       |       | 3                                  |
| Grade P265GH         | 0.20                                               | 0.50 - 1.40    |              |                |              |           |       |       | 4                                  |
| Grade P295GH         | 0.08 - 0.20                                        | 0.90 - 1.50    |              |                |              |           |       |       | 5                                  |
| Grade P355GH         | 0.10 - 0.22                                        | 1.00 - 1.70    |              |                |              |           |       |       | 5                                  |
| BS EN 10025 (198     | 30) Hot Ro                                         | led Products   | of Non Allo  | y Structural S | iteels       |           |       |       |                                    |
| Grade Fe 360         |                                                    |                |              |                |              |           |       |       | 3                                  |
| Grade Fe 430         |                                                    |                |              |                |              |           |       |       | 4                                  |
| Grade Fe 430         |                                                    | 1.60           |              |                |              |           |       |       | 5                                  |
| BS970/PD970          | Sp                                                 | ecification St | eels         |                |              |           |       |       |                                    |
| En 25                | 0.27-0.35                                          | 0.10-0.35      | 0.50-0.70    | 2.30-2.50      | 0.50-0.80    | 0.40-0.70 | 0.050 | 0.050 | 12                                 |
| En 26                | 0.36-0.44                                          | 0.10-0.35      | 0.50-0.70    | 2.30-2.80      | 0.50-0.80    | 0.40-0.70 | 0.050 | 0.050 | 12                                 |
| En 36A               | 0.15                                               | 0.10-0.35      | 0.30-0.60    | 3.00-3.75      | 0.60-1.10    |           | 0.050 | 0.050 | 6                                  |
| En 39B               | 0.12-0.18                                          | 0.10-0.35      | 0.50         | 3.80-4.50      | 1.00-1.40    | 0.15-0.35 | 0.050 | 0.050 | 10                                 |
| En 40A               | 0.10-0.20                                          | 0.10-0.35      | 0.40-0.65    | 0.40           | 2.90-3.50    | 0.40-0.70 | 0.050 | 0.050 | 10                                 |
| Fn 40B               | 0.20-0.30                                          | 0 10-0 35      | 0 40-0 65    | 0.40           | 2 90-3 50    | 0 40-0 70 | 0.050 | 0.050 | 12                                 |

### Ferritic Creep Resistant Steels

| Steel Designation | С    | Mn   | Si   | Pb   | Weldability<br>Reference Number |
|-------------------|------|------|------|------|---------------------------------|
| Mn-Mo             | 0.20 | 1.40 | -    | 0.45 | 7B                              |
| 1/2Cr-1/2Mo       | 0.15 | 0.50 | 0.50 | 0.50 | 7B                              |
| 1Cr-1/2Mo         | 0.12 | 0.50 | 1.10 | 0.50 | 7B                              |
| 21/4Cr-1Mo        | 0.12 | 0.50 | 2.30 | 1.00 | 12B                             |
| 5Cr-1/2Mo         | 0.12 | 0.50 | 5.00 | 0.60 | 12B                             |



# Steel Specifications:

|                         | Chemical Analysis % |      |      |            |         |      |       |                 |                                    |
|-------------------------|---------------------|------|------|------------|---------|------|-------|-----------------|------------------------------------|
| Steel<br>Designation    | C                   | Mn   | Si   | Cr         | Ni      | Мо   | S     | Other           | Weldability<br>Reference<br>Number |
|                         |                     |      | Pla  | stic Mould | Steels  |      |       |                 |                                    |
| ASSAB                   |                     |      |      |            |         |      |       |                 |                                    |
| Calmax                  | 0.6                 | 0.8  | 0.35 | 4.5        |         | 0.5  |       | V 02            | 12C                                |
| BOHLER STEEL            |                     |      |      |            |         |      |       |                 |                                    |
| M200                    | 0.40                | 1.50 | 0.40 | 1.90       |         | 0.20 | 0.070 |                 | 12C                                |
| M238                    | 0.38                | 1.50 | 0.30 | 2.0        | 1.10    | 0.20 |       |                 | 12C                                |
| M310                    | 0.43                |      |      | 13.5       |         |      |       |                 | 12C                                |
| COMMONWEA               | LTH STEEL           |      |      |            |         |      |       |                 |                                    |
| P20                     | 0.30                | 0.75 | 0.60 | 1.70       |         | 0.40 |       |                 | 12C                                |
| Maxel Holder<br>Block   | 0.50                | 1.30 | 0.30 | 0.65       |         | 0.18 |       |                 | 12C                                |
| STEELMARK EAGLE & GLOBE |                     |      |      |            |         |      |       |                 |                                    |
| CSM20.30                | 0.80                | 0.50 | 1.65 |            | 0.40    |      |       | 12C             |                                    |
| Maxel HB                | 0.50                | 0.30 | 0.08 | 0.65       |         | 0.18 |       |                 | 12C                                |
| 420 MFQ                 | 0.35                | 0.1  | 1.0  | 13.0       |         |      |       |                 | 12C                                |
|                         |                     |      | Ho   | t Work Too | l Steel |      |       |                 |                                    |
| ASSAB                   |                     |      |      |            |         |      |       |                 |                                    |
| 8407                    | 0.39                | 0.40 | 1.0  | 5.3        |         | 1.3  |       | V0.9            | 12C                                |
| 8407<br>Supreme         | 0.39                | 0.40 | 1.0  | 5.2        |         | 1.40 |       | V0.9            | 12C                                |
| QRO 90<br>Supreme       | 0.38                | 0.75 | 1.0  | .6         |         | 2.25 |       | V0.9            | 12C                                |
| BOHLER STEEL            |                     |      |      |            |         |      |       |                 |                                    |
| W302                    | 0.39                | 0.40 | 1.10 | 5.20       |         | 1.40 |       | V0.95           | 12C                                |
| W321                    | 0.39                | 0.35 | 0.30 | 2.90       |         | 2.8  |       | V0.50<br>Co2.90 | 12C                                |
| W500                    | 0.55                | 0.75 | 0.25 | 1.1        | 1.7     | 0.55 |       | V0.10           | 12C                                |
| COMMONWEA               | LTH STEEL           |      |      |            |         |      |       |                 |                                    |
| R15                     | 0.55                | 0.70 | 0.30 | 0.65       | 1.40    | 0.35 |       |                 | 12C                                |
| H13                     | 0.40                | 0.40 | 1.0  | 5.0        |         | 1.30 |       | V1.10           | 12C                                |
| STEELMARK EA            | AGLE & GLOB         | BE   |      |            |         |      |       |                 |                                    |
| ADIC                    | 0.39                |      | 1.0  | 5.2        |         | 1.40 |       | V0.35           | 12C                                |
| NCM5                    | 0.55                | 0.85 |      | 1.2        | 1.65    | 0.35 |       | V0.15           | 12C                                |



# Steel Specifications:

|                         | Chemical Analysis % |      |      |             |          |      |      |              |                                    |
|-------------------------|---------------------|------|------|-------------|----------|------|------|--------------|------------------------------------|
| Steel<br>Designation    | С                   | Mn   | Si   | τĴ          | Ni       | Мо   | S    | Other        | Weldability<br>Reference<br>Number |
|                         |                     |      | Co   | ld Work Too | ol Steel |      |      |              |                                    |
| ASSAB                   |                     |      |      |             |          |      |      |              |                                    |
| XW10                    | 1.0                 | 0.60 | 0.30 | 5.3         |          | 1.1  |      | V0.20        | 12C                                |
| XW5                     | 2.05                | 0.80 | 0.30 | 12.5        |          |      |      | W1.3         | 12C                                |
| XW41                    | 1.55                | 0.4  | 0.3  | 11.8        |          | 0.8  |      | V0.8         | 12C                                |
| DF2                     | 0.95                | 1.1  |      | 0.6         |          |      |      | W0.6<br>V0.1 | 12C                                |
| BOHLER STEEL            |                     |      |      |             |          |      |      |              |                                    |
| K190                    | 2.3                 | 0.40 | 0.40 | 12.50       |          | 1.10 |      | V4.0         | 12C                                |
| K600                    | 0.45                | 0.40 | 0.25 | 1.30        | 4.0      | 0.25 |      |              | 12C                                |
| K660                    | 0.70                | 2.0  | 0.30 | 1.0         |          | 1.35 | 0.15 |              | 12C                                |
| STEELMARK EAGLE & GLOBE |                     |      |      |             |          |      |      |              |                                    |
| SC23                    | 2.0                 | 0.20 | 0.30 | 12.0        |          |      |      |              | 12C                                |
| SC25                    | 1.50                | 0.45 | 0.25 | 18.0        |          | 1.0  |      | V0.35        | 12C                                |
| NSS6                    | 0.70                | 1.90 | 0.30 | 1.0         |          | 1.35 |      |              | 12C                                |
| SRS                     | 0.60                | 0.80 | 1.60 | 0.35        |          | 0.40 |      | V0.15        | 12C                                |

### AS1302 (1991)

# Steel Reinforcing Bars For Concrete

|                           | Che  | mical Analysis | %  |                              |
|---------------------------|------|----------------|----|------------------------------|
| Steel Designation         | С    | Mn             | Si | Weldability Reference Number |
| Grade 250R Plain Bars*    | 0.25 |                |    | 4                            |
| Grade 250S Deformed Bars* | 0.25 |                |    | 4                            |
| Grade 400Y Deformed Bars* | 0.22 |                |    | 3                            |

\*Grain refining and micro alloying elements = 0.15%

### AS1085.1 Rail Steels

|                          | Che       | mical Analysis | : %       |                              |
|--------------------------|-----------|----------------|-----------|------------------------------|
| Steel Designation        | С         | Mn             | Si        | Weldability Reference Number |
| Grade Grade 31kg or 41kg | 0.53-0.69 | 0.60-0.95      | 0.15-0.35 | 12                           |
| Grade 50kg or 60kg       | 0.66-0.82 | 0.70-1.00      | 0.15-0.50 | 12                           |



# Steel Specifications:

AS3678 (1990)

Structural Steels Hot Rolled Plates, Floor Plates and Slabs

| Steel<br>Designation | С    | Mn   | Si   | Ni   | Cr        | Мо        | Weldability<br>Reference<br>Number |
|----------------------|------|------|------|------|-----------|-----------|------------------------------------|
| Grade 200            | 0.15 | 0.60 | 0.25 | -    | -         | -         | 1                                  |
| Grade 250-250L15     | 0.22 | 1.70 | 0.55 | -    | -         | -         | 4                                  |
| Grade 300-300L-15    | 0.22 | 1.70 | 0.55 | -    | -         |           | 4                                  |
| Grade 350-350L15     | 0.22 | 1.70 | 0.55 | -    | -         | -         | 5                                  |
| Grade 400-400L15     | 0.22 | 1.70 | 0.55 | -    | -         | -         | 5                                  |
| Grade WR350/1, L0    | 0.14 | 1.70 |      | 0.55 | 0.35-1.05 | 0.15-0.50 | 5A                                 |

# Steels to Shipping Classification Society Rules

|                   | Chemical | Analysis %           |                              |
|-------------------|----------|----------------------|------------------------------|
| Steel Designation | C        | Mn                   | Weldability Reference Number |
| Grade A           | 0.23     |                      | 3A                           |
| Grade B           | 0.21     | 0.80 min.            | 3A                           |
| Grade D           | 0.21     | 0.60 min.            | 4A                           |
| Grade E           | 0.18     | 0.70 min.            | 4A                           |
|                   | America  | n Bureau of Shipping |                              |
| Class A           | 0.23     | -                    | 3A                           |
| Class B           | 0.21     | 0.80-1.10            | 4A                           |
| Class CS          | 0.16     | 1.00-1.35            | 3A                           |
| Class DS          | 0.16     | 1.00-1.35            | 3A                           |
| Class D           | 0.21     | 0.70-1.35            | 4A                           |
| Class E           | 0.18     | 0.70-1.35            | 4A                           |
|                   | Det      | t Norske Veritas     |                              |
| Grade NVA         | 0.23     | -                    | 3A                           |
| Grade NVD         | 0.21     | 0.60 min.            | 4A                           |
| Grade NVE         | 0.18     | 0.70 min.            | 4A                           |
|                   | В        | ureau Veritas        |                              |
| Grade A           | -        | -                    | 3A                           |
| Grade B           | 0.21     | 0.80-1.40            | 4A                           |
| Grade D           | 0.21     | 0.60-1.40            | 4A                           |
| Grade E           | 0.18     | 0.70-1.50            | 4A                           |



# **TECHNICAL AND TRADE INFORMATION**

# WELDING OF STEEL

# **Steel Specifications:**

# AS 1548 (1989) Steel Plates for Boilers and Pressure Vessels

| Steel<br>Designation | Chemical Analysis % C Mn Si Ni Cr Mo Cu |           |     |      |      |      |      | Weldability<br>Reference<br>Number |
|----------------------|-----------------------------------------|-----------|-----|------|------|------|------|------------------------------------|
| 7-430 R,N,A,T        | 0.20                                    | 0.50-1.60 | .50 | .30* | .25* | .10* | .20* | 5                                  |
| 7-460 R,N,A,T        | 0.20                                    | 0.90-1.70 | .60 | .30* | .25* | .10* | .30* | 5                                  |
| 5-490 N or A         | 0.24                                    | 0.90-1.70 | .60 | .30* | .25* | .10* | .20* | 5                                  |
| 7-490 R,N,A,T        | 0.24                                    | 0.90-1.70 | .60 | .30* | .25* | .10* | .30* | 6                                  |

\*Total Ni + Cr + Mo + Cu = .70% max.

### PIPE LINE STEELS

### API 5L (1992) Specification for Seamless Line Pipe

|                                | Chemical | Analysis %  |                              |
|--------------------------------|----------|-------------|------------------------------|
| Steel Designation              | С        | Mn          | Weldability Reference Number |
| Grade A25 CI I, CI II          | 0.21     | 0.30 - 0.60 | 2                            |
| Grade A                        | 0.22     | 0.90        | 3                            |
| Grade B                        | 0.27     | 1.15        | 5                            |
| Grade X42                      | 0.29     | 1.25        | 5                            |
| Cold-expanded -Grades X46, X52 | 0.29     | 1.25        | 5                            |
| Non-expanded -Grades X46, X52  | 0.31     | 1.35        | 5                            |
| Grades X56, X60                | 0.26     | 1.35        | 5                            |

### API 5L (1992) Specification for Welded Line Pipe

|                                | Chemical | Analysis %  |                              |
|--------------------------------|----------|-------------|------------------------------|
| Steel Designation              | С        | Mn          | Weldability Reference Number |
| Grade A25 CI I, CI II          | 0.21     | 0.30 - 0.60 | 2                            |
| Grade A                        | 0.21     | 0.90        | 3                            |
| Grade B                        | 0.26     | 1.15        | 4                            |
| Grade X42                      | 0.28     | 1.25        | 5                            |
| Cold-expanded -Grades X46, X52 | 0.28     | 1.25        | 5                            |
| Non-expanded -Grades X46, X52  | 0.30     | 1.35        | 5                            |
| Grades X56, X60                | 0.26     | 1.35        | 5                            |
| Grade X65                      | 0.26     | 1.40        | 5                            |
| Grade X70                      | 0.23     | 1.60        | 5                            |
| Grade X80                      | 0.18     | 1.80        | 5                            |



# Steel Specifications:

# ASTM SPECIFICATION STEELS

|                                          | Chemical A            | Analysis %             |                              |  |  |  |  |
|------------------------------------------|-----------------------|------------------------|------------------------------|--|--|--|--|
| Steel Designation                        | С                     | Mn                     | Weldability Reference Number |  |  |  |  |
| ASTM A36M (1991) Structural Steel Plates |                       |                        |                              |  |  |  |  |
| To 20mm including                        | 0.25                  |                        | 4                            |  |  |  |  |
| Over 20 to 40mm including                | 0.25                  | 0.80 - 1.20            | 4                            |  |  |  |  |
| Over 40 to 65mm including                | 0.26                  | 0.80 - 1.20            | 4                            |  |  |  |  |
| Over 65 to 100mm including               | 0.27                  | 0.85 - 1.20            | 5                            |  |  |  |  |
| Over 100mm                               | 0.29                  | 0.85 - 1.20            | 5                            |  |  |  |  |
| ASTM 242M (1991) High Strengt            | h Low Alloy Structu   | ral Steel              |                              |  |  |  |  |
| Type 1                                   | 0.15                  | 1.00                   | 5                            |  |  |  |  |
| ASTM 283M (1992) Low and Inte            | rmediate Tensile St   | ength Carbon Steel P   | lates                        |  |  |  |  |
| Grade A                                  | 0.14                  | 0.90                   | 2                            |  |  |  |  |
| Grade B                                  | 0.17                  | 0.90                   | 3                            |  |  |  |  |
| Grade C                                  | 0.24                  | 0.90                   | 4                            |  |  |  |  |
| Grade D                                  | 0.27                  | 0.90                   | 4                            |  |  |  |  |
| ASTM 284M (1990) Low and Inte            | rmediate Tensile St   | rength Carbon - Silico | n Steel Plates               |  |  |  |  |
| Grade C:                                 |                       |                        |                              |  |  |  |  |
| 25mm and under                           | 0.24                  | 0.90                   | 3                            |  |  |  |  |
| Over 25 to 50 mm, including              | 0.27                  | 0.90                   | 4                            |  |  |  |  |
| Over 50 to 100mm, including              | 0.29                  | 0.90                   | 4                            |  |  |  |  |
| Over 100 to 200mm, including             | 0.33                  | 0.90                   | 5                            |  |  |  |  |
| Over 200 to 300mm, including             | 0.36                  | 0.90                   | 6                            |  |  |  |  |
| Grade D:                                 |                       |                        |                              |  |  |  |  |
| 25mm and under                           | 0.24                  | 0.90                   | 3                            |  |  |  |  |
| Over 25 to 50 mm, including              | 0.27                  | 0.90                   | 4                            |  |  |  |  |
| Over 50 to 100mm, including              | 0.29                  | 0.90                   | 4                            |  |  |  |  |
| Over 100 to 200mm, including             | 0.33                  | 0.90                   | 5                            |  |  |  |  |
| ASTM 285M (1990) Pressure Vess           | sel Plates, Carbon St | eel                    |                              |  |  |  |  |
| Grade A                                  | 0.17                  | 0.90                   | 2                            |  |  |  |  |
| Grade B                                  | 0.22                  | 0.90                   | 3                            |  |  |  |  |
| Grade C                                  | 0.28                  | 0.90                   | 4                            |  |  |  |  |



# Steel Specifications:

### ASTM SPECIFICATION STEELS.

|                                                        | Chemical              | Analysis %           |                              |  |  |  |  |
|--------------------------------------------------------|-----------------------|----------------------|------------------------------|--|--|--|--|
| Steel Designation                                      | С                     | Mn                   | Weldability Reference Number |  |  |  |  |
| ASTM A516M (1990) Pressure Vessel Plates, Carbon Steel |                       |                      |                              |  |  |  |  |
| Grade 415                                              |                       |                      |                              |  |  |  |  |
| 12.5mm and under                                       | 0.21                  | 0.60 - 0.90          | 3                            |  |  |  |  |
| Over 12.5 to 50mm including                            | 0.23                  | 0.85 - 1.20          | 4                            |  |  |  |  |
| Over 50 to 100mm including                             | 0.25                  | 0.85 - 1.20          | 5                            |  |  |  |  |
| Over 100 to 200mm including                            | 0.27                  | 0.85 - 1.20          | 5                            |  |  |  |  |
| Over 200                                               | 0.27                  | 0.85 - 1.20          | 5                            |  |  |  |  |
| Grade 450                                              |                       |                      |                              |  |  |  |  |
| 12.5mm and under                                       | 0.24                  | 0.85 - 1.20          | 4                            |  |  |  |  |
| Over 12.5 to 50mm including                            | 0.26                  | 0.85 - 1.20          | 5                            |  |  |  |  |
| Over 50 to 100mm including                             | 0.28                  | 0.85 - 1.20          | 5                            |  |  |  |  |
| Over 100 to 200mm including                            | 0.29                  | 0.85 - 1.20          | 5                            |  |  |  |  |
| Over 200                                               | 0.29                  | 0.85 - 1.20          | 5                            |  |  |  |  |
| Grade 485                                              |                       |                      |                              |  |  |  |  |
| 12.5mm and under                                       | 0.27                  | 0.85 - 1.20          | 5                            |  |  |  |  |
| Over 12.5 to 50mm including                            | 0.28                  | 0.85 - 1.20          | 5                            |  |  |  |  |
| Over 50 to 100mm including                             | 0.30                  | 0.85 - 1.20          | 6                            |  |  |  |  |
| Over 100 to 200mm including                            | 0.31                  | 0.85 - 1.20          | 6                            |  |  |  |  |
| Over 200mm                                             | 0.31                  | 0.85 - 1.20          | 6                            |  |  |  |  |
| ASTM A537M (1991) Pressure Vess                        | el Plates, Heat Treat | ed, Carbon-Manganes  | e-Silicon Steel              |  |  |  |  |
| 40mm and under                                         | 0.24                  | 0.70 - 1.35          | 5                            |  |  |  |  |
| Over 40mm                                              | 0.24                  | 1.00 - 1.60          | 6                            |  |  |  |  |
| ASTM A569M (1991) Carbon Steel                         | (0.15% max) Hot-Ro    | lled Sheet and Strip |                              |  |  |  |  |
| Commercial quality                                     | 0.15                  | 0.60                 | 1                            |  |  |  |  |
| ASTM A572M (1992) High Strength                        | Low Alloy Niobium     | Vanadium Steels      |                              |  |  |  |  |
| Grade 290                                              | 0.21                  | 1.35                 | 5                            |  |  |  |  |
| Grade 345                                              | 0.23                  | 1.35                 | 5                            |  |  |  |  |
| Grade 415                                              | 0.26                  | 1.35                 | 6                            |  |  |  |  |
| Grade 450:                                             |                       |                      |                              |  |  |  |  |
| 13mm and under                                         | 0.26                  | 1.35                 | 6                            |  |  |  |  |
| over 13mm to 32mm                                      | 0.23                  | 1.65                 | 6                            |  |  |  |  |



# **Steel Specifications:**

# ASTM SPECIFICATION STEELS.

|                                                                                            | Chemical A            | Analysis %             |                              |  |  |  |  |  |
|--------------------------------------------------------------------------------------------|-----------------------|------------------------|------------------------------|--|--|--|--|--|
| Steel Designation                                                                          | С                     | Mn                     | Weldability Reference Number |  |  |  |  |  |
| STM A607 (1992)Steel Sheet and Strip, High Strength, Low Alloy, Hot Rolled and Cold Rolled |                       |                        |                              |  |  |  |  |  |
| Grade 415:                                                                                 |                       |                        |                              |  |  |  |  |  |
| Class 1, Grade 45                                                                          | 0.22                  | 1.35                   | 4                            |  |  |  |  |  |
| Class 1, Grade 50                                                                          | 0.23                  | 1.35                   | 5                            |  |  |  |  |  |
| Class 1, Grade 55                                                                          | 0.25                  | 1.35                   | 5                            |  |  |  |  |  |
| Class 1, Grade 60                                                                          | 0.26                  | 1.50                   | 6                            |  |  |  |  |  |
| Class 1, Grade 65                                                                          | 0.26                  | 1.50                   | 6                            |  |  |  |  |  |
| Class 1, Grade 70                                                                          | 0.26                  | 1.65                   | 6                            |  |  |  |  |  |
| Class 2, Grades 50,55                                                                      | 0.15                  | 1.35                   | 3                            |  |  |  |  |  |
| Class 2, Grades 60, 65                                                                     | 0.15                  | 1.50                   | 4                            |  |  |  |  |  |
| Class 2, Grade 70                                                                          | 0.15                  | 1.65                   | 4                            |  |  |  |  |  |
| ASTM A662M (1990) Pressure Vessel Plat                                                     | tes, Carbon Manganese | Steel for Moderate and | Lower Temperature Service    |  |  |  |  |  |
| Grade A                                                                                    | 0.14                  | 0.90 - 1.35            | 3                            |  |  |  |  |  |
| Grade B                                                                                    | 0.19                  | 0.85 - 1.50            | 4                            |  |  |  |  |  |
| Grade C                                                                                    | 0.20                  | 1.00 - 1.60            | 5                            |  |  |  |  |  |
| ASTM A737M (1987) Pressure Vessel Plates, High Strength Low Alloy Steels                   |                       |                        |                              |  |  |  |  |  |
| Grade B                                                                                    | 0.20                  | 1.15 - 1.50            | 5                            |  |  |  |  |  |
| Grade C                                                                                    | 0.22                  | 1.15 - 1.50            | 5                            |  |  |  |  |  |



# **Steel Specifications:**

# QUENCHED AND TEMPERED STEELS.

### Structural and Abrasion Resistant Grades.

|                                |                                                | Typical Chemical Analysis* (%) |           |      |           |      |      |       |                                 |                                    |
|--------------------------------|------------------------------------------------|--------------------------------|-----------|------|-----------|------|------|-------|---------------------------------|------------------------------------|
| Properties                     | Steel<br>Designation                           | C                              | Mn        | Si   | Cr        | Ni   | Мо   | S     | Other                           | Weldability<br>Reference<br>Number |
| BISALLOY Q &                   | T STEELS (Australia                            | a).                            |           |      |           |      |      |       |                                 |                                    |
| Yield Stress:                  |                                                |                                |           |      |           |      |      |       |                                 |                                    |
| 500MPa<br>600MPa<br>620-690MPa | Bisalloy 60<br>Bisalloy 70<br>Bisalloy 80/80PV | 0.16-0.18                      | 1.10-1.40 | 0.20 | 0.20-0.90 |      | 0.20 | 0.003 | B: 0.001<br>Ti: 0.02            | 13                                 |
| Hardness:                      |                                                |                                |           |      |           |      |      |       |                                 |                                    |
| 320-360HB<br>360-400HB         | Bisplate 320<br>Bisplate 360                   | 0.18                           | 1.15      | 0.40 | 0.85      |      | 0.20 |       | B: 0.002<br>Ti: 0.03            | 13                                 |
| 400-460HB                      | Bisplate 400                                   | 0.28                           | 0.50      | 0.35 | 0.96      |      | 0.15 |       | B: 0.002<br>Ti: 0.04            | 13                                 |
| IMPORTED Q 8                   | IMPORTED Q & T STEELS (JAPAN & USA).           |                                |           |      |           |      |      |       |                                 |                                    |
| Yield Stress:                  |                                                |                                |           |      |           |      |      |       |                                 |                                    |
| 550MPa<br>690MPa               | HY80<br>HY100                                  | 0.14                           | 0.30      | 0.25 | 1.60      | 2.8  | 0.40 |       |                                 | 13                                 |
| 690MPa                         | USST1                                          | 0.16                           | 0.85      | 0.30 | 0.57      | 0.90 | 0.50 |       | B: 0.004<br>V: 0.04<br>Cu: 0.30 | 13                                 |
| 690MPa                         | USST1 Type A                                   | 0.18                           | 0.90      | 0.30 | 0.55      |      | 0.20 |       | B: 0.001<br>V: 0.04             | 13                                 |
| 450MPa                         | Welten 60                                      | 0.11                           | 1.22      | 0.45 | 0.17      |      |      |       | V: 0.04                         | 13                                 |
| 690MPa                         | Welten 80C                                     | 0.10                           | 0.85      | 0.22 | 0.80      |      | 0.45 |       | B: 0.001<br>V: 0.04<br>Cu: 0.28 | 13                                 |
| 690MPa                         | Welten 80E                                     | 0.18                           | 0.90      | 0.23 | 0.40      |      |      |       | B: 0.001<br>V: 0.03<br>Cu: 0.25 | 13                                 |
| Hardness:                      |                                                |                                |           |      |           |      |      |       |                                 |                                    |
| 320HB min                      | Welten AR 320                                  | 0.18                           | 1.10      | 0.25 | 0.70      |      | 0.35 |       | B: 0.002<br>V: 0.04<br>Cu: 0.35 | 13                                 |
| 360HB min                      | Welten AR 360C                                 | 0.18                           | 1.10      | 0.25 | 0.90      |      | 0.35 |       | B: 0.002<br>V: 0.04<br>Cu: 0.35 | 13                                 |
| 477HB min                      | Welten AR 500                                  | 0.30                           | 1.20      | 0.40 | 0.60      |      | 0.10 |       | B: 0.003<br>Cu: 0.28            | 13                                 |

Dependent on plate thickness.

# **TECHNICAL AND TRADE INFORMATION**



# Quenched & Tempered Steels:

Preheat recommendations for Q & T Steels - Table 2.

| Q & T Steel Grade< 13mm >          | 13mm < 25m | m >25mm < 50mm | > 50mm |     |  |
|------------------------------------|------------|----------------|--------|-----|--|
| MINIMUM PREHEAT TEMPERATURE (°C)   |            |                |        |     |  |
| ( assuming high joint restraint )  |            |                |        |     |  |
| High Strength Structural Grades.   |            |                |        |     |  |
| 450 MPa minimum Yield Stress       | 10         | 25             | 75     | 100 |  |
| 620 MPa minimum Yield Stress       | 50         | 100            | 125    | 150 |  |
| 680 MPa minimum Yield Stress       | 50         | 100            | 125    | 150 |  |
| Abrasion Resistant Grades.         |            |                |        |     |  |
| 320 HB                             | 50         | 100            | 125    | 100 |  |
| 360 HB                             | 50         | 100            | 125    | 150 |  |
| 500 HB                             | 100        | 150            | 150    |     |  |
| MAXIMUM INTERPASS TEMPERATURE (°C) |            |                |        |     |  |
| All Grades                         | 150        | 175            | 200    | 220 |  |
| MAXIMUM ARC HEAT INPUT (Kj / mm)   |            |                |        |     |  |
| All Grades                         | 2.5        | 3.5            | 4.5    | 5.0 |  |

### Filler Metal Selection Guide for Bisalloy Q & T Steels - Table 3.

| Steel<br>Designation                  | Weld<br>Strength<br>Category* | Manual Metal<br>Arc Welding<br>(MMAW)                                                      | Gas Metal Arc<br>Welding #<br>(GMAW)                           | Flux Cored Arc<br>Welding #<br>(FCAW)                                           |  |  |
|---------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|
| Bisalloy 60                           | MS<br>LS<br>M H               | Alloycraft 90<br>Ferrocraft 61/ 7016<br>NR                                                 | Autocraft Mn-Mo<br>Autocraft LW1-6<br>NR                       | Verti-Cor 91 K2<br>Supre-Cor 5 /<br>Verti-Cor 80Ni 1<br>NR                      |  |  |
| Bisalloy 70                           | MS<br>LS<br>M H               | Alloycraft 110<br>Ferrocraft 61/ 7016<br>NR                                                | Autocraft NiCrMo<br>Autocraft Mn-Mo /<br>Autocraft LW1-6<br>NR | Tensi-Cor 110TXP<br>Supre-Cor 5 /<br>Verti-Cor 80Ni 1<br>NR                     |  |  |
| Bisalloy 80                           | MS<br>LS<br>M H               | Alloycraft 110<br>Ferrocraft 61/ 7016<br>NR                                                | Autocraft NiCrMo<br>Autocraft LW1-6 /<br>Autocraft Mn-Mo<br>NR | Tensi-Cor 110TXP<br>Verti-Cor 111 K3<br>Supre-Cor 5 /<br>Verti-Cor 80Ni 1<br>NR |  |  |
| Bisplate 320, 360,<br>400, 500        | MS<br>LS<br>M H               | NR<br>Ferrocraft 61/ 7016<br>Cobalarc 350, 650                                             | NR<br>Autocraft LW1-6<br>Cobalarc 350, 650                     | NR<br>Supre-Cor 5 /<br>Verti-Cor 80Ni 1<br>Cobalarc 350, 650                    |  |  |
| * Weld Strength Category Definitions: |                               | MS - Matching Strength LS - Lower Strength<br>M H - Matching Hardness NR - Not Recommended |                                                                |                                                                                 |  |  |

# Use only recommended shielding gases, please refer to product data in this handbook.



# Welding Recommendations:

### Weldability Reference No:

| 1 & 2       | Readily weldable with mild steel electrodes of the AS/NZS 1553.1: E41XX or E48XX, or<br>AWS A5.1: E60XX or 70XX classifications (such as Satincraft 13, Ferrocraft 12XP, Ferrocraft<br>21 or Weldcraft). Gas Metal Arc (GMAW or MIG/MAG) welding or Flux Cored Arc<br>welding (FCAW) with an appropriate CIGWELD welding consumable such as Autocraft<br>LW1-6 or Verti-Cor' series' wires can be carried out with out any precautions. No<br>preheat is normally required.                                                                                                                                                                       |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2A*         | The welding of these steels is normally not recommended because the high sulphur<br>or lead content can often lead to hot shortness during welding. For non critical<br>applications, best results are achieved using basic coated electrodes such as Ferrocraft<br>7016, Ferrocraft 61 or Ferrocraft 16TXP                                                                                                                                                                                                                                                                                                                                       |
| 3 & 4       | Readily welded using mild steel electrodes as per recommendation 1 & 2. GMAW or<br>FCAW processes can be used depending on specific welding details including<br>equipment availability, welding location, material thickness and positional welding<br>requirements etc. Refer to GMAW product data for Autocraft LWI-6 and FCAW product<br>data for Verti-Cor XP / Ultra / Ultra 3 and 3XP in the front of this handbook.<br>For Combined Joint Thicknesses (CJT, refer Diagram 1) of ≥50mm, the best practice is<br>to select a hydrogen controlled welding process / consumable combination and a<br>corresponding lower product temperature. |
| 21 * 0 11 * | Check specific Shinning Society approval requirements of the consumable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| JA Q 4A     | This group of steels are readily welded using mild steel electrodes of the ASINZS<br>153.1: E41XX-2 or E48XX-2 classifications. Also readily weldeble with the GMAW<br>process and Autocraft LW1-6 welding wire or other "W503" GMAW welding wires.<br>The FCAW process can also be used with Verti-Cor Ultra 3 / 3XP or other "W503" FCAW<br>wires                                                                                                                                                                                                                                                                                               |
| 5&6         | For intermediate strength and low alloy high strength steel, select a welding<br>consumable producing near matching weld deposit analysis and/or mechanical<br>properties. The best practice is to select a hydrogen controlled electrode or welding<br>wire of a comparable strength grade to that of the steel being welded and use the<br>recommended preheat.                                                                                                                                                                                                                                                                                 |
| 5A*         | To achieve matching 'weathering' of the parent steel, a welding consumable<br>containing Nickel and Copper alloy additions must be used. If colour match is not an<br>issue refer to 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7,8&9       | Follow the recommendations prescribed in 5 & 6. The use a hydrogen controlled<br>welding process / consumable combinations is considered more important as the<br>carbon equivalent and hardenability of the steel increases. The weld deposit strength<br>level should at least equal that of the grade of steel being welded. These steels are<br>hardenable and the use of correct preheat and interpass temperatures and slow<br>cooling after welding are important for success.                                                                                                                                                             |
|             | To avoid hydrogen cracking, the welding consumable should be used, stored and<br>reconditioned in accordance with the manufacturer's recommendations. For<br>CIGWELD welding consumables please refer to Recommended Storage, Care and<br>Conditioning of CIGWELD Electrodes. Welding Wires and Rods in this handbook.                                                                                                                                                                                                                                                                                                                            |
| 7B*         | These Chromium-Molybdenum and Molybdenum type steels are usually welded with<br>near matching welding consumables such as Alloycraft 80-B2 electrodes,<br>Autocraft Mn-Mo / CrMo1 GMAW welding wires or Comweld CrMo1 GTAW rods etc.<br>This is carried out to achieve comparable creep strength and corrosion resistance to<br>the parent steel. Low hydrogen welding conditions are essential as are the correct<br>preheat and interoass temperatures. retarded cooling and a post weld heat treatment.                                                                                                                                        |

\*Note A , B & C suffixes indicate constraints or conditions not adequately covered by the CE formula (eq high S, Pb etc)



# Email: cigweldsales@cigweld.com.au

# Welding Recommendations:

Weldability Reference No:

- Use hydrogen controlled welding process / consumable combinations which best 10 & 11 match the chemical composition and/or strength level of the parent steel. To avoid hydrogen cracking, the welding consumable should be used, stored and reconditioned in accordance with the manufacturer's recommendations. For CIGWELD welding consumables please refer to Recommended Storage. Care and Conditioning of CIGWELD Electrodes, Welding Wires and Rods in this handbook. Preheat temperature should be determined using the procedure described on page 69 of this guide. The use of 'dry' welding consumables is essential for the successful welding of these steels, as is slow cooling after welding. Post Weld Heat Treatment (PWHT) is also considered good welding practice. 11A Following on from recommendation 2A the welding of high carbon, sulphur bearing steel is not recommended except for non critical applications. Use hydrogen controlled process / consumable combinations. Welding consumables must be dry immediately prior to use, please refer to Recommended Storage, Care and Conditioning of CIGWELD Electrodes, Welding Wires and Rods in this handbook.
- 12 Use hydrogen controlled welding process / consumable combinations, including such consumables as Ferrocraft 61 and Ferrocraft 7016 electrodes or Suprecor 5 flux cored wire for lower strength welding and Alloycraft 110 electrode or Tensi-Cor 110 TXP flux cored wire for higher strength joints. The choice of higher or lower consumable strength levels will depend on the specifics of the application. These steels are normally supplied in the hardened and tempered condition which requires strict control of preheat, interpass temperature, post weld cooling and PWHT. To achieve optimum results please refer to the steel supplier for specific technical information, in particular heat treatment recommendations.
- 12A\* For the welding of high alloy spring steels in the hardened and tempered condition: Use hydrogen controlled process / consumable combinations including such consumables as Ferrocraft 61, Ferrocraft 7016 or Supre-Cor 5 in a thoroughly dry condition. Preheat steel sections to be joined to 250-300°C and maintain an interpass temperature of 250-300°C throughout welding. After welding slowly cool the joint in lime or wrap in a thermal blanket.

Alternatively where preheat must be reduced to the minimum, use Weldall electrodes with approximately 100°C less preheat and interpass temperature (ie 150 - 200°C) and slowly cool as previously described.

- 12B\* These Chromium-Molybdenum type steels are usually welded with near matching welding consumables such as Alloycraft 90-B3 electrodes, Autocraft CrMo2 GMAW welding wire or Comweld CrMo2 GTAW rods etc. This is done to achieve comparable creep strength and corrosion resistance to the parent steel. Low hydrogen welding conditions are essential as are the correct preheat and interpass temperatures, retarded cooling and a post weld heat treatment.
- 12C\* The welding of tool steels in the heat treated (hardened and tempered) condition should be avoided where possible. Comprehensive repair and maintenance applications using ferritic steel, low hydrogen consumables such as Ferrocraft 18-Ni electrodes or Supre-Cor 5 flux cored wire should only be attempted on mould and tool steels in the annealed condition. Minor repair work on heat treated tool steels can be carried out using "reconditioned" Weldall electrodes and appropriate preheat and interpass temperatures, retarded cooling and a post weld heat treatment (PWHT) to reduce residual stresses. Please refer to the steel manufacturer for specific welding recommendations.

