

Technologies For Industrial Water Reuse

Presented by

GE Water & Process Technologies

Agenda: Track A Technologies for Industrial Water Reuse

Overview - Reduce/Reuse/Recycle

Bob Hultz

Water savings strategies

Rick Krichten

Paul DiFranco

Ed Greenwood

Case Study - Michelin Cooling Water

George Harrison

Q & A – Panel Discussion

Experts PanelTechnologies for Industrial Water Reuse

- Bob Hultz GEWPT General Manager Southern Region Panel Moderator
- Rick Krichten GEWPT Utilities Project Manager

His areas of specialization include statistical analysis, 6-Sigma trained; heat and material balances; water systems design and troubleshooting (boiler, cooling, influent, wastewater); heat transfer efficiency; cold lime softening; project financial analysis, NPV; water reuse, recycle, and Zero-Liquid Discharge (ZLD). BS ChemEng, MBA

• Ed Greenwood – GEWPT Regional Sales Manager, GEZenon Membrane Solutions

Has direct process application and design experience with multiple water and wastewater treatment processes. His extensive background includes work experience in multiple industries including power generation; petrochemical; pharmaceutical; semiconductor; pulp and paper; food processing; oil and gas production; oil refining and municipal water treatment. He holds a Bachelor's degree in Chemical Engineering.

Experts Panel Technologies for Industrial Water Reuse

• Paul DiFranco - GEWPT Senior Cooling Technical Advisor

Held various positions within the Technical R&D, Marketing/ Technical Support functions including Engineering Manager for HPI & CPI water treatment chemicals and Regional Cooling Marketing Manager for South America, based out of Cotia, Brazil.

• Gary Brown – GEWPT Sales Manager – Southern Region Capital Equip.

Plant Manager of multiple chemical manufacturing facilities, Global quality and manufacturing experience, RSE or account manager, experience working with chemical, power, steel, water processing equipment which includes multi media filtration, softeners, reverse osmosis, EDI, ion exchange and experience in ultrafiltration.

Experience utilizing mobile filtration, ion exchange and reverse osmosis for various industries.

Experience in the facilitation of outsourcing water treatment systems for various industries.

Session Objective

To provide practical ideas utilizing process equipment & treatment chemistries to take back to your industrial plants/companies to help reduce water consumption and create new sustainable sources of water through reduce/recover/recycle

Tuesday, October 23, 2007......

ES)

Governor Perdue Orders Utilities, Permit Holders to Reduce Water Use by 10 Percent

Yesterday

Water Economics > Water Conservation

Today

- Water Conservation > Water Economics

Definition: Sustainability

Connecting the Drops
Toward Creative Water Strategies

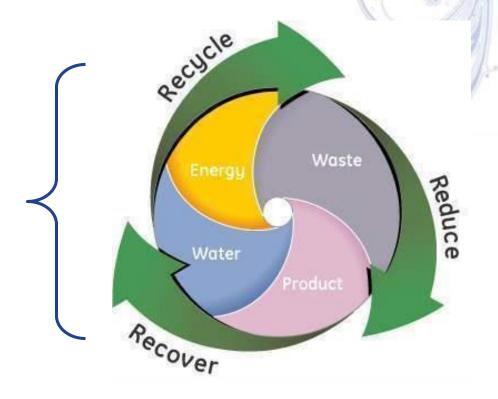
a water sustainability tool

"Meeting the needs of the present without compromising the ability of future generations to meet their own needs"

Hanover Principles –Expo 2000
World Commission on Environment

Total Site Water Management

- Optimization
- Internal Reuse
- Alternative Water Sources
- Site WW Reuse



A Question of Balance

Hydraulic
Suspended Solids
Ionic Load
Organic Load

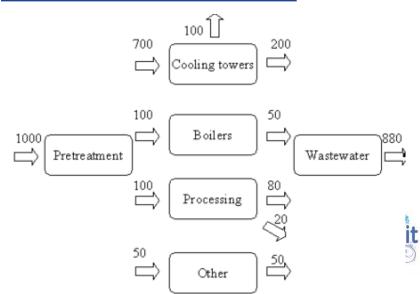
Sustainable Water is an Integrated Solution

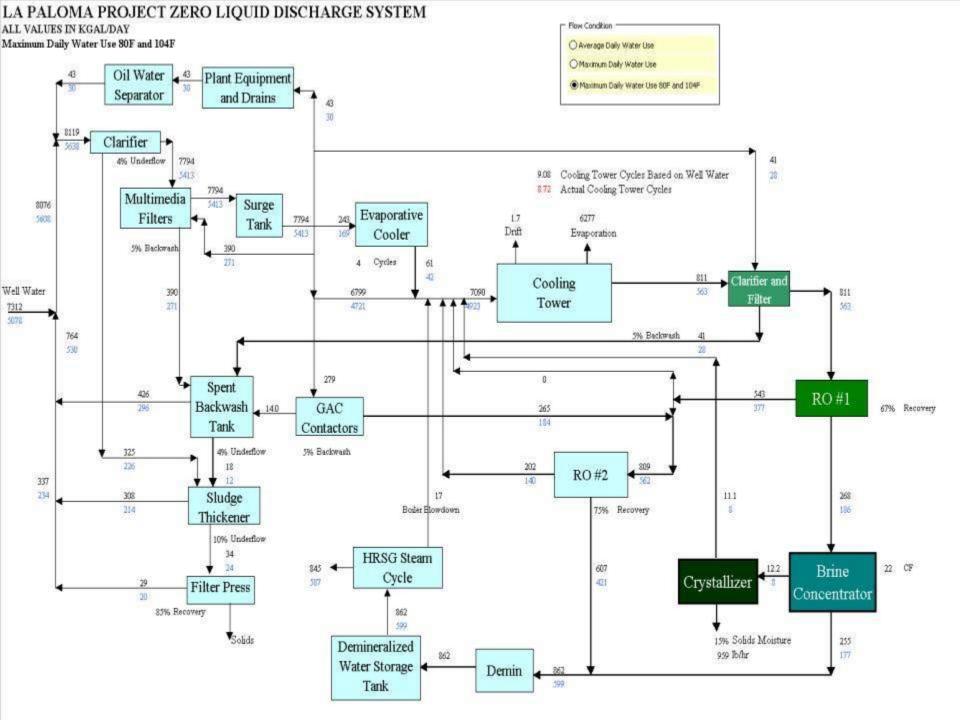
Drawing a water balance

Why is this important?

- Baseline current water usage
- Identify sources of waste (leakage, compliance, high volumes)
- Encapsulates cost of water & water treatment

Water related costs


- Direct Water use, wastewater discharge fees, pretreatment technology, energy costs associated with water use, Regulatory, water management measures
- Indirect Site location limitations, license to operate or grow, relationships with stakeholders, loss or damage of ecosystem/species


How to do it?

- Capture incoming & outgoing flow capacities for every water consuming entity on site
- Classify entity under a category and sum up all entities under category
- Document related cost structure
- Consult a water expert

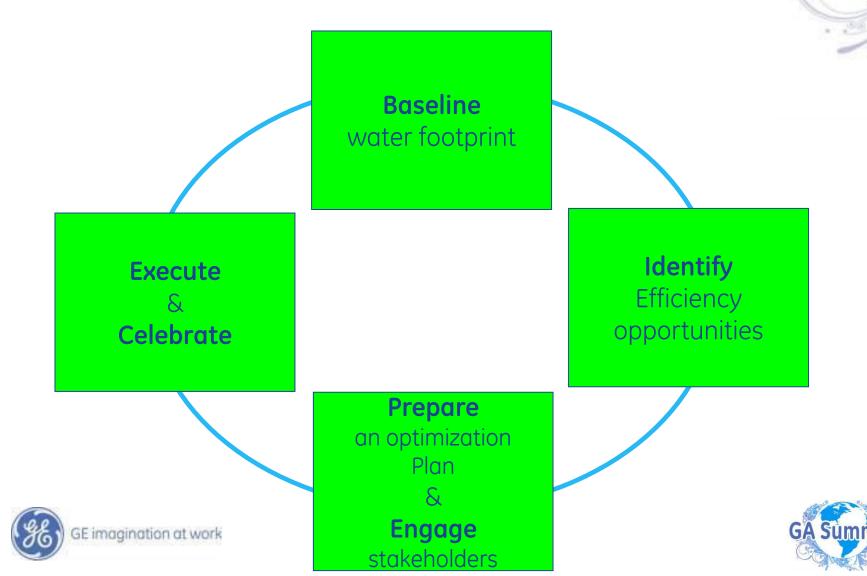
Water balance elements

Get The Basic Costs

Water & Energy Value Calculator												
Flow (GPM)		100										
Heat Cost (\$/MBTU)		5										
⊟ectricity Cost (\$/KWH)		0.07										
Water Cost (\$/1000 Gal)		2										
Discharge Cost (\$/1000 Gal), (Treatment, Hauling,												
Sewer)		2										
Ambient Temperature ©		20										
Condensate Temperature ©		71										
Savings	Year 1		Vo	ar 2	Vo	ar 3						
Heating Savings	\$	109 226		198,226								
	_											
Water Make-up Savings	\$	•	-	103,680								
Water Discharge Savings	\$	105,120	Þ	105,120	Þ	105,120						
Total Savings per year	\$	407,026	\$	407,026	\$	407,026						

Integrating The Solutions

Water Reuse Value Calculator - HPI/CPI Tertiary Waste Treatment


Additional Savings **Total Savings**

water Reuse value Calculator - HF//CFI Tertiary waste Treatment						2	1	
Input Required	Assumed/Ca	lculated Data	Output)	1.	
Customer Name Customer Location								25/6/1011
Plant Economic Date Raw Water Costs Makeup Demin Wate Sewer/Discharge Char Fuel Cost = Fuel Cost =	er Cost =		l		Total Susp Turbidity (Chemical	Oxygen Demand colved Solids (TDS)	Average	Minimum
Plant Operating Cal Wastewater Dischard Makeup Water Flown	ge `	rrent) 1000.0 gpm 2000.0 gpm	1.4 MGD 2.9 MGD	Plant Operating Calculations Wastewater Discharge Makeup Water Flowrate Demin Water Produced RO Concentrate (as Makeup)		(Desired) 280.0 gpm 280.0 gpm 720.0 gpm 180.0 gpm	0.4 I 1.0 I	MGD MGD MGD MGD
Calculated Savings Makeup Water Wastewater Discharg Demin Water Treatm Total Calculated Sa	ge nent	1720.0 gpm 720.0 gpm 720.0 gpm	866880 kgal/yr 362880 kgal/yr 362880 kgal/yr	494122 \$/yr 1360800 \$/yr 674957 \$/yr 2529878 \$/yr				
Additional Savings Additional Fines/Levi RO Concentrate Use Total Additional Sav	d as Raw Wate	er Makeup =		\$/yr <mark>).4</mark> \$/yr 10 \$/yr				
Savings Summary Water Reuse (Demir Wastewater Dischard Makeup Water	,	1.36	\$MM/yr \$MM/yr \$MM/yr					

0.05 \$MM/yr

2.58 \$MM/yr

Starting a Water Conservation Program?

