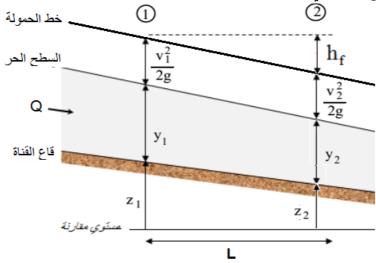
الفصل الثاني الجريان الدائم المنتظم

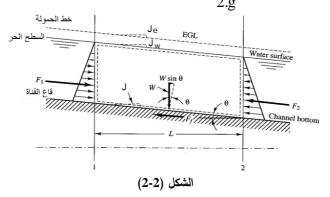

1-2 مقدمة:

إن الجريان المنتظم في الأقنية المكشوفة أو القنوات المغلقة غير الممتلئة بكاملها تحقق الشروط التالية:

- Q = const التدفق ثابت (1
- 2) العمق المائي والمحيط المبلول والسرعة الوسطية تبقى نفسها في جميع مقاطع القناة ولا تتغير مع الزمن الشكل (2-1).

A = const y = const V = const

- $J_{\rm e}$ ميل مقطع القناة $J_{\rm w}$ ميل السطح الحر $J_{\rm w}$ ميل خط الحمولة $J_{\rm e}$
 - 4) الخشونة متجانسة على طول المجرى.
 - 5) الضياع الموضعي غير موجود.


الشكل (1-2) الجريان الدائم المنتظم

2-2 المعادلات الأساسية للجريان المنتظم في الأقنية المكشوفة (معادلة شيزي)

لنعتبر جزءاً من قناة مكشوفة كما في الشكل (2-2) ميلها على الأفق θ يجري فيها الماء جرياناً منتظماً. وهو الجريان الذي يحدث في الأقنية الموشورية الطويلة المستقيمة (أو ذات الانحناء الخفيف جداً)، وتكون سرع الجريان الوسطية نفسها في كل المقاطع نظراً لأن مساحة المقطع المائي ثابتة أي:

$$V_1 = V_2 = ... = V_m$$

والمقطع الطولي للسطح الحر للماء يوازي المقطع الطولي لقاع القناة حيث يشكل مقطع سطح الماء الحر الخط البيزومتري للجريان، بينما خط الحمولة يوازي السطح الحر للماء ويرتفع عنه بمقدار ثابت $\frac{V^2}{2\sigma}$.

 $J=tg\theta$ نلاحظ من الشكل أن

وباعتبار ميل القناة صغيراً فإننا نستطيع أن نكتب:

$$J = tg\theta = \sin\theta \tag{1-2}$$

يمكن في الجريان الدائم تحت تأثير الثقالة الأرضية وضع معادلة التوازن التالية (بالإسقاط باتجاه محور الجريان)، حيث القوة المحركة (وهي الثقالة الأرضية هنا) تتعادل بقوى الاحتكاك على الجدران.

والكتلة المائية المعتبرة متوازنة تحت تأثير وزنها $W \sin \theta$ وقوى الاحتكاك والكتلة المائية المعتبرة au جهد القص المتوسط على طول المحيط المبلول. وبكتابة معادلة الحركة لكتلة السائل بين المقطعين (1) و (2) وينتج أن:

$$F_1 + \gamma A L J - F_2 - \tau P L = 0$$
 (2-2)
 $F_1 = F_2$

$$\gamma A L J = \tau P L
\tau = \gamma R_h J$$
(3-2)

$$J = \frac{\Delta z}{L} = \frac{\tau}{\gamma R_b}$$
 أو

في الجريان المضطرب تتناسب قوى الاحتكاك مع مربع السرعة أي يمكن أن نكتب:

$$\tau = \psi \, \frac{\rho}{2} \, V^2 \tag{4-2}$$

بالتعويض في المعادلة السابقة:

$$J = \psi \frac{\rho}{2} V^2 \frac{1}{\gamma R_h} = \psi \frac{V^2}{2 g R_h}$$

ويكون

$$V = \sqrt{\frac{2 g}{\psi}} \sqrt{R_h J}$$
 (5-2)

وبفرض

$$C = \sqrt{\frac{2g}{W}} \tag{6-2}$$

تدعى العلاقة السابقة معادلة شيزي ويدعى C بمعامل شيزي وقيمته تتبع خشونة سطح القناة إذ تتراوح بين 35 للسطوح الخشنة و140 من أجل السطوح الملساء.