\*Note A, B & C suffixes indicate constraints or conditions not adequately covered by the CE formula (eg high S, Pb etc)


# Welding Recommendations:

#### Weldability Reference No:

13

#### Welding Quenched and Tempered (Q & T) steels:

- Use only hydrogen controlled welding process / consumable combination, where the welding consumable has been used, stored and re-conditioned in accordance with the manufacturer's instructions. Refer to Recommended Storage, Care and Conditioning of CIGWELD Electrodes, Welding Wires and Rods in this handbook.
- Welding consumable selection is dependant on the particular grade of steel being welded and the specific service requirements of the weldment.
- For full strength weld joints select a welding consumable of matching ( or near matching) weld metal mechanical properties. See Table 3 on Page 81 for CIGWELD welding consumable recommendations.
- For lower strength welds select hydrogen controlled welding consumables having lower weld metal tensile properties and alloy content. See Table 3 on Page 81 for CIGWELD welding consumable recommendations.
- 5. Recommended preheat and interpass temperatures and maximum heat input data
- for structural and abrasion resistant Q & T steel grades are detailed in Table 2. If they are not adhered to closely the strength or integrity of the joint may be compromised.
- 6. Lower strength welding consumables are invariably used to join abrasion resistant Q & T steels because of their very high tensile properties. For but welds subject to surface abrasion, a capping pass deposited with a welding consumable of matching hardness to the base steel is sometimes used.

# Consumables Prequalified to AS/NZS 1554.1: 1995

| Manual Metal Arc<br>Welding Consumables:                                                                 | AS/NZS Standard                                                                                                                                                                               | LRS/DNV<br>Approval                  | Applicable<br>Steel Types*         |
|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------|
| GP6012<br>Ferrocraft 12XP<br>Satincraft 13                                                               | E4112-0<br>E4112-0<br>E4113-0                                                                                                                                                                 | 2<br>2Y<br>2                         | 1 & 2<br>"                         |
| Ferrocraft 11<br>PipeArc 6010P<br>Weldcraft                                                              | E4111-2<br>E4110-2<br>E4113-2                                                                                                                                                                 | 3<br>3<br>3                          | 3, 4, 5 & 6<br>"                   |
| Ferrocraft 21<br>Ferrocraft 22<br>Ferrocraft 16TXP<br>Ferrocraft 55U<br>Ferrocraft 61<br>Ferrocraft 7016 | $\begin{array}{c} {\sf E4814-2} \\ {\sf E4824-0} \\ {\sf E4816-2} \ {\sf H}_{10} \\ {\sf E4816-2} \ {\sf H}_{10} \\ {\sf E4818-3} \ {\sf H}_{10} \\ {\sf E4816-3} \ {\sf H}_{10} \end{array}$ | 3<br>2Y<br>3YH<br>3YH<br>3YH<br>3YH  | 3, 4, 5, 6, 7A & 7B<br>"<br>"<br>" |
| Gas Metal & Flux Cored ARC<br>Welding Consumables:                                                       | AS/NZS Standard                                                                                                                                                                               | LRS/DNV<br>Approval                  | Applicable<br>Steel Types*         |
| Autocraft LW1<br>Autocraft LWI-6                                                                         | ES4-GC/M-W503AH<br>ES6-GC/M-W503AH                                                                                                                                                            | 3YMS<br>3YS                          | All Types                          |
| Verti-Cor Ultra<br>Verti-Cor Ultra H4<br>Satin-Cor XP<br>Verti-Cor XP                                    | ETP-GCp-W502A. CM1 H <sub>10</sub><br>ETP-GCp-W502A. CM1 H <sub>10</sub><br>ETD-GCp-W502A. CM1 H <sub>10</sub><br>ETD-GCp-W502A. CM1 H <sub>10</sub>                                          | 2YSH<br>2YSH<br>2YSH<br>2YSH         | 1, 2 & 4<br>1, 2 & 4<br>″          |
| Verti-Cor Ultra 3<br>Metal-Cor XP<br>Verti-Cor 3XP<br>Verti-Cor 3XP H4<br>Supre-Cor 5                    | ETP-GCp-W503A. CM1 $\rm H_{10}$ ETD-GMn/p-W503A. CM1 $\rm H_5$ ETP-GMp-W503A. CM1 $\rm H_{10}$ ETP-GMp-W503A. CM2 $\rm H_5$ ETP-GMp-W503A. CM1 $\rm H_5$                                      | 3YSH<br>3YSH<br>3YSH<br>3YSH<br>3YSH | All Types<br>"<br>"                |

\* See applicable steel types on next page.



# APPLICABLE STEEL TYPES - PREQUALIFIED TO AS/NZS 1554.1: 1995

| Steel<br>type | AS 1163 | AS 1397      | AS 1450                      | AS 1548                                                              | AS 1594                                                                          | AS 1595    | AS 2074                     | AS 3678/<br>AS 3679.2                | AS 3679.1                          | NZS 3415           |
|---------------|---------|--------------|------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------|------------|-----------------------------|--------------------------------------|------------------------------------|--------------------|
| 1             | C250    | G250<br>G300 | C200<br>H200<br>C250<br>H250 | 7-430<br>7-460                                                       | Hd1<br>Hd2<br>Hd3<br>Hd4<br>Hd200<br>Hd250<br>Hd300/1<br>A1006<br>A1010<br>A1016 | All grades | C2<br>C3<br>C7A-1           | 200<br>250<br>300<br>A1006<br>XK1016 | 250<br>300                         | Fe 430A            |
| 2             | C250 L0 |              |                              | 7-430L0<br>7-460L0                                                   |                                                                                  |            |                             |                                      | 250 LO<br>300 LO                   | Fe 430C            |
| 3             |         |              |                              | 7-430L20<br>7-430L40<br>7-430L50<br>7-460L20<br>7-460L40<br>7-460L50 |                                                                                  |            |                             | 250 L15<br>300 L15                   | 250 L15<br>300 L15                 | Fe 430D            |
| 4             | C350    | G350         | C350<br>H350                 | 5-490<br>7-490                                                       | Hd350<br>Hd400<br>HW350                                                          |            | C1<br>C4-1<br>C4-2<br>C7A-2 | 350<br>WR350/1<br>400                | WR350/1<br>WR350/2<br>350          | Fe 510A<br>Fe 510B |
| 5             | C350 LO |              |                              | 7-490L0                                                              | XF300<br>XF400                                                                   |            |                             | WR350/1 LO                           | WR350/1 L0<br>WR350/2 L0<br>350 L0 | Fe 510C            |
| 6             |         |              |                              | 5-490L20<br>5-490L40<br>5-490L50<br>7-490L20<br>7-490L40<br>7-490L50 |                                                                                  |            |                             | 350 L15<br>400 L15                   | WR350/2 L15<br>350 L15             | Fe 510D            |
| 7A            | C450    | G450         | C450                         |                                                                      |                                                                                  |            |                             |                                      |                                    |                    |
| 7B            | C450L0  |              |                              |                                                                      |                                                                                  |            |                             |                                      |                                    |                    |



# Consumables for Welding Structural, Stainless and Engineering Steels:

| Applicable Steel Grades                                                                                                             | Manual Metal Arc                                            | Gas Metal Arc                            | Gas Tungsten Arc                        | Flux Cored Arc                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------|
| A53678 (AS 1204) Grades 200, 250, 300<br>and LO & L15 Grades<br>AS 1548 Grad 7-430R                                                 | Ferrocraft 11 (P)<br>Weldcraft (P)                          | Autocraft LW1 (P)<br>Autocraft LW1-6 (P) | Comweld High Test (P)                   | Verti-Cor XP (P)<br>Satin-Cor XP (P)<br>Metal-Cor XP (P)<br>Verti-Cor Ultra (P)<br>Satin-Cor HD70 |
| AS3678 (AS 1204) Grades 350, 400<br>and LO & L 15 Grades<br>AS 1548 Grades 7-460R, 5-490<br>and L20 Grades                          | Ferrocraft 21 (P)<br>Ferrocraft 22 (P)<br>Ferrocraft 61 (P) | Autocraft LW1 (P)<br>Autocraft LW1-6 (P) | Comweld Super steel<br>Supre-Cor XP (P) | Verti-Cor 3 XP (P)<br>Metal-Cor XP (P)<br>Verti-Cor Ultra 3 (P)                                   |
| AS2074 Grades C4, C5, C6, C7, L1A, L1B                                                                                              | Ferrocraft 61                                               | Autocraft LW1                            |                                         | Supre-Cor 5                                                                                       |
| ASTM A106 All Grades                                                                                                                | Ferrocraft 7016                                             | Autocraft LW1-6                          | Comweld Super steel                     |                                                                                                   |
| AS1548 L40                                                                                                                          |                                                             |                                          |                                         | Supre-Cor 5                                                                                       |
| ASTM A333 Grades 3 & 7                                                                                                              |                                                             |                                          |                                         | Verti-Cor 80Ni 1                                                                                  |
| AS1442 SS, KS, K9<br>AS2074 Grade L3A<br>AS2056 EN33<br>ASTM Grades: A148 80-40, 80-50<br>A3028, C & D<br>A420 WPL9<br>A437 Class 2 | Alloycraft 80-C1                                            | Autocraft Mn-Mo                          |                                         | Verti-Cor 80Ni 1                                                                                  |
| ASTM A2170-WC6<br>ASTM A335-P11<br>ASTM A387-G11, 12<br>AS2074 Grades L5B, LSD, LSF                                                 | Alloycraft 80-B2                                            | Autocraft CrMo1                          | Comweld CrMo1                           |                                                                                                   |
| ASTM A217-WC9<br>ASTM A335-P22<br>ASTM A387-G22<br>AS2074 Grades L5C, L5D, L5F                                                      | Alloycraft 90-B3                                            |                                          | Comweld CrMo2                           |                                                                                                   |
| AS3597 - 500<br>ASTM A537 C1.2<br>ASTM A572 Grades 60, 65<br>ASTM A852 eg. Bisalloy 60<br>AS2074 Grade L6                           | Alloycraft 90                                               |                                          |                                         | Verti-Cor 91 K2                                                                                   |

(P) These products are prequalified to AS/NZS 1554.1 for welding the steels listed.



# **TECHNICAL AND TRADE INFORMATION**

# WELDING OF STEEL

# Consumables for Welding Structural, Stainless and Engineering Steels cont.

| Applicable Steel Grades                                                                                                                                    | Manual Metal Arc                        | Gas Metal Arc    | Gas Tungsten Arc | Flux Cored Arc                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------|------------------|---------------------------------------|
| AS 3597-600 & 700<br>ASTM A533 Type A<br>ASTM A514 A517<br>eg. Bisalloy, Welten 70 & 80<br>AS2074 Grade L6A                                                | Alloycraft 110                          | Autocraft NiCrMo |                  | Tensi-Cor 110T XP<br>Verti-Cor 111K-3 |
| AS2074 Grades H1A, H1B<br>(Hadfield Manganese)<br>(Austenitic Manganese)<br>ASTM A128 All Grades                                                           | Cobalarc Mangcraft<br>(build up)        | Autocraft 309LSi | Comweld 309L     | Shieldcrome 309LT / LTD               |
| AISI Grades 201, 202<br>301, 301, 304, 304L, 305<br>AS2074 Grade H5A                                                                                       | Satincrome 308L-17                      | Autocraft 308LSi | Comweld 308L     | Shieldcrome 308LT                     |
| AISI Grades 316L, 316, 316TI<br>AS2074 Grades H6B, H6C                                                                                                     | Satincrome 316L-17<br>Satincrome 318-17 | Autocraft 316LSi | Comweld 316L     | Shieldcrome 316LT                     |
| AISI Grade 309<br>AS2074 Grades H8A, H8B                                                                                                                   | Satincrome 309Mo-17                     | Autocraft 309LSi | Comweld 309L     | Shieldcrome 309LT / LTD               |
| Joining 3CR12 & 5CR12.<br>Joining dissimilar<br>steels eg. stainless steel<br>to structural steel                                                          | Satincrome 309Mo-17<br>Cobalarc Austex  | Autocraft 309LSi | Comweld 309L     | Shieldcrome 309LT / LTD               |
| ASTM A288 Grade 5<br>ASTM A434 Grades BB, BC<br>ASTM A513 Grades 4130, 8630<br>Hardened to 230-270 HB                                                      | Alloycraft 110                          | Autocraft NiCrMo |                  | Tensi-Cor 110T XP<br>Verti-Cor 111K-3 |
| AS1444 Grade XK4140<br>ASTM A288 Grades 6, 7, 8<br>ASTM A434 Grades BB, BC, BD<br>ASTM A513 Grades 4130, 8630<br>Hardened to 330-370HB<br>AS2074 Grade L6C | Cobalarc 350                            |                  |                  | Cobalarc 350-G<br>Cobalarc 350-0      |



# Introduction.

This section is designed to provide the reader with a technical overview for welding the major types of stainless steels available today.

# **Types of Stainless Steels:**

Stainless steels are an important grade of structural material used worldwide for a multitude of applications based on their corrosion resistance, heat resistance, aesthetic appeal, low temperature properties, high strength and/or ease of cleaning and sterilising.

The main types of weldable stainless steels available include:

- Austenitic stainless steels (AISI 200 and 300 series / UNS 520000 and 530000 series) which are easy to weld and by far the most popular type accounting for over 70% of the stainless steel sold around the world.
- Ferritic stainless steels (AISI 400 series / UNS \$40000 series ) which are weldable particularly in thin sections and commonly used for elevated temperature applications.
- Martensitic stainless steels (AISI 400 series / UNS \$40000 series ) which are difficult to weld and commonly used for wear resistant applications.
- Duplex stainless steels (UNS \$30000 series) which are weldable with precautions and used for corrosion resistant applications as an alternative to 300 series austenitic stainless steels.

# WELDING TECHNIQUE

The technique of welding stainless steels does not differ greatly from that of the welding of mild steel, but as the material being handled is very expensive, and exacting conditions of service are usually involved, extra precautions and attention to detail at all stages of fabrication is desirable. In principle, all stainless steel for high-class work should be welded with a short arc.

Any techniques which aim at increasing the penetration, speed of travel or the use of wide weaving techniques are to be discouraged. Usually the lowest convenient current should be used. Weaving should be not wider than twice the diameter of the electrode for base material and electrodes of like composition, and even less for plate of dissimilar composition.

The edges of the preparation should be free from scale. Clamps and jigs are advisable when welding sheets thinner than 3 mm (1/8 in) while cooling blocks are helpful with sheets 1.6mm to 2.5 mm (1/16 in to 3/32 in) thick. Tack welds, particularly on thin sheets, should be placed much closer together than is the usual practice for mild steel. This procedure is necessary as the thermal conductivity of these alloy steels is less and the coefficient of expansion is considerably greater than that of mild steel.

# NOTES ON TECHNIQUE:

- Ensure that the surface of the material in the weld area is clean and free from foreign matter.
- 2. Use the edge preparation shown in Table 1 over the page.
- 3. Tack at regular intervals, at about half the pitch used for mild steel.
- Maintain a short arc during welding, to avoid loss of alloying materials during transfer across the arc.



#### NOTES ON TECHNIQUE cont.:

- 5. Use stringer passes rather than wide weaves.
- 6. To minimise distortion, employ back step or block sequences when welding.
- 7. Thoroughly remove slag from welds between passes.
- When welding double V or U joints, balance the welding on each side, to minimise distortion.
- Never use emery wheels or buffs for grinding or polishing stainless if they have previously been used for mild steel.
- Do not use excessive welding current. Because of the high electrical resistance and low thermal conductivity, the currents used with stainless steel electrodes are somewhat lower than those used for mild steel.

#### TABLE 1. EDGE PREPARATION FOR MANUAL METAL ARC WELDING:

| Thickness<br>(mm)            | Edge Preparation                                                                                                                                  | Notes                                                                               |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Up to 1.5<br>(1/16")         |                                                                                                                                                   | Square butt joint -<br>not gap.                                                     |
| 1.5 - 5.0<br>(1/16" - 3/16") | $\begin{array}{c c} T/2 \rightarrow   & \longleftarrow & \downarrow^T \\ \hline & & \uparrow \\ \hline \\ Root Opening & \uparrow \\ \end{array}$ | Square butt joint -<br>gap equal to half thickness.                                 |
| 5.0 - 13.0<br>(3/16″ - 1/2″) | Root Face                                                                                                                                         | Single V preparation -<br>1.5 mm (1/16 ") landing,<br>1.5 mm (1/16 ") gap.          |
| 13.0 - 20.0<br>(1/2" - 3/4") | 5.0mm 12 - 15°<br>Radius 7/~                                                                                                                      | Single U preparation -<br>3 mm (1/8") landing,<br>3 mm (1/8") gap.                  |
| Over 20<br>(3/4")            |                                                                                                                                                   | Double V preparation -<br>1.5mm (1/16") max.<br>landing, 1.5 mm (1/16") gap.        |
|                              | 5.0mm 12 - 15°<br>Radius 1/                                                                                                                       | Double U preparation -<br>3 mm (1/8") landing,<br>1.5 mm (1/16") to 3mm (1/8") gap. |



# **Austenitic Stainless Steels**

Austenitic stainless steels are easily welded with all standard arc welding processes, without preheat and using matching or near matching welding consumables. Because of their high thermal expansion and low thermal conductivity compared to carbon steel they will distort more during and after welding. This can be minimised by more frequent tacking prior to welding, balanced and back step welding methods and the use of lower welding current and heat input parameters. Low carbon austenitic stainless steels are commonly used because they are less susceptible to sensitisation ( or carbide precipitation ) during welding or high temperature service which can result in intergranular corrosion in a caustic environment. Matching low carbon welding consumables ( designated with an "L") are also commonly used to desensitise the weld deposit, in the same way as the parent metal, and eliminate the risk of intergranular corrosion of the welded joint.

The common welding consumable types used for welding the many austenitic stainless steel grades are shown in the following table.

#### Austenitic Stainless Steel Grades - Welding Consumable Selection Guide.

| Sta         | inless Steel Grad | de                | Welding consumable type |               |              |  |
|-------------|-------------------|-------------------|-------------------------|---------------|--------------|--|
| AISI<br>No: | UNS<br>No:        | Werkstoffe<br>No: | 1st Choice              | 2nd Choice    | 3rd Choice   |  |
| 201         | S20100            |                   | 308 / 308L              | 316L          | 347          |  |
| 202         | S20200            | 1.4371            | 308 / 308L              | 316L          | 347          |  |
| 205         | S20500            |                   | 308 / 308L              | 316L          | 347          |  |
| 209         | S20910            | 1.4565            | 308 / 308L              | 316L          | 347          |  |
| 301         | \$30100           | 1.4310            | 308 / 308L              | 316L          | 347          |  |
| 302         | \$30200           |                   | 308 / 308L              | 316L          | 347          |  |
| 303         | \$30300           | 1.4305            | 312 (Weldall)           | 309L / 309Mo  | 308 / 308L   |  |
| 303Se       | \$30323           |                   | 312 (Weldall)           | 309L / 309Mo  | 308 / 308L   |  |
| 304         | \$30400           | 1.4301            | 308 / 308L              | 316L          | 347          |  |
| 304L        | \$30403           | 1.4306            | 308 / 308L              | 316L          | 347          |  |
| 304H        | \$30409           | 1.4948            | 308H                    | 308L          | 316L         |  |
| 304N        | \$30451           |                   | 308L / 308              | 316L          | 347          |  |
| 304LN       | \$30453           | 1.4311            | 308L / 308              | 316L          | 347          |  |
| 305         | \$30500           | 1.4303            | 308 / 308L              | 316L          | 347          |  |
| 308         | \$30800           |                   | 308 / 308L              | 316L          | 347          |  |
| 309         | \$30900           | 1.4828            | 309 / 309L / 309Mo      | 312 (Weldall) |              |  |
| 309S        | \$30908           | 1.4833            | 309L / 309Mo            | 312 (Weldall) |              |  |
| 310         | \$31000           | 1.4841            | 310                     | 312 (Weldall) |              |  |
| 310S        | \$31008           | 1.4845            | 310                     | 312 (Weldall) |              |  |
| 314         | \$31400           |                   | 310                     | 318           | 309L / 309Mo |  |
| 316         | \$31600           | 1.4401            | 316 / 316L              | 318           | 309L / 309Mo |  |
| 316L        | \$31603           | 1.4404            | 316L / 316              | 318L          | 309L / 309Mo |  |
| 316H        | S31609            | 1.4919            | 316H                    | 316L / 318    | 309L / 309Mo |  |
| 316N        | \$31651           |                   | 316L / 316              | 318           | 309L / 309Mo |  |
| 316LN       | S31653            | 1.4406            | 316L / 316              | 318           | 309L / 309Mo |  |
| 317         | S31700            | 1.4429            | 317 / 317L              | 318           | 316L         |  |
| 317L        | S31703            | 1.4438            | 317L                    | 318           | 316L         |  |
| 321         | \$32100           | 1.4541            | 347                     | 318           | 308 / 308L   |  |
| 321H        | \$32109           | 1.4941            | 347                     | 318           | 308 / 308L   |  |
| 347         | S34700            | 1.4550            | 347                     | 318           | 308 / 308L   |  |
| 347H        | S34709            |                   | 347                     | 318           | 308 / 308L   |  |
| 348         | S34800            |                   | 347                     | 318           | 308 / 308L   |  |
| 384         | \$38400           |                   | 309L / 309Mo            | 312 (Weldall) |              |  |



# **Ferritic Stainless Steels:**

Ferritic stainless steels can be welded under strict precautions using all standard arc welding processes. They can be joined with welding consumables which match or near match the base metal or with austenitic welding consumables, for example Satincrome 308L17 & 316L17 electrodes or Autocraft 308LSi & 316LSi GMAW wires. During welding, ferritic stainless steel grades can suffer a loss of ductility due to grain growth, martensite formation and carbide precipitation. To achieve good welds, in thicker sections, it is often necessary to preheat the work to =100-120°C and minimise the heat input during welding. To dissolve or modify carbides in the Heat Affected Zone (HAZ) and reduce welding stresses, post-weld heat treatment to 750-850°C for 30-60 minutes is necessary. This heat treatment will improve the ductility, toughness and corrosion resistance of the Heat Affected Zone.

# Ferritic Stainless Steel Grades - Welding Consumable Selection Guide.

| Sta         | ainless Steel Gra | de                | W            | lelding consumable ty | /pe          |
|-------------|-------------------|-------------------|--------------|-----------------------|--------------|
| AISI<br>No: | UNS<br>No:        | Werkstoffe<br>No: | 1st Choice   | 2nd Choice            | 3rd Choice   |
| 405         | S40500            | 1.4002            | 430          | 309L / 309Mo          | 308          |
| 409         | S40900            | 1.4512            | 309L / 309Mo | 312 (Weldall)         |              |
| 429         | S42900            | 1.4001            | 430          | 308 / 308L            | 309L / 309Mo |
| 430         | S43000            | 1.4016            | 430          | 308 / 308L            | 309L / 309Mo |
| 430F        | S43020            | 1.4104            | 430          | 308 / 308L            | 309L / 309Mo |
| 430FSe      | S43023            |                   | 430          | 308 / 308L            | 309L / 309Mo |
| 434         | S43400            | 1.4113            | 430          | 308 / 308L            | 309L / 309Mo |
| 436         | S43500            |                   | 430          | 308 / 308L            | 309L / 309Mo |
| 442         | S44200            |                   | 316L         | 318                   | 309L / 309Mo |
| 444         | S44400            | 1.4521            | 316L         | 318                   | 309L / 309Mo |
| 446         | S44600            | 1.4762            | 308 / 308L   | 309L / 309Mo          | 310          |
| 3Cr12#      |                   |                   | 309L / 309Mo | 316L                  | 308L         |

# - 3Cr12 is a trademark of Bluescope Steel.

# **Martensitic Stainless Steels:**

Martensitic stainless steels are difficult to weld successfully due to the formation of hard and brittle martensite in the Heat Affected Zone (HAZ) of the joint. To reduce the affects of martensite formation, adequate control over pre-heat, interpass temperatures and heat input are essential. Depending on the carbon content of the particular martensitic steel, preheat temperatures of between 100 - 300°C are commonly recommended to avoid cracking. Interpass temperature also plays an important role in reducing the risk of cracking. In multipass welding, an interpass temperature between the martensite start and finish temperatures (MS and Mf) will minimise crack sensitivity by allowing each subsequent weld pass to be tempered. Post Weld-Heat Treatment (PWHT) is also carried out to improve mechanical properties and reduce welding stresses. For complicated joint configurations PWHT is commenced once the fully welded joint has cooled to just under the martensite start temperature (=  $130 - 150^\circ$ C). This is done to ensure the complete transformation of austenite to martensite before PWHT.



# Martensitic Stainless Steel Grades - Welding Consumable Selection Guide.

| Stainless Steel Grade |            |                   | Welding consumable type |              |            |  |
|-----------------------|------------|-------------------|-------------------------|--------------|------------|--|
| AISI<br>No:           | UNS<br>No: | Werkstoffe<br>No: | 1st Choice              | 2nd Choice   | 3rd Choice |  |
| 403                   | S40300     | 1.4000            | 410                     | 309L / 309Mo | 310        |  |
| 410                   | S41000     | 1.4006            | 410                     | 309L / 309Mo | 310        |  |
| 414                   | S41400     |                   | 410                     | 309L / 309Mo | 310        |  |
| 415                   | S41500     | 1.4313            | 410                     | 309L / 309Mo | 310        |  |
| 416                   | S41600     |                   | 410                     | 309L / 309Mo | 310        |  |
| 416Se                 | S41623     |                   | 410                     | 309L / 309Mo | 310        |  |
| 420                   | S42000     |                   | 410                     | 309L / 309Mo | 310        |  |
| 431                   | S43100     | 1.4057            | 430                     | 308L / 308   | 309        |  |
| 440A                  | S44002     |                   | 312 (Weldall)           | 309L / 309Mo |            |  |
| 440B                  | S44003     |                   | 312 (Weldall)           | 309L / 309Mo |            |  |
| 440C                  | S44004     |                   | 312 (Weldall)           | 309L / 309Mo |            |  |

# **Duplex Stainless Steels:**

Duplex stainless steels consist of two microstructure phases, ferrite and austenite and are also referred to as Ferritic-Austenitic stainless steels. A typical duplex microstructure consists of approximately 50% ferrite and 50% austenite.

Duplex stainless steels are readily welded with precautions using all common arc welding processes. Careful attention must be given to heat input and consumable selection to prevent the formation of excessive ferrite levels in both the base metal and weld metal , which can reduce joint toughness and corrosion resistance.

The main grades of duplex stainless steels used in industry today are listed below. These alloys can be classified into two (2) main groups:

> Duplex Stainless Steels = S32900 (329), S39205 (2205) and S39230 (2304) Super Duplex Stainless Steels = S39553, S39275 (2507) and S39276 (Zeron 100).

Welding Consumables for duplex stainless steels contain Nitrogen (a strong austenite stabiliser) as an alloying element, which helps to achieve the correct balance of austenite and ferrite in the weld deposit microstructure. In addition to welding consumable selection, careful attention must also be given to heat input and interpass temperature to promote the desired balance of ferrite and austenite in the weld and surrounding heat affected zone (HAZ) of the base material.

If the base metal and weld metal ferrite levels are controlled to 25-50% (FN 30-70) then a good combination of strength, toughness and corrosion resistance will be achieved in the welded joint.

#### Heat Input:

When the weld pool solidifies, the weld metal consists of 100% ferrite which begins to transform to austenite upon cooling. If the correct heat input is used the resultant cooling rate will promote the formation of an even distribution of the ferrite and austenite (~50:50) in the weld deposit and Heat Affected Zone (HAZ).



# **Duplex Stainless Steels cont.:**

Generally heat input should be limited to between 0.6 - 2.6 kJ/mm. When a welding process with less than 0.6kJ/mm heat input is used (as in automatic GMAW), preheating up to 150°C maximum may be required to reduce the cooling rate and increase austenite in the weld and the HAZ.

Heat Input ( kJ/mm ) = Volts x Amps x 60 Travel Speed (mm/min) x 1000

#### Interpass Temperature Control:

Interpass temperature should be limited to between 75-150°C.

#### Preheat:

On thicknesses below 6mm no preheat is required. For heavier sections or for welds under high restraint preheat may be used to minimise the risk of weld cracking. When a welding process with less than 0.6k/mm heat input is used, preheating to between 50-200°C is helpful in reducing the cooling rate and increasing austenite in the weld and the HAZ. If the air temperature is below 15°C preheat of  $= 50^\circ$ C should be used.

# **Correct Welding Consumables and Shielding Gas:**

Always use the correct welding electrode, wire or rod (refer to the welding consumable selection guide shown below). For GTAW (TIG) welding do not weld without a filler rod unless using the correct nitrogen content shielding gas. Always use an inert (nitrogen containing) backing gas when completing root runs. Consult your local gas supplier for detailed information.

# Duplex Stainless Steel Grades - Welding Consumable Selection Guide.

| D              |            |                   |                           |                            |
|----------------|------------|-------------------|---------------------------|----------------------------|
| Name<br>or No: | UNS<br>No: | Werkstoffe<br>No: | ASTM Specification<br>No: | Welding<br>Consumable Type |
| 329            | S32900     | 1.4460            | A240, A789, A790          | 329                        |
| 2RE60          | S31500     | 1.4841            | A789, A790, A815          | 2209                       |
| 2205           | S31803*    | 1.4462            | A182, A240, A276,         | 2209                       |
| Bohler A903    | S39205     |                   | A789, A790, A815          |                            |
| 2304           | S32304*    | 1.4362            | A789, A790                | 2209                       |
|                | \$39230    |                   |                           |                            |
| Ferralium# 255 | S32550*    | 1.4507            | A240, A789, A790          | 2507                       |
|                | S39553     |                   |                           |                            |
| 2507           | S32750*    | 1.4410            | A789, A790                | 2507                       |
|                | S39275     |                   |                           |                            |
| Zeron# 100     | S32760*    | 1.4501            | A182, A276, A790, A815    | 2507                       |
|                | \$39276    |                   |                           |                            |

\* - old UNS number, replaced by the number beneath in bold.

# - Ferralium is a trademark of Langley Alloys Ltd. Zeron is a trademark of Weir Material Services Ltd.



# **Duplex Stainless Steels cont.:**

| ASTM Specification No: | Description of Product Types:                                          |
|------------------------|------------------------------------------------------------------------|
| A182                   | Fittings, Valves, Flanges and other items for high temperature service |
| A240                   | Plate, strip and sheet for pressure vessels and pressure equipment     |
| A276                   | Bars and extruded shapes                                               |
| A789                   | Tubing, welded and seamless for general work                           |
| A790                   | Pipe, welded and seamless                                              |
| A815                   | Pipe fittings, welded and seamless                                     |

#### Schaeffler and De Long Diagrams:

The alloying elements used in stainless steel base metals and welding consumables have a significant influence on the resultant microstructure. Anton Schaeffler was the first person to carry out a detailed study of the relationship between the composition and microstructure of stainless steel weld metals. The results of this research are summarised in the Schaeffler diagram shown in Diagram 1 which predicts the microstructure of freely cooled All Weld Metal (AWM) stainless steel deposit s as a function of Chromium and Nickel Equivalents.

Chromium and Nickel Equivalents for the Schaeffler diagram are calculated as follows:

- Chromium Equivalent = %Cr + %Mo + 1.5 x %Si + 0.5 x %Nb

#### - Nickel Equivalent = %Ni + 30 x %C + 0.5 x %Mn

Once the Chromium and Nickel equivalent have been calculated the Schaeffler diagram can be used to estimate the microstructural phases present. It should be noted that the Schaeffler diagram is not applicable to the Heat affected Zone (HAZ) of the welded joint nor is it usable for weld deposits which have been heat treated after welding.

The De Long Diagram shown in Diagram 2 is a later development of the central part of the Schaeffler diagram. The De Long diagram works in a similar way to the Schaeffler diagram, however it incorporates nitrogen in the calculation of the Nickel Equivalent which is particularly important for the gas shielded welding processes such as Gas Metal Arc and Gas Tungsten Arc Welding where gas shielding can significantly influence nitrogen pickup in the weld deposit. The De Long diagram also classifies ferrite content as a Ferrite Number (FN) rather than as a percentage.

Once the Chromium and Nickel Equivalents are calculated they can be plotted on the Schaeffler or De Long diagrams to determine the microstructural phases present in the weld deposit. The crack free, austenite - ferrite microstructure of CIGWELD Satincrome 309Mo-17 manual arc electrode is shown as Point D in Diagram 1, calculated from typical AWM chemical analysis. In predicting the microstructural phases present in the weld deposit the Schaeffler diagram is also a guide to potential joint problems such as hot cracking, sigma phase embrittlement, martensitic cracking and brittle grain coarsening. See the shaded regions on the Schaeffler diagram for details.

The Schaeffler diagram is commonly used to predict weld deposit microstructures for the joining of dissimilar metals, given the chemical analyses of both base metals and the welding consumable AWM deposit. For example, the resultant weld deposit microstructure from joining mild steel to 316 austenitic stainless steel using Satincrome 309Mo-17 is shown in Diagram 1. By explanation:

| Point A on the Schaeffler diagram | = | microstructure of mild steel base metal.                                                          |
|-----------------------------------|---|---------------------------------------------------------------------------------------------------|
| Point B on the Schaeffler diagram | = | microstructure of 316 stainless steel base metal.                                                 |
| Point C on the Schaeffler diagram | = | weld deposit microstructure for joining mild steel to 316 stainless steel without a filler metal. |
| Point D on Schaeffler diagram     | = | microstructure of AWM deposit with<br>Satincrome 309Mo-17.                                        |
| Point E on Schaeffler diagram     | = | microstructure of weld deposit assuming 30% dilution using the manual metal arc welding process.  |





Diagram 1. Schaeffler Diagram. Showing approximate regions of potential weld problems depending on composition and phase balance.



# **TECHNICAL AND TRADE INFORMATION**

# WELDING OF STAINLESS STEEL

Chromium equivalent = %Cr +%Mo + 1.5 x %Si + 0.5 x %Nb 27 26 25 'ę ģ Austentite + Ferrite ž, Ş 24 0, 23 22 % C. C. Ō, 5 Nickel equivalent = %Ni + 30 x %C + 30 x %N + 0.5 x Mn 20 19 Austentite 18 15CHAETHLER + M Line. 4 16 5 20 6 8 ₽ 10 13 4 3 1 2 7





# **Definition of Dilution:**

Dilution is the degree to which the base metal(s) contributes to the resultant weld deposit. It is normally expressed as the percentage of melted parent metal in the total weld metal.

i.e. 30% dilution = 30 parts of base material per 100 parts of weld deposit.

The dilution for any given process will always be the same irrespective of the parent metals involved but may be influenced by preheating. It is often assumed that the parent metals each contribute equal parts in the resultant weld.

i.e. 30% dilution = 15% contribution from parent metal 1, + 15% contribution from parent metal 2, see Figure 1 below.

Dilution can be approximately calculated using a geometric approach involving the cross-section of the weld.



Figure 1. Example of 30% dilution in a stainless steel butt weld using the GMAW process with Autocraft 316LSi welding wire.

# **Calculating Dilution:**

x

Dilution can be calculated using the following formula. For the purpose of this example Nickel content will be used since the transfer of nickel from the filler metal to the weld metal is virtually 100%.

| = <u>F - W</u> x 100<br>F - P | x = Percentage Dilution (%)               |
|-------------------------------|-------------------------------------------|
|                               | F = Percentage nickel in the filler metal |
|                               | W = Percentage nickel in the weld metal   |
|                               | P = Percentage nickel in the parent metal |

Therefore, if for example F = 13%, W = 12.7% and P = 12%

$$x = \frac{13 - 12.7}{13 - 12} \times 100 = 0.3 \times 100 = 30\%$$
 dilution

The following values are a guide to typical dilution levels expected in a butt weld:

| Welding Process Used     | Dilution % |
|--------------------------|------------|
| Manual metal arc welding | 20-30      |
| Gas Metal Arc Welding &  | 20.40      |
| Gas Tungsten Arc Welding | 20-40      |
| Submerged-arc welding    | 30-40      |



# 1) "Atmospheric Conditions" Affect on Weld Quality:

Many fabricators experience welding problems at different times of the year. Moisture (H<sub>2</sub>O) is a prime source of hydrogen. At arc temperatures, water breaks down releasing hydrogen atoms that cause porosity in weldmetal. Shielding gas supplies are controlled to very low moisture content (- $57^{\circ}$ C dew point or lower). Likewise, the atmospheric conditions in a fabricating facility need to be controlled to prevent moisture condensation from forming on the aluminium welding wire or base metal.

Aluminium which is allowed to repeatedly come into contact with water will eventually form a hydrated oxide (AIOH) coating. Moisture from condensation present on either the welding wire or the base metal can cause two problems during welding:

- Porosity caused by hydrogen generated from the breakdown of water or from the breakdown of hydrated oxide (AIOH) present on the metal surfaces.
- Entrapment of the actual oxide (AIOH), present on the metal surfaces, in the weld metal.

#### Terms:

#### Relative Humidity -

|                 | The ratio of the quantity of water vapour present in the atmosphere to the<br>quantity which would saturate the air at the existing temperature. Relative<br>humidity is expressed as a percentage number and needs to be monitored in the<br>welding area. Dip tanks, cleaning stations, etc. affect relative humidity. |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dew Point -     | The temperature at which condensation of water vapour in the air takes place.<br>Moisture will condense on metal surfaces when their temperature is equal to or<br>below the dew point. For each relative humidity percentage, there is a<br>corresponding dew point.                                                    |
| Air Temperature |                                                                                                                                                                                                                                                                                                                          |
|                 | The temperature of the air in the welding area at any given time.                                                                                                                                                                                                                                                        |
| Base Metal or A | luminium Welding Wire Temperature -                                                                                                                                                                                                                                                                                      |

The temperature of the welding wire or base metal at any given time.

# General:

In an aluminium welding shop, the uniformity of air and metal temperatures is important especially when the relative humidity is high. Aluminium welding wires and the base metal should be allowed to stabilise to the weld area temperature. The aluminium welding wire should not be opened in the welding area for 24 hours after entry from a cooler storage area. The base metal should be cleaned and brushed with a clean stainless steel brush prior to welding. CIGWELD recommends mild alkaline solutions and commercial degreasers that do not evolve toxic furnes during welding. Welders should wipe joint edges with a clean cloth dipped in a volatile petroleum based solvent. All surfaces must be thoroughly dried after cleaning.