Reuse and Conservation

R.C. Krichten, P. DiFranco, E. Greenwood Global Technical Support

Presented by

GE

Water & Process Technologies

on

- •What can be done?
- •How quickly?
- What's the impact versus cost to change?

Total Site Water Management

CS.

- Optimization
- Internal Reuse
- Alternative Water Sources
- Site WW Reuse

Water Reuse is like Heat Exchange

It works best in countercurrent mode...

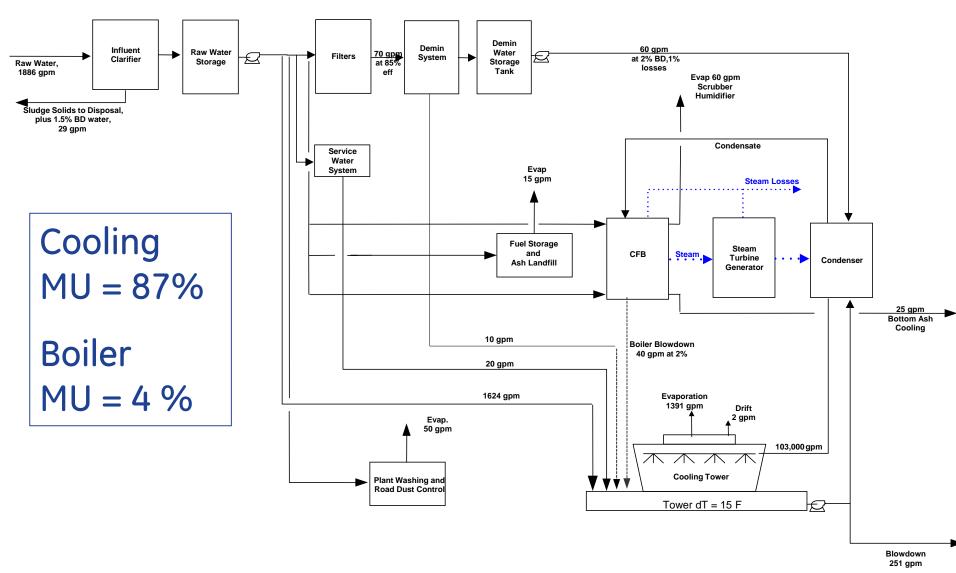
Think about water reuse as a counter current exchange of high-to-low quality sources and users

Think about water reuse as a material balance — Look for losses and segregate highly concentrated wastewaters.

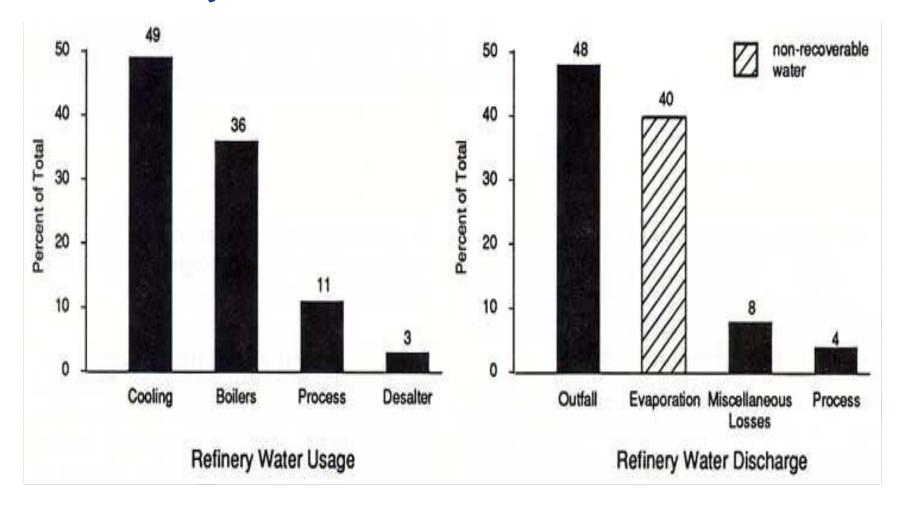
- Recoverable steam or condensate (steam vents and traps)
- Recoverable pump seal waters
- "Arkansas" coolers, CW losses

THE GOLDEN RULE

MAXIMIZE USE BEFORE BLOWDOWN....AND SEGREGATE HIGH TDS, IF POSSIBLE

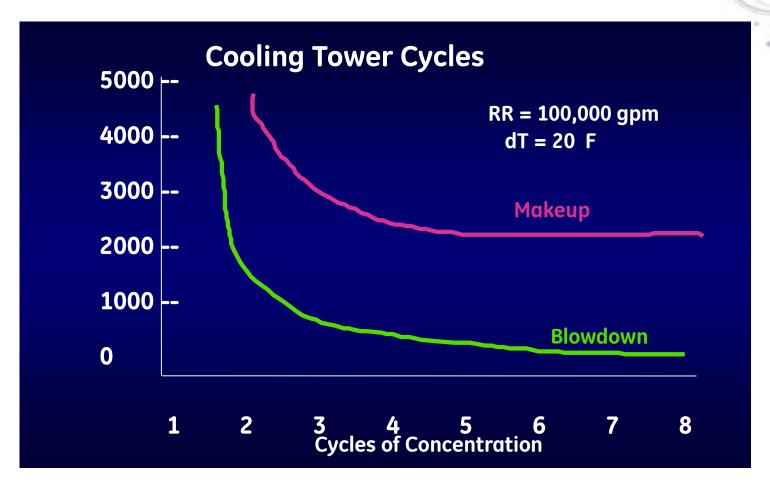


- -Intake meters and users
- -Primary user is often the evaporative cooling systems
- -In some plants process/wash waters are primary
- -In some plants steam/condensate losses are high



Power Plant Balance

Refinery Water Balance


Water as a Heat Transfer Medium

- Steam/condensate recovery
- Minimize BTU reject to cooling water
- Consider process influent/effluent ex
- Consider expansion turbines, rather than surface condenser
- Trim cool with fin fans

Internal Water Conservation

Recycle Sources

- Demin Rinse Water
- Process Wash Waters
- ZLD Distillate
- RO Reject
- Boiler/Cooling Blowdown
- Municipal WW Effluent

- In water terms ion exchange is efficient
- •Typically 88 to 95% of intake water becomes produced water
- •The other 5 to 12% is regen waste, backwash, and rinse water
- The highest volume is rinse, which can be recovered direct to the front of the IX

- •Older RO plants might be designed with conservative % recovery (perhaps 75%)
- •RO Reject at 75% is only 4 cycle water, easy to reuse as cooling makeup
- •Or perhaps a secondary RO to concentrate the reject to 8 cycle water and achieve 88% recovery

Ingredient Water Systems-

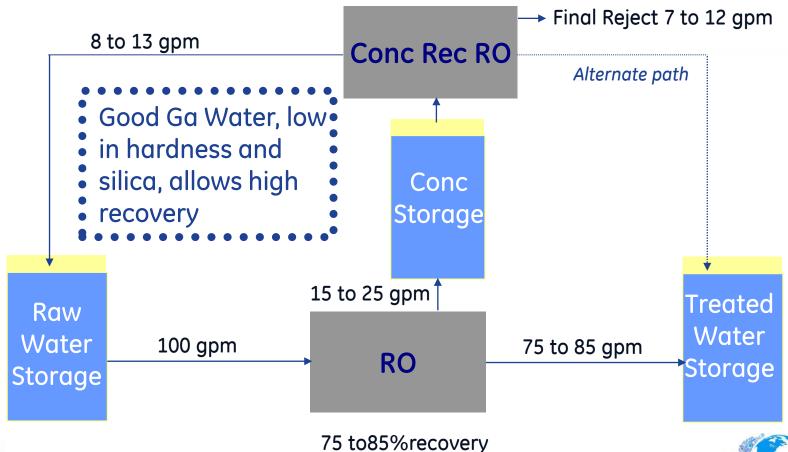
Concentrate Recovery Performance

ecomagination Water Technologies Concentrate Recovery

- ➤ GE Water has installed 28 systems that recover 50-70% of RO concentrate (reject/brine)
- Customers include Cadbury-Schweppes, Coca-Cola, Nestle, Niagara Water, Nor-Cal Beverage, and PepsiCo
- These 28 systems recover more than 750 Million Gallons per Year (18 hours per day, 300 days per year operation)

RO Concentrate Recovery

Resultant Savings of \$2.3MM per year based on combined Influent + Sewer Cost of \$3/kGal


Makes <u>Existing</u> Equipment More Efficient (Greater Product Water Flow)

RO Concentrate Recovery

Over all Recovery is 88 to 93%+

Muni Effl Water Reuse

Drivers

Water scarcity

- Rising water prices
- Threatening economic stability
- Threatening quality of life

Environmental

 Businesses and governments needing to respond

Water discharge and reuse solutions are needed

Situation

- Limited applicability for reuse, especially industrial reuse, with simple filtration
 - Industrial reuse emerging