ويتبين لنا مما سبق أن أمثال شيزي ليس أمثالاً بدون أبعاد ولكن $\frac{L^{1/2}}{T}$ لذلك يجب الانتباه إلى الوحدات المستعملة في قيمة C. وهي معادلة دارسي ويسباخ التي تم اشتقاقها سابقاً في الجزء الأول في الجريان المضطرب لحساب الضياعات الخطية

$$h_f = J L$$

$$h_{\rm f} = \psi \frac{V^2}{2 g R_{\rm h}} L \tag{7-2}$$

وقد كانت بالنسبة للأنابيب الدائرية:

$$R_h = \frac{A}{P} = \frac{\pi D^2}{4\pi D} = \frac{D}{4}$$

بالتعويض يكون:

$$h_f = 4 \psi \frac{L}{D} \frac{V^2}{2 g} = \lambda \frac{L}{D} \frac{V^2}{2 g}$$
 (8-2)

و $\lambda = 4 \, \psi$ عامل الاحتكاك الطولي.

في كل اشتقاقات معادلات الجريان في الأقنية المكشوفة نبقي على نصف القطر الهيدروليكي R_h كوسيط طولي في المعادلات بينما يوضع القطر D في حالة الجريان في الأنابيب المضغوطة دائرية المقطع.

. الضياعات الحاصلة على طول المجرى h_f

وبالتالى نستطيع كتابة معادلة شيزي على الشكل:

$$V^2 = \frac{8 g}{\lambda} \frac{h_f}{L} R_h$$

ونحن نعلم أن القيمة $\frac{h_f}{L}$ تعبر عن الضياعات الحاصلة على واحدة الطول وتسمى بالميل الهيدروليكي أو ميل خط الحمولة وبالتالي فإن العلاقة تأخذ الشكل:

$$V^{2} = \frac{8 g}{\lambda} J_{e} R_{h}$$

$$V = \sqrt{\frac{8 g}{\lambda}} \sqrt{J_{e} R_{h}}$$

وباعتبار أن $J_e = J$ لأن الجربان منتظم يكون:

$$V = C \sqrt{J R_h}$$
 (9-2)

حيث أن $\frac{8\,g}{\psi}=\sqrt{\frac{8\,g}{\lambda}}=\sqrt{\frac{2\,g}{\psi}}$ ويدعى الثابت C ويدعى وبالاستعانة بمعادلة

الاستمرار يمكن تحديد قيمة التدفق المار حيث:

$$Q = A V = A C \sqrt{R_h J}$$
 (10-2)

وبإدخال مفهوم جديد نسميه أمثال التدفق ولنرمز له K ويساوي:

$$K = A C \sqrt{R_h}$$

ستأخذ معادلة التدفق الشكل التالي:

$$Q = K \sqrt{J}$$
 (11-2)

$$K = \frac{Q}{\sqrt{J}}$$

نلاحظ من خلال هذه العلاقة أن أمثال التدفق كمضمون فيزيائي شبيه بالتدفق، وهو يساويه بالتحديد عندما يكون ميل القناة مساوياً إلى الواحد.

بالعودة إلى علاقة شيزي لحساب السرعة

$$V = C \sqrt{J R_h}$$

 $\omega=C$ $\sqrt{R_h}$ ويساوي ω ويساوي ندخل مفهوماً جديداً نسميه أمثال السرعة ونرمز له بالرمز $\omega=V$ أي $V=\omega\sqrt{J}$ وتصبح علاقة شيزي على الشكل التالي $V=\omega\sqrt{J}$

نلاحظ من العلاقة الأخيرة أن أمثال السرعة تساوي السرعة في حال كون ميل القناة مساوياً للواحد. نستعمل أمثال التدفق K وأمثال السرعة ω بشكل واسع في إجراء الحسابات الهيدروليكية وهما يعبران من الناحية الفيزيائية عن المواصفات الهيدروليكية الأساسية للمقطع المائي.