# Dew Point Conditions Versus Relative Humidity (RH):

(Tair - Tmetal)° - Temperature of the air minus the temperature of the metal shown in °C and °F.

The chart below shows the relative humidity at which detrimental water condensation will form for a number of given differential temperatures.

\* Example - If the relative humidity in the weld area is 70%, the base metal and aluminium welding wire must be no colder than 5°C below the air temperature to prevent moisture condensation.

| ( <sup>T</sup> air | - <sup>T</sup> metal) <sup>o</sup> | RH  | ( <sup>T</sup> air - | <sup>T</sup> metal)° | RH |
|--------------------|------------------------------------|-----|----------------------|----------------------|----|
| °C                 | (°F)                               | %   | °C                   | (°F)                 | %  |
| 0                  | (0)                                | 100 | 12                   | (21.6)               | 44 |
| 1                  | (1.8)                              | 93  | 13                   | (23.4)               | 41 |
| 2                  | (3.6)                              | 87  | 14                   | (25.2)               | 38 |
| 3                  | (5.4)                              | 81  | 15                   | (27.0)               | 36 |
| 4                  | (7.2)                              | 75  | 16                   | (28.8)               | 34 |
| 5*                 | (9.0*)                             | 70* | 18                   | (32.4)               | 30 |
| 6                  | (10.8)                             | 66  | 20                   | (36.0)               | 26 |
| 7                  | (12.6)                             | 61  | 22                   | (39.6)               | 23 |
| 8                  | (14.4)                             | 57  | 24                   | (43.2)               | 21 |
| 9                  | (16.2)                             | 53  | 26                   | (46.8)               | 18 |
| 10                 | (18.0)                             | 50  | 28                   | (50.4)               | 16 |
| 11                 | (19.8)                             | 48  | 30                   | (54.0)               | 14 |

# 2) Aluminium Storage & Preparation for Welding:

One of the most frequently asked questions in the process of welding aluminium is "Should the base metal be cleaned before welding?" To answer this question correctly, one must first determine the finished welded product requirements. If consistent, porosity free, high strength, high quality welds are desired, then the base metal must be thoroughly cleaned using a properly designed and executed procedure. Welding wire quality is a subject of constant concern among designers, engineers, and welders, however, base metal preparation and cleanliness if of equal or even greater importance and is often ignored.

Producers of aluminium sheet, plate; rod, bar, and other fabricated shapes generally ship their products with a protective coating of oil or other hydrocarbon to protect the surface. Depending on storage conditions and storage time, aluminium products are covered with oil, ink, grease, dirt, moisture, and a variable layer of hydrated oxide. These contaminants contain hydrogen and are broken down by the arc during welding, releasing atomic hydrogen which is absorbed by the molten aluminium in the weld puddle. During solidification, this hydrogen comes out of solution and coalesces into bubbles in the aluminium which we see as porosity.

The general melting temperature of aluminium alloys is around 650°C (1200°F) while the melting temperature of aluminium oxides is 2040°C (3700°F). Aluminium oxide is not melted during the welding process and if it is present to an excessive degree, it can easily cause lack of fusion and oxide inclusion type defects.



With this in mind, CIGWELD suggest the following guidelines for the proper storage, joint preparation, cleaning, and welding of aluminium be adhered to:

# Storage and Handling:

#### Base Metal:

- Position base metal vertically and space apart to provide for air circulation and minimise condensation contact points.
- Store inside, preferably in a heated room with as constant a temperature as possible. Humidity control is also desirable, if it can be achieved.

#### **Aluminium Welding Wires:**

- Store in a heated room with uniform temperature control and, if possible, with humidity control as well.
- Hold the Aluminium Welding Wire in the welding area for 24 hours before unpacking to allow its temperature to equalise with that of the surrounding area.
- Store unpacked material in a heated cabinet.
- Use dust covers on all welding equipment.

# Joint Preparation:

#### **Oxy-fuel Gas Cutting:**

Not recommended for aluminium because it leaves a large heat affected zone with harmful eutectic melting and heavy oxide films.

#### Carbon Arc Cutting, Bevelling, and Gouging:

Not widely recommended or used for the same reasons as gas cutting. If it is used, it requires heavy mechanical surface removal before welding.

#### Plasma Arc Cutting, Bevelling, and Gouging:

This process is commercially used but has some limitations and must be carefully controlled. If it is used, it requires the power source to be set on DCEN along with the use of a small orifice to gain high velocity and concentrated heat. Heat affected zones will be crack prone particularly for 2XXX, 6XXX, and 7XXX series alloys and will require 3mm or more of mechanical surface removal before welding. Series 1XXX, 3XXX, and 5XXX alloys are not as crack prone and can generally be welded as cut by this process.

#### Mechanical Machining:

Drilling, gouging, filing, milling, or router-type cutting produce the best surface for welding. Lubricants or coolants must not be used and tools should be sharp to avoid metal smearing.



#### Joint Preparation cont.:

#### Sawing:

- ▲ Blade speed:
  - Circular high-speed steel (8,000 fpm)
  - Circular carbide (12,000 fpm)
  - Band saw (5,000 fpm)
- Tooth shape and spacing:
  - Circular (std. Spacing, high rake angle)
  - Band (3 to 4 teeth per inch)
- Lubricants or coolants must not be used and band saw surfaces should be removed by filing prior to welding.

#### Grinding:

- Wheel grinding is not recommended since it smears the surface of aluminium and can deposit organic binders from the wheel during grinding.
- Disc grinding can be used with grit size, 30 to 50 preferred, and speeds of 4,000 to 6,000 fpm. Only flexible discs should be used and grinding pressures should be moderate to prevent surface heating or smearing of the aluminium. Lubricants or coolants must not be used.

# **Base Metal Cleaning:**

#### Moisture:

Minute traces of moisture on aluminium can produce severe weld porosity. Both the welding wire and the base metal should be brought into the welding area 24 hours in advance to allow all material temperatures to equalise. A dew point test should be done prior to welding. If pre-heating must be used, heat no higher that 65°C (150°F) and remember that oxy-fuel flames produce water as a by-product of combustion.

#### Lubricants:

Before oxides can be removed from aluminium, the base metal must be degreased. This is best done with a solvent. Toluene is the best general solvent for this purpose. Acetone is a poor solvent for oils and greases and is less effective than toluene. Chlorinated solvents are also good degreasers but are not recommended for this application because they present environmental problems and their vapours can decompose into toxic or poisonous gases in the presence of heat. Weld joints should be washed with solvent prior to assembly and wiped dry using clean cloth such as cheese cloth. Shop rags should not be used since they contain soaps and other organic compounds from the washing and conditioning processes used to treat them. Do not use compressed air to blow off or dry solvent cleaned areas since it often contains moisture and oil.



#### **Base Metal Cleaning cont.:**

#### Oxides:

Wire Brushing:

Oxide removal must be done after degreasing and is best done with a stainless steel wire brush. Wire brushes must be frequently cleaned with the same solvent as the base metal. Wire brushing can be done by hand or with a power brush. If power is used, keep rpm's and pressures low to avoid heating and smearing the surface metal. Compressed air power brushes should exhaust their air to the rear, not forward towards the brush where the compressed air can contaminate the base metal.

#### Chemical Cleaning:

Chemical cleaning deoxidises and etches the aluminium. These cleaners contain acids and can present problems in handling and disposal. If they are used, the base metal must be thoroughly rinsed and dried and should be milled or wire brushed prior to welding.

#### Etch Cleaning:

This process uses a hot sodium hydroxide etch and nitric acid rinse. It effectively removes heavy oxides, rough machined, sawn or smeared surfaces and hydrocarbons. However, the process leaves a porous surface containing hydrated oxides that absorb moisture during storage faster than an as-fabricated mill surface. This surface should be milled or wire brushed prior to welding.

# 3) Feedability of Aluminium Welding Wire:

Performance of GMAW equipment used for welding aluminium significantly affects welding wire feedability. Arcing or burn-backs are often the result of deficiencies in accessory equipment. Such deficiencies can be attributed to improper combinations of accessories, poor care or lack of preventive maintenance. Correcting these deficiencies often improves welding wire feedability markedly. Shown below are important accessory components, each of which is CIGWELD's' recommended equipment for aluminium GMA Welding.

#### Hints on Feedability:

 always use the correct size contact tip, or for heavy current work use a tip size 10-15% larger. eg. diameter of the wire 1.2mm = 1.3mm tip. Where possible use longer contact tips for better current pickup.



always use where possible, nylon, conduits and inlet and outlet guides.
Clean brass inlet and outlet guides are 2nd choice.



# 3) Feedability of Aluminium Welding Wire cont.:

Hints on Feedability:

- c) use a copper jump liner in the conductor tube (goose neck).
- d) always use U-Groove drive rolls.
- e) where possible use 45° or straight barrelled conductor tube.
- f) keep MIG guns as short as possible (3 metre) when using push type wire feeders.
- g) use push pull MIG guns & equipment when welding over longer distances.

#### Drive Rolls:



Always use U-Groove drive rolls. Other types distort or shave wire causing more burn backs. Ensure that the U-groove drive roll edges are chamfered, not sharp...The white coloured picture shows the correct drive roll type.

#### Dust Covers and Wire Storage:



Using dust covers and periodically cleaning the dust and dirt from the liner increases service life. Proper storage is also important in reducing contamination. CIGWELD recommends that aluminium welding wires be stored in a controlled atmosphere below thirty percent relative humidity (30%RH), preferably a temperature and humidity controlled cabinet. Packages containing aluminium welding wire should never be in unheated buildings. Aluminium

welding wire should never be left on equipment overnight unless protective means are added to the welding machine, such as fully enclosed temperature controlled wire feeders (resistance heater inside the feeder), temperature and humidity controlled workshops, etc.

#### Proper Alignment of Drive Rolls:



Centre line, misaligned drive rolls will distort the welding wire and cause serious feedability problems. Check your wire feeder for drive roll alignment after each size change of feed rolls. CIGWELD can supply U-groove rollers for most of the IRANSMIG range.

# Drive Roll Pressure:

In addition to proper U-type drive roll contours, correct drive roll pressure must be maintained. Excessive drive roll pressure distorts the welding wire increasing frictional drag through the liner and contact tip.

The correct drive pressure can normally be obtained by following these steps;

- a) lower the pressure roller down onto the aluminium wire, making sure that all pressure has been backed off.
- b) pull the trigger of the MIG gun and slowly wind the pressure roller down until the welding wire starts to feed through the entire length of the MIG gun.
- c) once the welding wire has passed through the contact tip, wind the pressure roller down another 1 2 turns.



# 3) Feedability of Aluminium Welding Wire cont.:

#### Contact Tips:





Correct I.D. of the contact tip is of paramount importance. If there is too much clearance between the welding wire and the contact tip, arcing will occur. Continuous arcing causes a build up of particles on the I.D. Surface of the tip which increases drag forces and produces burn-backs due to unsteady feed. A Changing contact tips when unsteady feeding is noted eg. pulsing or spiralling of the welding wire, also improves overall performance. A Always use the correct size contact tip, or for heavy current work use a tip size 10-15% larger. eg. diameter of the wire 1.2mm = 1.3mm. Where possible use longer contact tips for better current pickup. A Do not use bent, damaged or crimped contact tips. Never redrill the I.D. of a genuine Tweo tip as this will soften the tips working life.

Inlet and outlet guides:



Where possible use, nylon inlet and outlet guides. New, clean brass inlet and outlet guides may be used on aluminium wires but are 2nd choice.

#### Proper nozzle & contact tip relationship:



The contact tip should be recessed from the edge of the gas shielding nozzle by approximately 1.6mm for lower amperage and voltage settings and up to 5mm for higher settings.

#### Conduits (liners):



Properly sized flexible conduits with nylon, or plastic liners improves the feeding of aluminium welding wire through long distances by avoiding abrasion of the welding wire. Smooth feeding is also assured by non-metallic connection fittings. Clear total length of the conduit after a burn back.



# 3) Feedability of Aluminium Welding Wire cont.:

#### Conductor Tubes:



Conductor Tubes (goose necks) are a critical component for successful aluminium welding. CIGWELD recommends the use of either 45° or Straight barrelled conductor tubes. The straighter the tube the better the wire feed. 60° conductor tubes are not recommended. It is advisable to use a copper jump liner throughout the length of the conductor tube, which will aid in current pick up. The copper jump liner replaces the nylon liner between the end of the handle and the gas diffuser.

#### Water and Inert Gas Leaks:



Check for water and inert gas leaks as these can be a major cause of porosity. Do not interchange water and inert gas lines. Never use old oxy / acetylene hoses for inlet gas lines.

#### Achieving High Quality Welds:

Although welding equipment is sturdy, the abuses of day-to-day work makes regular maintenance a necessity. Faulty or improperly maintained welding equipment can result in poor welding work. Nevertheless, with proper selection of welding parameters, correct equipment and accessories, an effective program of preventive maintenance and the purchase of CIGWELD aluminium welding wires, high quality welds are attainable.

# 4) Smoke Testing Aluminium Welding Wire for Surface Contamination:

#### What Contributes to Weld Porosity?

Weld porosity results from the entrapment of hydrogen gas. This gas entrapment results in lower weld strength and ductility by reducing the cross sectional area of sound metal and by acting as stress risers which cause premature failure. Several variables can produce gas porosity, one of which is the surface condition of the aluminium filler wire. The qualities relating to the surface characteristics of the filler wire include:

- 1. The removal of surface oxides (hydrated oxides).
- 2. The absence of any water or water vapour.
- 3. The removal of hydrogen-containing compounds (hydrocarbons).

Of these three surface conditions, the most common cause of weld porosity is the presence of hydrocarbons. Examples of these compounds include residual wire drawing lubricants, mill dirt or even fingerprints. One relatively quick and inexpensive method of testing aluminium welding wire for freedom from residual hydrocarbons is by means of a "Smoke Test".

#### What is a Smoke Test?

The "Smoke Test" is a qualitative test performed by heating a sample of wire using an electrical resistance heating machine. While conducting the test, the wire is visually examined for the presence of smoke, caused by the burning of any surface contamination. Minute amounts of contamination, even a fingerprint, will result in smoke.



The schematic shows a typical smoke tester machine. Just about any commercial welding power source will suffice. The weld cables are connected to two hobby vices. The wire sample completes the circuit. A light with a dark viewing background is recommended to aid in observing any smoke as the test is performed. Care must be taken in selecting and placing the sample in the vice grips so that the wire does not come in contact with any contamination, including human hands.

# 4) Smoke Testing Aluminium Welding Wire for Surface Contamination:

#### CAUTION: Do not touch the wire after testing since it becomes extremely hot.

Typical amperages settings based upon the alloy and diameter of the sample to be tested are listed below. The amperage is chosen to control the melt rate of the sample and allow adequate time to detect the presence of any smoke. The amperage should be sufficient to melt the sample in 3 to 5 seconds.



# Suggested Amperage Settings By Alloy Series

| Sizes<br>(mm) | 1XXX<br>2319 | 4XXX, C355<br>A356 & A357 | 5XXX |
|---------------|--------------|---------------------------|------|
| 0.8           | 45           | 40                        | 40   |
| 0.9           | 50           | 50                        | 50   |
| 1.0           | 60           | 60                        | 60   |
| 1.2           | 90           | 90                        | 70   |
| 1.6           | 140          | 120                       | 120  |
| 2.4           | 225          | 225                       | 225  |

#### What Can I Interpret From the Smoke Test?

A direct correlation exists between smoke test results and weld porosity. Zero smoke should indicate minimal weld porosity. A small amount of smoke will indicate some evidence of weld porosity generated by contamination. A large amount of smoke will indicate severe contamination and the filler wire should be further examined before continuing production welding.



# 5) Arc Length & Heat (volts x amps) the Affect on Weld Bead Characteristics:

The visual characteristics and mechanical properties of aluminium welds are controlled by weld bead penetration and shape. A number of variables affect the end properties of the weld bead and they can be controlled by the welder. Presented here is a description of those variables and how they can be used to achieve the desired end results.



ARC LENGTH (VOLTAGE)



| Characteristics                                                                                               | Short Arc                                                               | Long Arc                                                      |
|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------|
| Penetration<br>Weld Width<br>Weld Height<br>Molten Pool Surface<br>Spatter<br>Arc Noise<br>Porositv - Surface | Deep<br>Narrow<br>High<br>Depressed<br>Less<br>Crackling<br>More        | Shallow<br>Wide<br>Flatter<br>Flat<br>More<br>Humming<br>Less |
| Characteristics                                                                                               | High Heat                                                               | Low Heat                                                      |
| Penetration<br>Surface<br>Smut (soot)<br>Porosity - Root                                                      | Deep<br>Smooth<br>More<br>Less                                          | Shallow<br>Rippled<br>Less<br>More                            |
| Recommendations                                                                                               |                                                                         |                                                               |
| Root Pass<br>Finish Pass<br>5XXX Alloys                                                                       | Shorter Arc<br>-<br>Shorter Arc<br>Lower Arc Voltage<br>Higher Amperage | -<br>Longer Arc<br>-<br>-<br>Longer Arc                       |
| 4XXX Alloys                                                                                                   |                                                                         | Higher Arc Voltage<br>Lower Amperage                          |

H E A T



| 5) Arc Length & Heat (v                                                                                                                               | olts x amps) the Affect on Weld Be                                                                | ead Characteristics cont.                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} \downarrow \\ T \\ \uparrow \\ \hline \\ Size \\ \hline \\ Size \\ \hline \\ C \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$ | CONVEXITY CONTROL<br>SPECIFICATION (USA only)<br>CONVEXITY CONTROL<br>SPECIFICATION (USA only)    | T R (max)<br>up to 10mm 2.4mm<br>10mm to 20mm 3.2mm<br>20mm + 5.0mm<br>C (max)<br>.07 x face width, plus 1.5mm |
|                                                                                                                                                       | Problem                                                                                           | Solution                                                                                                       |
|                                                                                                                                                       | Excessive Convexity<br>Reduced fatigue strength                                                   | Increase arc length <sup>1</sup><br>Increase torch angle                                                       |
|                                                                                                                                                       | Insufficient Throat or Leg<br>Reduced mechanical properties                                       | Change torch angle<br>Change torch position <sup>2</sup><br>Decrease arc length <sup>1</sup>                   |
|                                                                                                                                                       | Insufficient Throat<br>Reduced mechanical properties                                              | Reduce cooling rate<br>Increase wire feed speed<br>Decrease travel speed<br>Decrease arc length <sup>1</sup>   |
|                                                                                                                                                       | Undercut<br>Reduced mechanical properties                                                         | Change torch position to<br>compensate for:<br>- Dissimilar section sizes<br>- Dissimilar thermal conductivity |
|                                                                                                                                                       | Overlap<br>Severe reduction in fatigue strength                                                   | Increase welding heat<br>Decrease traverse speed                                                               |
|                                                                                                                                                       | Incomplete penetration<br>Reduced weld strength and increased<br>sensitivity to crack propagation | Increase heat<br>Decrease arc length <sup>1</sup><br>Decrease traverse speed<br>Decrease torch forehand angle  |

Notes:

- Remember, when changing arc length, arc voltage is changed which also requires a change in arc amperage if constant heat is to be maintained. Watts (heat) = volts x amps
- For example, the thermal conductivity of 5083 is 32% less than 6061 because of higher magnesium content. This requires more heat input into the 6061 alloy.



# 6) Aluminium Welding Problems, Causes and Corrections:

| Problem                                                                                                                                                                                                               | Causes                                                                                      | Corrections                                                                                                                                                                                                                                         |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Porosity                                                                                                                                                                                                              | Turbulence of weld pool                                                                     | Increase welding current to stabilise transfer of<br>metal droplets.                                                                                                                                                                                |  |  |  |  |
|                                                                                                                                                                                                                       | Hydrogen from hydrated<br>oxide film or oil on wire,<br>base metal, drive rolls & liner.    | Keep wire covered.<br>Store wire in a low humidity chamber at a<br>constant temperature.<br>Clean base metal of oil and oxide immediately<br>prior to welding.                                                                                      |  |  |  |  |
|                                                                                                                                                                                                                       | Wet or contaminated<br>shielding gas or inadequate flow.<br>Fast cooling rate of weld pool. | Reject bottles above -57°C dew point.<br>Increase flow rate. Shield from air currents.<br>Use higher welding current and/or a slower<br>speed. Preheat base metal.                                                                                  |  |  |  |  |
| Weld<br>Cracking     Improper choice of aluminium<br>welding wire or rod.     Select welding wires with lower melting an<br>solidification temperatures, refer to "W" ca<br>of the "Aluminium Alloy Selection Chart". |                                                                                             |                                                                                                                                                                                                                                                     |  |  |  |  |
|                                                                                                                                                                                                                       | Critical chemistry range.                                                                   | Avoid weld pool chemistry of 0.5 to 2.0% silicon<br>and 1.0 to 3.0% magnesium. Avoid MgSi eutectic<br>problems (5xxx welded with 4xxx).                                                                                                             |  |  |  |  |
|                                                                                                                                                                                                                       | Inadequate edge preparation<br>or spacing.                                                  | Reduce base metal dilution of weld through<br>increased bevel angle and spacing.                                                                                                                                                                    |  |  |  |  |
|                                                                                                                                                                                                                       | Incorrect weld technique.                                                                   | Clamp to minimise stress.<br>Narrow heat zone by increased traverse speed.<br>Produce Convex rather than Concave bead.<br>Minimise super heated molten metal, to control<br>grain size.<br>Proper weld size - not too small.<br>Preheat base metal. |  |  |  |  |
| Burn-back<br>or irregular                                                                                                                                                                                             | Fast run-in wire feed.                                                                      | Slow run-in wire feed for CV power supply to<br>reduce current surge and arcing in contact tip.                                                                                                                                                     |  |  |  |  |
| wire feed                                                                                                                                                                                                             | Insufficient wire feed.                                                                     | Increase wire feed for CC dropper power supply<br>and reduce arc voltage on CV power supply.                                                                                                                                                        |  |  |  |  |
|                                                                                                                                                                                                                       | Electrode too soft, kinked or not<br>level layer wound.                                     | Talk to your local CIGWELD or THERMADYNE<br>Branch Office.                                                                                                                                                                                          |  |  |  |  |
|                                                                                                                                                                                                                       | Flexible conduit too long or kinked.                                                        | Cut down or Replace.                                                                                                                                                                                                                                |  |  |  |  |
|                                                                                                                                                                                                                       | Worn or dirty liner or conduit.                                                             | Replace.                                                                                                                                                                                                                                            |  |  |  |  |
|                                                                                                                                                                                                                       | Spatter on end of or eroded<br>interior of the Gas Nozzle.                                  | Replace gas nozzle.                                                                                                                                                                                                                                 |  |  |  |  |
|                                                                                                                                                                                                                       | Aluminium fillings in liner or<br>conductor tube and contact tip,<br>resulting in arcing    | Align drive rolls, align the centerline of the drive<br>rolls with the outlet guide, use "U" grooved feed<br>rollers, use only enough feed pressure to prevent<br>slippage.                                                                         |  |  |  |  |
|                                                                                                                                                                                                                       | Arcing in the Contact Tip                                                                   | Match contact tip size to wire (or 10-15% above).                                                                                                                                                                                                   |  |  |  |  |



# 6) Aluminium Welding Problems, Causes and Corrections:

| Problem              | Causes                                                 | Corrections                                                                                                                                                                    |  |  |  |  |  |
|----------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Poor arc<br>starting | Improper grounding.<br>Anodic coating.                 | Reconnect ground (earth).<br>Remove anodic coating.                                                                                                                            |  |  |  |  |  |
|                      | No shielding gas.                                      | Pre-purge gas shield.                                                                                                                                                          |  |  |  |  |  |
|                      | Wrong polarity.                                        | Change polarity.                                                                                                                                                               |  |  |  |  |  |
| Dirty welds          | Inadequate gas coverage.                               | Increase gas flow.<br>Shield arc from drafts.<br>Hold gas nozzle closer to work.<br>Replace damaged gas nozzle.                                                                |  |  |  |  |  |
|                      |                                                        | Centre contact tip in gas nozzle.<br>Decrease gun angle.<br>Check gun and leads for air or water leaks.                                                                        |  |  |  |  |  |
|                      | Dirty filler wire.                                     | Keep aluminium wire covered when spool is<br>mounted on machine.                                                                                                               |  |  |  |  |  |
|                      | Dirty parent material.                                 | Degrease with toluene, varsol or mineral spirits,<br>etc. to remove oil or grease from joint area.<br>Stainless steel brush to remove other foreign<br>matter from joint area. |  |  |  |  |  |
|                      | Heavy oxide film or water stain<br>on parent material. | Clean joint area with disc sander, heavy stainless steel brushing or etch.                                                                                                     |  |  |  |  |  |
| Unstable arc         | Poor electrical connections.                           | Check electrical connections.                                                                                                                                                  |  |  |  |  |  |
|                      | Dirt in joint area.                                    | Remove all oil, grease, cutting compounds, paints<br>and caulking from joint areas.                                                                                            |  |  |  |  |  |
|                      | Arc blow.                                              | Do not weld in area of strong magnetic field.<br>Arrange ground clamp to neutralise magnetic field.                                                                            |  |  |  |  |  |



# **TECHNICAL AND TRADE INFORMATION**

# WELDING OF ALUMINIUM

# 6) Aluminium Welding Problems, Causes and Corrections: Cont.

| Weld bead<br>excessively<br>wide            | Welding current too high. Arc<br>travel speed too low.<br>Too long an arc. | Change welding parameters.                                                                                                                                                    |  |  |  |  |
|---------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Inadequate<br>penetration                   | Insufficient welding current.<br>Arc travel speed too high.                | Increase weld current.<br>Reduce arc travel speed.                                                                                                                            |  |  |  |  |
| and                                         | Too long an arc.                                                           | Decrease arc length through increased wire feed speed.                                                                                                                        |  |  |  |  |
| incomplete<br>fusion in<br>welds            | Dirty parent metal.                                                        | Degrease with toluene, varsol or mineral spirits,<br>etc to remove oil or grease from joint area.<br>Stainless steel brush to remove other foreign<br>matter from joint area. |  |  |  |  |
|                                             | Inadequate joint spacing or<br>edge preparation.                           | Redesign joint.                                                                                                                                                               |  |  |  |  |
|                                             | Oxide on base metal.                                                       | Clean joint area with disc sander, heavy stainless<br>steel brushing or etch.                                                                                                 |  |  |  |  |
|                                             | Insufficient depth or improper<br>shape of the back-gouge.                 | Increase depth of back gouge, U-type preferred<br>over V-type.                                                                                                                |  |  |  |  |
|                                             | Fillet or vee grooves - torch<br>oscillation with CV power supply.         | Weld with straight stringer passes without torch<br>manipulation. Switch to CC dropper power supply.                                                                          |  |  |  |  |
| Mismatch<br>of colour<br>after<br>anodising | Improper alloy selection.                                                  | Match colour selection in "Aluminium Alloy Selection Chart".<br>Avoid 4xxx and 6xxx match; use 5xxx filler wire<br>with 5xxx and 6xxx base alloys.                            |  |  |  |  |



# ALUMINIUM ALLOY SELECTION CHART

| Base Alloys                    |               | 1070,<br>1080    | 1100             | 2014,           | 2219            | 3303,<br>ALCLAD  | 3004             | ALCLAD           | 5005,            | 5052,            |
|--------------------------------|---------------|------------------|------------------|-----------------|-----------------|------------------|------------------|------------------|------------------|------------------|
|                                |               | 1350             |                  | 2030            |                 | 5005             |                  | 3004             | 1010             | 5052             |
| Characteristics                | Cilles Alleur | WSDCTM           | WSDCTM           | WSDCTM          | WSDCTM          | WSDCTM           | WSDCTM           | WSDCTM           | WSDCTM           | WSDCTM           |
| 319.0, 333.0,                  | 2319          |                  |                  | BAAAAA          | BAAAAA          |                  |                  |                  |                  | ·                |
| 354.0, 355.0,<br>C355.0, 380.0 | 4043<br>4145  | AABAAA           | AABAAA           | ABCBAA          | ABCBAA          | AABAAA           | AABAAA           | AABAAA           | AABAAA           | -                |
| 413.0, 443.0,<br>444.0, 356.0  | 4043<br>4145  | AAAAAA<br>AABBA  | AAAAAA<br>AABBA  | BBAAAA<br>AABAA | BBAAAA<br>AABAA | AAAAAA<br>AABBA  | AAAAA            | AAAAA            | AAAAAA           | ABAAAA           |
| A356.0, A357.0,                | A356.0        | -                | -                |                 | -               | -                | 1                | :                | 1                | 1                |
| 3005 3034                      | 5356          | -                | -                | -               | -               | -                | -                | -                | -                | BABB-A           |
| 7039, 7046,                    | 4045          |                  | -                | ABAA            | AABAA           | -<br>-           | ADCBA            | ADCBA<br>-       |                  | -<br>-           |
| 7146, 710.0,<br>7110.0         | 5183<br>5356  | вава-а<br>вааа-а | BABA-A<br>BAAA-A |                 | -               | вава-а<br>вааа-а | BABA-A<br>BBAA-A | BBAA-A<br>BBAA-A | вава-а<br>вааа-а | AABA-A<br>ABAA-A |
|                                | 5554<br>5556  | -<br>BABA-A      | -<br>BABA-A      | -               | -               | -<br>BABA-A      | CCAAAA<br>BABA-A | CCAAAA<br>BABA-A | CAAAAA<br>BABA-A | BCAAAA<br>AABA-A |
| 6061                           | 5654<br>4043  | -                | -                | -<br>RRAAA      | -<br>RRAAA      | -                | CCAA-B           | CCAA-B           | ΔΒCΔΔ            | ΒCAA-A<br>ΔDCΔΔ  |
| 6070                           | 4145          | AADBA            | AADBA            | AABAA           | AABAA           | AADBA            | BCDBA            | BCDBA            | ABDBA            | -                |
|                                | 5183          | BABA             | BABA             | -               | -               | BABA             | BABA             | BABA             | BABA             | BABC-B           |
|                                | 5554          | DAAA             |                  | -               | -               | -<br>-           | DDAA             | A                | -<br>-           | CCABAB           |
|                                | 5654          | - DADA           | - DADA           | 1               | -               | - DADA           | - DADA           | - DADA           | - DADA           | CCAB-A           |
| 6005,<br>6063.                 | 4043<br>4145  | AACAA<br>AADBA   | AACAA<br>AADBA   | BBAAA<br>AABAA  | BBAAA<br>AABAA  | ABCAA<br>AADBA   | ADCAA<br>BCDBA   | ADCAA<br>BCDBA   | ABCAA<br>ABDBA   | ADCAA<br>-       |
| 6101,                          | 4643*<br>5183 | -<br>BABA        | -<br>BABA        | -               | :               | -<br>BABA        | -<br>BABA        | -<br>BABA        | -<br>BABA        | -<br>BABC-B      |
| 6151,<br>6201,                 | 5356<br>5554  | BAAA             | BAAA             | -               | 2               | BAAA             | BBAA             | BBAA             | BAAA             | BBAC-A<br>CCABAB |
| 6351,<br>6951                  | 5556<br>5654  | BABA             | BABA             | 2               | 2               | BABA             | BABA             | BABA             | BABA             | BABC-B<br>CCAB-A |
| 5454                           | 4043          | ABCCA<br>BABB-A  | ABCCA<br>BABB-A  | :               | AAAAA           | ABCCA<br>BABB-A  | ADCCA<br>BABB-A  | ADCCA<br>BABB-A  | ABCCA<br>BABB-A  | ADCCA            |
|                                | 5356          | BAAB-A           | BAAB-A           | -               | -               | BAAB-A           | BBAB-A           | BBAB-A           | BAAB-A           | ABAB-A           |
|                                | 5556          | BABB-A           | BABB-A           | -               | -               | BABB-A           | BABB-A           | BABB-A           | BABB-A           | AABB-A           |
| 511.0.                         | 5654<br>4043  | ABCC             | ABCC             | -               | AAAA            | ABCC             | ADCC             | ADCC             | ABCC             | BCAB-B<br>ADCC   |
| 512.0,<br>513.0                | 5183<br>5356  | BABB-A<br>BAAB-A | BABB-A<br>BAAB-A | 2               | -               | BABB-A<br>BAAB-A | BABB-A<br>BBAB-A | BABB-A<br>BBAB-A | BABB-A<br>BAAB-A | AABB-B<br>ABAB-A |
| 514.0,<br>535.0                | 5554          | CAAA-A<br>BABB-A | CAAA-A<br>BABB-A | :               | :               | CAAA-A<br>BABB-A | CCAA-A<br>BABB-A | CCAA-A<br>BABB-A | CAAA-A<br>BABB-A | CCAA-B<br>AABB-B |
| 5154, 5254                     | 5654          | CAAA-B           | CAAA-B           | -               | -               | CAAA-B           | CCAA-B           | CCAA-B           | CAAA-B           | BCAA-A           |
| 5056                           | 4043          | ABCB<br>AABA-A   | AABA-A           | -               | AAAA<br>-       | ABCB<br>AABA-A   | ACCB<br>AABA-A   | ACCB<br>AABA-A   | ABCB<br>AABA-A   | AABA-A           |
|                                | 5356          | AAAA-A<br>-      | AAAA-A<br>-      |                 |                 | AAAA-A<br>-      | ABAA-A           | ABAA-A           | AAAA-A<br>-      | ABAA-A<br>CCAA-A |
|                                | 5556<br>5654  | AABA-A<br>-      | AABA-A<br>-      | :               | :               | AABA-A<br>-      | AABA-A<br>-      | AABA-A<br>-      | AABA-A<br>-      | AABA-A<br>BCAA-B |
| 5083,<br>5456                  | 4043<br>5183  | ABCB<br>AABA-A   | ABCB<br>AABA-A   |                 | AAAA<br>-       | ABCB<br>AABA-A   | ACCB<br>AABA-A   | ACCB<br>AABA-A   | ABCB<br>AABA-A   | -<br>AABA-A      |
|                                | 5356<br>5554  | AAAA-A           | AAAA-A           | 1               | 2               | AAAA-A           | ABAA-A           | ABAA-A           | AAAA-A           | ABAA-A<br>CCAA-A |
|                                | 5556<br>5654  | AABA-A           | AABA-A           | -               | 1               | AABA-A           | AABA-A           | AABA-A           | AABA-A           | AABA-A<br>BCAA-B |
| 5052,                          | 4043          | ABCAA            | ABCAA            | AAAAA           | AAAAA           | ABCAA            | ABCAA            | ACCAA            | ABCAA            | ADCBA            |
| 5052                           | 5356          | BAAA             | BAAA             | -               | -               | BAAA             | BAAA             | BBAA             | BAAA             | ABAC-A           |
|                                | 5556          | BABA             | BABA             | -               | -               | BABA             | BABA             | BABA             | BABA             | AABC-B           |
| 5005,                          | 1100          | -<br>CBAAAA      | -<br>CBAAAA      | -               | -               | -<br>CCAAAA      | -                | -                | -<br>B-AAAA      | - BCAB-A         |
| 5050                           | 4043<br>4145  | AACAA<br>BADBA   | AACAA<br>BADBA   | BBAAA<br>AABAA  | BBAAA<br>AABAA  | ABCAA<br>BBDBA   | ABCAA            | ABCAA            | ABDAA            | 1                |
|                                | 5183<br>5356  | CABB<br>CABB     | CABB<br>CABB     | 1               | -               | CABC-B<br>CABC-B | BABA<br>BAAA     | BABB-A<br>BAAB-A | BACB<br>BABB     | 1                |
| ALCIAD 2004                    | 5556          | CABB             | CABB             | -               | -               | CABC-B           | BABA             | BABB-A           | BACB             | -                |
| ALCEAD 3004                    | 4043          | AACAA            | AACAA            | BBAAA           | BBAAA           | ABCAA            | ADDAA            | ADDAA            | -                | -                |
|                                | 5183          | CABC-B           | CABC-B           | -               | -               | CABC-A           | BACC-A           | BACC-A           | -                | -                |
|                                | 55554         | CABC-B           | CABC-B           | -               | -               | CABC-A           | CCABAA           | CCABAA           | -                | -                |
| 3004                           | 5556          | DBAAAA           | DBAAAA           | -               | -               | CABC-A<br>CCAAAA | BACC-A           | BACC-A           | -                | -                |
|                                | 4043<br>4145  | AACAA<br>BADBA   | AACAA<br>BADBA   | BBAAA<br>AABAA  | BBAAA<br>AARAA  | ABCAA            | ABDAA            | -                | 1                | 1                |
|                                | 5183          | CABB             | CABB             | -               | -               | C-BC-A           | BACC-A           | :                | 1                | 1                |
|                                | 5554          |                  |                  | -               | -               |                  | CCABAA           | -                | -                | -                |
| 3003                           | 1100          | BBAAAA           | BBAAAA           | -               | -               | BBAAAA           | -                | -                | -                | -                |
| ALCLAD 3003                    | 4043<br>4145  | AABAA            | AABAA            | BAAAA<br>AABAA  | BAAAA<br>AABAA  | AABAA            | 1                | -                | 1                | 1                |
| 2219                           | 2319<br>4043  | BAAAA            | BAAAA            | BAAAAA<br>BCBCA | AAAAAA<br>BCBCA | -                | -                | -                | -                | 1                |
| 2214                           | 4145          | AABAA            | AABAA            | ABCBA           | ABCBA           | -                | -                | -                | -                | -                |
| 2036                           | 4043          | BAAAA            | BAAAA            | BCBCA           | :               | 1                | 1                | -                | 1                | :                |
| 1100                           | 1100          | BBAAAA           | BBAAA            | -               | -               | -                | -                | -                | -                | -                |
|                                | 4043<br>5356  | ААБАА<br>-       | -<br>-           | -               | 1               | 1                | 1                | -                | 1                | 1                |
| 1060,<br>1350,                 | 1100<br>1188  | BBAAAB<br>CCAAAA | -                | -               | :               | -                | -                | -                | -                | :                |
| 1070, 1080                     | 4043          | AABAA            | -                | -               | -               | -                | -                | -                | -                | -                |