Newer Technologies

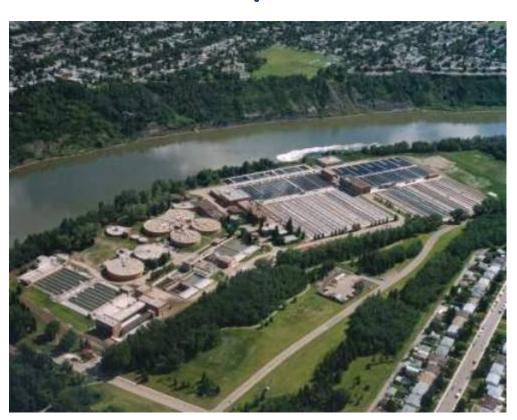
 MBR, UF, RO/NF, EDR, ZLD, Ozone... but: Often need to combine technologies for best total solution

Municipal Examples

<u>Source</u> <u>Users</u>

Hyperion, LAX Chevron, Mobil

Phoenix Palo Verde Nuclear


Contra Costa County Shell, Unocal Guayama PR AES

Petro Canada – Edmonton Gold Bar Municipal WWT Plant

1.3 MGD Muni Effl to UF to RO for Boiler Makeup

Use of Industrial Plant Effluent

Improving effluent quality:

- Segregation of high salt, high organic streams
- Tertiary Treatment
 - Minimum = dual media filtration, or ultrafiltration, and bio-oxidation
 - Options = PO₄, NH₃ removal lime softening activated carbon specific metals removal sulfide removal reverse osmosis

- Non-critical process users, wash water systems
- Fire water/emergency standby
- Non-critical cooling systems

- Final effluent Bio assay/toxicity
- Final effluent dissolved solids
- Final effluent phenols and other difficult organics
- Final effluent metals

On-site/Internal Reuse

Various Unit Operations

- Filtration/Ultrafiltration
- Nanofiltration/EDR
- Lime/soda Softening
- Reverse Osmosis

- Perfect barrier for suspended solids
- The best pretreatment for reverse osmosis

- Calcium reduction
- Magnesium reduction
- Alkalinity reduction
- Silica reduction

Reverse Osmosis

- Influent, sidestream or blowdown
- High removal efficiency
- No dependence on ionic charge of solids
- Concentrated reject stream
- Pretreatment required

In conclusion, Total Site Water Management involves:

- Optimization
- Internal Reuse
- Alternative Water Sources
- Site WW Reuse

What's quick and easy?

- Increase cooling cycles with dispersant chemistry
- •Increase cooling cycles with sidestream hardness removal, lime softening or EDR
- Recover more steam condensate
- Recover IX rinse waters
- Recover filter backwash

What's not so quick and easy?

- Recover high pressure boiler BD to cooling
- Install fin fans for heat rejection
- Recover/treat process rinse water with filters, UF, other special operations
- •Reuse muni or industrial waste water effluent streams

Utilities

Cooling Systems

Paul DiFranco

Global Technical Marketing

Presented by

GE

Water & Process Technologies

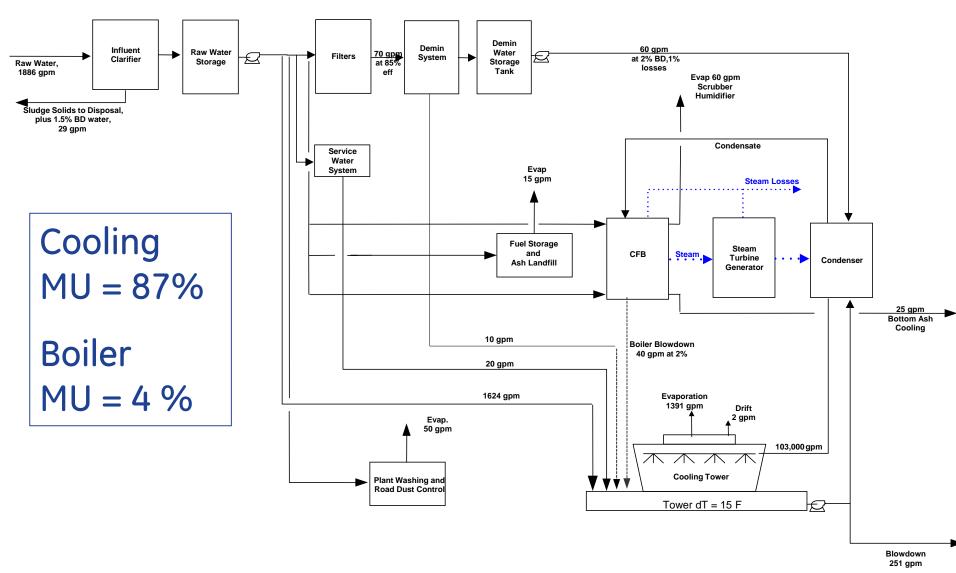
Evaporative Cooling Towers

Can be:

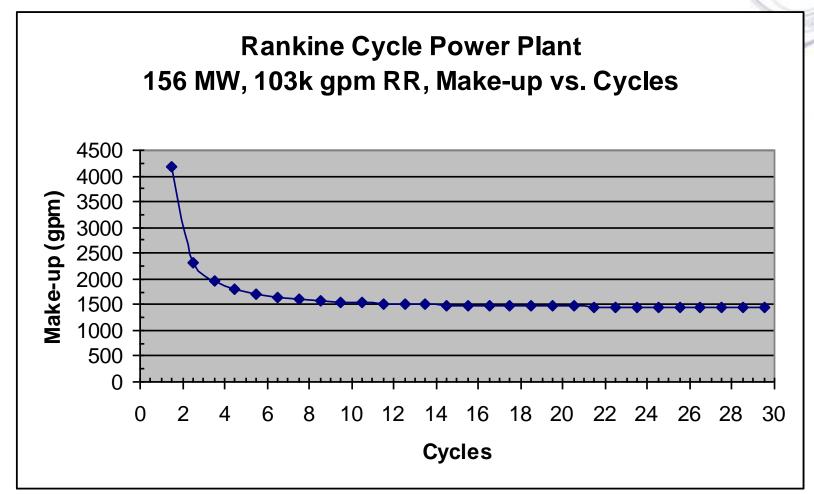
A large consumer of scarce fresh water

A significant environmental impact with high blowdown flow esp. at low cycles

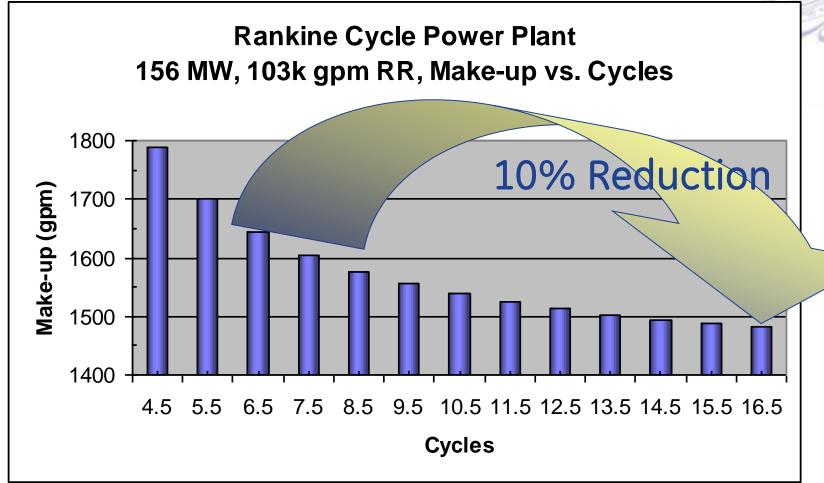
Or could be:


An evaporative reuse concentrator

- Concentrates liquid process wastewater reducing blowdown
- Consumes municipal "grey water" instead of fresh water reusing poor quality water