# ALUMINIUM ALLOY SELECTION CHART CONT.

| Base Alloys                                       |                              | 5083,<br>5456                        | 5086,<br>5056                        | 511.0, 512.0<br>513.0, 514.0<br>535.0<br>5154, 5254 | 5454                                 | 6005, 6063,<br>6101, 6151,<br>6201, 6351,<br>6951 | 6061,<br>6070              | 7005, 7021,<br>7039, 7046,<br>7146, 710.0,<br>711.0 | 413.0, 443.0<br>444.0,356.0<br>359.0<br>A356.0, A357 | 319.0, 333.0<br>354.0, 355.0<br>C355.0,380.0<br>0 |
|---------------------------------------------------|------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------------------|--------------------------------------|---------------------------------------------------|----------------------------|-----------------------------------------------------|------------------------------------------------------|---------------------------------------------------|
| Characteristics                                   |                              | WSDCTM                               | WSDCTM                               | WSDCTM                                              | WSDCTM                               | WSDCTM                                            | WSDCTM                     | WSDCTM                                              | WSDCTM                                               | WSDCTM                                            |
|                                                   | Filler Alloys                |                                      |                                      |                                                     |                                      |                                                   |                            |                                                     |                                                      |                                                   |
| 319.0, 333.0,<br>354.0, 355.0,<br>C355.0, 380.0   | 2319<br>4043<br>4149         | AAAA-A                               | AAAA-A                               | AAAA-A                                              | AAAAAA                               | -<br>BBAAAA<br>AABAAA                             | -<br>BBAAAA<br>AABAAA      | -<br>BBAAAA<br>AABAAA                               | -<br>BBAAAA<br>AABAAA                                | BAAAAA<br>-<br>ABBBAA                             |
| 413.0, 443.0,<br>444.0, 356.0,<br>A356.0, A357.0. | 4043<br>4145<br>A356.0       | ABBA-A<br>-                          | ABBA-A                               | ABBA-A                                              | ABBAAA<br>-                          | ABAAAA<br>AABBA                                   | ABAAAA<br>AABBA            | ABBAAA<br>AABBA                                     | ABAAAA<br>AABBAB<br>AAAAAA                           | -                                                 |
| 359.0                                             | A357.0<br>5356               | -<br>AAAA-A                          | -<br>AAAA-A                          | -<br>AAAB-A                                         | -<br>AAAB-A                          | 2                                                 | -                          | -<br>AAAA-B                                         | AAAAAA                                               | :                                                 |
| 7005, 7021, 7039, 7046.                           | 4043<br>4145                 | -                                    | -                                    | -                                                   | 2                                    | ADCBA                                             | ADCBA                      | BDCBA                                               | -                                                    | :                                                 |
| 7146, 710.0<br>7110.0                             | 5183<br>5356<br>5554         | AABA-A<br>ABAA-A                     | AABA-A<br>ABAA-A                     | AABA-A<br>ABAA-A<br>BCAA-A                          | AABA-A<br>ABAA-A<br>BCAAAA           | AABA-A<br>ABAA-A<br>BCAAAA                        | AABA-A<br>ABAA-A<br>BCAAAA | AABA-A<br>ABAA-A<br>BCAAAA                          | -                                                    | -                                                 |
|                                                   | 5556<br>5654                 | -<br>AABA-A                          | -<br>AABA-A                          | AABA-A<br>BCAA-A                                    | AABA-A<br>BCAA-A                     | AABA-A<br>BCAA-A                                  | AABA-A<br>BCAA-A           | AABA-A<br>BCAA-A                                    | 1                                                    | :                                                 |
| 6061,<br>6070                                     | 4043<br>4145<br>4643*        | ADCA                                 | ADCA                                 | ADCA                                                | ADCBA                                | ACBAA                                             | ACBAA                      | -                                                   | -                                                    | -                                                 |
|                                                   | 5183<br>5356                 | AABA-A<br>ABAA-A                     | AABA-A<br>ABAA-A                     | BABC-B<br>BBAC-A                                    | BABC-A<br>BBAC-A                     | BAAC-A<br>BAAC-A                                  | BAAC-A<br>BBAC-A           | :                                                   | 2                                                    | :                                                 |
|                                                   | 5556<br>5654                 | AABA-A<br>BCAA-B                     | AABA-A<br>BCAA-B                     | BABC-B<br>CCAB-A                                    | BABC-B<br>CCAB-B                     | BAAC-A<br>CBAB-B                                  | BAAC-B<br>CBAB-B           | -                                                   | -                                                    | -                                                 |
| 6005<br>6063                                      | 4043<br>4145                 | ABCA                                 | ABCA                                 | ABCA                                                | ABCBA                                | ACBAA                                             | Ċ                          |                                                     |                                                      | -                                                 |
| 6101                                              | 4643*<br>5183                | AABA-A                               | -<br>AABA-A                          | BABC-A                                              | -<br>BABC-A                          | ACBAA<br>BAAC-A                                   | Symbol                     | LC                                                  | Characteris                                          | tic                                               |
| 6151<br>6201<br>6351<br>6951                      | 5356<br>5554<br>5556<br>5654 | ΑΑΑΑ-Α<br>ΒΑΑΑ-Α<br>ΑΑΒΑ-Α<br>ΒΔΔΔ-Β | ΑΑΑΑ-Α<br>ΒΑΑΑ-Α<br>ΑΑΒΑ-Α<br>ΒΔΔΔ-Β | BAAC-A<br>CAAB-A<br>BABC-A<br>CAAR-R                | BAAC-A<br>CAAAAA<br>BABC-A<br>CAAR-R | BAAC-A<br>CBABBA<br>BAAC-A<br>CBAB-B              | W Ease<br>cracking).       | of welding                                          | (relative free                                       | dom from weld                                     |
| 5454                                              | 4043                         | -                                    | -                                    | AAPP A                                              | -                                    | -                                                 | S Strei                    | ngth of weld                                        | ed joint ("a                                         | s welded"                                         |
|                                                   | 5356                         | ABAB-A                               | ABAB-A<br>BCAA-A                     | ABAB-A<br>BCAA-A                                    | ABAB-A<br>BCAAAA                     | -                                                 | welds. Al                  | l rods and el                                       | ectrodes rat                                         | ed will develop                                   |
|                                                   | 5556<br>5654                 | AABB-A                               | AABB-A                               | AABB-A<br>BCAA-B                                    | AABB-A<br>BCAB-B                     | 1                                                 | presently                  | specified mi                                        | nimum strer                                          | gths for butt                                     |
| 511.0<br>512.0                                    | 4043<br>5183                 | -<br>ΔΔΒΔ-Δ                          | -<br>ΔΔRΔ-Δ                          | ΔΔRR-R                                              | -                                    | -                                                 | D Duct                     | ility. (Rating                                      | j is based up                                        | on the free ber                                   |
| 513.0<br>514.0                                    | 5356<br>5554                 | ABAA-A<br>BCAA-A                     | ABAA-A<br>BCAA-A                     | ABAB-A<br>BCAA-B                                    | 1                                    | 1                                                 | elongatio                  | n of the wel                                        | d.)<br>nco in conti                                  |                                                   |
| 535.0<br>5154, 5254                               | 5556<br>5654                 | AABA-A<br>BCAA-B                     | AABA-A<br>BCAA-B                     | AABB-B<br>BCAA-A                                    | 1                                    | -                                                 | alternate                  | immersion i                                         | n fresh or sa                                        | It water.                                         |
| 5086<br>5056                                      | 4043<br>5183                 | -<br>AABA-A                          | -<br>AABA-A                          | 1                                                   | :                                    | 1                                                 | T Reco                     | ommended fo                                         | or service at                                        | sustained                                         |
|                                                   | 5356<br>5554                 | ABAA-A                               | ABAA-A                               | -                                                   | 1                                    | 1                                                 | M Colo                     | ur match aft                                        | ter anodising                                        | c).<br>I.                                         |
|                                                   | 5556<br>5654                 | AABA-A                               | AABA-A<br>-                          | -                                                   | 2                                    | 2                                                 | *A,B,C an                  | d D are rela                                        | tive ratings                                         | n decreasing                                      |
| 5083<br>5456                                      | 4043                         | -                                    | -                                    | -                                                   | -                                    | -                                                 | order of n                 | nerit. The ra                                       | tings have r                                         | elative meaning                                   |
| J430                                              | 5356                         | A-AA-A                               | -                                    | -                                                   | -                                    | -                                                 | ONLY with                  | in a given bl                                       | OCK.<br>bowing no r                                  | ting are not                                      |
|                                                   | 5556                         | -<br>AABA-A                          | -                                    |                                                     | -                                    | -                                                 | usually re                 | commended                                           | . Ratings do                                         | not apply to                                      |
| ļ                                                 | 5654                         | -                                    | -                                    | -                                                   | -                                    | -                                                 | these allo                 | ys when hea                                         | at-treated af                                        | ter welding.                                      |

\*4643 gives higher strength in thick 6xxx series welds after post weld solution heat treatment and aging. 4047 can be used in lieu of 4043 for thin section sheet due to the lower melting point of 4047.

# ALUMINIUM ALLOY SELECTION CHART

#### How to Use:

1. Select base alloys to be joined (one from the side column, the other from the top row).

2. Find the block where the column and row intersect.

3. This block contains horizontal rows of letters (A,B,C or D) representative of the alloy directly across from them in the filler alloy box at the end of each row. The letters in each line give the A-to-D rating of the characteristics listed at the top of each column -

W, S, D. C, T and M (see Legend at right for explanation of each letter).

 Analyse the weld characteristics afforded by each filler alloy. You will find that you can 'trade off' one characteristic for another until you find the filler that best meets your needs.

When joining base alloys 3003 and 1100, find the intersecting block. Now, note that filler alloy 1100 provides excellent ductility (D), corrosion resistance (C), performance at elevated temperatures (T) and colour match after anodising (M), with good ease of welding (W) and strength (S). However, if ease of welding and shear strength are UTMOST in importance, and ductility and colour match can be sacrificed slightly, filler alloy 4043 can be used advantageously.



# Superior Integrated VRD technology







When it comes to safety in welding, the answer is VRD.

When it comes to VRD . . . . . . the answer is CIGWELD.

#### 1) Aluminium Base Metals

Aluminium Alloys can be broken up in to the following groups:

Group A - Cast Alloys Group B - Wrought Alloys

Group A - Cast Alloy System

| SERIES No. | MAJOR ALLOY ELEMENTS |
|------------|----------------------|
| 100        | 99% Pure             |
| *200       | Copper               |
| *300       | Copper & Silicon     |
| 400        | Silicon              |
| 500        | Magnesium            |
| *600       | Magnesium & Silicon  |
| *700       | Zinc                 |
| 800        | Tin                  |

Group B - Wrought Alloy System

| SERIES No. | MAJOR ALLOY ELEMENTS |  |  |
|------------|----------------------|--|--|
| 1000       | 99% Pure             |  |  |
| *2000      | Copper               |  |  |
| 3000       | Manganese            |  |  |
| 4000       | Silicon              |  |  |
| 5000       | Magnesium            |  |  |
| *6000      | Magnesium & Silicon  |  |  |
| *7000      | Zinc                 |  |  |
|            |                      |  |  |

\* NB: These alloys are heat-treatable.

Cast aluminium alloys generally contain a higher percentage of alloying elements than wrought alloys.

The higher additions of alloys greatly improve casting qualities, but make machining and working more difficult.

# The Different Groups (Features)

- 100/1000 Series: contain 99% AL or greater (iron and silicon are the major impurities).
  - excellent surface finish, high thermal and electrical conductivity and excellent corrosion resistance.
  - excellent weldability.
  - uses: electrical conductors, architectural items and containers.

200/2000 Series: contain copper as a major alloying element.

- limited corrosion resistance, a high strength to weight ratio and superior machinability.
- very poor weldability.
- uses: forgings, heavy duty structural work.
- 300 Series: containing copper and silicon have almost replaced the original 200/2000 series due to better casting characteristics, the other features are the same.
- ▲ 3000 Series contains manganese which provides approximately 20% more strength than the 100/1000 series. This series has good ductility and retains workability.
  - good weldability.
  - uses: cooking utensils, sheets and panels which are used on storage tanks.



# The Different Groups (Features) cont.

400/4000 Series: contains silicon as the major alloying element which aids in the metals fluidity and improves strength and machinability. The silicon lowers the melting point and makes the 400 alloys one of the best for casting.

- good to excellent weldability.
- uses: welding wires, castings, decorative gate castings and sheet.

▲ 500/5000 Series: contains magnesium as the major alloying element. The alloys in the group are widely used due to their excellent mechanical properties, high corrosion resistance and excellent anodising characteristics.

- 500 series are difficult to cast.
- good to excellent weldability.

 uses: sheet, plate, angles etc, widely used in the shipping and marine industries, and also in general fabrication.

- 600/6000 Series: contain silicon and magnesium making these alloys heat treatable, which allows the mechanical properties to be improved considerably by heat treatment after forming.
  - high resistance to corrosion and ease of machining, plus high strength.
  - good weldability.
  - uses: transportation equipment, engineering structures, bridges etc.
- 700/7000 Series: contains zinc which helps to give these alloys very good impact resistance, high strength and excellent ductility.
  - not recommended for welding.
  - uses: aircraft structures and mobile equipment.
- 800 Series: tin is the principal alloy in the group, its chief purpose being to improve anti-friction characteristics in bearing alloys. These alloys have a high resistance to corrosion by engine oils.
  - poor weldability.

# GTAW Welding Consumables for Aluminium and Aluminium Alloys:

#### The CIGWELD/Comweld range

- \* Comweld AL1100
- \* Comweld AL4043
- \* Comweld AL4047
- \* Comweld AL5356
- see product information in the front of this Pocket Guide or the CIGWELD Welding Consumables Technical Reference Manual.



# **TECHNICAL AND TRADE INFORMATION**

# WELDING OF ALUMINIUM

# Filler Metals to AS 1167.2/AWS A5.10

| ALUMINIUM ALLOYS                          |                                                       | CONSUMABLE (Filler Rod) TYPE                                         |                                                                      |                                                                                                                                                                                                                                                                |
|-------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CAST                                      | WROUGHT                                               | AS1167.2                                                             | AWSA5.10                                                             | CIGWELD PRODUCT                                                                                                                                                                                                                                                |
| AP150<br>AP170<br>AP185                   | 1100<br>1200<br>3003                                  | R1100<br>R1100<br>R1100                                              | R1100<br>R1100<br>R1100                                              | Comweld AL1100 (Pure Aluminium)<br>Comweld AL1100 (Pure Aluminium)<br>Comweld AL1100 (Pure Aluminium)                                                                                                                                                          |
|                                           | 3203                                                  | R1100                                                                | R1100                                                                | Comweld AL1100 (Pure Aluminium)                                                                                                                                                                                                                                |
| AP403<br>AP601<br>BP601<br>CP601<br>AS601 | 3004<br>5005<br>5050A<br>6061<br>6063                 | R4043<br>R4043<br>R4043<br>R4043<br>R4043                            | R4043<br>R4043<br>R4043<br>R4043<br>R4043                            | Comweld AL4043 (Aluminium 5% Silicon)<br>Comweld AL4043 (Aluminium 5% Silicon)<br>Comweld AL4043 (Aluminium 5% Silicon)<br>Comweld AL4043 (Aluminium 5% Silicon)                                                                                               |
| A9603                                     | 6351                                                  | R4043                                                                | R4043                                                                | Comweld AL4043 (Aluminium 5% Silicon)                                                                                                                                                                                                                          |
| AP501<br>AP701<br>AP703                   | 5052<br>5083<br>5086<br>5154A<br>5251<br>5454<br>7005 | R5356<br>R5356<br>R5356<br>R5356<br>R5356<br>R5356<br>R5356<br>R5356 | R5356<br>R5356<br>R5356<br>R5356<br>R5356<br>R5356<br>R5356<br>R5356 | Comweld AL5356 (Aluminium 5% Magnesium)<br>Comweld AL5356 (Aluminium 5% Magnesium) |
| BP401<br>CP401<br>AP303<br>AS303<br>AP309 |                                                       | R4047<br>R4047<br>R4047<br>R4047<br>R4047                            | R4047<br>R4047<br>R4047<br>R4047<br>R4047<br>R4047                   | Comweld AL4047 (Aluminium 10% Silicon)<br>Comweld AL4047 (Aluminium 10% Silicon)<br>Comweld AL4047 (Aluminium 10% Silicon)<br>Comweld AL4047 (Aluminium 10% Silicon)<br>Comweld AL4047 (Aluminium 10% Silicon)                                                 |

AWS A5.10-92 Specification for Bare Aluminium and Aluminium Welding Electrodes and Rods.

# 2) Tungsten Electrodes

Pure, Zirconiated, and Ceriated are the recommended tungsten welding electrodes for use in A.C. welding. Thoriated welding electrodes are generally reserved for D.C. welding of products such as low alloy steels and stainless steels. Thoriated tungsten will handle a higher current than pure tungsten, although it does not retain the balled shape required for A.C. welding of aluminium.

Pure Tungsten Electrodes:

Pure Tungsten welding electrodes are not often recommended or used for A.C. welding on aluminium and magnesium alloys as Zirconiated, and Ceriated electrodes have gained popularity in recent years. Pure Tungsten electrodes contain a minimum of 99.5% tungsten, with no alloying elements intervinally added. By using high purity tungsten, current carrying capability is diminished, although it maintains a clean, balled end which provides good arc stability.



# 2) Tungsten Electrodes cont.

Zirconiated Tungsten Electrodes:

Zirconiated tungsten welding electrodes have arc stability characteristics that are similar to pure tungsten besides the higher current carrying capability found in the thoriated tungsten. This welding electrode provides a good balance of properties. It is more resistant to contamination than pure tungsten and better for radiographic-quality welding applications than thoriated tungstens.

These electrodes have been designed primarily for use with High Frequency stabilised Alternating Current (AC-HF) and are alloyed with varying percentages of zirconium. Zirconiated electrodes must be pre-ground to form a tapered tip with a radius end before use.

When current flows through a Zirconiated electrode the end tip which has been prepared with the radius end heats up and becomes slightly molten forming a balled end. This balled end is very important in AC-HF welding as it allows the AC current to obtain arc stability and its arc directional capabilities.



Uses: designed for high quality clean welding of Aluminium and Magnesium alloys.

Advantages:

- ▲ high current carrying capacity.
- ▲ high resistance to contamination from aluminium oxides (self cleaning action).
- resultant weld metal quality is of high radiographic standard.

Ceriated Tungsten Electrodes:

"The best of both worlds". These electrodes contain varying percentages of cerium and have been designed to function on both AC and DC currents.

Ceriated tungsten welding electrodes have an addition of approximately 2% cerium oxide (CeO<sub>2</sub>) which helps to reduce welding electrode burn-off. In performance, the ceriated welding electrode will react much like pure tungsten by providing a stable arc and reducing the amount of tungsten "spitting". These characteristics allow this welding electrode to perform well on aluminium in balanced wave machines (A.C.) and on steel in the D.C. mode. This electrode can replace both Thoriated and Zirconiated electrodes in most instances.


## 2) Tungsten Electrodes cont.

Preparation before welding is dependent upon the current used. Uses: designed for quality and general purpose work on most metals.

#### Advantages:

- reduces the number and types of electrodes required to complete different jobs.
- higher resistance to contamination than the thoriated and zirconiated types.
- ▲ higher current carrying capacity.
- ▲ a longer electrode tip life.
- ▲ non-radioactive material.

## 3) Preparing Tungsten Electrodes:

Tungsten electrodes are pre-ground before commencement of welding to allow efficient performance during welding.

Preparation is dependent upon two factors:

- ▲ Welding polarity being used (AC-HF or DC)
- The type of Parent Metal being welded.

The Correct Grinding Technique:

- When grinding Tungsten electrodes, it is very important to make sure the grinding lines run longitudinally to the electrodes axis.
- If the grinding lines run around the circumference of the electrode, they may cause the following problems:
  - ridges will be formed around the circumference which can cause tungsten particles to drop off the tip during welding. This will result in tungsten inclusions, a weld defect.
  - these ridges will reduce the stability of the arc and cause "arc wander".





## Preparing Zirconiated & Ceriated Tungstens for AC-HF Welding:



For Amperage over 150 AMPS AC

Current Carrying Capacities of Tungsten Electrodes:

| ELECTRODE DIAMETER | THORIATED | ZIRCONIATED | CERIATED |
|--------------------|-----------|-------------|----------|
| 0.5mm              | 5-50      | 5-35        | 5-60     |
| 1.0mm              | 10-90     | 15-55       | 7-95     |
| 1.6mm              | 20-120    | 35-75       | 20-130   |
| 2.4mm              | 50-190    | 45-160      | 60-230   |
| 3.2mm              | 80-250    | 50-225      | 80-320   |
| 4.0mm              | 120-370   | 90-300      | 130-450  |
| 5.0mm              | 200-500   | 150-400     | 210-600  |

#### 4) Gas Tungsten Arc Welding - "Process Explanation" and "Power Source Terminology"

The Gas Tungsten Arc Welding (GTAW) process utilises heat generated by an electric arc maintained between the workpiece and a non consumable tungsten welding electrode. The arc is enveloped by a stream of inert gas. GTAW weld quality is primarily controlled by workpiece, filler wire, and tungsten electrode quality, type of power source, and welder technique. Discussed below are several important items that must be addressed in order to produce high quality welds.

High Frequency (HF):

The high frequency mode will initiate and maintain the arc during the zero crossing of the A.C. sine wave. Three positions exist on most GTAW machines eg. TRANSTIG 200 AC/DC:

- Start This mode helps arc initiation without making actual contact to the work with the tungsten welding electrode. The "Start" mode is most often used in D.C. welding.
- Continuous this also helps initiate the arc and continues throughout the process to maintain the arc during periods when current (amperage) is at the zero crossing point of the sine wave. This mode is most often used in A.C. welding. This type of mode is often a built in feature on most CIGWLID GTAW machines, and occurs automatically when AC current for GTA welding is selected.



4) Gas Tungsten Arc Welding - "Process Explanation" and "Power Source Terminology" cont.

3. Off - The high frequency system does not engage during any part of the process in this mode. Contact between the tungsten electrode and work surface must occur before the arc can be initiated. A "Douch Start or Scratch Start Practice" to initiate the arc can cause contamination of the the tungsten electrode in the GTAW process. The "Off" mode is often used for DC- TIG or stick welding (MMAW) where scratch starting will initiate the arc.



#### 4) Gas Tungsten Arc Welding - "Process Explanation" and "Power Source Terminology" cont.

Pulsed GTAW (TIG) Welding:

In Pulsed Gas Tungsten Arc Welding the current consists of two parts, "see below"

- 1) the high pulse which melts the metal,
- the low background current which maintains the arc and allows the weld to cool. The rate of pulse current is usually in the range of 1-10 pulses per second. Pulsed TIG welding offers the following advantages;

a) reduced distortion, b) reduced heat build up, d) user friendly operation.



## 5) GTAW (TIG) Techniques

#### Starting the Arc:

After gas flow is established and providing HF is used, the electrode does not have to touch the workpiece or starting block to effect arc ignition. The superimposed high frequency current bridges the gap between the electrode and the

workpiece or starting block and thus establishes a path for the welding current to follow.

For power sources that do not have a button or foot control start such as the TRANSTIG 150 the following steps are recommended;

 a) the torch should first be positioned in a near horizontal position about 50mm above the workpiece or starting block (a piece of copper is recommended for a starting block as it provides less risk of contamination).





#### 5) GTAW (TIG) Techniques cont.

- b) the torch is then moved quickly downwards until the electrode is within approx 3mm of the workpiece or starting block as shown on the previous page. The arc will then be initiated.
- c) to stop an arc, the torch should be returned to the horizontal position in a rather rapid manner so that the arc will not mark or damage the weld surface or workpiece. Some care will be necessary, particularly with high quality work and in pipe preparation when breaking the arc. In some instances it is advisable to run off, on to a tab or up the side of the pipe preparation when completing a pass.

#### Torch Angles:

The proper manipulation of the welding torch is very important in making a good weld. When welding in the flat position,

- The hand should be placed lightly on a surface, so that the hand can move across the joint evenly. Movement of the torch by the fingers alone, usually results in incorrect torch angles and a poor weld.
- When adding filler wire, the wire should be gripped in the fingers. The hand should be as close as possible to the arc to hold the wire steady. The wire should move in conjunction with the torch movement. When adding wire, move the wire with the thumb through the fingers. The end of the wire should extend 150mm to 200mm from the hand. Too much extension of the filler wire results in a wobbly wire end making the puddle uneven and allowing the filler wire to become contaminated. Adding wire to the puddle requires steadiness and concentration to place the right amount of material at the right place, at exactly the right time.
- Torch angles vary only slightly depending on the welding position. The torch is usually pointed in the direction of travel with a 45-90° angle from the horizontal position. The filler rod

is added ahead of the weld pool 10 to 25 degrees from the plane of the weld bead. The filler rod or wire should always be placed within the inert gas shield and at the leading edge of the weld pool. Too large a rod or wire disturbs and often freezes the pool, while a rod too small in size forces the welder to feed too fast for steady operation.





## 5) GTAW (TIG) Techniques cont.

Torch Angles, for Different Welding Positions:





# 6) Joint Types and Parameters in GTAW

Joints types applicable to the following parameter table: Parameter Table for GTAW (TIG) Welding of Aluminium:



|           | Aluminium GTA             | W (TIG) Welding       | - Alternating Curr     | ent - High Freque  | ency (AC-HF) |             |
|-----------|---------------------------|-----------------------|------------------------|--------------------|--------------|-------------|
| Metal     |                           | Tungsten<br>Electrode | Filler Rod<br>Diameter |                    |              | Gas         |
| Thickness | Joint Type                | Diameter              | (if required)          | Amperage           | Туре         | Flow L/min* |
| 1.0mm     | Butt/Corner<br>Lap/Fillet | 1.0mm                 | 1.6mm                  | 30-45<br>35-50     | Argon        | 5-7         |
| 1.2mm     | Butt/Corner<br>Lap/Fillet | 1.0mm                 | 1.6mm                  | 40-60<br>45-70     | Argon        | 5-7         |
| 1.6mm     | Butt/Corner<br>Lap/Fillet | 1.6mm                 | 1.6mm                  | 60-85<br>70-95     | Argon        | 7           |
| 3.2mm     | Butt/Corner<br>Lap/Fillet | 2.4mm<br>3.2mm        | 2.4mm                  | 125-150<br>130-160 | Argon        | 10          |
| 5.0mm     | Butt/Corner<br>Lap/Fillet | 3.2mm<br>4.0mm        | 3.2mm                  | 180-225<br>190-240 | Argon        | 10          |
| 6.0mm     | Butt/Corner<br>Lap/Fillet | 4.8mm<br>4.0mm        | 4.8mm                  | 240-280<br>250-320 | Argon        | 13          |

\*Flow rates are for argon only see manufacturers' recommendations for mixtures. Size and shape of gas nozzle has an effect on the flow required for an effective gas cover.



#### Introduction

This guide is not an exhaustive reference. Nonetheless, it provides the reader with a thorough technical guide to the welding of a number of different types of cast iron.

#### Types of Cast Iron

Cast irons can generally be divided into the following groups:

1. Grey Cast Irons

Nominally contain 2.5-4.0% carbon and high silicon. Used for many applications, including those under conditions of static compressive load, lightly stressed process equipment and where severe thermal and mechanical shock would not normally be expected.

Due to the presence of graphite in its structure, grey cast iron is easily machined, helps in the lubrication of sliding surfaces and is therefore good for bearings and for damping mechanical vibration. Grey cast iron is however quite brittle and has low tensile strength. It has uses in the machinery and automotive industries, including brake drums, clutch plates and cam shafts. Furnace parts, ingot and glass moulds and melting pots that operate at elevated temperatures are made of grey cast iron, as are various types of pipes, valves, flanges and fittings for both pressure and non-pressure applications.

 SG-Spheroidal Graphite Cast Irons (Nodular Cast Iron, Ductile Cast Iron) SG cast irons have mechanical properties similar to those of mild steel and far greater than grey cast iron, in many cases replacing steel castings and forgings as well as grey cast iron in many applications. SG cast irons contain graphite making them machinable.

Applications include culverts, sewers, pressure pipes as well as fittings, valves and pumps. The advantages of these products are their relatively good toughness and weldability when compared to grey cast iron

3. Austenitic Cast Irons

Austenitic cast irons are nickel alloys of grey, SG and white cast irons. Due to the nickel addition, austenitic cast irons exhibit corrosion resistance, erosion resistance, cavitation resistance and exhibit resistance to high temperature service. Austenitic cast irons are stronger and tougher than grey cast iron, producing good wear and galling resistance as well as good machinability. Austenitic (SG) cast iron is approximately twice as strong as austenitic (grey) cast iron. Austenitic white cast irons containing nickel, chromium and molybdenum make up the range of Ni-Hard, Ni-Resist and Nicrosilal grades. Ni-Hard is used for abrasion resistance, Ni-Resist for corrosion resistance and Nicrosilal for heat resistance.

4. White Cast Irons ("Chilled" Iron)

Unlike the grey and SG cast irons, white cast irons are virtually free of graphite. They are quite unmachinable and very brittle with high hardness and low tensile strength. They are often used in the manufacture of crushing rolls.

"Meehanite"\* is a high tensile white cast iron made by adding calcium silicide to white cast iron. The silicide addition gives uniform hardness as well as physical properties superior to that of grey cast iron.

\*(registered trademark of International Meehanite Metal Co. Ltd.)



#### 5. Malleable Cast Irons

Malleable cast irons, which include the white heart and black heart irons, are formed by heating white iron for a set period of time. Malleable cast irons have a higher tensile strength and better ductility than grey cast iron and will bend or deform before breaking as well as standing shock better than grey cast iron. Applications include flanges, pipe fittings and valve parts. Automotive parts include steering components, compressor crank shafts and hubs, transmission and differential parts, connecting rods and universal joints.

## Identifying the type of cast iron:

There are a number of ways of identifying the type of cast iron that is to be welded.

1. Visual observation

Grey and SG cast iron have a dirty, dark grey appearance due to the presence of graphite in the structure. White cast irons will have a whitish colour in a fracture in the casting. Malleable and austenitic cast irons have a cleaner appearance than grey or nodular.

2. Source of supply

If possible, check with the supplier of the cast iron. Quite often the item will be an old item in need of repair, so its origins may be difficult to discern.

3. Mechanical tests

These are the best tests for identification.

a) Spark test

An easy and useful method is the spark test. The metal is touched against a high speed emery wheel and the sparks are observed against a black background. The sparks should then be compared against the chart below. SG cast irons can be identified in the same manner as malleable cast irons. Meehanite cast irons can be identified in the same manner as arey cast irons.





b) Chisel test

Can be used for the separation of grey cast iron and malleable iron. Grey cast iron chips break easily, whereas chips from malleable cast iron will curl from the corner of the piece.

c) Spectrographic analysis

This test is the most accurate of all. However it needs to be undertaken by a qualified laboratory to ensure accurate results.

#### Welding Cast Irons

In general cast irons can be welded using the MMAW, FCAW, Gas and Braze Welding, Brazing, Powder Spraying and Soldering processes. The table below is a process selection guide listing the relevant CIGWELD consumable.

| Process<br>Cast Iron | MMAW | FCAW | Gas<br>Welding        | Braze<br>Welding      | Brazing | Soldering |
|----------------------|------|------|-----------------------|-----------------------|---------|-----------|
| Grey                 | 1    | 2    | 3,5                   | 4, 5                  | 4, 5    | 7         |
| SG (Nodular/         |      |      |                       |                       |         |           |
| Ductile)             | 1    | 2    |                       | 4, 5                  | 4, 5    |           |
| Austenitic           | 1    |      |                       |                       |         |           |
| White                |      |      | Considered unweldable |                       |         |           |
| Ni-Hard              |      |      |                       | Considered unweldable |         |           |
| Ni-Resist            | 1    |      |                       |                       |         |           |
| Nicrosilal           |      |      |                       | Considered unweldable |         |           |
| Malleable            | 1    | 2    |                       | 4, 5                  | 4, 5    |           |
| Meehanite            | 1    |      |                       |                       |         |           |

1=Castcraft 55, Castcraft 100 2=Nicore 55 3=Comweld General Purpose Cast Iron 4=Comweld Comcoat C, Comweld Manganese Bronze 5=Comcoat N, Comcoat Nickel Bronze 6=Comweld 965 Silver Solder

#### Preparation prior to welding

#### General

Cast iron is considered weldable, although to a far lesser degree than carbon steel. There have been many successful cast iron repair welds performed in maintenance and casting reclamation applications. The degree of brittleness and likelihood of cracking of the welded material will depend on the type of casting the heat treatment and the welding procedure. For example SG cast iron is more likely to absorb welding stresses than grey cast iron.

#### Preparation

The most important aspect of welding cast iron is to have the surface clean and free of defects prior to welding.



#### Grinding & machining

All sand, slag and scale must be removed from the area of the casting to be welded by mechanical means such as grinding, machining, chipping or rotary burrs. Physical defects such as blowholes, sand inclusions, sponginess and shrinkage cracks need to be removed. Cracks should be excavated to their full length and depth. Excavate spongy areas and pinholes. Quite often a pinhole will open up to expose a large cavity hidden underneath. During preparation grinding wheels can become impregnated with carbon which can be smeared on the finished surface making joining difficult because of the high carbon content of the surface. Because of this the final 1-2mm should be prepared by chipping, rotary burrs or a coarse file to clean the surface.

#### Oxy-acetylene

An oxidising oxy-acetylene flame can be used to burn off any surface graphite. This also provides a light preheat which is advantageous.

#### Arc-air gouging

Arc-air gouging is not usually recommended. However, it can be used to remove the bulk of metal providing the last 1-2mm is removed by grinding.

#### Oil soaked castings

Often castings are soaked in oil due to their environment eg. gear boxes. They may appear clean after mechanical cleaning, however oil will still be present in the pores of the casting. The elimination of the residual can be achieved by heating the casting to 200-300°C for 2-3 hours followed by wire brushing. This will help overcome porosity and poor welds. "Gassy" castings can be treated by heating the weld area to a dull red for a short time before welding. For small components, treatment in a furnace at 650°C for 15 minutes will give fairly complete degasification. On heavier castings the relevant face is welded and the resultant porous metal is removed and the surface rewelded until a clean surface is obtained. Castings high in phosphorous are difficult to weld and can be identified by a glassy and shiny appearance. Often brazing is the best way to repair these castings.

To repair cracked castings, drill a hole at each end of the crack to prevent it spreading further and grind out to the bottom. Begin welding at the drilled end of the crack, where restraint is greatest and move towards the free end.

Castings which have to transmit fairly heavy working loads often have the weld joint assisted by mechanical means, such as bolted straps, or hoops which are shrunk on. Broken teeth of large cast iron gears are sometimes repaired by studding. Holes are drilled and tapped in the face of the fracture and mild steel studs screwed in. These are then covered with weld metal and built up to the required dimensions. They are machined afterwards or ground to shape.

#### Precautions when welding cast irons

Factors to consider are the same whatever the type of cast iron.

 Low ductility with a danger of cracking due to stresses set up by welding. (This is not so important when welding SG iron due to its good ductility)

Formation of a hard brittle zone in the weld area. This is caused by rapid cooling of molten metal to form a white cast iron structure in the weld area and makes the weld unsuitable for service where fairly high stresses are met.

 Formation of a hard, brittle weld bead due to pick-up of carbon from the base metal. This does not occur with weld metals which do not form hard carbides such as Monel and high nickel alloys. These are used where machinable welds are desired.



#### Preheating

Although a large amount of satisfactory welding is done without preheating, cracking due to the rigidity or lack of ductility of castings, especially complicated shapes, may be minimised by suitable preheating.

In general all cast irons need to be preheated when oxy-acetylene welding to reduce the heat input requirements. High preheat is needed when using a cast iron consumable because the weld metal has low ductility near room temperature. A consumable that deposits relatively low strength, such as Castcraft 100, can be used with the base metal at or slightly above room temperature. The weld can readily yield during cooling and relieve welding stresses that might otherwise cause cracking in the weld.

> Local preheating occurs where parts not held in restraint may be preheated to about 500°C in the area of the weld, with slow cooling after welding is completed. Cracking from unequal expansion can take place during the preheating of complex castings or when the preheating is confined to a small area of a large casting which is why local preheating should always be gradual.

 Indirect preheating involves a preheat of 200°C for other critical parts of the job in addition to local preheating. This is done so that they will contract with the weld and minimise contraction stresses. Such a technique is suitable for open frames, spokes etc.

3. Complete preheating is used for intricate castings, especially those varying in section thicknesses such as cylinder blocks. It involves complete preheating to 500°C followed by slow cooling after welding. The preheating temperature should be maintained during welding. A simple preheating furnace may be made of bricks into which gas jets project. Another may be filled with charcoal which burns slowly and preheats the job evenly.

#### **Postweld Heating**

After any welding on cast iron, especially welds intended for use in severe service or subject to close machining tolerances, the slowest cooling rate possible should be allowed, the part either remaining in the preheating furnace or cooling under a blanket of insulating powder or sand. It is sometimes the practice to post-heat welded joints to relieve stresses and soften hard areas. In this case it is normal to heat the casting to a temperature of 595-620°C. The casting should be held at this temperature for one hour per 25mm of thickness. The cooling rate should not exceed 10°C

per hour until the casting has cooled to about 370°C. (For maximum softening and stress relief, heat at 900°C followed by slow cooling to 540°C or lower.) To obtain optimum ductility, the above heat treatment should be carried out immediately following welding.

For the best results with SG cast iron, the casting should be placed in a furnace (595-650°C) and the temperature raised to 900°C. The casting should be held at temperature for 2-4 hours. It is then cooled to 700°C in the furnace and finally to room temperature. Malleable cast iron may be reheat-treated after welding.

## Peening

Satisfactory welds may be made on cast iron without preheating by using electrodes depositing soft metal and peening the weld with a blunt tool (such as a ball hammer) immediately after welding. This spreads the weld metal and counteracts the effect of contraction. Good practice is to deposit short weld runs (50mm at a time) and then been before too much

Good practice is to deposit short weld runs (50mm at a time) and then peen before too much cooling takes place. (Castcraft 100 is soft and allows peening).



## Joint Design

In general, joint design used for carbon steels are applicable for cast irons. Below are some suggested single-vee and double-vee preparations.

Welds should be as narrow as is practical for access - particularly for grey iron, as wide welds build up more stress than narrow ones. A double vee uses only half the weld metal of a single vee. For thick materials that are not accessible from both sides, a U-preparation is a good compromise.

See diagrams below for various joints designs:

Longer joints can be welded using the backstep, block, cascade, chain intermittent and staggered intermittent methods





Corner defect repair weld

## MMAW welding of cast irons

The most suitable electrodes for MMAW of cast irons are pure nickel (AWS A5.15 ENi-CI, Castcraft 100) and 55% nickel / 45% iron (AWS A5.15 ENiFe-CI, Castcraft 55).

#### Grey Cast Iron

Castcraft 100 is more suitable for single layers and for filling small defects as the deposit remains highly machinable. Single-layered welds of Castcraft 55 are not as machinable as Castcraft 100, however they do have increased strength and ductility. Castcraft 55 welds are more tolerant towards contaminants such as sulphur and phosphorous and are superior to Castcraft 100 electrodes when welding castings high in phosphorous.

#### Peening is a must for grey cast irons.

Joining of cast iron to steel can be performed with either Castcraft 55 or 100, but Castcraft 55 is preferred. Ferrous based electrodes, including hydrogen controlled types are generally not recommended for welding cast iron. Brackets, lugs and even wear plates can be attached to castings using the correct parameters and Castcraft 55.



#### SG Cast Iron

Grey iron can be repaired with either Castcraft 55 or 100 whereas SG cast iron can only really be repaired using Castcraft 55 due to its higher tensile strength and better ductility. When welding SG cast irons, penetration should be low and wide joints or cavities should be built up from the sides towards the centre. Stringer beads or narrow weaves should be used. Deposit short beads and allow to cool to preheat temperature. Peening is advisable but not as critical as when welding grey cast iron.

#### Austenitic cast irons

These are usually welded with Castcraft 55. Although Austenitic castings can be welded with Castcraft 55 the weld may be unsuitable for applications where corrosion/heat resistance qualities do not match the parent metal.

#### GMAW welding of cast irons

Cast irons are generally considered unweldable using the GMAW process.

## FCAW welding of cast irons

Flux cored welding of cast irons is carried out using higher current than that for MMAW. This is offset by faster travel speeds as for normal FCAW welding. Both grey, SG and malleable cast irons can be welded using the FCAW process. Preparation and heat treatment are much the same as for MMAW. The most suitable consumable that can be used is an AWS ENIFe-CI equivalent like Nicore 55.

#### Oxy-acetylene welding of cast irons

For successful oxy fusion welding, it is essential that the part be preheated to a dull, red heat (approximately 650°C). A neutral or slightly reducing flame should be used with welding tips of medium or high flame velocity. The temperature should be maintained during welding. As with MAW preparation it is necessary to use a furnace to ensure even heating of large castings. It is important that the casting be protected from draughts during welding and provision should be made to ensure that the required preheat is maintained. It is important to avoid sudden chilling of the casting otherwise white cast iron may be produced which is very hard and brittle. This may cause cracking or make subsequent machining impossible.

Oxy welding is suitable for grey cast irons with an AWS A5.15 RCI (Comweld General Purpose Cast Iron - Super Silicon), RCI-A type electrode and should be used with a suitable flux such as Comweld Cast Iron Flux.

An AWS RBCuZn-D (Comweld Nickel Bronze & Comweld Comcoat N) type can also be used with Comweld Bronze Flux.

SG cast irons can only be oxy welded with an AWS RCI-B type consumable.

## Braze Welding of cast irons

Braze welding should only be used to repair old castings because of the poor colour match achieved with newer castings. Braze welding is suitable for grey, SG and malleable cast irons, however joint strength equivalent to fusion welds are only possible with grey cast iron. A neutral or slightly oxidising flame should be used.



Braze welding has advantages over oxy welding in that the consumable melts at a lower temperature than the cast iron. This allows lower preheat (320-400°C). As with other forms of welding the surface must be properly cleaned so that carbon doesn't contaminate the weld deposit.

The applicable consumables to use are AWS RBCuZn-C (Comweld Manganese Bronze & Comweld Comcoat C) types and AWS RBCuZn-D (Comweld Nickel Bronze & Comweld Comcoat N) types.

#### Brazing of cast irons

Any brazing processes suitable for steel are applicable to cast irons. Pre- and post- braze operations should be similar to that of standard brazing processes. Consumables suitable for brazing carbon steel can be used for cast irons.

## Powder Spraying of cast irons

Powder spraying is particularly suited to edges, corners, shallow cavities and thin sections as there are usually no undercut marks. Porous metals can be surfaced before arc welding. As with other welding processes, the base metal must be extremely clean and free from contaminants. Cavities and porous areas must be ground out to a saucer or cup shape with no overhanging edges. Sharp corners, edges and protruding points must be removed or radiused as they may go into solution in the molten metal causing hardspots. Spraying and fusing should be as per the normal powder spraying process. Poor quality or difficult irons can be joined by coating both parts separately with 1-2 mm of sprayfused alloy and then joining the coatings together with a suitable nickel MMAW electrode.

Consumables are based on a nickel-silicon-boron mixture.

#### Soldering of cast irons

Soldering of cast irons is usually limited to the repair of small surface defects, often sealing areas from leakage of liquids or gases. The casting must be thoroughly cleaned. A suitable consumable is Comweld 965 Solder.



#### Introduction:

Copper and Copper alloys remain to this day among the most important engineering materials due to their good electrical and thermal conductivity, corrosion resistance, metal-to-metal wear resistance and distinctive aesthetic appearance. Copper and most copper alloys can be joined by welding, brazing and soldering. The major markets for copper and its alloys include the building industry, electrical and electronic products, industrial machinery and equipment and transportation.

This section outlines the different types of copper alloys and gives guidance on processes and techniques to be used in fabricating copper alloy components without impairing their corrosion or mechanical properties or introducing weld defects.

#### 1) Types of Copper Alloys:

The eight major groups of copper and copper alloys are:

- i Copper 99.3% minimum Copper content.
- ii High copper alloys up to 5% alloying elements.
- iii Copper-Zinc alloys (Brass).
- iv Copper-Tin alloys (Phosphor Bronze).
- v Copper-Aluminium alloys (Aluminium Bronze).
- vi Copper-Silicon alloys (silicon bronze).
- vii Copper-Nickel alloys.
- viii Copper-Nickel-Zinc alloys (Nickel silver).

i) Pure Copper: 99.3% minimum Copper content- Copper is normally supplied in one of three forms:

- (a) Oxygen free copper.
- (b) Oxygen-bearing copper (tough pitch and fire-refined grades) the impurities and residual oxygen content of oxygen-bearing copper may cause porosity and other discontinuities when these coppers are welded or brazed.
- (c) Phosphorous deoxidised copper.

ii) High Copper Alloys:

- (a) Free machining copper Low alloying additions of sulphur or tellurium can be made to improve machining. These grades are considered to be unweldable due to a very high susceptibility to cracking. Free machining coppers are joined by brazing and soldering.
- (b) Precipitation hardenable copper alloys Small additions of beryllium, chromium or zirconium can be added to copper and then given a precipitation hardening heat treatment to increase mechanical properties. Welding or brazing of these alloys will over-age the exposed area resulting in degradation of mechanical properties.
- iii) Copper-Zinc Alloys (Brass):

Copper alloys in which zinc is the major alloying element are generally called brasses. Brass is available in wrought and cast form, with the cast product generally not as homogeneous as the wrought products. Additions of zinc to copper decreases the melting temperature, the density, the electrical and thermal conductivity and the modulus of elasticity. The additions of zinc will increase the strength, hardness, ductility and coefficient of thermal expansion. Brasses can be separated into two weldable groups, low zinc (up to 20% zinc) and high zinc (30-40% zinc). The main problems encountered with brass is due to zinc volatilisation which results in white -



#### 1) Types of Copper Alloys cont.:

fumes of zinc oxide and weld metal porosity. The lower zinc alloys are used for jewellery and coinage applications and as a base for gold plate and enamel. The higher zinc alloys are used in applications where higher strength is important. Applications include automotive radiator cores and tanks, lamp fixtures, locks, plumbing fittings and pump cylinders.

iv) Copper-tin Alloys (Phosphor Bronze):

Copper alloys which contain between 1 percent and 10 percent tin. These alloys are available in the wrought and cast forms. These alloys are susceptible to hot cracking in the stressed condition. The use of high preheat temperatures, high heat input, and slow cooling rates should be avoided. Examples of specific applications include bridge bearings and expansion plates and fittings, fasteners, chemical hardware and textile machinery components.

v) Copper-Aluminium Alloys (Aluminium Bronze):

Contain from 3-15 percent aluminium with substantial additions of iron, nickel and manganese. Common applications for Aluminium Bronze alloys include pumps, valves, other water fittings and bearings for use in marine and other aggressive environments.

vi) Copper-Silicon Alloys (Silicon Bronzes):

Available in both wrought and cast forms. Silicon Bronzes are industrially important due to their high strength, excellent corrosion resistance, and good weldability. The addition of silicon to copper increases tensile strength, hardness and work hardening rates.

Low silicon bronze (1.5% Si) is used for hydraulic pressure lines, heat exchanger tubes, marine and industrial hardware and fasteners. The high silicon Bronze (3% Si) is used for similar applications as well as for chemical process equipment and marine propeller shafts.

#### vii) Copper Nickel Alloys:

The cupronickel alloys containing 10-30% Ni have moderate strength provided by the nickel which also improves the oxidation and corrosion resistance of copper. These alloys have good hot and cold formability and are produced as flat products, pipe, rod, tube and forgings. Common applications include plates and tubes for evaporators, condensers and heat exchangers.

viii) Copper Nickel Zinc Alloys (Nickel Silvers):

Contain zinc in the range 17-27% along with 8-18% Nickel. The addition of nickel makes these alloys silver in appearance and also increases their strength and corrosion resistance, although some are subject to dezincification and they can be susceptible to stress corrosion cracking.

Specific applications include hardware, fasteners, optical and camera parts, etching stock and hollowware.



## 2) Weldability of Copper and Copper Alloys:

Welding processes such as Gas Metal Arc Welding and Gas Tungsten Arc Welding are commonly used for welding copper and its alloys, since high localised heat input is important when welding materials with high thermal conductivity. Manual Metal Arc Welding of Copper and Copper alloys may be used although the quality is on as good as that obtained with the gas shielded welding processes. The weldability of copper varies among the pure copper grades (a) (b) and (c). The high oxygen content in tough pitch copper can lead to embrittlement in the heat affected zone and weld metal porosity. Phosphorus deoxidised copper is more weldable, with porosity being avoided by using filler wires containing deoxidants (A), Mn, Si, P and Ti). Thin sections can be welded without preheat although thicker sections require preheats up to 60°C. Copper alloys, in contrast to copper, seldom require pre-heating before welding. The weldability varies considerably amongst the different copper alloys and care must be taken to ensure the correct welding procedures are carried out for each particular alloy to reduce the risks of welding defects.

2.1 Weld joint designs for Joining Copper and Copper alloys:

The recommended joint designs for welding copper and copper alloys are shown in Figures 1 & 2. Due to the high thermal conductivity of copper, the joint designs are wider than those used for steel to allow adequate fusion and penetration.



Figure 1. - Joint designs for Gas Tungsten Arc Welding and Manual Metal Arc welding of Copper and Copper Alloys.



#### 2) Weldability of Copper and Copper Alloys cont.:



**NOTE:** A = 1.6mm, B = 2.4mm, C = 3.2mm, D = 4.0mm, R = 6.0mm, T = thickness

Figure 2. - Joint Designs for Gas Metal Arc Welding of Copper.

#### 2.2 Surface Preparation:

The weld area should be clean and free of oil, grease, dirt, paint and oxides prior to welding. Wire brushing with a bronze wire brush followed by degreasing with a suitable cleaning agent. The oxide film formed during welding should also be removed with a wire brush after each weld run is deposited.

#### 2.3 Pre-heating:

The welding of thick copper sections requires a high preheat due to the rapid conduction of heat from the weld joint into the surrounding base metal. Most copper alloys, even in thick sections, do not require pre-heating because the thermal diffusivity is much lower than for copper. To select the correct preheat for a given application, consideration must be given to the welding process, the alloy being welded, the base metal thickness and to some extent the overall mass of the weldment. Aluminium bronze and copper nickel alloys should not be preheated. It is desirable to limit the heat to as localised an area as possible to avoid bringing too much of the material into a temperature range that will cause a loss in ductility. It is also important to ensure the preheat temperature is maintained until welding of the joint is completed.

#### 3) Gas Metal Arc Welding (GMAW) of Copper and Copper alloys:

3.1 GMAW of Copper:

ERCu copper electrodes are recommended for GMAW of copper. CIGWELD's Autocraft Deoxidised Copper is a versatile 98% pure copper alloy for the GMAW of copper. The gas mixture required will be largely determined by the thickness of the copper section to be welded. Argon is generally used for form and under.



#### 3) Gas Metal Arc Welding (GMAW) of Copper and Copper alloys cont.:

The helium-argon mixtures (Alushield Heavy) are used for welding of thicker sections.

The filler metal should be deposited with stringer beads or narrow weave beads using spray transfer. Table 1 below gives general guidance on procedures for GMAW of Copper.

#### \*Refer to Figure 2

| Metal<br>Thickness | Joint<br>Design* | Electrode<br>Diameter | Preheat <sup>#</sup><br>Temperature | Welding<br>Current | Voltage<br>Range | Gas Flow<br>Rate (l/min) | Travel<br>Speed |
|--------------------|------------------|-----------------------|-------------------------------------|--------------------|------------------|--------------------------|-----------------|
| 1.6mm              | A                | 0.9mm                 | 75°C                                | 150-200            | 21-26            | 10-15                    | 500 mm/min      |
| 3.0mm              | A                | 1.2mm                 | 75°C                                | 150-220            | 22-28            | 10-15                    | 450 mm/min      |
| 6.0mm              | В                | 1.2mm                 | 75°C                                | 180-250            | 22-28            | 10-15                    | 400 mm/min      |
| 6.0mm              | В                | 1.6mm                 | 100°C                               | 160-280            | 28-30            | 10-15                    | 350 mm/min      |
| 10mm               | В                | 1.6mm                 | 250°C                               | 250-320            | 28-30            | 15-20                    | 300 mm/min      |
| 12mm               | C                | 1.6mm                 | 250°C                               | 290-350            | 29-32            | 15-20                    | 300 mm/min      |
| 16mm +             | C, D             | 1.6mm                 | 250°C                               | 320-380            | 29-32            | 15-25                    | 250 mm/min      |

Table 1. - Typical Conditions for GMAW of Copper<sup>#</sup> and Copper Alloys.

Recommended Shielding Gases for the GMA welding of Copper and Copper Alloys:

- Welding Grade Argon.
- Ar + >0-3% O<sub>2</sub> or equivalent shielding gases.
- Ar + 25% He or equivalent shielding gases.
- He + 25% Ar or equivalent shielding gases.

#### 3.2 GMAW of Copper Silicon Alloys:

ERCuSi-A type welding consumables plus argon shielding and relatively high travel speeds are used with this process. Autocraft Silicon Bronze is a copper based wire recommended for GMAW of Copper Silicon Alloys. It is important to ensure the oxide layer is removed by wire brushing between passes. Preheat is unnecessary and interpass temperature should not exceed 100°C.

3.3 GMAW of Copper Tin Alloys (Phosphor Bronze):

These alloys have a wide solidification range which gives a coarse dendritic grain structure, therefore care must be taken during welding to prevent cracking of the weld metal. Hot peening of the weld metal will reduce the stresses developed during welding and the likelihood of cracking. The weld pool should be kept small using stringer beads at high travel speed.

#### 4) Gas Tungsten Arc Welding (GTAW) of Copper and Copper Alloys:

4.1 Gas Tungsten Arc Welding of Copper:

Copper sections up to 16.0mm in thickness can be successfully welded using the Gas Tungsten Arc Welding process. Typical joint designs are shown in Figure 1. The recommended filler wire is a filler metal whose composition is similar to that of

#### 4) Gas Tungsten Arc Welding (GTAW) of Copper and Copper Alloys cont.:

the base metal. For sections up to 1.6mm thick Argon shielding gas is preferred and helium mixes is preferred for welding sections over 1.6mm thick. In comparison to argon, argon/helium mixes permit deeper penetration and higher travel speeds at the same welding current.

A 75% Helium-25% Argon mixture is commonly used to give the good penetration characteristics of helium combined with the easy arc starting and improved arc stability properties of Argon.

Forehand welding is preferred for Gas Tungsten Arc Welding of Copper with stringer beads or narrow weave beads. Typical conditions for manual GTAW of copper is shown in Table 2 below.

#### \*Refer to Figure 1

| Metal<br>Thickness (mm) | Joint<br>Design* | Shielding<br>Gas | Tungsten Type &<br>Welding Current | Welding Rod<br>Diameter | Preheat <sup>#</sup><br>Temperature | Welding<br>Current |
|-------------------------|------------------|------------------|------------------------------------|-------------------------|-------------------------------------|--------------------|
| 0.3-0.8                 | А                | Argon            | Thoriated/DC-                      |                         |                                     | 15-60              |
| 1.0-2.0                 | В                | Argon            | Thoriated/DC-                      | 1.6 mm                  |                                     | 40-170             |
| 2.0-5.0                 | С                | Argon            | Thoriated/DC-                      | 2.4 - 3.2 mm            | 50°C                                | 100-300            |
| 6.0                     | С                | Argon            | Thoriated/DC-                      | 3.2 mm                  | 100°C                               | 250-375            |
| 10.0                    | E                | Argon            | Thoriated/DC-                      | 3.2 mm                  | 250°C                               | 300-375            |
| 12.0                    | D                | Argon            | Thoriated/DC-                      | 3.2 mm                  | 250°C                               | 350-420            |
| 16.0                    | F                | Argon            | Thoriated/DC-                      | 3.2 mm                  | 250°C                               | 400-475            |

Table 2. - Typical conditions for Gas Tungsten Arc Welding of Copper# and Copper Alloys.

4.2 Gas Tungsten Arc Welding of Copper-Aluminium alloys:

The ERCuAl-A2 filler rod can be used for GTAW of Aluminium Bronze Alloys. Alternating Current (AC) current with argon shielding can be used to provide an arc cleaning action to assist in removing the oxide layer during welding. Direct Current (DC-) electrode negative with Welding Grade Argon or Argon-Helium mixes can be used in applications requiring deeper penetration and faster travel speed. Preheat is only required on thicker sections.

4.3 Gas Tungsten Arc Welding of Silicon-Bronze:

Comweld Silicon Bronze Rod (ERCuSi-A) can be used to weld Silicon Bronze in all positions. The Aluminium Bronze welding rod ERCuAI-A2 may also be used. Welding can be performed with DC- using argon or argon/helium shielding or AC using argon shielding gas.

#### 5) Manual Metal Arc Welding (MMAW) of Copper & Copper Alloys:

5.1 Manual Metal Arc Welding of Copper:

MMAW is normally used for the maintenance and repair welding of copper, copper alloys and bronzes. Bronzecraft AC-DC electrode (ECuSn-C) can be used for the following:

- Minor repair of relatively thin sections.
- Fillet welded joints with limited access.
- Welding copper to other metals.



## 5) Manual Metal Arc Welding (MMAW) of Copper & Copper Alloys:

Joint designs should be similar to that shown in Figure 1. Direct Current electrode positive (DC+) should be used with a stringer bead technique. Sections over 3.0mm require a preheat of 250°C or greater.

5.2 Manual Metal Arc Welding of Copper Alloys:

Bronzecraft AC-DC (ECuSn-C) can be used to weld Copper-Tin and Copper-Zinc alloys. Large butt angles are required and the weld metal should be deposited using the stringer bead technique.

| Copper Alloy    | Recommended AWS<br>Electrode Code | CIGWELD<br>Welding Electrode | Electrode<br>Polarity | Joint<br>Design |
|-----------------|-----------------------------------|------------------------------|-----------------------|-----------------|
| Brasses         | ECuSn-A or ECuSn-C                | Bronzecraft AC-DC            | DC+                   | C in Figure 1   |
| Phosphor Bronze | ECuSn-A or ECuSn-C                | Bronzecraft AC-DC            | DC+                   | C in Figure 1   |

Table 3 - Recommendations for MMAW of Brasses and Phosphor Bronzes.

## 6) Brazing of Copper and Copper Alloys:

The principle of brazing is to join two metals by fusing with a filler metal. The filler metal must have a lower melting point than the base metals but greater than 450°C (use of a filler metal with a melting point less than 450°C is soldering). The filler metal is usually required to flow into a narrow gap between the part by capillary action.

Brazing is used widely for the joining of copper and copper alloys, with the exception of Aluminium bronzes containing greater than 10 percent aluminium and alloys containing greater than 3 percent lead. Brazing of copper is used extensively in the electrical manufacturing industry, and in the building mechanical services, heating, ventilation and air-conditioning fields.

To achieve an adequate bond during brazing, the following points should be considered:

- 1. The joint surfaces are clean and free of oxides etc.
- 2. The provision of the correct joint gap for the particular brazing filler metal.
- 3. The establishment of the correct heating pattern so that the filler metal flows up the thermal gradient into the joint.
- 6.1 Surface Preparation:

Standard solvent or alkaline degreasing procedures are suitable for cleaning copper base metals. Care must be taken if mechanical methods are used to remove surface oxides. To chemically remove surface oxides, an appropriate pickling solution such as ChromeBright, should be used.

- 6.2 Joint Design Considerations:
  - The distance between the joints to be joined must be controlled to within certain tolerances which depend upon the brazing alloy and the parent metal used. The optimum joint gap typically lies between 0.04 and 0.20mm.



## 6) Brazing of Copper and Copper Alloys:

 Generally a joint overlap of three or four times the thickness of the thinnest member to be joined is sufficient. The aim is to use as little material as possible to achieve the desired strength.



Figure 3 - Common Joint designs for Brazing.

6.3 Flame adjustment:

Use a neutral flame. A neutral flame is where equal amounts of oxygen and acetylene are mixed at the same rate. The white inner cone is clearly defined and shows no haze.



## 6) Brazing of Copper and Copper Alloys cont.:

6.4 Flux Removal:

If flux has been used, the residue must be removed by one of the following methods:

- ▲ Dilution in hot caustic soda dip.
- Wire brushing and rinsing with hot water.
- ▲ Wire brushing and steam.

Incomplete flux removal may cause weakness and failure of the joint.

## 7) Braze Welding of Copper:

Braze welding is a technique similar to fusion welding except with a filler metal of lower melting point than the parent metal. The Braze welding process derives its strength from the tensile strength of the filler metal deposited as well as the actual bond strength developed between the filler metal and parent metal. Oxy-acetylene is usually preferred because of its easier flame setting and rapid heat input.

7.1 Choice of alloy:

The alloy most suited to the job requirement depends on the strength required in the joint, resistance to corrosion, operating temperature and economics.

- Alloys commonly used are:
- COMWELD Tobin Bronze 211 (Braze Welding).
- COMWELD Comcoat T Flux Coated.
- 7.2 Joint Preparation:

Typical joint designs are shown in Figure 4 over the page.



## 7) Braze Welding of Copper cont.:

7.2 Joint Preparation:

Typical joint designs are shown in figure 4 below.



Figure 4 - Typical joint designs for Braze welding of copper.



## 7) Braze Welding of Copper cont.:

#### 7.3 Flame adjustment:

Use slightly oxidising flame.

#### 7.4 Flux:

Use COMWELD Copper and Brass Flux, mix to a paste with water and apply to both sides of joint. Rod can be coated with paste or heated and dipped in dry flux.

#### 7.5 Preheating:

Preheating is recommended for heavy sections only.

#### 7.6 Blowpipe and rod angles:

Blowpipe tip to metal surface  $40^{\circ}$  to  $50^{\circ}$ . Distance of inner cone from metal surface 3.25mm to 5.00mm. Filler rod to metal surface  $40^{\circ}$  to  $50^{\circ}$ .

| Plate Thickness(mm) | Filler Rod(mm) | Blowpipe Acetylene Consumption (Cu. L/Min) | Tip Size |
|---------------------|----------------|--------------------------------------------|----------|
| 0.8                 | 1.6            | 2.0                                        | 12       |
| 1.6                 | 1.6            | 3.75                                       | 15       |
| 2.4                 | 1.6            | 4.25                                       | 15       |
| 3.2                 | 2.4            | 7.0                                        | 20       |
| 4.0                 | 2.4            | 8.5                                        | 20       |
| 5.0                 | 3.2            | 10.0                                       | 26       |
| 6.0                 | 5.0            | 13.5                                       | 26       |

Table 5 Data for the Braze welding of Copper

7.7 Welding Technique:

After preheating or after the joint is raised to a temperature sufficient to permit alloying of the filler rod and copper, melt a globule of metal from the end of the rod and deposit it into the joint, wetting or tinning the surface. When tinning occurs, begin welding using forehand technique. Do not drop filler metal on untinned surfaces. See figure 5.



Figure 5 - Braze welding forehand technique.

#### 7.8 Flux Removal:

Any of the following methods may be used to remove flux residue:

- ▲ Grinding wheel or wire brush and water.
- Sand blasting
- Dilute caustic soda dip.



# WELDING OF DISSIMILAR METALS

At times, due to engineering design, it will be required that two, or in some cases more, dissimilar materials are to be joined by welding.

It is essential that the two materials be identified and wherever possible the design criteria be obtained, eg. elevated temperatures, chemical environment or wear by abrasion, etc.

Often it is not possible to obtain the base material analysis as in the case of maintenance or repair and it is left to the welding operator to select a consumable and a procedure purely based on his or her previous experience.

#### Welding Recommendations (refer to Table 1. on the next page)

- A. One common combination of materials is stainless steel to mild steel and this combination can be successfully welded with a 309 type consumable. Both manual metal arc electrodes and gas metal arc wires are available.
- B. Should the stainless steel be of a heat resisting type, such as the 310 variety, then a 310 consumable is recommended. These 310 materials resist oxidation up to 1,200° C, making them ideal for furnace applications associated with the oil, metal and ceramic refining industries. The decision to use these materials is usually specified by the welding engineer.
- C. When welding cast iron to mild steel and possibly stainless steel, a nickel-iron consumable such as Castcraft 55 electrode or Nicore 55<sup>®</sup> flux core wire is often recommended.
- D. When welding steel to copper/brass select a consumable that is most compatible with the grade of copper/brass. Autocraft Silicon Bronze gas metal arc welding wire is commonly used with many copper alloy grades.
- E. For cast iron to copper/brass, select a consumable most suited to the copper alloy rather than the cast iron. A procedure commonly used is to butter the surface of the cast iron with Castcraft 55/Nicore 55<sup>®</sup>, then use either Bronzecraft AC/DC or Autocraft Silicon Bronze to complete the joint.
- F. A material that is not commonly used, but is chosen in high chemical attack applications, is Monel. This material can be welded to mild steel by using a E NiCu-B electrode. It may be necessary to butter the mating surface of the mild steel with a E NiCu-B electrode prior to the joining of the two materials.

Refer to Table 1 on the next page for details regarding various welding consumables to join dissimilar metals.



# Table 1. Welding Consumables for Joining Dissimilar Metals

| Material 1       | Material 2                    | Welding<br>Recommendations* | MMAW                                  | GMAW                                       | FCAW              | Gas & TIG Welding                                |
|------------------|-------------------------------|-----------------------------|---------------------------------------|--------------------------------------------|-------------------|--------------------------------------------------|
| Mild Steel       | Stainless Steel               | A                           | Satincrome 309Mo-17<br>Weldall        | Autocraft 309LSi                           | Shieldcrome 309LT | Not recommended                                  |
| Mild Steel       | Cast Iron                     | U                           | Castcraft 55                          | N/A                                        | Nicore 55®        | Comweld Mang. Bronze or<br>Comweld Nickel Bronze |
| Mild Steel       | Copper                        | ۵                           | Bronzecraft AC/DC                     | Autocraft Silicon Bronze                   | NA                | Comweld Mang. Bronze or<br>Comweld Nickel Bronze |
| Cast Iron        | Copper/Brass                  | ш                           | * Bronzecraft AC/DC<br>* Castcraft 55 | * Autocraft Silicon Bronze<br>* Nicore 55® | NA                | Comweld Mang. Bronze or<br>Comweld Nickel Bronze |
| Mild Steel       | Austenitic Manganese          |                             | Austex                                | Autocraft 309LSi                           | Shieldcrome 309LT | Not recommended                                  |
| Mild Steel       | Monel                         | щ                           |                                       | N/A                                        | N/A               | N/A                                              |
| * Coo wolding to | rommondations A B C atc on th | ho provious page            |                                       |                                            |                   |                                                  |

See welding recommendations A, B, C, etc, on the previous page.

# WELDING OF DISSIMILAR METALS



#### What is Hardfacing and where is it used?

'Hardfacing is the process of depositing, by one of various welding techniques, a layer or layers of metal of specific properties on certain areas of metal parts that are exposed to wear'. By expanding this definition a little further, it can be seen that hardfacing has more to offer than most other wear prevention treatments:

- It is performed by welding. Thus it is part of a well established practice with which people are familiar. There are very few new skills to be learned and in the vast majority of cases, existing equipment can be employed.
- A layer or layers of metal can be deposited. This means that hardfacing provides protection in depth. It can be applied in a thickness required to give long lasting protection.
- Metal of specific properties is deposited. There are a wide variety of deposit types available, each specifically designed to withstand certain forms of wear and service conditions.
- 4. Hardfacing is applied only to specific areas of metal parts that are exposed to wear. There is often no need to protect the entire surface of a component from wear. Hardfacing can be applied selectively and in different thicknesses to suit the exact requirements of a piece of equipment, thereby proving a most economical way of combating wear.

According to the American Welding Society, 'hard surfacing" or hardfacing is defined as; 'The deposition of filler metal on a metal surface to obtain the desired properties and/or dimensions', the desired properties being those that will resist abrasion, heat and corrosion.

A further definition of hardfacing is: "The application of hard, wear-resistant material to the surface component by welding, spraying or allied welding process for the main purpose of reducing wear or loss of metal by abrasion, impact, erosion, galling and cavitation". It also applies where corrosion and elevated temperatures are present with one or more of the above service conditions.

Hardfacing is a particular form of surfacing that excludes the application of materials primarily for corrosion prevention or resistance to high temperature scaling or the application of low hardness, friction over-lays to prevent galling - eg. bronze surfacing. It also excludes the hardening of surfaces solely by heat treatments such as flame hardening, or nitriding.

A wide range of Cobalarc electrode and Stoody wire products are available for the three main types of hardfacing applications carried out in industry;

- 1. Build-up or re-building applications.
- 2. Hard surfacing or overlay applications.
- 3. Both build-up and overlay applications.



## What is Hardfacing and where is it used?

#### 1. Build-up or re-building applications

- Used to return the part or component to its original dimensions.
   eq. Mangcraft. Ferrocraft 61etc.
- 2. Hard Surfacing or overlay applications.
  - Used by itself to give a component added resistance to wear.
  - eg. Cobalarc 650 and Coarseclad-G.
- 3. Build-up and overlay applications.

Build-up and overlay can be used together to re-build a part to its original size and protect the contact surface from further wear. Some alloys can serve as both a build-up and overlay deposit, such as Cobalarc Mang Nickel-O wire which is recommended for heavy build up. During service the final layers of Mang Nickel-O can work harden under heavy impact to form a wear resistant overlay.



"Buttering layers" or "buffer layers" are a form of build-up or intermediate layer, deposited prior to the application of an overlay or hard surfacing deposit. See the "Use of buffer layers" for further details.

#### Hardfacing (or build-up and or overlay ) is therefore used in two main areas:

- For the build-up or rebuilding of worn components to their original size and shape using suitable build-up or build-up and overlay alloys as described above.
- 2. The overlay or hard surfacing of new, or as new, components to protect them from wear during service. High alloy welding consumables are available for overlay applications which offer far better wear resistance than the original component material. Despite the higher price of these welding consumables the working life of the component can be extended by over twice that of the original component. Further more, if overlays are used as part of a preventative maintenance program the original component can be manufactured from a less expensive base material.



#### Why should Hardfacing be carried out?

1. Hardfacing extends the life of worn components and equipment:

- Build-up or hard surfacing can extend the life of a component by as much as 250% compared to that of a new or non hardfaced component.

2. Hardfacing increases the operating efficiency of equipment by reducing downtime:

- Hardfaced components last longer, cause fewer shutdowns or stoppages and therefore increase the operating efficiency of the equipment.

3. Hardfacing reduces overall costs:

- The cost of refurbishing a worn component is typically 50 - 75% of the cost of a new component.

- Hardfaced parts can be manufactured from cheaper base metals:

   A part which is hard surfaced before use can often be manufactured from a cheaper base metal than one which is not designed to be hard surfaced before use.
- 5. Hardfacing minimise the inventory of spare parts:
  - If worn parts are usually refurbished there is no need to keep high stock holdings.

#### How to choose the right hardfacing consumable

Hardfacing alloy selection and correct welding procedures are best determined by answering the following four questions:

- 1. What is the base metal of the component?
- 2. What welding process is to be used?
- 3. What type of wear is being experienced?
- 4. What finish is required?

## 1. What is the base metal of the component?

Knowing the base metal composition of the component is important in deciding what welding consumable to use and what welding procedure to adopt.

The most common ferrous base metals used fall into two broad classifications:

- Carbon and low alloy steels.
- Austenitic Manganese steels.

Carbon and low alloy steels. Carbon and low alloy steels are strongly magnetic and can easily be distinguished from austenitic manganese steels which are non-magnetic. There are many types of carbon and low alloy steels used in equipment manufacture. They are not easy to distinguish from one another but must be identified in order to establish accurate preheat, interpass, welding consumable, cooling rate and stress relief requirements.



## How to choose the right hardfacing consumable

Generally speaking as alloy content increases base metals become more difficult to weld and the use of correct preheat and interpass temperatures and slow cooling become more critical. Please refer to the **Welding of Steels** in this handbook.

Austenitic manganese steels. These high manganese (typically 14%) steels are strong and tough and as such are often used in the manufacture of components subject to both abrasion and extreme impact. Unique to manganese steels, they can be work hardened during high impact service to yield a component which is hard and abrasion resistant on the surface and yet tough, strong and ductile underneath. Unlike carbon and low alloy steels, manganese steels are rarely preheated; in fact base metal temperature during welding must be kept below approximately 300°C to avoid embrittlement. Welding practices such as step welding, water spraying or "welding in water" are often carried out to avoid base metal embrittlement. Manganese steels are an excellent base for the application of chromium white iron hard surfacing deposits such as Cobalarc Coarseclad-G, -O.

## 2. What welding process is to be used?

The welding processes most commonly used today for hardfacing are:

- 1. Manual Metal Arc Welding
- 2. Flux Cored Arc Welding
- 3. Submerged Arc Welding

Other processes such as oxy-acetylene welding and gas tungsten arc (GTA or TIG) welding are more often used for specialist hardfacing applications because of their low deposition rates.

Factors to be considered when selecting a suitable welding process / consumable include:

- ▲ Welding equipment available.
- Operator skills available.
- Welding location indoors or outdoors.
- ▲ Size and shape of component and area to be hardfaced.
- Welding position can component be moved to allow downhand welding?
- Availability of hardfacing consumables.

#### 1. Manual Metal Arc Welding.

The most common type of welding process used with a wide range of extruded and tubular welding electrodes available for build-up and hard surfacing applications as well as for joining applications.

The most common types of manual electrodes are those designated as A4 and A1 types in Australian/New Zealand Standard AS/NZS 2576 - Welding Consumables for Build-up and wear resistance.

- A1 type = Tubular electrodes with no alloy contribution from the flux coating, eg. Cobalarc 9.
- A4 type = Low carbon steel rod with an alloy additive flux coating, eg. Cobalarc 350.

Note: See Consumables Classification Charts in this Pocket Guide for an explanation of AS/NZS 2576.



## How to choose the right hardfacing consumable

#### 2. Flux Cored Arc Welding.

A semi-automatic process which is a variant of the gas metal arc welding process, where a continuous tubular electrode (instead of a solid wire) is used to provide the build-up or hard surfacing deposit.

The most common types of tubular wires are those designated as B5 and B7 types in AS/NZS 2576.

- B5 type = Tubular wires which are used with an external gas shielding, eg. Stoody Coarseclad-G.
- B7 type = Tubular wires which are self shielding or require no external shielding gas, eg. Stoody Coarseclad-0.

Because of the high level of build-up and hard surfacing carried out "on site" or out-of-doors self shielded ( B7 type ) wires are the most popular. Self shielded wires are also called open arc wires because the welding arc is visible during welding.

The flux cored arc welding process has become increasingly popular for build-up and hardfacing applications because of the flexibility in alloy selection and wire size and the high deposition rates achievable in practice.

#### 3. Submerged Arc Welding.

Commonly used in the automatic mode, with either:

- An alloy additive tubular wire/strip and neutral flux (B1 type in AS/NZS 2576),
- An alloy additive solid wire/strip and neutral flux (B2 type in AS/NZS 2576),
- An alloy additive solid wire/strip with an alloy additive flux (B3 type in AS/NZS 2576) or,
- A low carbon steel wire/strip with an alloy additive flux (B4 type in AS/NZS 2576)

The submerged arc welding process is commonly used to build-up or hard surface large components automatically. The B1 type wire / flux combination is the most popular option used because of the flexibility in alloy types available in a tubular wire.

# 3. What type of wear is being experienced

In selecting a build-up or hard surfacing alloy the aim is to provide the best solution to the specific wear problem at hand. This solution is usually arrived at by considering a combination of factors including; past experience, a knowledge of the wear types experienced, a knowledge of welding alloy wear performance and verification through practical tests. It would be easier to select a welding consumable for a particular application if the component was always subjected to the one set of wear conditions. Unfortunately this is never the case, with wear modes differing from one component to another and from one application to another.

Experience has shown that there are three major types of wear:

- 🔺 Metal-to-metal wear,
- Abrasive wear,
- ▲ Environmental wear.

A detailed treatment of these wear types is beyond the scope of this handbook, please refer to Australian/New Zealand Standard AS/NZS 2576.



## How to choose the right hardfacing consumable

## 3. What type of wear is being experienced cont.

The three major types of wear can be further sub-divided into;

# Metal-to-metal wear:

#### 1. Adhesive or sliding wear:

In sliding wear, friction occurs between two surfaces which are in intimate contact.

#### 2. Rolling wear:

In rolling wear, contact stresses are often high and wear occurs by a fatigue mechanism.





#### 3. Impact wear:

In impact wear, parts encounter repeated impact which can cause brittle fracture or gross plastic deformation.

# Abrasive wear:

#### 1. Erosion:

In erosive wear, parts encounter high velocity fluids (liquids or gaseous) with or without solid particles. The two major types of erosion experienced are:

## 1A. Solid particle erosion:

Wear of a part by the action of solid particles impinging on the surface.

## 1B. Liquid droplet and cavitation erosion:

Wear of a part by the action of liquid droplets or bubbles on the surface.

#### 2. Low stress (scratching) abrasion:

In low stress abrasion, the abrasive particles, which are usually small and unconstrained, scratch the surface continuously to cause wear. The particles are not fractured or ground up during service.









## How to choose the right hardfacing consumable

## What type of wear is being experienced cont.

## Abrasive wear:

#### 3. High stress (grinding) abrasion:

In high stress abrasion, the abrasive particles, which are initially small (rocks < 50mm in diameter), are fractured or ground-up during service.