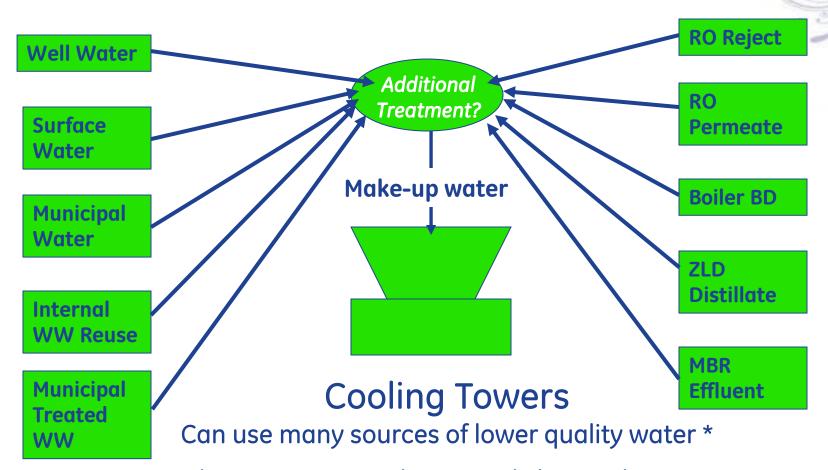
Power Plant Balance


Cycle-up

Cycle-up

Cycle-up Chattahoochee River

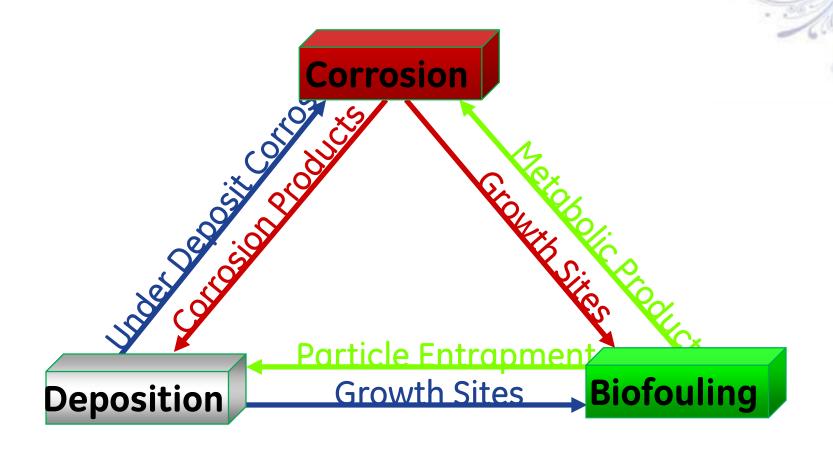
CYCLES	рН	M-ALK (ppm as	Ca (ppm as	Mg (ppm as	SiO2 (ppm as	COND	CI (ppm as	SO4 (ppm as	LSI CaCO3		CMSi ceeds Limit	RT75 (Retention Time	B.D.	M.U.
		CaCO3)	CaCO3)	CaCO3)	SiO2)	(umhos)	CI)	SO4)	Index	ok = Ur	nder Sat.	in days)	(gpm)	(gpm)
MAKEUP	6.90	30	21	8	9	113	8	13	-1.58	ok	ok			
1.50	7.04	41	32	12	14	170	12	20	-1.16	ok	ok	0.35	2,782	4,174
2.50	7.45	68	53	20	23	283	20	33	-0.34	ok	ok	1.04	927	2,319
3.50	7.71	95	74	28	32	396	28	46	0.20	ok	ok	1.73	556	1,948
4.50	7.92	122	95	36	41	509	36	59	0.60	ok	ok	2.42	397	1,789
5.50	8.08	149	116	44	50	622	44	72	0.92	ok	ok	3.11	309	1,700
6.50	8.21	176	137	52	59	735	52	85	1.19	ok	ok	3.81	253	1,644
7.50	8.32	203	158	60	68	848	60	98	1.42	ok	ok	4.50	214	1,605
8.50	8.42	230	179	68	77	961	68	111	1.62	ok	ok	5.19	185	1,577
9.50	8.51	257	200	76	86	1074	76	124	1.80	ok	ok	5.88	164	1,555
10.50	8.59	284	221	84	95	1187	84	137	1.96	ok	ok	6.57	146	1,538
11.50	8.67	311	242	92	104	1300	92	150	2.10	ok	ok	7.26	132	1,524
12.50	8.73	338	263	100	113	1413	100	163	2.24	ok	ok	7.96	121	1,512
13.50	8.79	365	284	108	122	1526	108	176	2.36	ok	ok	8.65	111	1,502
14.50	8.85	392	305	116	131	1639	116	189	2.47	ok	****	9.34	103	1,494
15.50	8.90	419	326	124	140	1752	124	202	2.58	ok	****	10.03	96	1,487
16.50	8.95	446	347	132	149	1865	132	215	2.68	ok	****	10.72	90	1,481
22.50	9.20	608	473	180	****	2543	180	293	****	****	****	14.87	65	1,456
28.50	9.39	770	599	228	****	3221	228	371	****	****	****	19.03	51	1,442


Cycle-up Etowah River

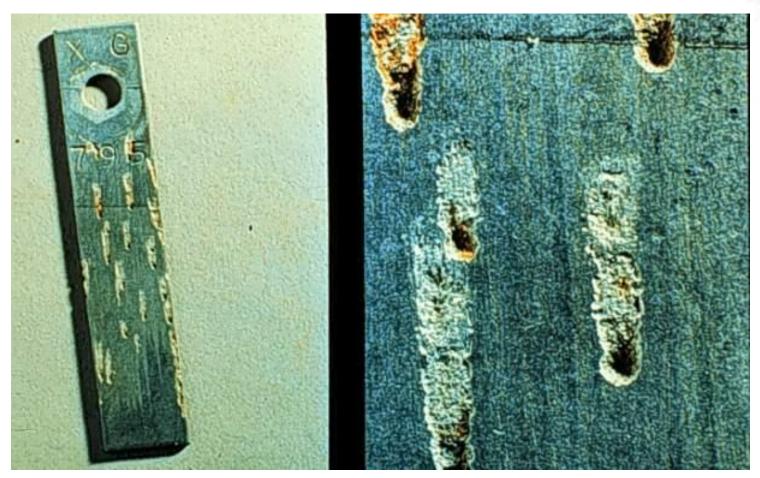
CYCLES	рН	M-ALK	Ca	Mg	SiO2	COND	CI	SO4	LSI	MgSi	CMSi	RT75	B.D.	M.U.
		(ppm as CaCO3)	(ppm as CaCO3)	(ppm as CaCO3)	(ppm as SiO2)	(umhos)	(ppm as CI)	(ppm as SO4)	CaCO3 Index		ceeds Limit nder Sat.	(Retention Time in days)	(gpm)	(gpm)
MAKEUP	7.10	39	21	6	9	68	5	5	-1.25	ok	ok			
1.50	7.25	53	32	9	14	102	8	8	-0.82	ok	ok	0.35	2,782	4,174
2.50	7.66	88	53	15	23	170	13	13	0.00	ok	ok	1.04	927	2,319
3.50	7.92	123	74	21	32	238	18	18	0.53	ok	ok	1.73	556	1,948
4.50	8.13	158	95	27	41	306	23	23	0.94	ok	ok	2.42	397	1,789
5.50	8.29	193	116	33	50	374	28	28	1.26	ok	ok	3.11	309	1,700
6.50	8.42	228	137	39	59	442	33	33	1.53	ok	ok	3.81	253	1,644
7.50	8.53	263	158	45	68	510	38	38	1.75	ok	ok	4.50	214	1,605
8.50	8.63	298	179	51	77	578	43	43	1.96	ok	ok	5.19	185	1,577
9.50	8.72	333	200	57	86	646	48	48	2.13	ok	ok	5.88	164	1,555
10.50	8.80	369	221	63	95	714	53	53	2.29	ok	****	6.57	146	1,538
11.50	8.88	404	242	69	104	782	58	58	2.44	ok	****	7.26	132	1,524
12.50	8.94	439	263	75	113	850	63	63	2.57	ok	****	7.96	121	1,512
13.50	9.00	474	284	81	122	918	68	68	2.70	ok	****	8.65	111	1,502
14.50	9.06	509	305	87	131	986	73	73	2.81	ok	****	9.34	103	1,494
15.50	9.11	544	326	93	140	1054	78	78	****	****	****	10.03	96	1,487
16.50	9.16	579	347	99	149	1122	83	83	****	****	****	10.72	90	1,481
22.50	9.41	790	473	135	****	1530	113	113	****	****	****	14.87	65	1,456
28.50	9.60	1000	599	171	****	1938	143	143	****	****	****	19.03	51	1,442

Possible Make-up Water Sources

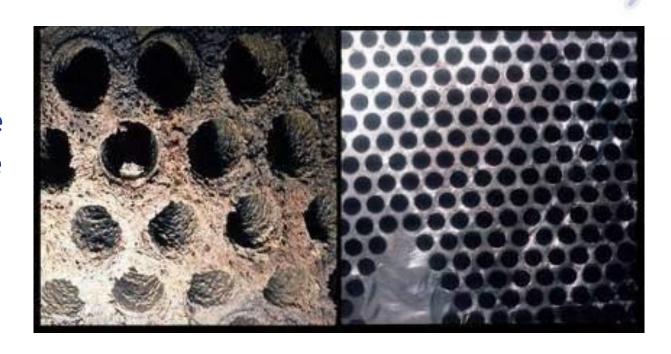
* With proper system design and chemical treatment


Water Sources Benefits and Limitations

Water Source	Benefits	Limitations
Well, Surface and Municipal	Known and consistent, conventional treatment	Limited quantities, scarce
Municipal treated WW, MBR Effluent, internal WW reuse	Water Conservation, Ready Source, Win for the municipality	Contaminants, Organics, Variability, CT Chemical Treatment difficult
RO Reject, Boiler BD	Easy Reuse	Already cycled, Chemical treatments compatibility
RO Permeate, ZLD Distillate	Clean low TDS, No Contaminates	Not Free, Used to balance contaminant loading of combined makeup


Water Treatment Concerns

Pitting Corrosion



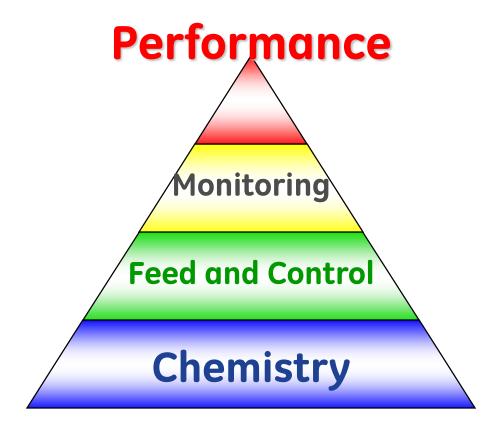
Mineral Solubility Limits

Can Be Exceeded As Cycles Increase

Calcium carbonate
Calcium phosphate
Magnesium silicate
Calcium sulfate
Silica

Heat Exchanger Deposition

Cooling Tower Fill


Fill before cleaning

How to Overcome These Concerns

Corrosion Control

- Chloride, sulfate and ammonia are problems
- Superior inhibitors required for carbon steel and copper alloy protection
- Provide general and pitting protection
- Persistent protective film
- Halogen stable
- No harmful odors

Deposition Control

CaPO₄ solubility critical

- CaCO₃, MgSiO₃, silica, manganese, iron and TSS are concerns
- Superior dispersants required
 - Superior calcium carbonate protection
 - Effective at high LSI
 - Non-Phosphorus
 - Halogen stable
 - No Degradation; no loss in deposition control

Biological Control

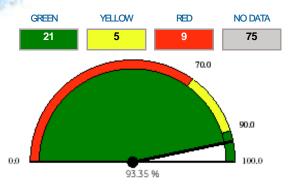
- Reuse/recycle water can add nutrients (Organics, NO₂, NO₃) and microorganisms
- MB control is difficult and the #1 treatment challenge
- Loss of MB control is rapid
- Recovery of MB control is slow and costly
- Successful control requires:
 - Proper make-up water treatment
 - Proper tower water treatment
 - Oxidizing/Non-Oxidizing Biocides + Biodispersant

Cooling Water Treatment

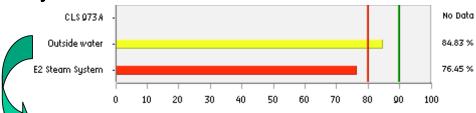
- Major challenge to success:
 - Simultaneous risk potential
 - Corrosion, Deposition & MB Control
- Requirements for success:
 - Improved water treatment
 - Effective system monitoring
 - Tight system control
- Problem areas
 - Critical exchangers
 - High temperature
 - Low velocity
 - Cooling tower film fill

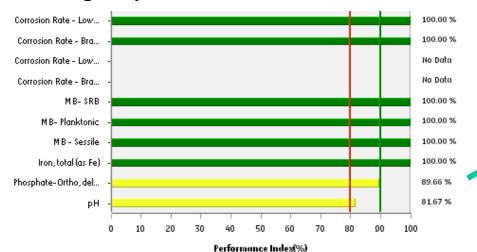
Feed & Control Systems

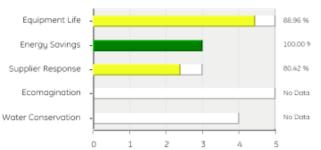
Configurations tailored to fit the application.