#### 4. Gouging abrasion:

In gouging abrasion, the abrasive particles, which are usually large (rocks > 50mm in diameter), gouge or groove the surface during service.





#### Environmental wear:

Corrosion and elevated temperatures can combine with the abrasive wear mechanisms detailed above to exacibate the wear of a component. A detailed treatment of environmental wear mechanisms is beyond the scope of this handbook, please refer to AS/NZS 2576.

#### Limiting Service Conditions

Table 1. is a guide to selecting the appropriate Cobalarc hardfacing product based on the wear types identified from a specific application. The severity of loading, impact and temperature on a component must be considered along with the main wear mechanisms identified in order to select an appropriate Cobalarc hardfacing product.

In Table 1. the service conditions of load, impact and temperature are graded as follows:

Loading:

- HIGH loading where there is gross deformation of the wear surface,
  - MODERATE loading where there is some local deformation of the wear surface,
  - = LOW loading where there is no local deformation of the wear surface.

Impact:

- **HIGH** = **HIGH** impact causing fracture or plastic deformation of the wear surface,
- LOW = LOW impact causing no fracture or plastic deformation of the wear surface.

#### Temperature:

- < 200°C Service temperatures from ambient to 200°C,
- $>200^\circ C < 500^\circ C$  Service temperatures greater than 200°C and less than 500°C,
- > 500°C Service temperatures greater than 500°C.


т

### Cobalarc Product Selection by Wear Type - Table 1:

|                                 |               |                |         |         |             | WE       | AR TYPE    |             |          |             |          |
|---------------------------------|---------------|----------------|---------|---------|-------------|----------|------------|-------------|----------|-------------|----------|
| Cobalarc product                | Limiting se   | ervice conditi | ons*    | Met     | al-to-metal |          | Abrasi     | ive wear    |          |             |          |
|                                 | Loading       | Impact         | Temp.   | Sliding | Rolling     | Impact   | Solid      | Liquid      | Low      | High stress | Gouging  |
|                                 |               |                |         |         |             |          | particle   | droplet     | stress   | abrasion    | abrasion |
|                                 |               |                |         |         |             |          | erosion    | erosion     | abrasion | (Grinding)  |          |
| Cobalarc Mangcraft,             | ••••          | HIGH           | <200°C  | 1       | 1           | R        | 1          | ;           | 1        | R           | R        |
| Stoody Mang Nickel-O            |               |                |         |         |             |          |            |             |          |             |          |
| Cobalarc Austex,                | •             | HIGH           | <500°C  | 1       | ж           | Я        | 1          | 1           | 1        | 1           | 1        |
| Cobalarc 350,                   | ••••          | HIGH &         | <200°C  | Я       | В           | Я        | 1          | I           | 1        | I           | 1        |
| Stoody 350-G, -O,               |               | LOW            |         |         |             |          |            |             |          |             |          |
| Cobalarc Toolcraft              | •             | LOW            | <500°C  | Я       | R           | ж        | I          | 1           | 1        | В           | 1        |
| Cobalarc 650, 750               | ••••          | HIGH           | <200°C  | 1       | I           | 1        | В          | I           | В        | Я           | R        |
| Stoody 650-G, -O                |               |                |         |         |             |          |            |             |          |             |          |
| Stoody 850-0 <sup>+</sup>       |               |                |         |         |             |          |            |             |          |             |          |
| * See previous page for limitin | g service cor | ndition defin  | itions. |         | R = Rec     | mmended. | HR = Highl | ly Recommen | nded.    |             |          |

**TECHNICAL AND TRADE INFORMATION** 

Email: cigweldsales@cigweld.com.au



<sup>+</sup> Stoody 850-0 is not recommended for high impact applications

# Cobalarc Product Selection by Wear Type - Table 1:

|                               |               |               |          |         |              | WEAR TYPE |            |             |          |             |          |
|-------------------------------|---------------|---------------|----------|---------|--------------|-----------|------------|-------------|----------|-------------|----------|
| Cobalarc product              | Limiting s    | ervice condit | tions*   | Met     | tal-to-metal |           | Ab         | rasive wear |          |             |          |
|                               | Loading       | Impact        | Temp.    | Sliding | Rolling      | Impact    | Solid      | Liquid      | Low      | High stress | Gouging  |
|                               |               |               |          |         |              |           | particle   | droplet     | stress   | abrasion    | abrasion |
|                               |               |               |          |         |              |           | erosion    | erosion     | abrasion | (Grinding)  |          |
| Cobalarc CR70,                | •             | HIGH          | <500°C   | 1       | 1            | 1         | R          | R           | HR       | HR          | HR       |
| Stoody 101 HC-G-O             |               |               |          |         |              |           |            |             |          |             |          |
| Cobalarc 9,                   | •             | HIGH          | <500°C   | 1       | 1            | 1         | Я          | Я           | HR       | HR          | HR       |
| Cobalarc Borochrome           | •             | LOW           | <500°C   | 1       | I            | 1         | R          | HR          | HR       | HR          | R        |
| Stoody Fineclad-O             |               |               |          |         |              |           |            |             |          |             |          |
| Cobalarc 4,                   | •             | LOW           | <200°C   | 1       | 1            | :         | HR         | Я           | HR       | В           | R        |
| Bronzecraft AC-DC             | •             | LOW           | <200°C   | Я       | Я            | Я         | :          | 1           | :        | :           | :        |
| Comweld Manganese             | •             | LOW           | <200°C   | Я       | ж            | 1         | 1          | 1           | 1        | 1           | 1        |
| Bronze and                    |               |               |          |         |              |           |            |             |          |             |          |
| Comweld Comcoat C             |               |               |          |         |              |           |            |             |          |             |          |
| Comweld Nickel                | •             | HIGH          | <200°C   | HR      | Я            | Я         | R          | R           | R        | 1           | 1        |
| Bronze and                    |               |               |          |         |              |           |            |             |          |             |          |
| Comweld Comcoat N             |               |               |          |         |              |           |            |             |          |             |          |
| * See nrevious name for limit | ing service c | ondition def  | initions |         | R = Reco     | papuanded | HR = Hichl | v Recommen  | ded      |             |          |

<u>CIGWEL</u>

# Cobalarc Applications by Industry Sector

# AGRICULTURAL EQUIPMENT

| APPLICATION                       | Cobalarc electrode           | Stoody wire              |
|-----------------------------------|------------------------------|--------------------------|
| ▲ Slasher Blades                  | Toolcraft                    | Stoody 965 G-O           |
| Tools and Drill Bits              | Toolcraft                    | -                        |
| ▲ Scarifier Points                | Cobalarc 750,<br>Cobalarc 9  | Stoody 850-0             |
| Plough Shares                     | Cobalarc CR70                | Stoody 101 HC G-0        |
| Ammonia Injector Knives           | Cobalarc 9,<br>Cobalarc 4    |                          |
| ▲ Subsoiler teeth                 | Cobalarc CR70,<br>Cobalarc 4 | Stoody 101 HC G-0        |
| Ripper Shanks                     | Cobalarc 9                   |                          |
| Furrow Shovels                    | Cobalarc 9                   |                          |
| Post Hole Augers                  | Cobalarc 9                   |                          |
| ▲ Pilot bit                       | Cobalarc Toolcraft           |                          |
| Rollers and Tractor Machine Parts | Cobalarc 350                 | Stoody Super Buildup G-O |
| ▲ Root Cutters                    | Cobalarc CR70,<br>Cobalarc 9 | Stoody 101 HC G-0        |



### **Cobalarc Applications by Industry Sector**

# EARTHMOVING, MINING, CRUSHING & QUARRYING

| APPLICATION                                                                                 | Cobalarc electrode     |                                          | Stood                | ly wire                                  |
|---------------------------------------------------------------------------------------------|------------------------|------------------------------------------|----------------------|------------------------------------------|
|                                                                                             | Build-up               | Hard Surfacing                           | Build-up             | Hard Surfacing                           |
| ▲ Track Pads                                                                                | Cobalarc 350           |                                          | Stoody Super Buildup |                                          |
| Rippers                                                                                     |                        | Cobalarc 9                               |                      | Stoody 101 HC, 100 HC                    |
| ▲ Grouser Bars                                                                              | Cobalarc 350           | Cobalarc 650                             | Stoody Super Buildup | Stoody 965                               |
| ▲ Loader Buckets                                                                            |                        | Cobalarc 9                               |                      | Stoody 101 HC, 100 HC                    |
| Idlers and Idler Rolls                                                                      | Cobalarc 350           | -                                        | Stoody Super Buildup | -                                        |
| Teeth and Points                                                                            |                        | Cobalarc 9                               |                      | Stoody 101 HC, 100 HC                    |
| Drilling Augers                                                                             |                        | Cobalarc CR70,<br>Cobalarc 9             |                      | Stoody 101 HC, 100 HC                    |
| ▲ Crusher Jaws*,<br>Crusher Cones*,<br>Crusher Roll Shells*,<br>Gyratory Crusher<br>Mantle* | Cobalarc<br>Mangcraft, | Cobalarc CR70,<br>Cobalarc 9             | Stoody<br>Dynamang   | Stoody 101 HC, 100 HC                    |
| ▲ Hammer Mill<br>Hammers*                                                                   | Cobalarc<br>Mangcraft, | Cobalarc CR70,<br>Cobalarc 9             | Stoody<br>Dynamang   | Stoody 101 HC, 100 HC                    |
| ▲ Impact Breaker Bars*                                                                      | Cobalarc<br>Mangcraft, | Cobalarc CR70,<br>Cobalarc 9             | Stoody<br>Dynamang   | Stoody 101 HC, 100 HC                    |
| ▲ Fan Blades                                                                                |                        | Cobalarc 9,<br>Cobalarc<br>Borochrome    |                      | Stoody Fineclad                          |
| Pug Mill Paddles                                                                            |                        | Cobalarc 9,<br>Cobalarc 4                |                      |                                          |
| ▲ Sizing Screens                                                                            |                        | Cobalarc CR70,<br>Cobalarc<br>Borochrome |                      | Stoody 101 HC, 100 HC<br>Stoody Fineclad |
| ▲ Chutes                                                                                    |                        | Cobalarc<br>Borochrome                   |                      | Stoody Fineclad                          |
| Kiln Trunnions                                                                              | Cobalarc 350           | Cobalarc 650                             | Stoody Super Buildup | Stoody 965                               |

\* Manufactured from austenitic manganese steel



## Cobalarc Applications by Industry Sector

# SUGAR INDUSTRY

| APPLICATION                                                                      | Cobala                            | rc electrode                                         | Stoody           | / wire                                   |
|----------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------|------------------|------------------------------------------|
|                                                                                  | Build-up                          | Hard Surfacing                                       | Build-up         | Hard Surfacing                           |
| ▲ Cane Crushing<br>Rolls                                                         |                                   | Cobalarc CR70,<br>Cobalarc Borochrome                |                  | Stoody Fineclad                          |
| <ul> <li>Preliminary Cane</li> <li>Leveller or</li> <li>Kicker Blades</li> </ul> |                                   | Cobalarc 9,<br>Cobalarc Borochrome                   |                  | Stoody Fineclad                          |
| ▲ Cane Shredder<br>Hammer                                                        | Ferrocraft 7016,<br>Ferrocraft 61 |                                                      | Supre-Cor 5      |                                          |
| ▲ Scraper, Trash and<br>Return Plates                                            | Cobalarc<br>Austex                | Cobalarc CR70,<br>Cobalarc 9,<br>Cobalarc Borochrome | Autocraft 309LSi | Stoody 101 HC, 100 HC<br>Stoody Fineclad |
| ▲ Shredder Grid<br>Bars                                                          | Cobalarc<br>Austex                | Cobalarc CR70,<br>Cobalarc 9                         | Autocraft 309LSi | Stoody 101 HC, 100 HC                    |
| ▲ Cane Preparation<br>Knives                                                     |                                   | Cobalarc 9,<br>Cobalarc Toolcraft                    |                  | Stoody 101 HC, 100 HC                    |
| Spiky Feed Rolls                                                                 | Cobalarc<br>Austex                | Cobalarc CR70,<br>Cobalarc 9                         | Autocraft 309LSi | Stoody 101 HC, 100 HC                    |
| ▲ Cane Harvester<br>Base Cutters and<br>Elevator Rolls                           |                                   | Cobalarc 9                                           |                  | Stoody 101 HC, 100 HC                    |



# Cobalarc Applications by Industry Sector

# DREDGING INDUSTRY

| APPLICATION                                                                         | Cobala                 | rc electrode                          | Stoo                    | ly wire                                   |
|-------------------------------------------------------------------------------------|------------------------|---------------------------------------|-------------------------|-------------------------------------------|
|                                                                                     | Build-up               | Hard Surfacing                        | Build-up                | Hard Surfacing                            |
| ▲ Carbon Steel<br>Pump Casings                                                      | Cobalarc 350           | Cobalarc CR70,<br>Cobalarc Borochrome | Stoody<br>Super Buildup | Stoody 101 HC, 100 HC<br>Stoody Fineclad  |
| ▲ Manganese Steel<br>Pump Casings                                                   | Cobalarc<br>Mangcraft. | Cobalarc CR70,<br>Cobalarc Borochrome | Stoody<br>Dynamang      | Stoody 101 HC, 100 HC<br>Stoody Fineclad  |
| ▲ Dredge Pump<br>Impellers                                                          |                        | Cobalarc Borochrome,<br>Cobalarc CR70 | <br>                    | Stoody Fineclad,<br>Stoody 101 HC, 100 HC |
| Dredge Pump<br>Side Plates                                                          |                        | Cobalarc Borochrome,<br>Cobalarc 9    |                         | Stoody Fineclad                           |
| <ul> <li>Manganese Steel</li> <li>Dredge Cutter</li> <li>Heads and Teeth</li> </ul> |                        | Cobalarc Borochrome,<br>Cobalarc 9    |                         | Stoody Fineclad                           |
| <ul> <li>Dredge Bucket</li> <li>Lips</li> </ul>                                     |                        | Cobalarc Borochrome,<br>Cobalarc 9    |                         | Stoody Fineclad                           |
| <ul> <li>Pipeline Ball<br/>Joints</li> </ul>                                        |                        | Cobalarc Borochrome,<br>Cobalarc 9    |                         | Stoody Fineclad                           |
| <ul> <li>Ladder Roll</li> <li>Bearing Box</li> </ul>                                | Cobalarc 350           |                                       | Stoody<br>Super Buildup |                                           |
| Dredge Ladder     Rolls                                                             | Cobalarc 350           | Cobalarc 650                          | Stoody<br>Super Buildup | Stoody 965                                |
| <ul> <li>Dredge Pump<br/>Inlet Nozzle</li> </ul>                                    |                        | Cobalarc Borochrome,<br>Cobalarc CR70 |                         | Stoody Fineclad,<br>Stoody 101 HC, 100 HC |
| Bucket Pins                                                                         |                        | Cobalarc 650                          |                         | Stoody 965                                |
| <ul> <li>Carbon Steel</li> <li>Lower Tumblers</li> </ul>                            |                        | Cobalarc 650                          |                         | Stoody 965                                |
| <ul> <li>Manganese Steel</li> <li>Lower Tumblers</li> </ul>                         | Cobalarc<br>Mangcraft, | Cobalarc Mangcraft,                   | Stoody<br>Dynamang      | Stoody Dynamang                           |



# **Cobalarc Applications by Industry Sector**

# CEMENT, BRICK & CLAY INDUSTRIES

| APPLICATION                                                               | Cobala                                       | arc electrode                                   | Stood              | y wire                                   |
|---------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------|--------------------|------------------------------------------|
|                                                                           | Build-up                                     | Hard Surfacing                                  | Build-up           | Hard Surfacing                           |
| Kiln Trunnions                                                            | Cobalarc 350                                 |                                                 | Stoody             |                                          |
|                                                                           |                                              |                                                 | Super Buildup      |                                          |
| <ul> <li>Screw Flight Shaft<br/>Bearings, Hangers<br/>and Pins</li> </ul> |                                              | Cobalarc CR70                                   |                    | Stoody 101 HC, 100 HC<br>Stoody Fineclad |
| ▲ Drag Chain Links                                                        |                                              | Cobalarc CR70                                   |                    | Stoody 101 HC, 100 HC<br>Stoody Fineclad |
| ▲ Cage Bars                                                               | Cobalarc<br>Austex                           | Cobalarc 9                                      |                    | Stoody Fineclad                          |
| Manganese Steel<br>Mill Hammers                                           | Cobalarc<br>Austex,<br>Cobalarc<br>Mangcraft | Cobalarc 9                                      | Stoody<br>Dynamang | Stoody 101 HC, 100 HC                    |
| Bag Packer Screws                                                         |                                              | Cobalarc Borochrome                             |                    | Stoody Fineclad                          |
| ▲ Slurry Tank<br>Agitator Shaft                                           |                                              | Cobalarc Borochrome                             |                    | Stoody Fineclad                          |
| ▲ Muller Tyres                                                            | Cobalarc<br>Austex,<br>Weldall               | Cobalarc CR70<br>Cobalarc 9                     |                    | Stoody 101 HC, 100 HC                    |
| <ul> <li>Pug Mill Auger</li> <li>Flights</li> </ul>                       |                                              | Cobalarc Borochrome<br>Cobalarc 9<br>Cobalarc 4 |                    | Stoody Fineclad                          |
| Pug Mill Knives                                                           |                                              | Cobalarc 4                                      |                    |                                          |
| ▲ Feeder Blades                                                           |                                              | Cobalarc 4                                      |                    |                                          |
| ▲ Shredder Cones                                                          |                                              | Cobalarc 9<br>Cobalarc Borochrome               |                    | Stoody Fineclad                          |
| Shredder Knives                                                           |                                              | Cobalarc Borochrome                             |                    | Stoody Fineclad                          |
| Brick Pin Assembly                                                        |                                              | Cobalarc Borochrome                             |                    | Stoody Fineclad                          |
| Roll Crusher Teeth                                                        |                                              | Cobalarc 9                                      |                    | Stoody 101 HC, 100 HC                    |



# Cobalarc Applications by Industry Sector

# IRON AND STEEL INDUSTRY

| APPLICATION                                            | Cobala       | rc electrode                          | Stood                    | ly wire                                  |
|--------------------------------------------------------|--------------|---------------------------------------|--------------------------|------------------------------------------|
|                                                        | Build-up     | Hard Surfacing                        | Build-up                 | Hard Surfacing                           |
| ▲ Blast Furnace Bells                                  |              |                                       |                          | Stoody 101 HC, 100 HC<br>(burden area)   |
| Coke Chutes                                            |              | Cobalarc 9,<br>Cobalarc Borochrome    |                          | Stoody Fineclad                          |
| Coke Oven Pusher<br>Shoes                              |              | Cobalarc 9,<br>Cobalarc Borochrome    |                          | Stoody Fineclad                          |
| Coupling Boxes                                         | Cobalarc 350 | Cobalarc 650,<br>Cobalarc 750         | Stoody<br>Super Buildup  | Stoody 965                               |
| Screw Conveyors                                        |              | Cobalarc CR70,<br>Cobalarc 9          |                          | Stoody 101 HC, 100 HC                    |
| <ul> <li>Grizzly Bars and<br/>Fingers</li> </ul>       |              | Cobalarc CR70,<br>Cobalarc 9          |                          | Stoody 101 HC, 100 HC                    |
| Pig Iron Casting<br>Machine Rails                      |              | Cobalarc 650,<br>Cobalarc Toolcraft   | <br>Stoody Super Buildup | Stoody 965<br>Stoody 850                 |
| ▲ Wobblers                                             | Cobalarc 350 | Cobalarc 650,<br>Cobalarc 750         |                          | Stoody 965                               |
| Ingot Buggy Wheels<br>and Tracks                       |              |                                       | Stoody Super Buildup     | Stoody 965                               |
| <ul> <li>Sand Slinger Cups<br/>Inlet Nozzle</li> </ul> |              | Cobalarc Borochrome,<br>Cobalarc CR70 |                          | Stoody 101 HC, 100 HC<br>Stoody Fineclad |



### **USE OF BUFFER LAYERS**

The term buffer layer is used to describe the presence of an intermediate deposit between the base material and the actual hardfacing deposit and in a number of cases is both desirable and necessary.

1. Hardfacing on a soft material for high load service.

When a hardfacing deposit is placed on a softer base materials there is a tendency for it to "sink in" under high loading. To overcome this a strong, tough layer is deposited onto the base materials prior to hardfacing.



2. Hardfacing on components subject to heavy Impact/Flexing.

When a component is subjected to heavy impact and/or flexing there is the possibility that relief checks which are common in the higher hardness range of hardfacing products will act as stress concentrators and propagate through to the base materials, particularly where the base material is a high strength steel. The use of a suitable buffer layer between the base and hardfacing deposit will overcome this problem.

3. Hardfacing over Partly Worn Components.

In many instances components which have been hardfaced and put into service wear unevenly and when presented for hardfacing again there are areas of the original hardfacing deposits still existing. For the softer, multilayer deposits and/or deposits which have not fractured under impact, hardfacing can be re-applied directly, However for fractured and very hard deposits it is necessary they be removed by grinding, gouging etc. prior to re-hardfacing. If this is not possible the use of buffer layer will secure the existing hardfacing and provide a tough base for subsequent hardfacing layers.





NOTE: When applying buffer layers, particularly on 11-14% manganese steel or the higher strength base materials ensure that the buffer layer extends beyond the hardfacing deposit. This will overcome the possible propagation of relief checks or cracks occurring along the edge of the hardface deposit.



### HARDFACING DEPOSIT PATTERNS

The amount of hard surfacing and the pattern of coverage will be determined by a number of factors including the function of the component, service conditions and the state of repair. The three main patterns used are:-

### 1. Continuous Coverage.

Is used for re-building and hardfacing parts that have a critical size or shape, such as rolls, shafts, tracks, crusher jaws and cones. It is also required on parts subject to a high degree of fine abrasion or erosion. Typical examples would be pump and fan impellers, sand chutes, valve seats, mixer paddles and dredge bucket lips. Sufficient over-lapping of each bead is necessary to ensure adequate coverage.

# CORRECT



### 2. Stringer Beads.

Other than complete coverage, stringer beads are widely used for many applications including, ripper teeth, buckets/bucket teeth, rock chutes, sheep foot tempers etc.

For teeth working in coarse rocky conditions the bead is deposited in the direction of the material travel, allowing the large lumps of rock etc. to slide along the top of the hardfacing bead.

In fine sandy conditions the stringer beads should be transverse (across) the path of material travel, this allows the fine materials to compact between the beads and so give self protection.

For conditions where there is a combination of coarse and fine material the "checker" or "waffle" pattern is generally used.

### 3. Dot Pattern.

For less critical areas such as the sides/ends of buckets, shovels etc. the dot pattern is used. It is useful in keeping the heat input down, particularly for the 11%-14% austenitic manganese steels. The dot size is generally 15-20mm diameter by 8mm high and placed at about 50mm centres.











# Cobalarc Product Selection by Alloy Type and Application

| Group 1.<br>Steel Products                                       | Alloy Type                            | AS/NZS<br>class                             | Description & Applications                                                                                                                                                                                                     |
|------------------------------------------------------------------|---------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cobalarc<br>Mangcraft,<br>Stoody Dynamang-O                      | Austenitic<br>manganese<br>steels.    | 1215-A4<br>1215-B7                          | Tough, work hardens on impact.<br>Crusher jaws, rolls, mantles, ball mill liners.                                                                                                                                              |
| Cobalarc Austex,                                                 | Austenitic<br>stainless<br>steels.    | 1315-A4                                     | Tough, corrosion and heat resistant.<br>Forms strong welds between dissimilar irons / steels.<br>Tramway rails, crossings, bearings at medium temperatures,<br>tractor track grousers, anvils, pneumatic tools, shredder bars. |
| Cobalarc 350,<br>Stoody Super<br>Buildup-G                       | Low carbon<br>martensitic<br>steels.  | 1435-A4<br>1435-B5/7                        | Excellent compressive strength and metal-to-metal wear<br>resistance.<br>Re-building and surfacing of clutch parts, railway points and<br>crossings, track components.                                                         |
| Cobalarc<br>Toolcraft                                            | Tool steels.                          | 1560-A4                                     | Strong, secondary hardening characteristics.<br>Machine tools, lathe tools, shears, drills, guillotine blades,<br>cutting knives, punches, dies, metal forming tools.                                                          |
| Cobalarc 650,<br>Cobalarc 750,<br>Stoody 965-G-O<br>Stoody 850-O | High carbon<br>martensitic<br>steels. | 1855-A4<br>1860-A4<br>1855-B5/B7<br>1865-B7 | Hard, relatively in-expensive, good general abrasion<br>resistance.<br>Surfacing of post-hole augers, earth scoops, conveyor screws,<br>drag line buckets, pump housings, subsoiler teeth, scarifier<br>points, plough shears. |



# Cobalarc Product Selection by Alloy Type and Application

| Group 2.<br>Chromium<br>White Irons          | Alloy Type                                   | AS/NZS<br>class       | Description & Applications                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------|----------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cobalarc CR70,<br>Stoody 101 HC-G-O          | Austenitic<br>chromium<br>carbide<br>irons.  | 2355-A4<br>2360-B5/B7 | Strong, high level of chromium carbides for excellent<br>abrasion resistance. Ideal for gouging (coarse) abrasion<br>conditions.<br>Crusher cones and mantles, swing hammers, grizzly bars,<br>scarifier points, shovel teeth, earthmoving buckets and sugar<br>harvesting and milling equipment.                                                    |
| Cobalarc 9,                                  | Complex<br>chromium<br>carbide<br>irons.     | 2460-A1               | Strong, high level of complex carbides for excellent abrasion<br>resistance. Ideal for wide range of abrasion conditions with<br>relatively high impact loading.<br>Sizing screens, ball mill liner plates, dredge pump impellers,<br>crusher jaws, pug mill paddles, agricultural implements,<br>scrapers, fan blades, bucket lips and side plates. |
| Cobalarc<br>Borochrome,<br>Stoody Fineclad-O | Martensitic<br>chromium<br>carbide<br>irons. | 2560-A4<br>2565-B7    | Strong, high level of chromium carbides for excellent<br>abrasion resistance. Ideal for low stress scratching (wet or<br>dry) abrasion conditions with relatively low impact loading.<br>Wet applications in mining and crushing industries,<br>agricultural implements, sand slingers, cement chutes, fan<br>blades and slurry pump components.     |

| Group 3.<br>Tungsten Carbide<br>Composites | Alloy Type                                                    | AS/NZS<br>class | Description & Applications                                                                                                                                                                                                                                                           |
|--------------------------------------------|---------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cobalarc 4,                                | Tungsten<br>carbide<br>granules<br>in an iron<br>rich matrix. | 3460-A1         | Hard, tungsten carbide (WC) iron deposit resistant to<br>severe abrasion and low impact loading.<br>Ideal for earth cutting and boring applications.<br>Rock drills, ditcher teeth, ripper points, oil drill collars<br>auger blades and teeth, oil well drills, bulldozer end bits. |



# Cobalarc Product Selection by Alloy Type and Application

| Group 4.<br>Copper Alloys                               | Alloy Type                      | AS/NZS<br>class    | Description & Applications                                                                                                                                                           |
|---------------------------------------------------------|---------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bronzecraft<br>AC-DC,                                   | Phosphor<br>bronze              | 6200-A2            | Good bearing properties, wear & corrosion resistant.<br>Medium load bearings, crankpress, transmission housings,<br>pump rotors.                                                     |
| Comweld<br>Manganese<br>Bronze,<br>Comweld<br>Comcoat C | High tensile<br>brass.          | 6300-C1<br>6300-C1 | Low friction bearing characteristics, wear and corrosion<br>resistant.<br>Light load bearings, Hydraulic rams and pistons.                                                           |
| Comweld<br>Nickel<br>Bronze,<br>Comweld<br>Comcoat N    | Nickel<br>bronze<br>(9-13% Ni). | 6400-C1<br>6400-C1 | Low friction bearing characteristics, work hardenable,<br>corrosion resistant.<br>Gear teeth, cams, bearings, percussion heads, slides, service<br>where work hardening is required. |



### **Costing Information:**

Based on the fact that the decision to hardface is an economic one, that is, to extend the working life of a component (ie. rebuild rather than replace), then the calculation of the true cost of hardfacing the component is important.

Points to consider in calculation of an estimated cost include:-

- 1. Volume of build-up of hardsurfacing deposit required.
- 2. Cost of welding consumables.
- 3. Preparation prior to welding (including grinding, preheat etc.).
- 4. Post weld requirements (heat treatment, grinding, machining etc.).
- 5. Power, labour and overhead costs.

Other important factors relating to the selection of the welding process/consumable are:-

- 1. Deposition rate (kg of weld metal / hr).
- 2. Deposition efficiency (%).
- 3. Operating factor or Duty cycle (%).

### **Cost Calculations:**

WELDING ELECTRODE OR WIRE COST ; A (\$ per kg of weld metal deposited):

 $\frac{\text{Electrode or Wire Price ($ / kg)}}{\text{Deposition Efficiency * (%)}} = A ($ / kg)$ 

### FLUX COST ; B (SAW only) (\$ per kg of weld metal deposited):

 Flux Price (\$ / kg) x Consumption Rate (kg / hr)
 B
 B
 B
 Kg)

### POWER COST; C (\$ per kg of weld metal deposited);

 $\frac{\text{Cost of power ($ / kWhr) x Volts x Amps}}{\text{Deposition Rate (kg / hr)}} = C ($ / kg)$ 



### **COSTING INFORMATION:**

### LABOUR COST; D (\$ per kg of weld metal deposited):

$$\frac{\text{Labour Cost ($ / hr) x Deposition Rate (kg / hr)}{\text{Operating Factor* (%)}} = D ($ / kg)$$

OVERHEAD COST; E (\$ per kg of weld metal deposited):

 Overhead cost (\$ / hr) x Deposition Rate (kg / hr)
 E
 E
 (\$ / kg)

 Operating Factor\* (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)
 (%)</t

Total cost; F (\$ per kg of weld metal deposited):

F(\$ / kg) = A + B + C + D + E

Total cost (TC) of hardfacing the steel component:

TC (\$) = Volume of Build-up or hard surfacing deposit (cm<sup>3</sup>) x F x 0.008

### \*Deposition Efficiencies and Operating Factors for Hardfacing Cost Calculations:

| Process                  | Deposit Efficiency (%) | Typical Operating Factor (%) |  |
|--------------------------|------------------------|------------------------------|--|
| MMAW                     | 60 - 75                | 15 - 20                      |  |
| <b>FCAW</b> <sup>†</sup> | 80 - 90                | 25 - 30                      |  |
| SAW                      | 90 - 95#               | 35 - 40                      |  |

† Semi-automatic operation.

# SAW wire only.



### Deposition Rates, Electrode Efficiency, and Electrode Weld Metal Recovery!

### What are the differences?

**Deposition Rates** 

The deposition rate of a welding consumable (electrode, wire or rod) is the rate at which weld metal is deposited (melted) onto a metal surface. Deposition rate is expressed in kilograms per hour (kg/hr).

Deposition rate is based on continuous operation, not allowing for stops and starts such as, electrode change overs, chipping slag, cleaning spatter, machine adjustments or other reasons.

When welding current is increased so to does the deposition rate. When electrical stick out is increased in the case of GMAW and FCAW the deposition rate will also increase.

Deposition rates are calculated by doing actual welding tests, and the following shows the formula for measuring deposition rates.

Deposition Rate = Weight of test plate before welding – Weight of test plate after welding  $\div$ Measured period of time (normally 60 seconds).

e.g. Plate before welding: 2kg - 2.95kg Plate after welding = 95grams, welded in 60 seconds. 95grams x 60/1000 = 5.7kg/hr.

### Electrode Efficiency (Deposition Efficiency)

Technically to ISO 2401-1972 electrode efficiency (AS/NZS 1553.1: 1995 deposition efficiency) is the difference between the weight of the weld metal deposited and the weight of the filler metal consumed (not including flux and stub ends) in making the weld. The efficiency of an electrode is calculated by using the following formula;

Electrode Efficiency % to ISO 2401and AS/NZS 1553.1 =

Weight of test plate including weld metal — Weight of test plate before welding Mass of the Core Wire of 5 electrodes — Weight of core wire of the 5 stub ends X 100

e.g. Satincraft 13 Ø4mm x 380mm.

Plate before welding: 2kg - 2.15kg Plate after welding = 150grams, weight of five (5) electrode core wires, Ø4mm x 380mm long before welding = 188grams, weight of five (5) electrode stub ends, Ø4mm x 50mm long after welding = 24.7grams, 150grams ÷ 163.3grams x 100 = 91.85% Electrode Efficiency (Deposition Efficiency).

e.g. Ferrocraft 22 Ø3.2mm x 380mm.

Plate before welding: 2kg - 2.167kg Plate after welding = 167grams, weight of five (5) electrode core wires, Ø3.2mm x 380mm long before welding = 124grams, weight of five (5) electrode stub ends, Ø3.2mm x 50mm long after welding = 16.3grams, 167grams ÷ 107.7grams x 100 = 155.06% Electrode Efficiency (Deposition Efficiency).



### **Electrode Weld Metal Recovery (Process Efficiency)**

Electrode weld metal recovery to ISO 2401-1972 allows us to calculate the amount of welding consumable which will actually be deposited into the finished weld metal less any waste such as, stub ends, slag and spatter not adhered to the test plate.

An example is when 100kgs of electrodes are used with a quoted efficiency of 60%, the net result is that only 60kg of the weight of that electrode will actually end up in the deposited weld metal. The remaining 40% (40kg) of the electrode is waste.

To achieve weld metal recovery rates practical tests are carried out by weighing the test plate before and after welding, weighing the consumables before welding and then using the following formula allowing for 50mm stub ends. If the welder discards more than 50mm stub ends than the recovery rate (process efficiency) will be lower.

Weld Metal Recovery % to ISO 2401 =

Weight of test plate before welding — Weight of test plate after welding Weight of the Consumable X 100

e.g. Satincraft 13 Ø4mm x 380mm. Plate before welding: 2kg - 2.15kg Plate after welding = 150grams, weight of five (5) electrodes, Ø4mm x 380mm long before welding = 261.20grams, 150grams ÷ 261.20grams x 100 = 57.43% Weld Metal Recovery (Process Efficiency).

e.g. Ferrocraft 22 Ø3.2mm x 380mm.

Plate before welding: 2kg - 2.167kg Plate after welding = 167grams, weight of five (5) electrodes, Ø3.2mm x 380mm long before welding = 281.50grams, 167grams ÷ 281.50grams x 100 = 59.33% Weld Metal Recovery (Process Efficiency).

### **General Process Efficiencies**

Generally process efficiencies can be stated as averages for costing purposes. The following table outlines CIGWELD's suggested process efficiency percentages.

If the welding application calls for the Oxy-Acetylene or GTAW welding processes to be employed, then it is prudent to use all of the consumable by joining stub ends to ensure that 100% of the filler metal is utilised.

| Welding Process                       |                |                          | Average Efficiency |
|---------------------------------------|----------------|--------------------------|--------------------|
| Gas Tungsten Arc Welding (GTAW) & Oxy | 100%           |                          |                    |
| Manual Metal Arc Welding (MMAW)       |                |                          | 60%                |
| Gas Metal Arc Welding (GMAW)          | Short Arc,     | Ar + 25% CO <sub>2</sub> | 92%                |
| Gas Metal Arc Welding (GMAW)          | Spray Arc,     | Ar + 25% CO <sub>2</sub> | 95%                |
| Gas Metal Arc Welding (GMAW)          | Pulse Arc,     | Ar + 25% CO <sub>2</sub> | 98%                |
| Flux Cored Arc Welding (FCAW)         | E70T-4 types,  | self shielded            | 82%                |
| Flux Cored Arc Welding (FCAW)         | E71T-1 types,  | Ar + 25% CO <sub>2</sub> | 85%                |
| Flux Cored Arc Welding (FCAW)         | E70T-5 types,  | Ar + 25% CO <sub>2</sub> | 88%                |
| Flux Cored Arc Welding (FCAW)         | E70C-6M types, | Ar + 25% CO <sub>2</sub> | 92%                |
| Cobalarc Flux Cored Hardfacing Wires  |                | Gas shielded             | 80%                |

GMAW and FCAW average efficiencies can vary in result depending upon the shielding gases used, machine settings, stick out, spatter losses, wire sniped off before starts etc.



### Email: cigweldsales@cigweld.com.au

### CIGWELD Electrodes, Deposition Rates, Electrode Efficiencies, and

### **Electrode Weld Metal Recovery Rates**

The following Table lists some popular CIGWELD consumables and their Deposition Rates, Electrode Efficiencies and Weld Metal Recovery Rates:

| CIGWELD<br>Product | Size<br>(mm) | Amps | Deposition<br>Rate kg/hr | Electrode<br>Efficiency | Weld Metal<br>Recovery |
|--------------------|--------------|------|--------------------------|-------------------------|------------------------|
| Ferrocraft 12XP    | 3.2          | 110  | 0.90                     | 109%                    | 66%                    |
| Ferrocraft 12XP    | 4.0          | 150  | 1.20                     | 111%                    | 69%                    |
| Satincraft 13      | 3.2          | 115  | 0.92                     | 91%                     | 56%                    |
| Satincraft 13      | 4.0          | 160  | 1.30                     | 92%                     | 58%                    |
| Ferrocraft 11      | 3.2          | 110  | 1.00                     | 90%                     | 64%                    |
| Ferrocraft 11      | 4.0          | 145  | 1.30                     | 90%                     | 66%                    |
| Ferrocraft 21      | 3.2          | 120  | 1.20                     | 113%                    | 63%                    |
| Ferrocraft 21      | 4.0          | 170  | 1.70                     | 112%                    | 62%                    |
| Ferrocraft 22      | 3.2          | 150  | 2.00                     | 155%                    | 59%                    |
| Ferrocraft 22      | 4.0          | 210  | 2.80                     | 157%                    | 61%                    |
| Ferrocraft 16TXP   | 3.2          | 120  | 1.20                     | 95%                     | 58%                    |
| Ferrocraft 16TXP   | 4.0          | 165  | 1.60                     | 90%                     | 56%                    |
| Ferrocraft 7016    | 3.2          | 120  | 1.10                     | 101%                    | 63%                    |
| Ferrocraft 7016    | 4.0          | 170  | 1.50                     | 97%                     | 60%                    |
| Ferrocraft 61      | 3.2          | 125  | 1.30                     | 110%                    | 57%                    |
| Ferrocraft 61      | 4.0          | 180  | 1.80                     | 113%                    | 59%                    |
| Alloycraft 90      | 3.2          | 125  | 1.30                     | 111%                    | 60%                    |
| Alloycraft 90      | 4.0          | 180  | 1.80                     | 114%                    | 62%                    |
| Satincrome 316L-17 | 3.2          | 95   | 0.90                     | 105%                    | 55%                    |
| Satincrome 316L-17 | 4.0          | 130  | 1.10                     | 108%                    | 54%                    |
| Castcraft 55       | 3.2          | 100  | 0.95                     | 116%                    | 69%                    |
| Castcraft 55       | 4.0          | 125  | 1.15                     | 115%                    | 70%                    |
| Cobalarc 750       | 3.2          | 115  | 1.00                     | 109%                    | 62%                    |
| Cobalarc 750       | 4.0          | 145  | 1.30                     | 112%                    | 64%                    |
| Cobalarc CR70      | 3.2          | 115  | 1.20                     | 191%                    | 69%                    |
| Cobalarc CR70      | 4.0          | 165  | 1.70                     | 206%                    | 71%                    |
| Cobalarc 9         | 6.3          | 120  | 1.0                      | 85%                     | 77%                    |

The information provided in this table is a guide only, actual on the job figures may vary. Results are influenced by many factors including, welding parameters, arc length, travel speed and machine characteristics.