Basic to advanced control and monitoring systems

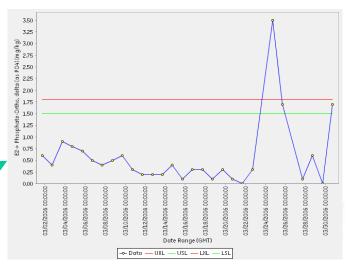
Custom algorithms tailored for specific process control requirements.




Performance Monitoring



Single System KPI's



CTQ Fullfillment

Performance against Business Objectives

If online can drill down to raw data

<u>Challenges</u>

Excessive Water and Energy Usage

Corrosion and Fouling of Piping and Equipment

Reduced Heat Transfer Efficiency

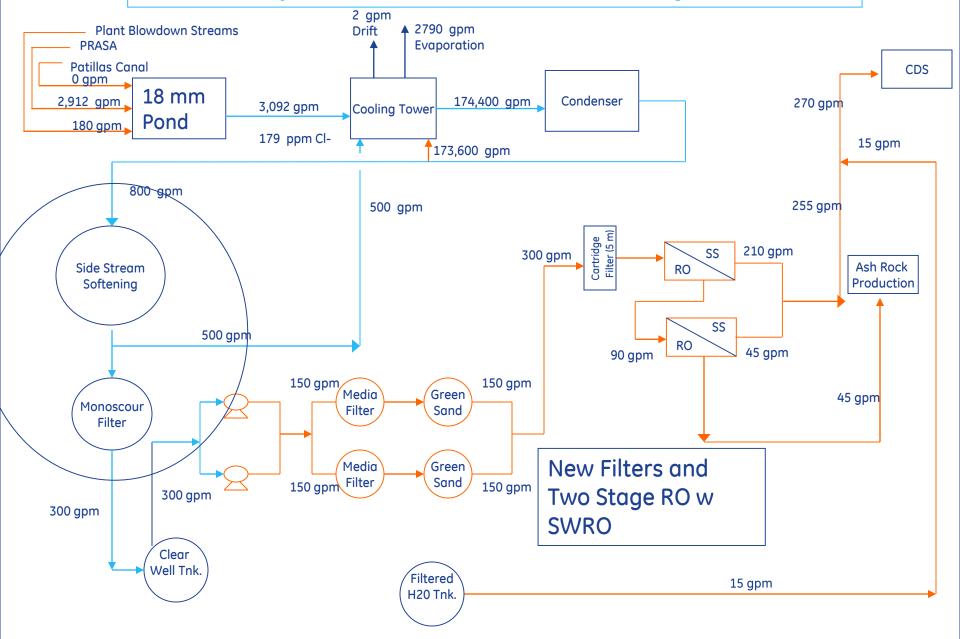
Waste Production

Solutions

Improved Scale Inhibitors

Deposit Control Agents

Performance Monitoring


Total Internal Reuse Example:

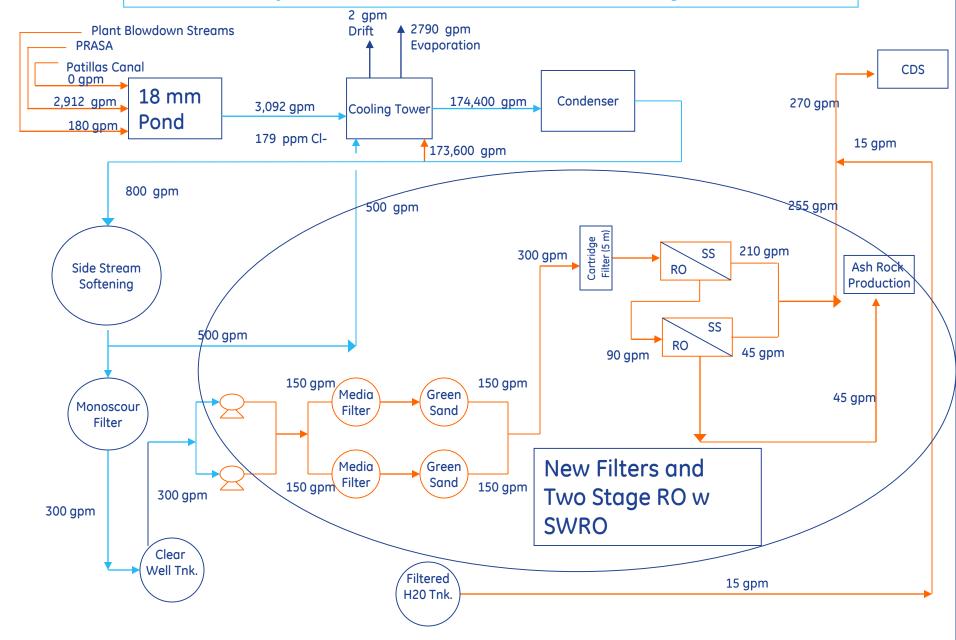
Coal-fired ZLD Power Plant

85% Recovery of SSRO with Permeate to CDS & Reject to ASH Rock

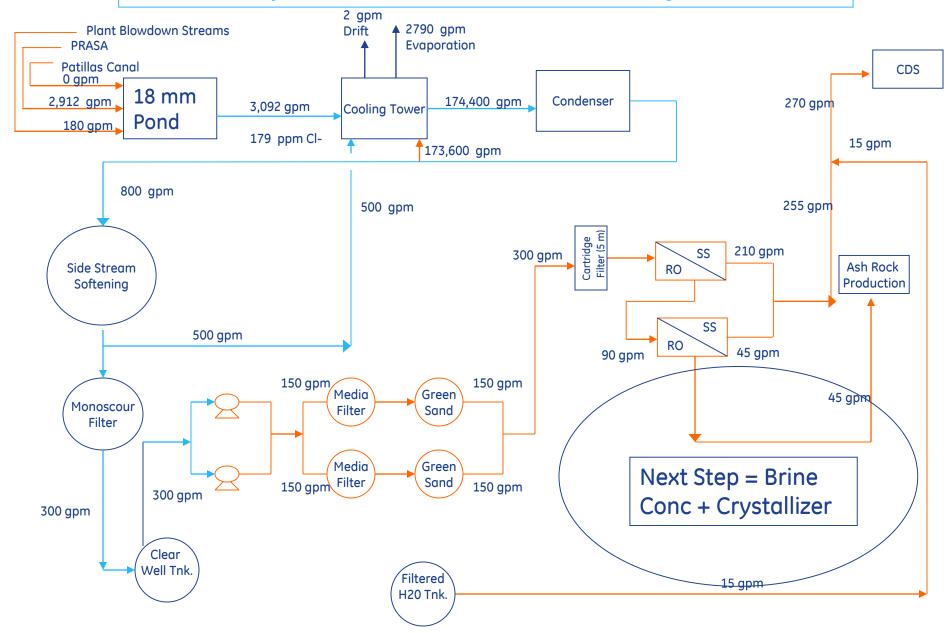
Generic Options For ZLD

- Sidestream Warm Lime Softening for Hardness, Silica Control
- EDR or RO For Concentration of Salts
- Deep Well Injection
- Evaporation Pond
- Brine Concentrator/Evaporator
- Crystallizer = Final Dry Salt Cake

Zero Liquid Discharge Common Operations



- ZLD means all incoming TDS goes out as a sludge/solid
- Internal cooling reuse is normally warm lime for hardness, silica
- Additional BD concentration via RO or EDR
- Then evaporation, and crystallizer



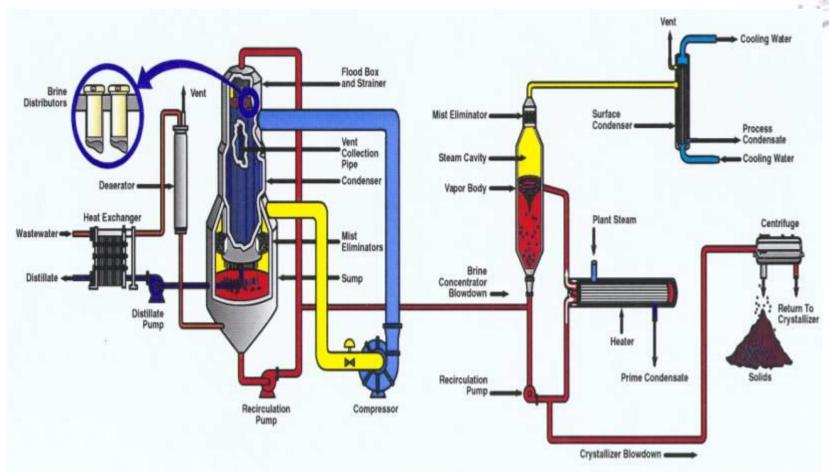
85% Recovery of SSRO with Permeate to CDS & Reject to ASH Rock

85% Recovery of SSRO with Permeate to CDS & Reject to ASH Rock

Evaporation Crystallization

FUNCTION

OPERATION


LIMITATIONS

STRENGHS

TOTAL COST

Brine Concentrator/Crystallizer PFD

EXAMPLE OF PROJECT OBJECTIVES

Complete Plant Material Balances by ion including all chemicals which impact total salt discharge

Working Balance Models To Analyze Impact of Process Options On Salt Discharge

Processing Options With Capability Limits Defined

Budgetary Cost/Economic Impact of Options Considered

Choices/Decision Required For Design Basis

Projected Characteristics of Water

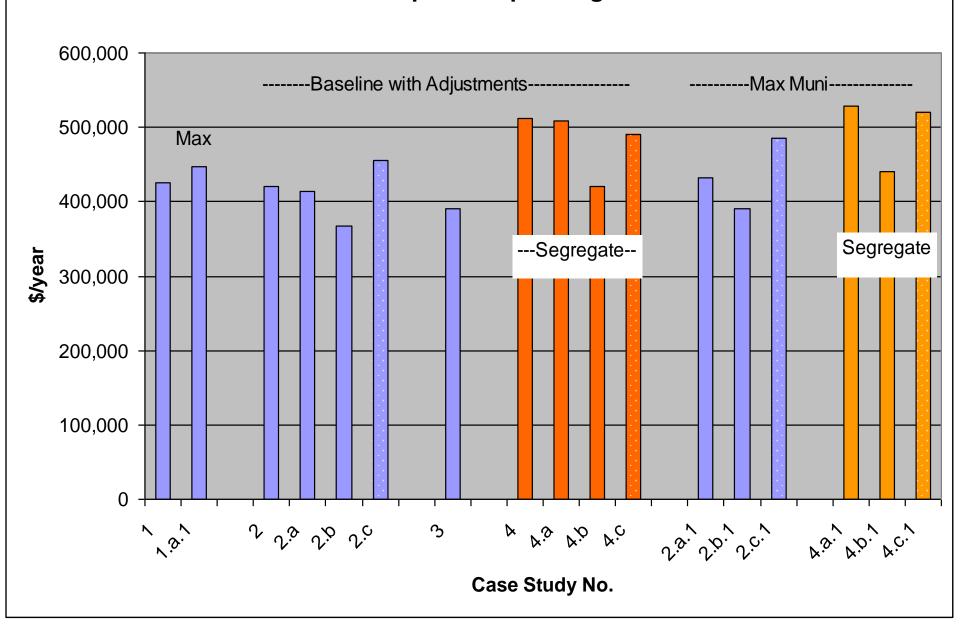
Parameter	Lime Softened Water	2 Stage RO Permeate
Conductivity	12,003 mmhos	414 mmhos
рН	7.2	7.5
Calcium	304 ppm	3.5 ppm
Magnesium	58 ppm	0.8 ppm
Sulfates	2258 ppm	51.1 ppm
Chlorides	1762 ppm	80.7 ppm
Phosphate	1 ppm	0 ppm
Sodium	2269 ppm	82.4 ppm

Inputs to chemical usages						
Chemical	Composition as purchased	User	Use rate			Calculations
	pan emacea.					
Sulfuric Acid	98% H2SO4	Demin + CT	10,000 gal/mo	329 gpd	13.7 gph	
	15.02 lb/gal	Clarifier	4378 gal/mo	144 gpd	6 gph	
		Totals	14378			
Caustic	50% NaOH	Clarifier		288 gpd		
	6.36 lb NaOH/gal	MU demin		48 gpd		regen 1/da
		Combined MB	3	240 gpd		regen 1/da
		Org. Trap		21.7 gpd		65 gal ea 3 da
		Totals		597.7 gpd		
Soda Ash	100% Na2CO3	Clarifier	834 T/yr	2.28 T/da	4570 lb/da	
Brine/ Salt	100% NaCl	Org. Trap	65 gpm of 25%	1950 gal	4836 lb NaCL	
	1.2 SG as 25% brine		for 30 min		per 3 days =	
	2.48 lb NaCl/gal		every 3 days		1612 lb/da	
Chlorine gas	100% Cl2	CT + SSRO	900 lb/da			

			TOTA	L SA	LTS B	ALAN	ICE			
	Municipal									
Salt	Effl, ppm	Canal ppm	Acid	NaOH	Soda Ash	Bleach	Cl2 gas	Muni lbs/d	Canal lbs/d	Total lbs/d
Flow gpm	2629	700								
Flow lbs/d			7174	4571	3720	10200	500	31573238	8406720	40006124
Ca	106	24						3,347	202	3549
Mg	64	21						2,021	177	2197
Na	169	18		2629	1614	394		5,336	151	10124
Cl	204	14				599	500	6,441	118	7658
SO4	96	28	7028					3,031	235	10294
PO4	6.8	0.2						215	2	216
SiO2	26	23						821	193	1014
			68.3%	45.8%		14.4%		21,211	1,078	35052
			SO4 from	Na from ca	austic and	CI from gas	s and bch	lbs salt	lbs salt	Total lbs/d
			acid	soda and l	bch					of salts
								63.6%	of salts	
								come from ir	nlet waters	

Salts Entering The Plant

Salt	Prasa	Canal	Wells	Chemic als	Coal Pond	Tot. Mass per Ion
Flow, gpm	2,781	1,200	138	N/A	23	
Flow, MM#/day	33.4	14.4	1.7	N/A	0.28	
Conductivity, mmhos	1,132	147	603	N/A	34,950	
TDS as ppm	702	91	374	N/A	N/A	
Potassium, Ib/day	261	13	1.2	0	195	470
Nitrate, Ib/day	1,670	N/A	N/A	0	41	1,711
Calcium, lb/day	1,369	144	53	0	102	1,668
Magnesium, as lb/day	501	62	25	0	9	597
Sodium, lb/day	4,008	164	94	4,810	1,994	11,070
Chloride, Ib/day	4,642	159	58	1,873	2,030	8,762
Bicarbonate, Ib/day	3,908	418	240		36	4,602
Carbonate, Ib/day	0	0	0	2,587	0	2,587
Sulfate, lb/day	2,371	159	71	6,959	2,356	11,916
Phosphate, lb/day	200	3	0	0	5	208
Silica, lb/day	935	317	53	0	9	1,314
Total salts, Lb	19,865	1,439	595	16,229	6,777	44,905
Total salts, Ton	9.93	0.72	0.30	8.11	3.39	22.45
% of Total	44	3	1	36	15	100.0


Salts Leaving (Accumulating In) The Plant

Salt	Clarifier	SSRO	Cooling Tower	Tot. Mass per lon	Net Balance
Flow, gpm	700	45	190,000		
Flow, MM#/day	8.4	0.5	2,281.8		
Conductivity, mmhos					
TDS as ppm					
Potassium, Ib/day	0	419	0.0	419	51
Nitrate, Ib/day	0	814	0	814	897
Calcium, lb/day	1,550	176	0	1,726	-58
Magnesium, as lb/day	242	13	0	255	342
Sodium, Ib/day	0	8,910	0	8,910	2,160
Chloride, lb/day	0	6,464	0	6,464	2,298
Bicarbonate, lb/day	0	171	4,779	4,950	-348
Carbonate, Ib/day	2,203	0	0	2,203	384
Sulfate, Ib/day	0	9,639	0	9,639	2,277
Phosphate, lb/day	193	6	0	199	9
Silica, lb/day	1,084	64	0	1,148	166
Total salts, Lb	5,272	26,676	4,779	36,727	8,178
Total salts, Ton	2.64	13.34	2.39	18.36	4.09
% of Total	14	73	13	100	N/A

Economic Basis for ZLD

- 1) 15 year Straight Line Capital
- 2) Electrical Cost: \$0.03/KwH
- 3) Chemical Cleaning Frequency: 1/ year
- 4) Antifoam for Evaporator/Brine Concentrator
- 5) No Operating or Maintenance Labor included
- 6) No Replacement Parts Components

Annual Capital & Operating Cost

Boiler and Steam Systems

Rick Krichten

Global Technical Marketing

Presented by

GE

Water & Process Technologies

What's quick and easy?

Recover more steam condensate

- Recover IX rinse waters
 - 4 to 6% of inlet right back to the front
- Recover filter backwash
 - 2 to 4% of inlet back to the clarifier

Boiler Feedwater Purification

- Boiler feedwater water and steam purity requirements
- Methods of pretreatment of feedwater
- Pretreatment Equipment for boilers
 - RO in front of demineralizers
 - RO replacement of softeners

Impact of feedwater quality on boiler operational efficiency

- Blowdown Heat Transfer Losses
- Effect of boiler cycles
 - At 10 cycles have 10% blowdown
 - At 20 cycles have 5% blowdown
 - At 50 cycles have 2% blowdown

Impact of feedwater quality on boiler operational efficiency

BTU Value of Blowdown Heat

				DD Ficat Lost, w/ yi				
			-			With Flash		
				With No Heat	With Flash Tank	Tank and		
Cycles	% BD	FW	BD	Recovery	Bottoms	Heat Exch		
		klb/hr	klb/hr					
10	10%	111,111	11,111	\$367,531	\$147,947	\$11,836		
20	5%	105,263	5,263	\$174,093	\$70,080	\$5,606		
50	2%	102,041	2,041	\$67,506	\$27,174	\$2,174		

Basis

Steam 100,000 lb/hr Pressure 600 psi 50 cycles versus 10 cycles saves \$300,000/yr 50 cycles versus 10 cycles saves \$120,000/yr

RD Heat Lost \$/vr

50 cycles versus 10 cycles saves \$10,000/yr

Boiler feedwater quality considerations

Boiler pressure and superheater/turbine steam purity requirements generally define pretreatment and feedwater quality requirements.