### **CIGWELD Solid and Flux Cored Wires, Deposition and**

### Weld Metal Recovery Rates

The following Table lists some popular CIGWELD consumables and their Deposition and Weld Metal Recovery Rates:

| CIGWELD<br>Product       | Size<br>(mm) | Volts | Amps | WFS<br>m/min | Deposition<br>Rate kg/hr | Weld Metal<br>Recovery |
|--------------------------|--------------|-------|------|--------------|--------------------------|------------------------|
| Autocraft LW1-6          | 0.8          | 20    | 150  | 12.0         | 2.5                      | 96%                    |
| Autocraft IW1-6          | 0.9          | 26    | 180  | 12.0         | 3.1                      | 96%                    |
| Autocraft LW1-6          | 1.0          | 28    | 240  | 13.5         | 4.8                      | 95%                    |
| Autocraft LW1-6          | 1.2          | 32    | 300  | 10.8         | 5.6                      | 97%                    |
| Autocraft Silicon Bronze | 0.9          | 24    | 180  | 13.2         | 3.2                      | 95%                    |
| Autocraft 316LSi         | 0.9          | 22    | 180  | 10.0         | 2.8                      | 97%                    |
| Autocraft 316LSi         | 1.2          | 26    | 250  | 8.5          | 4.4                      | 98%                    |
| Autocraft AL5356         | 1.0          | 22    | 180  | 16.3         | 1.5                      | 90%                    |
| Autocraft AL5356         | 1.2          | 24    | 220  | 14.0         | 2.5                      | 92%                    |
| Satin-Cor XP             | 1.6          | 28    | 300  | 5.5          | 4.3                      | 86%                    |
| Satin-Cor XP             | 1.6          | 29    | 350  | 6.5          | 5.4                      | 87%                    |
| Satin-Cor XP             | 1.6          | 30    | 400  | 7.0          | 6.0                      | 89%                    |
| Satin-Cor XP             | 2.4          | 30    | 400  | 4.2          | 5.7                      | 85%                    |
| Satin-Cor XP             | 2.4          | 31    | 450  | 5.0          | 6.8                      | 86%                    |
| Satin-Cor XP             | 2.4          | 32    | 500  | 6.0          | 8.2                      | 90%                    |
| Verti-Cor 3XP            | 1.2          | 25    | 200  | 6.7          | 2.7                      | 86%                    |
| Verti-Cor 3XP            | 1.2          | 26    | 250  | 9.9          | 3.8                      | 84%                    |
| Verti-Cor 3XP            | 1.2          | 28    | 320  | 15.0         | 5.9                      | 88%                    |
| Verti-Cor 3XP            | 1.6          | 27    | 300  | 6.2          | 4.1                      | 86%                    |
| Verti-Cor 3XP            | 1.6          | 28    | 350  | 9.5          | 6.4                      | 81%                    |
| Verti-Cor 3XP            | 1.6          | 29    | 400  | 12.0         | 8.1                      | 88%                    |
| Metal-Cor XP             | 1.2          | 26    | 250  | 10.0         | 5.0                      | 92%                    |
| Metal-Cor XP             | 1.6          | 28    | 350  | 6.6          | 5.6                      | 94%                    |
| Supre-Cor 5              | 1.2          | 22    | 170  | 7.8          | 2.3                      | 86%                    |
| Supre-Cor 5              | 1.6          | 26    | 320  | 5.9          | 3.3                      | 89%                    |
| Tensi-Cor 110TXP         | 1.6          | 28    | 280  | 5.0          | 3.0                      | 88%                    |
| Tensi-Cor 110TXP         | 2.4          | 29    | 400  | 3.8          | 5.8                      | 90%                    |
| Shieldcrome 309LT        | 1.2          | 26    | 190  | 11.4         | 3.7                      | 84%                    |
| Shield-Cor 4XP           | 2.4          | 29    | 375  | 5.4          | 7.0                      | 84%                    |
| Shield-Cor 4XP           | 3.0          | 30    | 500  | 2.9          | 6.7                      | 86%                    |
| Shield-Cor 15            | 0.9          | 17    | 120  | 3.9          | 0.7                      | 75%                    |
| Shield-Cor 11            | 1.2          | 17    | 150  | 3.0          | 1.0                      | 80%                    |

The information provided in this table is based on welding with constant voltage (C.V.) GMA Welding machines. Results may vary and are influenced on the job by shielding gases used, machine settings, stick out, spatter losses, wire sniped off before starts etc.



### Manual Arc Electrode Consumption Calculator Guide

Instructions for Use of this Data

The following tables provide data on the approximate mass in kilograms required of the different types of electrodes for welding the various weld joints used throughout industry today. This data will aid in estimating material requirements and costs. The basis for the following tabulations is given below. Where variations from the given conditions or joint preparations are encountered, adjustments in the tabulated values must be made to compensate for such differences.

### Basis of Calculations

Electrode requirements have been calculated as follows:

- Where
   M
   =
   Mass of electrodes required

   D
   =
   Mass of weld metal to be deposited

   E
   =
   Proportion of electrode lost
  - M = <u>D</u>
    - 1 E

To arrive at the mass of weld metal to be deposited it is necessary to calculate first the volume of metal to be added (area of the cross section of the weld multiplied by the length). This volumetric value is converted to mass by multiplying by the factor 0.0079 kilograms per cubic centimetre for steel.

### Square Butt Joints, Welded both sides

| Joint<br>Dimensions |                 | kg of electrodes per linear<br>metre of weld* (Approx.) | kg of weldmetal deposited per<br>liner metre of weld (Approx.) |
|---------------------|-----------------|---------------------------------------------------------|----------------------------------------------------------------|
| Plate<br>Thickness  | Root<br>Gap (R) | With Reinforcement**                                    | With Reinforcement**                                           |
| 3mm                 | 0               | 0.23                                                    | 0.14                                                           |
| 5mm                 | 1mm<br>1 cmm    | 0.26                                                    | 0.23                                                           |
| 6mm                 | 1.6mm           | 0.41                                                    | 0.29                                                           |
|                     | 2.5mm           | 0.56                                                    | 0.34                                                           |

\* Includes spatter losses and 50mm stub end loss.

\*\* Height of Reinforcement = 2mm.



### Horizontal-Vertical (HV) Fillet welds

| Fillet Weld leg length<br>Dimensions | kg of electrodes per linear<br>metre of weld* (Approx.) | kg of weldmetal deposited per<br>liner metre of weld (Approx.) |
|--------------------------------------|---------------------------------------------------------|----------------------------------------------------------------|
| 3mm                                  | 0.06                                                    | 0.04                                                           |
| 5mm                                  | 0.16                                                    | 0.10                                                           |
| 6mm                                  | 0.24                                                    | 0.14                                                           |
| 8mm                                  | 0.42                                                    | 0.25                                                           |
| 10mm                                 | 0.65                                                    | 0.39                                                           |
| 12mm                                 | 0.95                                                    | 0.57                                                           |
| 16mm                                 | 1.68                                                    | 1.01                                                           |
| 20mm                                 | 2.62                                                    | 1.57                                                           |
| 25mm                                 | 4.10                                                    | 2.46                                                           |

\* Fillet weld figures are calculated based on true mitre fillets. Convex or overwelded fillets can increase these figures by 33% or more.

### Single Vee Butt Joints, (single groove butts)

| Joint<br>Dimensions |                  |                 | kg of electrodes per linear<br>metre of weld* (Approx.) | kg of weldmetal deposited per<br>liner metre of weld (Approx.) |
|---------------------|------------------|-----------------|---------------------------------------------------------|----------------------------------------------------------------|
| Plate<br>Thickness  | Root<br>Face (F) | Root<br>Gap (R) | With Reinforcement**                                    | With Reinforcement**                                           |
| 6mm                 | 1.6mm            | 1.6mm           | 0.39                                                    | 0.23                                                           |
| 8mm                 | 1.6mm            | 1.6mm           | 0.63                                                    | 0.38                                                           |
| 10mm                | 1.6mm            | 1.6mm           | 0.87                                                    | 0.52                                                           |
| 12mm                | 3mm              | 3mm             | 1.33                                                    | 0.80                                                           |
| 16mm                | 3mm              | 3mm             | 2.22                                                    | 1.33                                                           |
| 20mm                | 3mm              | 3mm             | 3.37                                                    | 2.02                                                           |
| 25mm                | 3mm              | 3mm             | 5.14                                                    | 3.08                                                           |

\* Includes spatter, 50mm stub ends and back gouging losses.

\*\* Height of Reinforcement = 2mm.

## Double Vee Butt Joints, Welded both sides (double groove butts)

| Joint<br>Dimensions |                  |                 | kg of electrodes per linear<br>metre of weld* (Approx.) | kg of weldmetal deposited per<br>liner metre of weld (Approx.) |  |
|---------------------|------------------|-----------------|---------------------------------------------------------|----------------------------------------------------------------|--|
| Plate<br>Thickness  | Root<br>Face (F) | Root<br>Gap (R) | With Reinforcement**                                    | With Reinforcement**                                           |  |
| 12mm                | 1.6mm            | 1.6mm           | 0.92                                                    | 0.55                                                           |  |
| 16mm                | 1.6mm            | 1.6mm           | 1.46                                                    | 0.88                                                           |  |
| 20mm                | 1.6mm            | 1.6mm           | 2.12                                                    | 1.27                                                           |  |
| 25mm                | 3mm              | 3mm             | 3.33                                                    | 2.00                                                           |  |

\* Includes spatter, 50mm stub ends and back gouging losses.

\*\* Height of Reinforcement = 2mm.



### **Consumable Weights & Lengths Tables:**

| I. Gas Metal Arc Welding (GMAW - MIG) Wires for Mild and Low Alloy Steels |     |     |      |     |      |  |
|---------------------------------------------------------------------------|-----|-----|------|-----|------|--|
| WIRE SIZE (mm) 0.6 0.8 0.9 1.2 1.6                                        |     |     |      |     |      |  |
| gms of wire per metre                                                     | 2.2 | 4   | 4.85 | 8.5 | 15.7 |  |
| metres of wire per kg                                                     | 450 | 254 | 200  | 113 | 63   |  |

### 2. Flux Cored Arc Welding (FCAW) Wires for Mild and Low Alloy Steels

| WIRE SIZE (mm)        | 1.2 | 1.6 | 2.0 | 2.4  |
|-----------------------|-----|-----|-----|------|
| gms of wire per metre | 7.5 | 13  | 21  | 28.5 |
| metres of wire per kg | 132 | 77  | 50  | 36   |

# 3. Submerged Arc Welding (SAW) Wires for Mild and Low Alloy Steels

| WIRE SIZE (mm)        | 2.4  | 3.2 |
|-----------------------|------|-----|
| gms of wire per metre | 35.5 | 63  |
| metres of wire per kg | 28   | 16  |

### 4. Stainless Steel Gas Metal Arc Welding (GMAW - MIG) Wires

| WIRE SIZE (mm)        | 0.9 | 1.2 | 1.6 |
|-----------------------|-----|-----|-----|
| gms of wire per metre | 5.1 | 9   | 16  |
| metres of wire per kg | 198 | 111 | 63  |

### 5. Aluminium Gas Metal Arc Welding (GMAW - MIG) Wires

| WIRE SIZE (mm)        | 0.9 | 1.2   | 1.6 |
|-----------------------|-----|-------|-----|
| gms of wire per metre | 1.7 | 3.1   | 5.4 |
| metres of wire per kg | 582 | 327.5 | 184 |

## 6. Autopak Gas Metal Arc Welding (GMAW - MIG) Wires

| WIRE SIZE (mm)          | 0.9  | 1.0 | 1.2 | 1.6             |
|-------------------------|------|-----|-----|-----------------|
| gms of wire per metre   | 4.85 | 6.1 | 8.5 | 15.7            |
| km of wire / 300kg Pack | 62   | 49  | 35  | 16 (250kg Pack) |



# **TECHNICAL AND TRADE INFORMATION**

# **TECHNICAL FACTS AND FIGURES**

### **Mathematical Symbols**

| + Plus or Positive                 | $\geq$ Greater Than or Equal To |
|------------------------------------|---------------------------------|
| - Minus or Negative                | $\leq$ Less Than or Equal To    |
|                                    | $\sqrt{}$ Square Root Of        |
| X Multiply By                      | ∞ Infinity                      |
| • Divided By                       | $\propto$ Proportional To       |
| 💻 Equal To                         | $\sum$ Sum Of                   |
| $\neq$ Not Equal To                | ☐ Product Of                    |
| 🛥 Approximatley Equal To           | $\Delta$ Difference             |
| ← Of the Order Of or<br>Similar To | • Therefore                     |
| > Greater Than                     | TT <sup>pi</sup>                |
| < Less Than                        | Parllel To                      |
| $\gg$ Not Greater Than             | Perpendicular To                |
| ≮ Not Less Than                    | Is To (Ratio)                   |



### Email: cigweldsales@cigweld.com.au



## Geometric Shapes - Perimeters and Areas

|                                                                                                                                                                                  | Perimeter = P                          | Area = A                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------|
| Square                                                                                                                                                                           | P = 4 x S                              | $A = S \times S$<br>or<br>$A = S^2$                     |
| Rectangle $\begin{bmatrix} \bullet & \bullet & \bullet \\ & \bullet & \bullet \\ & \bullet & \bullet \\ & \bullet & \bullet$                                                     | P = 2 (B + H)                          | A = B x H                                               |
| Triangle $I \leftarrow B \succ I$ $I \leftarrow B \rightarrow I$                                                                                                                 | P = Sum of 3 sides                     | A = B <u>x H_</u><br>2                                  |
| Scalene Triangle b c a                                                                                                                                                           | P = a + b + c                          | $A = \sqrt{S (S - a) (S - b) (S - c)}$<br>S = a + b + c |
| Equilateral Triangle s s s                                                                                                                                                       | P = 3 x S                              | $\frac{A = 0.433 \times S^2}{2}$                        |
| Circle                                                                                                                                                                           | $P = \pi \times D$ $D = \frac{P}{\pi}$ | $\frac{A = \pi \times D^2}{4}$<br>or<br>$A = \pi R^2$   |
| Trapezium $ \begin{array}{c} I & \longleftarrow B & \longrightarrow I \\ I & \longleftarrow & L & \longrightarrow I \\ I & \longleftarrow & I & \longleftarrow & I \end{array} $ | P = Sum of 4 Sides                     | $\frac{A = H \times (I + B)}{2}$                        |
| Hexagon                                                                                                                                                                          | P = 6 x S                              | A = 0.866 x B <sup>2</sup>                              |
| Octagon                                                                                                                                                                          | P = 8 x S                              | A = 0.828 x L <sup>2</sup>                              |



# **TECHNICAL AND TRADE INFORMATION**

# **TECHNICAL FACTS AND FIGURES**

### Geometric Shapes - Surface Area, Length of Welding and Volumes

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Surface Area = SA<br>Length of Welding = LW                                                                                                                        | Volume = V                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Rectangular &<br>Square Tanks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SA = 2 (L x B) + 2 (L x H) + 2 (B x H)<br>LW = 4L + 4B + 4H                                                                                                        | V = L x B x H                                                   |
| Cylinder $\overbrace{t_{R} \\ t_{R} \\ t$ | SA = $\pi x D x H + 2 x \pi x D^2$<br>4<br>LW = 2 x $\pi x D + H$                                                                                                  | $V = \pi x R^2 x H$<br>or<br>$V = 0.7854 x D^2 x H$             |
| Cone $SH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $SA = \frac{\pi \times D \times SH + \pi \times D^2}{2}$ $SH = \sqrt{H^2 + R^2}$ $LW = \pi \times D = SH$                                                          | $V = \frac{\pi x R^2 x H}{3}$<br>or<br>$V = 0.2618 x D^2 x H$   |
| Sphere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $SA = \pi \times D^2$                                                                                                                                              | $V = \pi x D^{3}$<br>6<br>or<br>$V = 0.5236 x D^{3}$            |
| Annulus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{l} SA = \pi \; x \; MD \; x \; W \\ or \\ SA = \underline{\pi} \left( D^2 \cdot d^2 \right) \\ or  4 \\ SA = 0.7854 \; (D^2 \cdot d^2) \end{array}$ |                                                                 |
| Hollow Cylinder $\downarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                    | $V = \pi x H (D^2 - d^2)$<br>or<br>$V = 0.7854 x H (D^2 - d^2)$ |
| Triangular Prism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                    | V = <u>H x B x I</u> 2                                          |

1 m<sup>3</sup> contains 1000 litres.

1 litre of water has a mass of 1kg.

1 m<sup>3</sup> of water has a mass of 1000 kg



# **Common Welding Conversion Data**

| Electrode        | Sizes          | Pack Weig        | Ihts           | Pack Weig      | jhts             | Lengths          |                |
|------------------|----------------|------------------|----------------|----------------|------------------|------------------|----------------|
| Imperial<br>Unit | Metric<br>Unit | Imperial<br>Unit | Metric<br>Unit | Metric<br>Unit | Imperial<br>Unit | Imperial<br>Unit | Metric<br>Unit |
| .025″            | 0.6mm          | 1lb              | .45kg          | 1kg            | 2.20lb           | 2″               | 50.8mm         |
| .030″            | 0.8mm          | 2lb              | .91kg          | 2.5kg          | 5.50lb           | 4″               | 101.6mm        |
| .035″            | 0.9mm          | 5lb              | 2.27kg         | 5kg            | 11.02lb          | 6″               | 152.4mm        |
| .040"            | 1.0mm          | 10lb             | 4.54kg         | 10kg           | 22.05lb          | 8″               | 203.4mm        |
| .045″            | 1.2mm          | 16lb             | 7.26kg         | 15kg           | 33.07lb          | 10″              | 254mm          |
| .052″            | 1.3mm          | 20lb             | 9.07kg         | 17kg           | 37.48lb          | 12″              | 304.8mm        |
| 1/16″            | 1.6mm          | 25lb             | 11.34kg        | 25kg           | 55.11lb          | 14″              | 355.6mm        |
| 5/64″            | 2.0mm          | 30lb             | 13.61kg        | 30kg           | 66.14lb          | 15″              | 381mm          |
| 3/32″            | 2.4mm          | 33lb             | 14.97kg        | 50kg           | 110.23lb         | 16″              | 406.4mm        |
| 7/64″            | 2.8mm          | 40lb             | 18.14kg        | 60kg           | 132.27lb         | 17″              | 431.8mm        |
| .120″            | 3.0mm          | 45lb             | 21.77kg        | 70kg           | 154.32lb         | 18″              | 457.2mm        |
| 1/8″             | 3.2mm          | 50lb             | 22.68kg        | 100kg          | 220.46lb         | 20″              | 508mm          |
| 5/32″            | 4.0mm          | 250lb            | 113.40kg       | 250kg          | 551.15lb         | 22″              | 558.8mm        |
| 3/16″            | 4.8mm          | 400lb            | 181.44kg       | 300kg          | 661.37lb         | 26″              | 660.4mm        |
| 7/32″            | 5.6mm          | 500lb            | 226.80kg       | 500kg          | 1102.29lb        | 30″              | 762mm          |
| 1/4″             | 6.4mm          | 600lb            | 272.16kg       | 810kg          | 1785.71lb        | 36″              | 914.4mm        |
| 5/16"            | 8.0mm          | 700lb            | 317.52kg       | 918kg          | 2023.81lb        | 39″              | 990.6mm        |
| 3/8″             | 9.5mm          | 1000lb           | 453.60kg       | 1000kg         | 2204.58lb        | 40″              | 1016mm         |

### **Conversion Data**

| Imperial to Metric       | Metric to Imperial       | Imperial to Metric                                 | Metric to Imperial                |  |
|--------------------------|--------------------------|----------------------------------------------------|-----------------------------------|--|
| Length                   | Weight & Gas F           | w ,                                                |                                   |  |
| inch x 25.4 = mm         | mm x 0.0394 = inch       | oz x 28.349 = grams                                | grams x 0.035 = oz                |  |
| inch x 2.54 = cm         | cm x 0.394 = inch        | stones x 6.350 = kg                                | kg x 0.157 = stones               |  |
| feet x 0.3048 = metre    | metre x 3.281 = feet     | lb x 0.4536 = kg                                   | kg x 2.2045 = lb                  |  |
| mile x 1.609 = km        | km x 0.621 = miles       | cft/hr x 0.4719 = L/min                            | L/min x 2.119 = cft/hr            |  |
| Energy & Speed           |                          | Pressure & Stress                                  |                                   |  |
| ft.lb x 1.35582 = joules | joules x 0.73756 = ft.lb | psi x 6.895 = kPa                                  | kPa x 0.14504 = psi               |  |
| ft/min x 0.305 = m/min   | m/min x 3.281 = ft/min   | psi x 0.006895 = MPa                               | MPa x 145.04 = psi                |  |
| in/sec x 2.54 = cm/sec   | cm/sec x 0.394 = in/sec  | psi x 0.006895 = N/mm <sup>2</sup>                 | N/mm <sup>2</sup> x 145.04 = psi  |  |
| in/min x 0.423 = mm/sec  | mm/sec x 0.394 = in/min  | psi x 0.0703 = kg/cm <sup>2</sup>                  | kg/cm <sup>2</sup> x 14.223 = psi |  |
| in/min x 0.0254 = m/min  | m/min x 393.78 = in/min  | ksi x 6.895 = MPa                                  | MPa x 0.14504 = ksi               |  |
| Deposition Rate          |                          | Heat Input = Joules (Volts x Amps x 60 $\div$ WFS) |                                   |  |
| lb/hr x 0.4536 = kg/hr   | kg/hr x 2.2045 = lb/hr   | J/inch x 39.37 = J/metre                           | J/metre x .0254 = J/inch          |  |



# Inch to Millimetre Conversion

| INCHES | mm    | INCHES |
|--------|-------|--------|
| 1/64   | .0156 | .40    |
|        | .0197 | .5     |
| 1/32   | .0313 | .79    |
|        | .0394 | 1      |
| 3/64   | .0469 | 1.19   |
|        | .0591 | 1.5    |
| 1/16   | .0625 | 1.59   |
| 5/64   | .0781 | 1.98   |
|        | .0787 | 2      |
| 3/32   | .0938 | 2.38   |
|        | .0984 | 2.5    |
| 7/64   | .1094 | 2.78   |
|        | .1181 | 3      |
| 1/8    | .1250 | 3.18   |
|        | .1378 | 3.5    |
| 9/64   | .1406 | 3.57   |
| 5/32   | .1563 | 3.97   |
|        | .1575 | 4      |
| 11/64  | .1719 | 4.37   |
|        | .1772 | 4.5    |
| 3/16   | .1875 | 4.76   |
|        | .1969 | 5      |
| 13/64  | .1969 | 5.16   |
|        | .2031 | 5.5    |
| 7/32   | .2188 | 5.56   |
| 15/64  | .2344 | 5.95   |
|        | .2362 | 6      |
| 1/4    | .2500 | 6.35   |
|        | .2559 | 6.5    |
| 17/64  | .2656 | 6.75   |
|        | .2756 | 7      |
| 9/32   | .2813 | 7.14   |
|        | .2953 | 7.5    |
| 19/64  | .2969 | 7.54   |
| 5/16   | .3125 | 7.94   |
|        | .3150 | 8      |
| 21/64  | .3281 | 8.33   |
|        | .3346 | 8.5    |
| 11/32  | .3438 | 8.73   |
|        | .3543 | 9      |
| 23/64  | .3594 | 9.13   |
|        | .3740 | 9.5    |
| 3/8    | .3750 | 9.53   |
| 25/64  | .3906 | 9.92   |
|        | .3937 | 10     |
| 13/32  | .4063 | 10.32  |
| 07/64  | .4134 | 10.5   |
| 27/64  | .4219 | 10.72  |
| 746    | .4331 | 11     |
| 7/16   | .4375 | 11.11  |
| 20151  | .4528 | 11.5   |
| 29/64  | .4531 | 11.51  |
| 15/32  | .4688 | 11.91  |
|        | .4724 | 12     |
| 31/64  | .4844 | 12.30  |
|        | .4921 | 12.5   |
| 1/2    | .5000 | 12.7   |

| mm    |               |        |
|-------|---------------|--------|
|       | 5118          | 13     |
| 33/64 | 5156          | 13 10  |
| 17/32 | 5313          | 13.49  |
| 11152 | .5315         | 13.5   |
| 35/6/ | 5/69          | 13.89  |
| 55/04 | 5512          | 14     |
| 9/16  | 5625          | 1/1 29 |
| 5/10  | 5709          | 14.5   |
| 37/6/ | 5781          | 14.5   |
| 57/04 | 5906          | 14.00  |
| 10/22 | 5038          | 15 08  |
| 39/64 | 6094          | 15.00  |
| 55/04 | 6102          | 15.40  |
| 5/8   | 6250          | 15.88  |
| 5/0   | 6200          | 16     |
| /1/6/ | 6406          | 16.27  |
| +1/04 | 6406          | 16.5   |
| 21/32 | 6563          | 16.67  |
| 21/52 | .0505         | 17     |
| 13/6/ | .0095         | 17 07  |
| 43/04 | .0715         | 17.07  |
| 11/10 | .00/0         | 17.40  |
| 45104 | .0050         | 17.5   |
| 45/64 | 7087          | 17.80  |
| 12/22 | 7100          | 10 26  |
| 23/32 | ./100         | 10.20  |
| 17/61 | .7205         | 10.5   |
| 47/04 | ./544         | 10.00  |
| 2/4   | .7400         | 10.05  |
| 3/4   | ./500         | 19.05  |
| 43/04 | .7030         | 19.45  |
| 25/22 | ./0//<br>7012 | 19.5   |
| 23/32 | ./015         | 19.04  |
| 51/6/ | ./8/4         | 20 24  |
| 51/04 | .7303         | 20.24  |
| 12/16 | .8071         | 20.5   |
| 15/10 | .0123         | 20.04  |
| 52/6/ | .0200         | 21 02  |
| 33/04 | .0201         | 21.05  |
| 21/32 | .8438         | 21.43  |
|       | .0400         | 21.5   |
| 55/64 | .8594         | 21.85  |
| 7/0   | .0001         | 22     |
| //8   | .8/50         | 22.23  |
| 57/64 | .0000         | 22.5   |
| 57/64 | .8906         | 22.62  |
| 20/22 | .5000         | 20     |
| 29/32 | .9063         | 23.02  |
| 29/04 | .9219         | 23.42  |
| 15/10 | .9252         | 23.5   |
| 15/16 | .9375         | 23.81  |
| 61/64 | .9449         | 24     |
| 01/04 | .9531         | 24.21  |
|       | .9646         | 24.5   |
| 31/32 | .9688         | 24.61  |
|       | .9843         | 25     |
| 63/64 | .9844         | 25     |
|       | 1.0000        | 25.4   |

# Conversion Tables - Travel and Wire Feed Speeds

| Inches<br>per min | Feet<br>per hour | mm<br>per min | cm<br>per min | Metres<br>per min | Metres<br>per hour |
|-------------------|------------------|---------------|---------------|-------------------|--------------------|
| 3                 | 15               | 75            | 7.5           | .075              | 4.5                |
| 4                 | 20               | 100           | 10.0          | .100              | 6.0                |
| 5                 | 25               | 125           | 12.5          | .125              | 7.5                |
| 6                 | 30               | 150           | 15.0          | .150              | 9.0                |
| 8                 | 40               | 205           | 20.5          | .205              | 12.3               |
| 10                | 50               | 255           | 25.5          | .255              | 15.3               |
| 12                | 60               | 305           | 30.5          | .305              | 18.3               |
| 14                | 70               | 355           | 35.5          | .355              | 21.3               |
| 16                | 80               | 405           | 40.5          | .405              | 24.3               |
| 18                | 90               | 455           | 45.5          | .455              | 27.3               |
| 20                | 100              | 510           | 51.0          | .510              | 30.6               |
| 22                | 110              | 560           | 56.0          | .560              | 33.6               |
| 24                | 120              | 610           | 61.0          | .610              | 36.6               |
| 26                | 130              | 660           | 66.0          | .660              | 39.6               |
| 28                | 140              | 710           | 71.0          | .710              | 42.6               |
| 30                | 150              | 760           | 76.0          | .760              | 45.6               |
| 32                | 160              | 810           | 81.0          | .810              | 48.6               |
| 34                | 170              | 865           | 86.5          | .865              | 51.9               |
| 36                | 180              | 915           | 91.5          | .915              | 54.9               |
| 38                | 190              | 965           | 96.5          | .965              | 57.9               |
| 40                | 200              | 1015          | 101.5         | 1.015             | 60.9               |
| 45                | 225              | 1150          | 115.0         | 1.150             | 69.0               |
| 50                | 250              | 1275          | 127.5         | 1.275             | 76.5               |
| 55                | 276              | 1400          | 140.0         | 1.400             | 84.0               |
| 60                | 300              | 1525          | 152.5         | 1.525             | 91.5               |
| 65                | 325              | 1650          | 165.0         | 1.650             | 99.0               |
| 70                | 350              | 1775          | 177.5         | 1.775             | 107.0              |
| 75                | 375              | 1900          | 190.0         | 1.900             | 114.0              |
| 80                | 400              | 2030          | 203.0         | 2.03              | 122.0              |
| 85                | 425              | 2160          | 216.0         | 2.16              | 129.5              |
| 90                | 450              | 2285          | 228.5         | 2.29              | 137.5              |
| 95                | 475              | 2410          | 241.0         | 2.41              | 144.5              |
| 100               | 500              | 2540          | 254.0         | 2.54              | 152.5              |

| Inches/<br>min. | Metres/<br>min. | Inches/<br>min. | Metres/<br>min. | Inches/<br>min. | Metres/<br>min. |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 110             | 2.80            | 200             | 5.10            | 425             | 10.80           |
| 120             | 3.05            | 225             | 5.70            | 450             | 11.45           |
| 130             | 3.30            | 250             | 6.35            | 475             | 12.10           |
| 140             | 3.55            | 275             | 7.00            | 500             | 12.70           |
| 150             | 3.80            | 300             | 7.60            | 525             | 13.30           |
| 160             | 4.05            | 325             | 8.25            | 550             | 13.95           |
| 170             | 4.30            | 350             | 8.90            | 575             | 14.60           |
| 180             | 4.55            | 375             | 9.50            | 600             | 15.25           |
| 190             | 4.90            | 400             | 10.15           | 625             | 15.90           |

Some of the above figures are "rounded".

Conversion: Inches/min. x 5 = Feet/Hour mm/min. x .6 = Metres/Hour

Inches/min. x 25.4 = mm/min.



| Metric Multiplying Fac | tors   |                   |  |
|------------------------|--------|-------------------|--|
| Name Prefix            | Symbol | Value             |  |
| Mega                   | M      | x10 <sup>6</sup>  |  |
| Kilo                   | k      | x10 <sup>3</sup>  |  |
| Hecto                  | h      | x10 <sup>2</sup>  |  |
| Deca                   | da     | x10               |  |
| deci                   | d      | x10 <sup>-1</sup> |  |
| centi                  | с      | x10 <sup>-2</sup> |  |
| milli                  | m      | x10 <sup>-3</sup> |  |
| micro                  | μ      | x10 <sup>-6</sup> |  |

# Symbols for Elements

| Ac | Actinium    |
|----|-------------|
| Ag | Silver      |
| Al | Aluminium   |
| Am | Americium   |
| Ar | Argon       |
| As | Arsenic     |
| At | Astatine    |
| Au | Gold        |
| В  | Boron       |
| Ba | Barium      |
| Be | Beryllium   |
| Bi | Bismuth     |
| Bk | Berkelium   |
| Br | Bromine     |
| С  | Carbon      |
| Ca | Calcium     |
| Cd | Cadmium     |
| Ce | Cerium      |
| Cf | Californium |
| Cl | Chlorine    |
| Cm | Curium      |
| Со | Cobalt      |
| Cr | Chromium    |
| Cs | Caesium     |
| Cu | Copper      |
| Dy | Dysprosium  |
| Er | Erbium      |
| Es | Einsteinium |
| Eu | Europium    |
| F  | Fluorine    |
| Fe | Iron        |
| Fm | Fermium     |
| Fr | Francium    |
| Ga | Gallium     |
| Gd | Gadolinium  |

| Ge | Germanium    |
|----|--------------|
| Н  | Hydrogen     |
| He | Helium       |
| Hf | Hafnium      |
| Hg | Mercury      |
| Но | Holmium      |
| 1  | Iodine       |
| In | Indium       |
| lr | Iridium      |
| Κ  | Potassium    |
| Kr | Krypton      |
| La | Lanthanum    |
| Li | Lithium      |
| Lr | Lawrencium   |
| Lu | Lutetium     |
| Md | Mendelevium  |
| Mg | Magnesium    |
| Mn | Manganese    |
| Мо | Molybdenum   |
| Ν  | Nitrogen     |
| Na | Sodium       |
| Nb | Niobium      |
| Nd | Neodymium    |
| Ne | Neon         |
| Ni | Nickel       |
| No | Nobelium     |
| Np | Neptunium    |
| 0  | Oxygen       |
| Os | Osmium       |
| Ph | Phosphorus   |
| Ра | Protactinium |
| Pb | Lead         |
| Pd | Palladium    |
| Pm | Promethium   |
| Ро | Polonium     |

| Pr | Praseodymium |
|----|--------------|
| Pt | Platinum     |
| Pu | Plutonium    |
| Ra | Radium       |
| Rb | Rubidium     |
| Re | Rhenium      |
| Rh | Rhodium      |
| Rn | Radon        |
| Ru | Ruthenium    |
| S  | Sulphur      |
| Sb | Antimony     |
| Sc | Scandium     |
| Se | Selenium     |
| Si | Silicon      |
| Sm | Samarium     |
| Sn | Tin          |
| Sr | Strontium    |
| Та | Tantalum     |
| Tb | Terbium      |
| Tc | Technetium   |
| Te | Tellurium    |
| Th | Thorium      |
| Ti | Titanium     |
| Tİ | Thallium     |
| Tm | Thulium      |
| U  | Uranium      |
| V  | Vanadium     |
| W  | Tungsten     |
| Xe | Xenon        |
| Y  | Yttrium      |
| Yb | Ytterbium    |
| Zn | Zinc         |
| Zr | Zirconium    |
|    |              |



| Comweld Rods per kg. |                   |                               |                        |                       |  |
|----------------------|-------------------|-------------------------------|------------------------|-----------------------|--|
| Diameter<br>mm       | Steel<br>(750 mm) | Copper and<br>Bronze (750 mm) | Aluminium<br>(1 metre) | Cast Iron<br>(700 mm) |  |
| 1.6                  | 84                | 68                            | 185                    | -                     |  |
| 2.4                  | 37                | 34                            | 82                     | -                     |  |
| 3.2                  | 21                | 19                            | 46                     | -                     |  |
| 5.0                  | 9                 | 8                             | 19                     | 8                     |  |
| 6.3                  | 5.5               | 5                             | 12                     | 4.3                   |  |

Chart shows approximate number of COMWELD welding rods per kg.