In general -

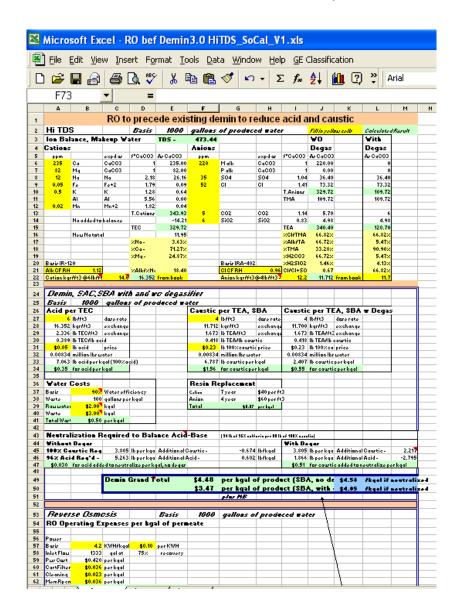
- Softened or single pass RO-quality make-up < 600 psig
- Generally demineralized/MB or RO/EDI make-up > 900 psig

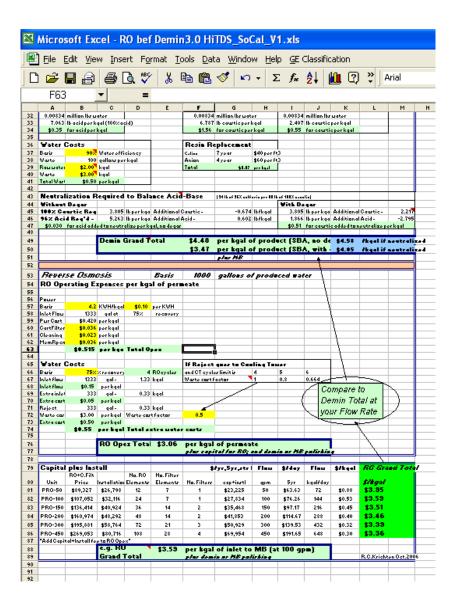
RO - Reverse Osmosis

EDI - Electrodeionization

Resin Based Pretreatment Performance

<u>System</u>	Typical Effluent Quality	Typical Boiler Operating Pressure (psig)
Softener	0.2-1.0 ppm hardness (no TDS reduction)	0 to 600
Dealkalizer	50 to 90% alkalinity reduction (no TDS reduction)	0 to 600
Standard two-bed demineralizer	<10 µmho <200 ppb silica	400 to 900
Two-bed demineralizer with counterflow regeneration	<5 μmho <50 ppb silica	900 to 1,200
Two-bed demineralizer with mixed bed polisher	<0.1 μmho <10 ppb silica	1,200+


Addition of RO ahead of Existing Demin


- Reduced acid & caustic regenerant costs
 - 90 95% reduction in regenerant usage is typical
- •10 to 15% more feedwater production each month
- •But not less intake water due to RO reject, <u>unless reuse the reject stream</u>
- •90% less high TDS regenerant waste
- Extended ion exchange resin life
 -Much longer regen. cycles & reduced iron/organic fouling
- Improved feedwater & steam quality

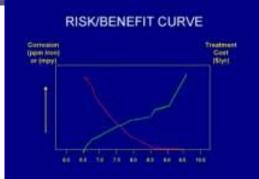
GE imagination at work

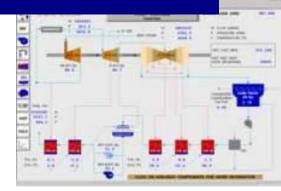
Detailed economic & environmental benefit analysis and modeling is required

Economic models must account for <u>all</u> relevant variables which impact cost, as well installed RO costs

RO preceding Demineralizer Approximate TDS Breakeven

Raw	Waste	Flow,	Flow,
Water, \$/kgal	Water, \$/kgal	50 gpm	450 gpm
\$.50	\$.50	380	230
\$.50	\$1.00	405	275
\$.50	\$2.00	470	310
\$1.50	\$2.00	500	360




Conversion from NaZ Softened to RO make-up

- Improved steam purity
 - > Process/Turbine
- Improved condensate corrosion control
 - > High-alkalinity waters
- Minimizes operating and maintenance expenses
 - > Boiler waterside and steamside failures
- Maintains optimal thermal performance
 - > Boiler and steam heat transfer efficiency
- Reduced chemical treatment costs
 - > Higher cycles operation less wastage
 - > Lower steam system treatment requirements

Logical candidates for analysis Softener and/or Dealkalizer to RO

- Boiler cycles limited to 15 or less (7% or more blowdown)
- High alkalinity and/or high silica waters cycles limiting or scale-forming
- Steam treatment costs excessive due to high alkalinity make-up
- Steam purity is critical turbines; steam contact with process; clean steam generators
- Amine feed is not permitted or desired
- Systems without blowdown heat recovery (or inoperable/inefficient blowdown HX)

BaseCase BaseCase Steam Pressure Steam Rate lb/hr Cycles

10,000

80,000

190,000

52,000

% BD 3.6 28%

8

14

14

13.846 91,429

FW

lb/hr

204,615

56,000

Blowdown Rate and Heat Savings Available

13%

7%

7%

3,846 11.429 14.615 4,000

BD

lb/hr

LiqBTU

Btu/lb

475

\$/yr

836,000 10,660,835 \$878,955 85,102 625,306 1,019,796

BD Heat Lost

BTU/hr

1,603,846

4,377,143

3,843,846

50 50 50 50 ır

2% 2% 2% 2% Sum

Sum 365,890 10.204 81,633 193,878 53,061 338,776

High Cycles w RO, NaZ 600 204 10,000 475 80,000 450 1,633 441 120 190,000 3,878 321 50 52,000 1,061 267 221,796 Sum 1,952,000 \$/yr \$160,937

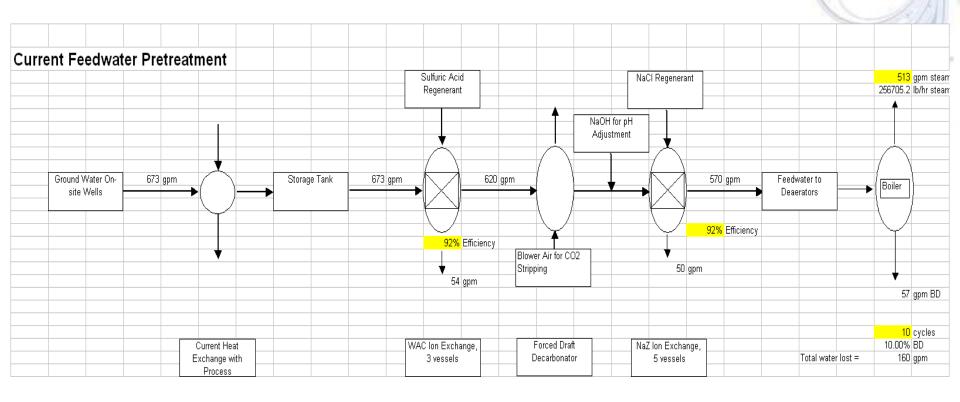
Feedwater		
Savings =	27,115	lb/hi
	54	gpm
- · · · ·		

Blowdown Heat

Savings =

psi

600

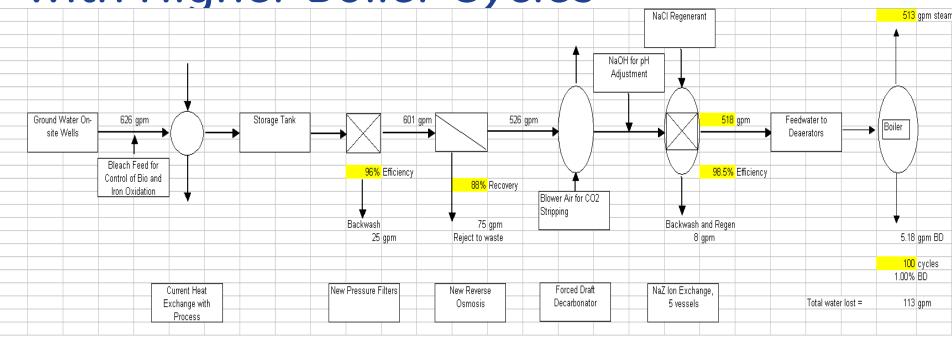

450

120

50

\$718,018 per year

Impact of RO on Water Balance



570 gpm out with 673 in

Impact of RO on Water Balance, with Higher Boiler Cycles

518 gpm out with 626 in

Industrial Waste Water Treatment and Reuse

Ed Greenwood

Presented by

GE Water & Process Technologies

Wastewater Treatment for Reuse

Challenges

Variable wastewater flow and concentration

Fugitive emissions

High operating cost

Solids Disposal

Compliance

Solutions

Advanced separations technologies

Production Process modification

Segregation of waste streams

Zero liquid discharge

Sell effluent

Economic Benefits

Reduced raw water costs

Reduced discharge costs

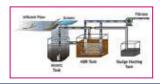
Increased sustainability

New Revenue source

Faster permitting time

Separations Technologies

Pretreatment (UF, Chemical)


DAF / EAF (Enhanced Air Floatation)

Membrane Systems (RO, NF)

Membrane Bio Reactor (MBR)

Electro Dialysis Reversal (EDR)

Mem-Chem Enhancements

arth.

Cartridge Filters

Almost
Always in
Combination

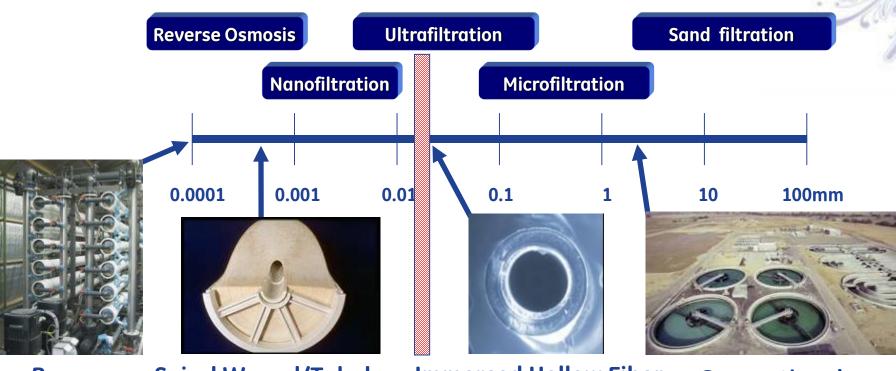
Technology Exists to Reuse Wastewater

UF + RO UF + EDR

Organic Waste

MBR + RO MBR + EDR

Heavy Metals / Complex Waste


ZLD

Why UF for Reuse?

Reverse **Osmosis**

best suited for NF/RO

Spiral Wound/Tubular Immersed Hollow Fiber best suited for UF

Conventional

When to use a UF?

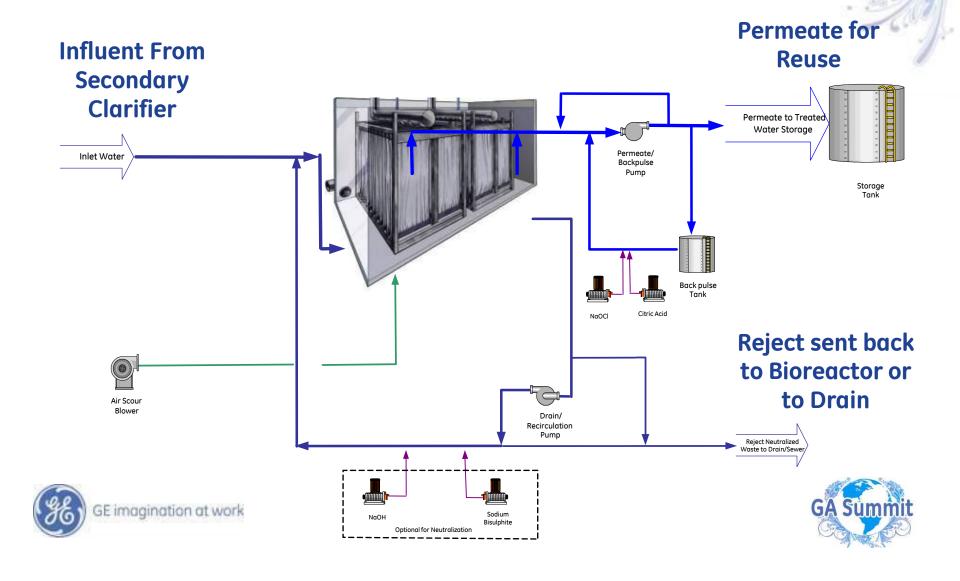
- Removal of Suspended Solids (TSS, Turbidity, SDI)
- Removal of Colloidal Material (i.e. Silica)

- Removal of Organics (TOC) using a coagulant (i.e Alum, FeCl2)
- Removal of metals using an oxidant (i.e Iron)

The Industrial-Strength Solution

GE imagination at work

Reinforced Structure No Fiber Breaks even with TSS > 20,000 ppm


Ultrafiltration Membrane Absolute Barrier providing SDI < 3

Immersed Membrane Low Trans Membrane Pressure

Outside-In Hollow Fiber Very Low Fouling Rates

PVDF Chemistry
Resistant to Chlorine and Acids

Tertiary Filtration PFD

PEMEX Refinery, Veracruz, Mexico

ZeeWeed® UF

7,000,000 US gpd

Refinery Wastewater (Secondary Effluent) is treated and reused as RO Feed (Boiler Make-Up)

Commissioned September 2001

Petro Canada / Gold Bar, Alberta

ZeeWeed® UF

1,300,000 US gpd

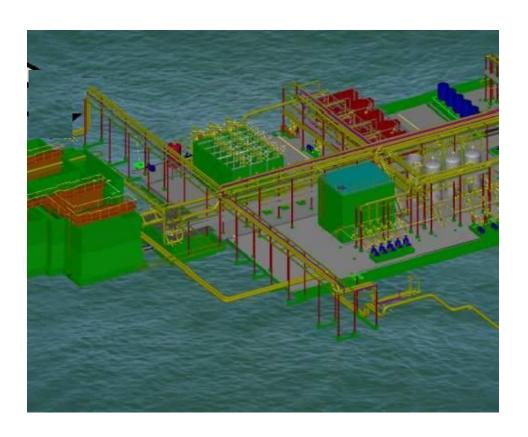
Municipal Secondary Effluent is treated and reused for CT Make-Up and RO Feed (Boiler Make-Up)

Commissioned January 2006

Archer Daniels Midland (ADM), IL

ZeeWeed® UF

5,000,000 US gpd


Grain Processor treats Secondary Effluent wastewater for reuse as CT Make-Up

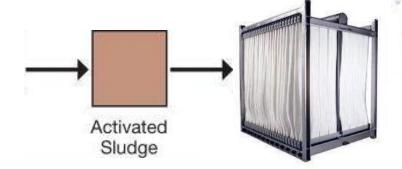
Commissioned March 2004

Sasol, South Africa

ZeeWeed® UF

Synthetic Fuels
Manufacturer treats
CTBD for RO Feed
(Boiler Make-Up and CT
Make-Up

3,200,000 US gpd


Commissioned June 2006

When to use an MBR?

 Removal of Organics (BOD, COD)

- Removal of Organic Nutrients (NH3, TKN, NO2/3, TN, TP)
- Removal of Suspended Solids (TSS, Turbidity, SDI)

MBR Effluent Quality

ZeeWeed® MBR Series UF Provides Consistent Effluent Quality for RO Pretreatment

- SDI < 3
- Turbidity < 0.2 NTU
- BOD < 2 mg/L
- TSS < 2 mg/L
- TN < 3 mg/L*
- TP < 0.05 mg/L*

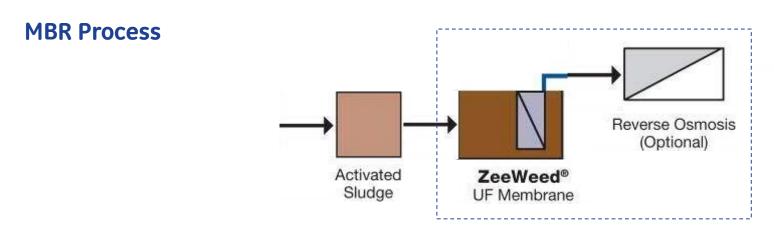
MBR - Other Key Benefits

Reliable Performance

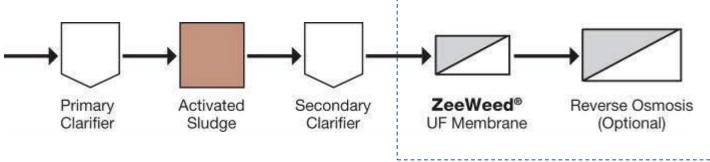
- Better control of biological process
- Independent of sludge settling
- 100% TSS Removal
- Readily adaptable for TN/TP reduction
- Long Membrane Life (>10 years)

Aerobic – no offensive odor (compared to anaerobic)

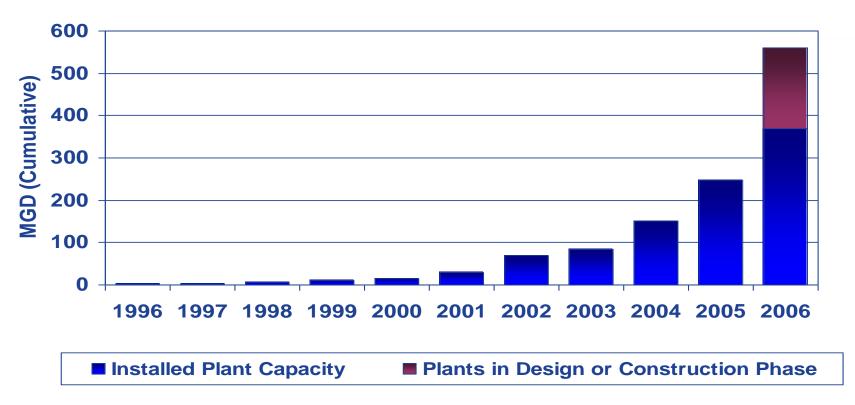
Compact – Smaller bioreactor, no clarifiers, no sand filters


Retrofit – Adaptable to existing tanks (minimize civil works)

→ Best Available Technology for Water Reuse



MBR vs. Tertiary Treatment


Tertiary Filtration Process

Total Installed ZeeWeed® MBR Wastewater Treatment Capacity*

Papeterie du Rhin, Europe

ZeeWeed® MBR

240,000 US gpd

Pulp and Paper (recycled paper) wastewater is treated and reused as Process Water Make-Up

Commissioned February 2000

Coca Cola, Puerto Rico

Permaflow® MBR

121,000 US gpd

Beverage bottling plant wastewater reused in a variety of ways including RO Feed and CT Make-Up

Commissioned January 2004

ENI Refinery, Italy

ZeeWeed® MBR

1,900,000 US gpd

Refinery wastewater treated and reused as RO Feed

Commissioned March 2007

Saving Water & Energy
is a Big Win in Every Way,
and the creative use of Water Recycle
(both Internal and External) can help you to
make it happen at your facility!

Thank you for your time & attention

Case Study – Michelin Opelika

Mr. George Harrison

Background

- •Early in 2007 Michelin started an initiative to reduce water consumption with a goal of 3 to 4 MM Gallon per year reduction
- After performing a site wide water audit, GE and Michelin identified three projects that could offer immediate water savings

Quick Hit Projects


- 1. Increase Tower Cycles Potential 5 MM Gallons per year savings.
- 2. Add biocide to tuber tanks to eliminate the need for constant overflow.
- Convert to Molybdate free tower chemistry to allow tower blowdown to be sent to the fire pond as source of make eliminating the need for city water make-up in the summer

Project 1: Tower Savings

- Increase cycles from 4 to 6 cycles
- Convert from a neutral pH to an AEC alkaline pH program
- •Corrosion and scale inhibition results are similar with the new program
- No impact to production
- •Net savings of 5 MM gallons per year and \$ 9000.

Project 2: Tuber Tanks

For the last 6 months a trial has been ran adding a GE biocide to a tuber tank to control microbiological activity and eliminate the need for constant water over flow. To date the results are promising and could result in 500,000 gallon per year water savings.

Project 2: Molybdate Free Chemistry

When the tower chemistry was changed in Project 1 to achieve higher cycles, we converted to a molybdate traced cooling water product. We are now looking at a removing the molybdate, which may allow us to send the tower blowdown to our fire water ponds. This would fully eliminate the need for city water make in the summer due to the high evaporation rates. Estimated savings of 250,000 to 500,000 gallons per years savings.

Session Objective

To provide practical ideas utilizing process equipment & treatment chemistries to take back to your industrial plants/companies to help reduce water consumption and create new sustainable sources of water through reduce/recover/recycle