# **Physical Properties of Metals**

| Element and<br>Symbol | Atomic<br>Weight | Melting<br>Point °C | *Specific<br>Heat | Density<br>gms/cm3 |
|-----------------------|------------------|---------------------|-------------------|--------------------|
| Aluminium (Al)        | 26.97            | 660                 | 0.211             | 2.78               |
| Antimony (Sb)         | 121.76           | 630                 | 0.050             | 6.68               |
| Barium (Ba)           | 137.36           | 704                 | 0.068             | 3.75               |
| Bismuth (Bi)          | 209.00           | 271                 | 0.030             | 9.80               |
| Cadmium (Cd)          | 112.41           | 321                 | 0.056             | 8.64               |
| Caesium (Cs)          | 132.91           | 30                  | 0.054             | 1.87               |
| Calcium (Ca)          | 40.08            | 850                 | 0.158             | 1.55               |
| Cerium (Ce)           | 140.13           | 804                 | 0.045             | 6.92               |
| Chromium (Cr)         | 52.01            | 1800                | 0.111             | 7.1                |
| Cobalt (Cp)           | 58.94            | 1492                | 0.103             | 8.6                |
| Copper (Cu)           | 63.54            | 1083                | 0.093             | 8.93               |
| Gold (Au)             | 197.0            | 1063                | 0.031             | 19.32              |
| Iridium (Ir)          | 192.2            | 2443                | 0.031             | 22.65              |
| Iron, Wrought (Fe)    | 55.85            | 1535                | 0.109             | 7.87               |
| Lead (Pb)             | 207.21           | 327                 | 0.031             | 11.37              |
| Magnesium (Mg)        | 24.32            | 650                 | 0.245             | 1.74               |
| Manganese (Mn)        | 54.94            | 1240                | 0.107             | 7.44               |
| Mercury (Hg)          | 200.61           | -39                 | 0.033             | 13.56              |
| Molybdenum (Mo)       | 95.95            | 2625                | 0.065             | 10.0               |
| Nickel (Ni)           | 58.69            | 1453                | 0.109             | 8.9                |
| Platinium (Pt)        | 195.09           | 1769                | 0.032             | 21.45              |
| Potassium (K)         | 39.1             | 63                  | 0.177             | 0.862              |
| Rhodium (Rh)          | 102.91           | 1960                | 0.058             | 12.41              |
| Silver (Ag)           | 107.88           | 961                 | 0.056             | 10.5               |
| Sodium (Na)           | 22.991           | 98                  | 0.296             | 0.971              |
| Strontium (Sr)        | 87.63            | 770                 | -                 | 2.6                |
| Tellerium (Te)        | 127.61           | 452                 | 0.048             | 6.24               |
| Tin (Sn)              | 118.70           | 232                 | 0.056             | 7.29               |
| Titanium (Ti)         | 47.90            | 1660                | 0.126             | 4.5                |
| Tungsten (W)          | 183.92           | 3380                | 0.034             | 19.3               |
| Uranium (U)           | 238.07           | 1132                | 0.028             | 18.7               |
| Vanadium (V)          | 50.95            | 1730                | 0.115             | 6.0                |
| Zinc (Zn)             | 65.38            | 419                 | 0.094             | 7.1                |

\*In cal / gm / °C



# **Comparison of Hardness Scales**

| Vickers hardness<br>(diamond pyramid)<br>H.V. 30 kg load | Brinell (steel ball HB)<br>3000 kg load | Rockwell hardness<br>(direct reading test)<br>HRc | Approx. Tensile<br>Strength MPa |
|----------------------------------------------------------|-----------------------------------------|---------------------------------------------------|---------------------------------|
| 100                                                      | 95                                      |                                                   | 327                             |
| 120                                                      | 115                                     |                                                   | 393                             |
| 140                                                      | 135                                     |                                                   | 455                             |
| 160                                                      | 150                                     |                                                   | 527                             |
| 180                                                      | 170                                     |                                                   | 598                             |
| 200                                                      | 190                                     |                                                   | 658                             |
| 220                                                      | 210                                     |                                                   | 723                             |
| 240                                                      | 230                                     | 20                                                | 780                             |
| 260                                                      | 250                                     | 24                                                | 850                             |
| 280                                                      | 265                                     | 27                                                | 923                             |
| 300                                                      | 285                                     | 30                                                | 972                             |
| 320                                                      | 305                                     | 32                                                | 1041                            |
| 340                                                      | 320                                     | 34                                                | 1102                            |
| 360                                                      | 340                                     | 37                                                | 1166                            |
| 380                                                      | 360                                     | 39                                                | 1231                            |
| 400                                                      | 380                                     | 41                                                | 1290                            |
| 420                                                      | 395                                     | 43                                                | 1355                            |
| 440                                                      | 415                                     | 45                                                | 1417                            |
| 460                                                      | 435                                     | 46                                                | 1481                            |
| 480                                                      | 450                                     | 48                                                | 1546                            |
| 500                                                      | 470                                     | 49                                                | 1610                            |
| 520                                                      | 485                                     | 51                                                | 1674                            |
| 540                                                      | 505                                     | 52                                                | 1739                            |
| 560                                                      | 520                                     | 53                                                | 1802                            |
| 580                                                      | 535                                     | 54                                                | 1868                            |
| 600                                                      | 520                                     | 55                                                | 1922                            |
| 620                                                      | 535                                     | 56                                                | 1984                            |
| 640                                                      | 550                                     | 57                                                | 2015                            |
| 660                                                      | 565                                     | 58                                                | 2069                            |
| 680                                                      | 580                                     | 59                                                | 2108                            |
| 700                                                      | 590                                     | 60                                                | 2150                            |
| 725                                                      | 605                                     | 61                                                | -                               |
| 750                                                      | 615                                     | 62                                                | -                               |
| 800                                                      | 625                                     | 64                                                | -                               |
| 850                                                      | 640                                     | 66                                                | -                               |
| 900                                                      |                                         | 67                                                | -                               |
| 950                                                      | •                                       | 68                                                | -                               |
| 1000                                                     | -                                       | 69                                                | -                               |
| 1100                                                     | •                                       | 71                                                | -                               |
| 1200                                                     | -                                       | 72                                                |                                 |

NOTE: Figures quoted are only approximate.



| MASSES OF COMMON METALS |                  |                     |                       |  |
|-------------------------|------------------|---------------------|-----------------------|--|
|                         | Specific Gravity | kg / m <sup>3</sup> | gms / cm <sup>3</sup> |  |
| Cast Iron               | 7.68             | 7688                | 7.67                  |  |
| Steel                   | 7.85             | 7849                | 7.85                  |  |
| Copper                  | 8.94             | 8938                | 8.91                  |  |
| Tin Bronze              | 8.89             | 8899                | 8.9                   |  |
| Brass                   | 8.41             | 8441                | 8.44                  |  |
| Zinc                    | 7.14             | 6887                | 6.86                  |  |
| Aluminium               | 2.69             | 2691                | 2.7                   |  |
| Lead                    | 11.34            | 11373               | 11.37                 |  |
| Magnesium               | 1.74             | 1746                | 1.74                  |  |
| Titanium                | 4.51             | 4517                | 4.51                  |  |
| Tin                     | 7.30             | 7304                | 7.30                  |  |
| Stainless Steel (18/8)  | 7.93             | 7929                | 7.93                  |  |
| Stainless Steel (16%Cr) | 7.75             | 7720                | 7.72                  |  |
| Stainless Steel (27%Cr) | 7.61             | 7576                | 7.58                  |  |
| Aluminium bronze        | 8.15             | 8089                | 8.11                  |  |
| Phosphor bronze         | 8.85             | 8842                | 8.82                  |  |
| Manganese bronze        | 8.35             | 8329                | 8.30                  |  |
| Cupro-nickel            | 8.95             | 8970                | 8.94                  |  |
| Nickel Silver           | 8.75             | 8730                | 8.71                  |  |
| Everdur                 | 8.55             | 8521                | 8.52                  |  |
| Cusilman                | 8.55             | 8521                | 8.52                  |  |
| Nickel                  | 8.91             | 8858                | 8.85                  |  |
| Monel                   | 8.85             | 8810                | 8.80                  |  |
| Inconel                 | 8.55             | 8521                | 8.52                  |  |

### TEMPERATURE CONVERSIONS

To find a temperature conversion, read the centre column (the **bold** numbers) and read to the left side for degrees Celsius (<sup>o</sup>C) or the right side for degrees Fahrenheit (<sup>o</sup>F). eg. 10<sup>o</sup>F, reading the **bold** number, equals -12.2<sup>o</sup>C in the left column, or 10<sup>o</sup>C reading the **bold** number, equals -12.2<sup>o</sup>C in the right column.

| ⁰( ◀━━ | ► °F |              |
|--------|------|--------------|
|        | ⁰⊂ 🔶 | → °F         |
| -101   | -150 | -238         |
| -95.6  | -140 | -220         |
| -90.0  | -130 | -202         |
| -84.4  | -120 | -184         |
| -70.9  | -110 | -100         |
| -67.8  | -90  | -130         |
| -62.2  | -80  | -112         |
| -56.7  | -70  | -94          |
| -51.1  | -60  | -76          |
| -45.0  | -50  | -58          |
| -40.0  | -40  | -40          |
| -28.9  | -20  | -4           |
| -23.3  | -10  | 14           |
| -17.8  | Q    | 32           |
| -17.2  | 1    | 33.8         |
| -16./  | 2    | 35.6         |
| -10.1  | 3    | 37.4         |
| -15.0  | 5    | 41.0         |
| -14.4  | 6    | 42.8         |
| -13.9  | 7    | 44.6         |
| -13.3  | 8    | 46.4         |
| -12.8  | 9    | 48.2         |
| -12.2  | 10   | 51 g         |
| -11.1  | 12   | 53.6         |
| -10.6  | 13   | 55.4         |
| -10.0  | 14   | 57.2         |
| -9.44  | 15   | 59.0         |
| -8.89  | 16   | 60.8         |
| -0.33  | 10   | 64.4         |
| -7.70  | 19   | 66.2         |
| -6.67  | 20   | 68.0         |
| -6.11  | 21   | 69.8         |
| -5.56  | 22   | 71.6         |
| -5.00  | 23   | /3.4         |
| -4.44  | 24   | /5.2<br>77.0 |
| -3.33  | 26   | 78.8         |
| -2.78  | 27   | 80.6         |
| -2.22  | 28   | 82.4         |
| -1.67  | 29   | 84.2         |
| -1.11  | 30   | 86.0         |
| -0.50  | 31   | 0/.0<br>90.6 |
| 0.56   | 33   | 91.4         |
| 1.11   | 34   | 93.2         |
| 1.67   | 35   | 95.0         |
| 2.22   | 36   | 96.8         |
| 2./8   | 3/   | 98.6         |
| 3.33   | 30   | 100.4        |
| 1.05   | 40   | 102.2        |

| •⊂ 🗲 | → °F     |       |
|------|----------|-------|
|      | ⁰( <     | ∽∽°F  |
| 5.00 | 41       | 105.8 |
| 5.56 | 42       | 107.6 |
| 6.11 | 43       | 109.4 |
| 6.67 | 44       | 111.2 |
| 1.22 | 45       | 113.0 |
| /./8 | 40       | 114.8 |
| 8.89 | 47       | 118.4 |
| 9.44 | 49       | 120.2 |
| 10.0 | 50       | 122.0 |
| 10.6 | 51       | 123.8 |
| 11.1 | 52       | 125.6 |
| 12.2 | 54       | 127.4 |
| 12.8 | 55       | 131.0 |
| 13.3 | 56       | 132.8 |
| 13.9 | 57       | 134.6 |
| 14.4 | 58       | 136.4 |
| 15.0 | 59       | 138.2 |
| 15.0 | 61       | 140.0 |
| 16.7 | 62       | 141.0 |
| 17.2 | 63       | 145.4 |
| 17.8 | 64       | 147.2 |
| 18.3 | 65       | 149.0 |
| 18.9 | 66       | 150.8 |
| 19.4 | 69       | 152.0 |
| 20.0 | 69       | 156.2 |
| 21.1 | 70       | 158.0 |
| 21.7 | 71       | 159.8 |
| 22.2 | 72       | 161.6 |
| 22.8 | 73       | 163.4 |
| 23.5 | 74       | 167.0 |
| 23.5 | 76       | 168.8 |
| 25.0 | 77       | 170.6 |
| 25.6 | 78       | 172.4 |
| 26.1 | 79       | 174.2 |
| 26.7 | 80       | 1/6.0 |
| 27.2 | 87       | 177.0 |
| 28.3 | 83       | 181.4 |
| 28.9 | 84       | 183.2 |
| 29.4 | 85       | 185.0 |
| 30.0 | 86       | 186.8 |
| 30.6 | 8/       | 188.6 |
| 31.1 | 88<br>89 | 190.4 |
| 32.2 | 90       | 194.0 |
| 32.8 | 91       | 195.8 |
| 33.3 | 92       | 197.6 |
| 33.9 | 93       | 199.4 |
| 34.4 | 94       | 201.2 |
| 35.0 | 95       | 203.0 |
| 33.0 | 90       | 204.8 |

### **TEMPERATURE CONVERSIONS**

To find a temperature conversion, read the centre column (the **bold** numbers) and read to the left side for degrees Celsius (°C) or the right side for degrees Fahrenheit (°F), eg. 250°F, reading the **bold** number, equals 121°C in the left column, or 10°C reading the **bold** number, equals 482°F in the right column.

| 9r $206.6$ $36.1$ $97$ $206.6$ $37.2$ $99$ $210.2$ $38$ $100$ $212$ $43$ $110$ $230$ $49$ $120$ $248$ $54$ $130$ $266$ $60$ $140$ $284$ $66$ $150$ $302$ $77$ $170$ $338$ $82$ $180$ $356$ $88$ $190$ $374$ $93$ $200$ $392$ $99$ $210$ $410$ $100$ $212$ $413$ $104$ $220$ $428$ $110$ $230$ $446$ $121$ $250$ $482$ $127$ $260$ $500$ $132$ $270$ $518$ $138$ $280$ $536$ $143$ $290$ $554$ $149$ $300$ $572$ $154$ $310$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00   |     |              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|--------------|
| 36.1         97         206.6           36.7         98         208.4           37.2         99         210.2           38         100         212           43         110         230           49         120         248           54         130         266           60         140         284           66         150         302           71         160         320           77         170         338           82         180         356           88         190         374           93         200         392           99         210         410           100         212         413           104         220         428           116         240         464           121         250         482           127         260         500           132         270         518           138         280         536           143         290         554           149         300         572           154         310         590                                                 | ور ۽ | oc  | 0r           |
| 36.1         97 $206.6$ $36.7$ 98 $208.4$ $37.2$ 99 $210.2$ $38$ $100$ $212$ $43$ $110$ $230$ $49$ $120$ $248$ $54$ $130$ $266$ $60$ $140$ $284$ $66$ $150$ $302$ $77$ $170$ $338$ $82$ $180$ $356$ $88$ $190$ $374$ $93$ $200$ $392$ $99$ $210$ $410$ $100$ $212$ $413$ $100$ $212$ $413$ $100$ $212$ $413$ $100$ $212$ $413$ $116$ $240$ $464$ $121$ $250$ $482$ $127$ $260$ $500$ $132$ $270$ $518$ $138$ $280$ $536$ $143$ <th></th> <th>عر</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | عر  |              |
| 36.7 $98$ $208.4$ $37.2$ $99$ $210.2$ $38$ $100$ $212$ $43$ $110$ $230$ $49$ $120$ $248$ $54$ $130$ $266$ $60$ $140$ $284$ $66$ $150$ $302$ $77$ $170$ $338$ $82$ $180$ $356$ $88$ $190$ $374$ $93$ $200$ $392$ $99$ $210$ $410$ $100$ $212$ $413$ $104$ $220$ $428$ $110$ $230$ $446$ $110$ $230$ $446$ $110$ $230$ $446$ $127$ $260$ $500$ $138$ $280$ $536$ $143$ $290$ $554$ $149$ $300$ $572$ $154$ $310$ $590$ $166$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 36.1 | 97  | 206.6        |
| 37.2         99 $210.2$ $38$ 100 $212$ $43$ 110         230 $49$ 120 $248$ $54$ 130         266 $60$ 140         284 $66$ 150         302 $77$ 170         338 $82$ 180         356 $88$ 190         374 $93$ 200         392 $99$ 210         410           100         212         413           104         220         428           110         230         446           111         240         464           121         250         482           127         260         500           132         270         518           138         280         536           143         290         554           143         290         554           149         300         572           154         310         590           160         320                                                                                                                                                                                                                                                                  | 36.7 | 98  | 208.4        |
| 38         100         212           43         110         230           49         120         248           54         130         266           60         140         284           66         150         302           71         160         320           77         170         338           82         180         356           88         190         374           93         200         392           99         210         410           100         212         413           104         220         428           116         240         464           121         250         482           127         260         500           132         270         518           138         280         536           143         290         554           149         300         572           154         310         590           160         320         608           188         370         698           193         380         716 <t< td=""><td>37.2</td><td>99</td><td>210.2</td></t<> | 37.2 | 99  | 210.2        |
| 43         110         230           49         120         248           54         130         266           60         140         284           66         150         302           77         170         338           82         180         356           88         190         374           93         200         392           99         210         410           100         212         413           104         220         428           110         230         446           121         250         482           127         260         500           132         270         518           138         280         536           143         290         554           149         300         572           154         310         590           160         320         608           166         330         626           171         340         644           177         350         662           182         360         680                                                     | 38   | 10  | ) 212        |
| 49         120         248           54         130         266           60         140         284           66         150         302           71         160         320           77         170         338           82         180         356           88         190         374           93         200         392           99         210         410           100         212         413           104         220         428           110         230         446           116         240         464           121         250         482           127         260         500           132         270         518           138         280         536           143         290         554           149         300         572           154         310         590           160         320         608           166         330         626           171         340         644           177         350         662                                                     | 43   | 11  | 230          |
| 54         130         266           60         140         284           66         150         302           71         160         320           77         170         338           82         180         356           88         190         374           93         200         392           99         210         410           100         212         413           104         220         428           110         230         446           121         250         482           127         260         500           132         270         518           138         280         536           143         290         554           143         290         554           143         290         554           143         310         590           160         320         608           166         330         626           171         340         644           177         350         662           182         360         680                                                    | 49   | 12  | ) 248        |
| 60         140         284           66         150         302           71         160         320           77         170         338           82         180         356           88         190         374           93         200         392           99         210         410           100         212         413           104         220         428           116         240         464           121         250         482           127         260         500           132         270         518           138         280         536           143         290         554           149         300         572           154         310         590           160         320         608           166         330         626           171         340         644           177         350         662           182         360         680           188         370         698           193         380         716                                                   | 54   | 13  | 266          |
| 66         150         302           71         160         320           77         170         338           82         180         356           88         190         374           93         200         392           99         210         410           100         212         413           104         220         428           110         230         446           116         240         464           121         250         482           127         260         500           132         270         518           138         280         536           143         290         554           149         300         572           154         310         590           160         320         608           166         330         626           171         340         644           177         350         662           182         360         680           188         370         698           193         380         716                                                  | 60   | 14  | 284          |
| /1         160         320           77         170         338           82         180         356           88         190         374           93         200         392           99         210         410           100         212         413           104         220         428           110         230         446           121         250         482           127         260         500           132         270         518           138         280         536           143         290         554           143         290         554           143         290         608           166         320         608           166         320         608           166         320         608           171         340         644           177         350         662           182         360         680           183         370         698           193         380         716           199         390         734                                                 | 66   | 15  | 302          |
| 77         170         338           82         180         356           88         190         374           93         200         392           99         210         410           100         212         413           104         220         428           116         240         464           121         250         482           127         260         500           132         270         518           138         280         536           143         290         554           149         300         572           154         310         590           160         320         608           166         330         626           171         340         644           177         350         662           182         360         680           188         370         698           193         380         716           199         390         734           204         400         752           210         410         770                                                | /1   | 16  | 320          |
| 82         180         356           88         190         374           93         200         392           99         210         410           100         212         413           104         220         428           110         230         446           116         240         464           121         250         482           127         260         500           132         270         518           138         280         536           143         290         554           149         300         572           154         310         590           160         320         608           166         330         626           177         350         662           182         360         680           188         370         698           193         380         716           199         390         734           204         400         752           210         410         770           216         420         788 <td>77</td> <td>170</td> <td>338</td>         | 77   | 170 | 338          |
| 88         190         374           93         200         392           99         210         410           100         212         413           104         220         428           110         230         446           116         240         464           121         250         482           127         260         500           132         270         518           138         280         536           143         290         554           149         300         572           154         310         590           160         320         608           166         330         626           171         340         644           177         350         662           182         360         680           188         370         698           193         380         716           199         390         734           204         400         72           210         410         770           216         420         788 <td>82</td> <td>18</td> <td>) 356</td>        | 82   | 18  | ) 356        |
| 93         200         392           99         210         410           100         212         413           104         220         428           110         230         446           116         240         464           121         250         482           127         260         500           132         270         518           138         280         536           143         290         554           149         300         572           154         310         590           160         320         608           166         330         626           171         340         644           177         350         662           182         360         680           188         370         698           193         380         716           199         390         734           204         400         752           210         410         770           216         420         788           221         430         806 </td <td>88</td> <td>19</td> <td>374</td>   | 88   | 19  | 374          |
| 99         210         410           100         212         413           104         220         428           110         230         446           116         240         464           121         250         482           127         260         500           132         270         518           138         280         536           143         290         554           149         300         572           154         310         590           160         320         608           166         330         626           177         350         662           182         360         680           188         370         698           193         380         716           199         390         734           204         400         752           210         410         770           216         420         788           221         430         806           232         450         842           238         460         860     <                                      | 93   | 20  | ) 392        |
| 100         212         413           104         220         428           110         230         446           116         240         464           121         250         482           127         260         500           132         270         518           138         280         536           143         290         554           149         300         572           154         310         590           160         320         608           166         330         626           171         340         644           177         350         662           182         360         680           188         370         698           193         380         716           199         390         734           204         400         752           210         410         770           216         420         788           221         430         806           227         440         824           232         450         842                                           | 99   | 21  | <b>)</b> 410 |
| 104         220         428           110         230         446           116         240         464           121         250         482           127         260         500           132         270         518           138         280         536           143         290         554           149         300         572           154         310         590           160         320         608           166         330         626           171         340         644           177         350         662           182         360         680           188         370         698           193         380         716           199         390         734           204         400         752           210         410         770           216         420         788           221         430         806           232         450         842           238         460         860           243         470         878                                           | 100  | 21  | 2 413        |
| 110         230         446           116         240         464           116         240         464           121         250         482           127         260         500           132         270         518           138         280         536           143         290         554           149         300         572           154         310         590           160         320         608           166         330         626           171         340         644           177         350         662           182         360         680           188         370         698           193         380         716           199         390         734           204         400         752           210         410         770           216         420         788           221         430         806           232         450         842           238         460         860           243         470         878                                           | 104  | 22  | ) 428        |
| 116         240         464           121         250         482           127         260         500           132         270         518           138         280         536           143         290         554           149         300         572           154         310         590           160         320         608           166         330         626           171         340         644           177         350         662           182         360         680           188         370         698           193         380         716           199         390         734           204         400         752           210         410         770           216         420         788           221         430         806           227         440         824           232         450         842           238         460         860           234         470         878           249         480         896                                           | 110  | 23  | ) 446        |
| 121         250         482           127         260         500           132         270         518           138         280         536           143         290         554           149         300         572           154         310         590           160         320         608           166         330         626           171         340         644           177         350         662           182         360         680           188         370         698           193         380         716           199         390         734           204         400         752           210         410         770           216         420         788           221         430         806           232         450         842           238         460         860           243         470         878           249         480         896           254         490         914           260         500         932                                           | 116  | 24  | ) 464        |
| 127         260         500           132         270         518           138         280         536           143         290         554           149         300         572           154         310         590           160         320         608           166         330         626           171         340         644           177         350         662           182         360         680           188         370         698           193         380         716           199         390         734           204         400         752           210         410         770           216         420         788           221         430         806           232         450         842           238         460         860           243         470         878           249         480         896           254         490         914           260         500         932           266         510         950                                           | 121  | 25  | ) 482        |
| 132         270         518           138         280         536           143         290         554           149         300         572           154         310         590           160         320         608           166         330         626           171         340         644           177         350         662           182         360         680           188         370         698           193         380         716           199         390         734           204         400         752           210         410         770           216         420         788           221         430         806           232         450         842           232         450         842           232         450         842           238         460         860           243         470         878           249         480         896           254         490         914           260         500         932                                           | 127  | 26  | ) 500        |
| 138         280         536           143         290         554           149         300         572           154         310         590           160         320         608           166         330         626           171         340         644           177         350         662           182         360         680           188         370         698           193         380         716           199         390         734           204         400         752           210         410         770           216         420         788           221         430         806           232         450         842           238         460         860           243         470         878           249         480         896           254         490         914           260         500         932           266         510         950           271         520         968                                                                                 | 132  | 27  | ) 518        |
| 143         290         554           149         300         572           154         310         590           160         320         608           166         330         626           171         340         644           177         350         662           182         360         680           188         370         698           193         380         716           199         390         734           204         400         752           210         410         770           216         420         788           221         430         806           232         450         842           238         460         860           243         470         878           249         480         896           254         490         914           260         500         932           266         510         950           271         520         968                                                                                                                       | 138  | 28  | 536          |
| 149         300         572           154         310         590           160         320         608           166         330         626           171         340         644           177         350         662           182         360         680           188         370         698           193         380         716           199         390         734           204         400         752           210         410         770           216         420         788           221         430         806           227         440         824           232         450         842           232         450         842           238         460         860           243         470         878           249         480         896           254         490         914           260         500         932           266         510         950           271         520         968                                                                                 | 143  | 29  | ) 554        |
| 154         310         590           160         320         608           166         330         626           171         340         644           177         350         662           182         360         680           188         370         698           193         380         716           199         390         734           204         400         752           210         410         770           216         420         788           221         430         806           232         450         842           238         460         860           243         470         878           249         480         896           254         490         914           260         500         932           266         510         950           271         520         968                                                                                                                                                                                                   | 149  | 30  | 572          |
| 160         320         608           166         330         626           171         340         644           177         350         662           182         360         680           188         370         698           193         380         716           199         390         734           204         400         752           210         410         770           216         420         788           221         430         806           232         450         842           238         460         860           243         470         878           249         480         896           254         490         914           260         500         932           266         510         950           271         520         968                                                                                                                                                                                                                                         | 154  | 31  | ) 590        |
| 166         330         626           171         340         644           177         350         662           182         360         680           188         370         698           193         380         716           199         390         734           204         400         752           210         410         770           216         420         788           221         430         806           232         450         842           238         460         860           243         470         878           254         490         914           260         500         932           266         510         950           271         520         968                                                                                                                                                                                                                                                                                                                     | 160  | 32  | ) 608        |
| 171         340         644           177         350         662           182         360         680           188         370         698           193         380         716           199         390         734           204         400         752           210         410         770           216         420         788           232         450         842           238         460         860           243         470         878           249         480         896           254         490         914           260         500         932           266         510         950           271         520         968                                                                                                                                                                                                                                                                                                                                                           | 166  | 33  | ) 626        |
| 177         350         662           182         360         680           188         370         698           193         380         716           199         390         734           204         400         752           210         410         770           216         420         788           221         430         806           232         450         842           238         460         860           243         470         878           254         490         914           260         500         932           266         510         950           271         520         968                                                                                                                                                                                                                                                                                                                                                                                                 | 171  | 34  | ) 644        |
| 182         360         680           188         370         698           193         380         716           199         390         734           204         400         752           210         410         770           216         420         788           221         430         806           232         450         842           238         460         860           243         470         878           249         480         896           254         490         914           260         500         932           266         510         950           271         520         968                                                                                                                                                                                                                                                                                                                                                                                                 | 177  | 35  | <b>)</b> 662 |
| 188         370         698           193         380         716           199         390         734           204         400         752           210         410         770           216         420         788           221         430         806           227         440         824           232         450         842           238         460         860           243         470         878           249         480         896           254         490         914           260         500         932           266         510         950           271         520         968                                                                                                                                                                                                                                                                                                                                                                                                 | 182  | 36  | ) 680        |
| 193         380         716           199         390         734           204         400         752           210         410         770           216         420         788           221         430         806           227         440         824           232         450         842           238         460         860           243         470         878           249         480         896           254         490         914           260         500         932           266         510         950           271         520         968                                                                                                                                                                                                                                                                                                                                                                                                                                       | 188  | 37  | ) 698        |
| 199         390         734           204         400         752           210         410         770           216         420         788           221         430         806           227         440         824           232         450         842           238         460         860           243         470         878           254         490         914           260         500         932           266         510         950           271         520         968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 193  | 38  | ) 716        |
| 204         400         752           210         410         770           216         420         788           221         430         806           227         440         824           232         450         842           233         460         860           243         470         878           254         490         914           260         500         932           266         510         950           271         520         968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 199  | 39  | ) 734        |
| 210         410         770           216         420         788           221         430         806           227         440         824           232         450         842           238         460         860           243         470         878           249         480         896           254         490         914           260         500         932           266         510         950           271         520         968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 204  | 40  | ) 752        |
| 216         420         788           221         430         806           227         440         824           232         450         842           238         460         860           243         470         878           249         480         896           254         490         914           260         500         932           266         510         950           271         520         968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 210  | 41  | 770          |
| 221         430         806           227         440         824           232         450         842           238         460         860           243         470         878           249         480         896           254         490         914           260         500         932           266         510         950           271         520         968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 216  | 42  | 788          |
| 227         440         824           232         450         842           238         460         860           243         470         878           249         480         896           254         490         914           260         500         932           266         510         950           271         520         968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 221  | 43  | 806          |
| 232         450         842           238         460         860           243         470         878           249         480         896           254         490         914           260         500         932           266         510         950           271         520         968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 227  | 44  | 824          |
| 238         460         860           243         470         878           249         480         896           254         490         914           260         500         932           266         510         950           271         520         968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 232  | 45  | 842          |
| 243         470         878           249         480         896           254         490         914           260         500         932           266         510         950           271         520         968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 238  | 46  | 860          |
| 249         480         896           254         490         914           260         500         932           266         510         950           271         520         968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 243  | 47  | 878          |
| 254         490         914           260         500         932           266         510         950           271         520         968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 249  | 48  | ) 896        |
| 260         500         932           266         510         950           271         520         968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 254  | 49  | 914          |
| 266 <b>510</b> 950<br>271 <b>520</b> 968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 260  | 50  | 932          |
| 271 <b>520</b> 968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 266  | 51  | 950          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 271  | 52  | 968          |

| ∘( ← | → °F |      |
|------|------|------|
|      | •⊂ 🔫 | → °F |
| 277  | 530  | 986  |
| 282  | 540  | 1004 |
| 288  | 550  | 1022 |
| 293  | 560  | 1040 |
| 299  | 570  | 1058 |
| 304  | 580  | 1076 |
| 310  | 590  | 1094 |
| 316  | 600  | 1112 |
| 321  | 610  | 1130 |
| 327  | 620  | 1148 |
| 332  | 630  | 1166 |
| 338  | 640  | 1184 |
| 343  | 650  | 1202 |
| 349  | 660  | 1220 |
| 354  | 670  | 1238 |
| 360  | 680  | 1256 |
| 366  | 690  | 1274 |
| 3/1  | 700  | 1292 |
| 377  | 710  | 1310 |
| 382  | 720  | 1328 |
| 388  | 730  | 1346 |
| 393  | 740  | 1364 |
| 399  | /50  | 1382 |
| 404  | 760  | 1400 |
| 410  | //0  | 1418 |
| 410  | 780  | 1450 |
| 421  | 790  | 1454 |
| 427  | 810  | 14/2 |
| 432  | 810  | 1490 |
| 430  | 820  | 1500 |
| 445  | 8/0  | 1520 |
| 445  | 950  | 1562 |
| 454  | 860  | 1580 |
| 466  | 870  | 1500 |
| 400  | 880  | 1616 |
| 477  | 890  | 1634 |
| 482  | 900  | 1652 |
| 488  | 910  | 1670 |
| 493  | 920  | 1688 |
| 499  | 930  | 1706 |
| 504  | 940  | 1724 |
| 510  | 950  | 1742 |
| 516  | 960  | 1760 |
| 521  | 970  | 1778 |
| 527  | 980  | 1796 |
| 532  | 990  | 1814 |
| 538  | 1000 | 1832 |

TEMPERATURE CONVERSION FORMULA:  $C = 5 \times (F_{-32}) = 7 \times (F_{-32})$ 

# **TECHNICAL AND TRADE INFORMATION**

# **TECHNICAL FACTS AND FIGURES**

# STRENGTH AND IMPACT ENERGY DATA - CONVERSIONS

### STRENGTH CONVERSIONS

# IPACT ENERGY CONVERSIONS

| 1         |                      | lbf/in <sup>2</sup>  |                     | le aufana | joules | ft lbf           |
|-----------|----------------------|----------------------|---------------------|-----------|--------|------------------|
| MPa       | tonf/in <sup>2</sup> | (X 1000)             | kgf/mm <sup>2</sup> | ĸgim      | , i    |                  |
| 1400      | 90 -                 | <u> </u>             |                     | 17        |        | 120              |
| 1350      |                      |                      |                     | 16        | 160    | Ē                |
| 1300      | = <sup>85</sup> =    | = <sup>190</sup> =   |                     | 10        |        | Ē                |
| 1250 —    |                      | 180                  | 125                 | 15        | 150    | E <sup>110</sup> |
| 1200      | E E                  | <u> </u>             | 120                 |           | 140    | E                |
| 1150      |                      |                      | 115                 | 14        |        | 100              |
| 1100      | 70 -                 | = <sup>160</sup> $=$ | 110                 | 13        | 130    | Ē                |
| 1050      | E                    | 150                  | 105                 |           | 120    | 90               |
| 1000      |                      |                      | 100                 | 12        | 120    |                  |
| 950       | 60                   |                      | 95                  |           | 110    | 80               |
| 900 —     | E E                  |                      | 90                  | 11        |        | Ē                |
| 850       | = 55 =               | 120                  | 85                  | 10        | 100    | Ē                |
| 800       | 50                   |                      | 80                  |           |        | /0               |
| 750       | E E                  |                      | 75                  | 9         |        | Ē                |
| 700       | = 45 =               | = 100 =              | 70                  |           | 80     | 60               |
| 650 -     | <u> </u>             | 90                   | 65                  | °         |        | Ē                |
| 600       | E I                  |                      | 60                  | 7         | 70     | 50               |
| 550       | = 35 =               |                      | 55                  |           |        |                  |
| 500       | Ξ 30 Ξ               | 70                   | 50                  | 6         |        |                  |
| 450       |                      |                      | 45                  |           | 50     | E 40             |
| 400       | = 25 =               |                      |                     | 5         |        |                  |
| 350       | <u> </u>             |                      | 35                  | 4         | 40     | 30               |
| 300       |                      | 40                   |                     |           |        |                  |
| 250       |                      |                      |                     | 3         | 30     | 20               |
| 200 -     | Ξ <sub>10</sub> Ξ    |                      | 15                  | 2         | 20     |                  |
| 150       | Ξ Ξ                  |                      |                     | 2         |        | 10               |
| 100<br>E0 | 5                    | 10                   |                     | 1         | 10     |                  |
| 50        |                      |                      |                     |           |        | Ē                |
| 0         |                      | 0                    | v                   | 0         | 0      | 0                |

### Gas Pressures - Gas Welding and Cutting

| Gas Welding:          |           |                    |  |
|-----------------------|-----------|--------------------|--|
| Asstulana Drassura    | 100 kDe   | (1 [               |  |
| Acetylene Pressure    | TUU KPa   | (15 psi)           |  |
| Oxygen Pressure       | 100 kPa   | (15 psi)           |  |
|                       |           |                    |  |
| Gas Cutting: (Manual) |           |                    |  |
| Acetylene Pressure    | 100 kPa   | (15 psi)           |  |
| Oxygen Pressure       | 200 kPa   | (30 psi)           |  |
|                       |           |                    |  |
| Oxygen Cylinder:      |           |                    |  |
| Pressure when full    | 13700 kPa | (Approx. 2000 psi) |  |
|                       |           |                    |  |
| Acetylene cylinder:   |           |                    |  |
| Pressure when full    | 1550 kPa  | (Approx. 200 psi)  |  |

Note: 15 psi = 100 kPa

### **TEMPERATURE INDICATION**

Where preheating is required, the use of temperature-indicating crayons is strongly recommended as combining reasonable accuracy with convenience. Where these are not available, however, an approximate idea of temperature may be obtained by the use of temper colours. These are colours produced on a clean surface of the material due to extremely thin oxide films, and vary in colour with temperature. It should be noted that various alloying additions can have a marked effect on oxidation, and the colours and temperatures indicated below apply only to plain carbon or low alloy steels. In order to obtain a reasonable result the surface should be freshly ground, and care should be taken to avoid applying heat directly to the ground surface.

| TEMPER COLOURS |               |       |
|----------------|---------------|-------|
| Pa             | le Straw      | 200°C |
| St             | raw           | 220°C |
| Da             | ark Straw     | 230°C |
| Br             | ownish Red    | 250°C |
| Vi             | olet          | 280°C |
| Da             | ark Blue      | 290°C |
| Co             | ornflour Blue | 300°C |
| Pa             | le Blue       | 320°C |
| Gr             | reyish Blue   | 340°C |

These colours are as seen by daylight and apply to plain carbon steels. They also apply only when the steel has been at temperature for a limited period, prolonged periods producing a colour indicative of a higher temperature.


## **TECHNICAL FACTS AND FIGURES**

## CHEMICAL NAMES AND FORMULA OF COMMON NAMES

| COMMON NAME                           | CHEMICAL NAME                       | FORMULA                                            | DESCRIPTION                               |
|---------------------------------------|-------------------------------------|----------------------------------------------------|-------------------------------------------|
| Muriatic Acid or,<br>Spirits of Salts | Hydrochloric Acid                   | HCI                                                | Strongly fuming<br>colourless liquid      |
| Oil of Vitriol                        | Sulphuric Acid                      | H <sub>2</sub> SO <sub>4</sub>                     | Heavy, colourless,<br>viscous liquid      |
| Baking soda                           | Sodium Bicarbonate                  | NaHCO <sub>3</sub>                                 | White powder                              |
| Black lead                            | Carbon or Graphite                  | С                                                  | Black powder                              |
| Bleaching powder                      | Calcium chloro-hypo<br>chlorite     | CaOCI <sub>2</sub>                                 | White powder smelling<br>of chlorine      |
| Bluestone (Blue Vitriol)              | Copper Sulphate                     | CuSO <sub>4</sub> 5H <sub>2</sub> O                | Large blue crystals                       |
| Caustic Potash                        | Potassium Hydroxide                 | КОН                                                | White Deliquescent<br>powder              |
| Caustic Soda                          | Sodium Hvdroxide                    | NaOH                                               | White Deliauescent<br>powder              |
| Chalk, Limestone,<br>Marble           | Calcium Carbonate<br>(more or less) | CaCO <sub>3</sub>                                  | White powder; Marble-<br>crystalline form |
| Epsom Salts                           | Magnesium Sulphate                  | MgSO <sub>4</sub> 7H <sub>2</sub> O                | Small colourless crystals                 |
| Coke, Charcoal                        | Carbon (impure)                     | C                                                  | Brittle black solid                       |
| Chile Saltpeter                       | Sodium Nitrate                      | NaNO <sub>3</sub>                                  | White crystalline subst.                  |
| Condies Crystals                      | Potassium Permanganate              | KMnO <sub>4</sub>                                  | Small purple crystals                     |
| Glauber Salts                         | Sodium Sulphate                     | Na <sub>2</sub> SO <sub>4</sub> 10H <sub>2</sub> O | Large, colourless crystals                |
| Green Vitriol                         | Iron sulphate                       | FeSO <sub>4</sub> 7H <sub>2</sub> O                | Green crystals                            |
| Laughing Gas                          | Nitrous Oxide                       | N <sub>2</sub> O                                   | Colourless gas                            |
| Lime (quicklime)                      | Calcium Oxide                       | CaO                                                | White powder                              |
| Limewater                             | Solution of Calcium<br>Hydroxide    | Ca(OH) <sub>2</sub>                                | Clear, bitter liquid                      |
| Liquid Ammonia                        | Ammonium Hydroxide                  | NH <sub>4</sub> OH                                 | Strongly fuming liquid                    |
| Litharge                              | Lead Monoxide                       | PbO                                                | Orange powder                             |
| Red lead                              | Triplumbic Tetroxide                | Pb <sub>3</sub> O <sub>4</sub>                     | Fine, heavy red powder                    |
| Sal Ammoniac                          | Ammonium Chloride                   | NH <sub>4</sub> Cl                                 | White crystalline solid                   |
| Saltpeter (Nitre)                     | Potassium Nitrate                   | KNO <sub>3</sub>                                   | Colourless crystals                       |
| Slaked Lime                           | Calcium Hydroxide                   | Ca(OH) <sub>2</sub>                                | White powder                              |
| Washing Soda                          | Sodium Carbonate                    | Na2CO310H2O                                        | Large white crystals                      |
| Vinegar                               | Acetic Acid (weak)                  | CH <sub>3</sub> COOH                               | Brown liquid                              |

