2-3 المعادلات التجريبية المستخدمة لتحديد معامل شيزي

تستخدم علاقات تجريبية كثيرة لتحديد قيمة معامل شيزي، كل من هذه العلاقات استنتج على أساس مجموعة من التجارب أجراها أحد الباحثين أو على أساس القراءات المأخوذة على الأقنية الموجودة فعلاً.

ونورد هنا مجموعة كبيرة من هذه العلاقات والتي يكثر استخدامها مرتبة حسب ترتيبها الزمني.

2-3-1 معادلة كانكييه -كيتر:

في عام 1869 استنتج المهندسان السويسران كانكييه- كيتر معادلتهما لتحديد قيمة معامل شيزي من واقع قياسات على مجموعة من الأقنية المختلفة الأشكال والأحجام على الشكل الآتي:

$$C = \frac{23 + \frac{0.0015}{J} + \frac{1}{m}}{1 + (23 + \frac{0.00155}{J})(\frac{m}{\sqrt{R_h}})}$$
(12-2)

حىث:

m: معامل يسمى معامل كيتر وهو يساوي تقريباً معامل مانينغ والموضح قيمته في الجدول (1-2) تبعاً لمادة جدران وقاع الأقنية لبعض أنواع الأقنية التي يكثر انشائها.

2-3-2 معامل مانينغ:

في عام 1889 استنتج المهندس الايرلندي مانينغ Robert Manning معادلته لتحديد قيمة شيزي C من واقع مجموعة كبيرة من التجارب على الوجه الآتى:

$$C = \frac{1}{n} R_h \tag{12-2}$$

تعتبر معادلة مانينغ من أكثر المعادلات انتشاراً في أقطار العالم المختلفة لتحديد قيمة معامل شيزي وذلك نظراً لبساطتها وسهولتها في الحسابات.

n: هو معامل مانينغ والمساوي تقريباً لمعامل كيتر والذي يسمى أيضاً معامل الخشونة. وتعطى قيم معامل مانينغ بالجدول(2-1) تبعاً لمادة جدران وقاع القناة.

جدول (2-1) قيم معامل مانينغ

معامل مانينغ	نوع القناة	الرقم	
0.011	قناة مبطنة بالاسمنت	1	
0.014	قناة مبطنة بالبيتون	2	
0.015	أقنية الصرف الصحي الفخارية	3	
0.017	قناة مبطنة بالطين	4	
0.020	قناة ترابية في حالة جيدة	5	
0.025	قناة ترابية في حالة متوسطة	6	
0.030	قناة ترابية في حالة سيئة	7	

باستخدام معادلتي مانينغ وشيزي يمكن كتابة المعادلة لإيجاد التدفق في الجريان الدائم والمنتظم في قناة مكشوفة كالآتى:

$$Q = A V = C A \sqrt{R_h J} = \frac{1}{n} A R_h^{2/3} \sqrt{J}$$
 (13-2)

2-3-2 معادلة بازان:

في عام 1897 استنتج الفرنسيان بازان معادلة لتحديد قيمة C من واقع تجارب أجراها على مجموعة من الأقنية المخبربة الصغيرة.

$$C = \frac{157.6}{1.81 + \frac{m}{\sqrt{R_h}}}$$
 (14-2)

$$n = \frac{m}{1.81}$$
 أو باعتبار

$$C = \frac{87}{1 + \frac{m}{\sqrt{R_h}}} \tag{15-2}$$

وتعطى قيم معامل بازان بالجدول (2-2) تبعاً لمادة جدران وقاع القناة.

جدول (2-2) قيم معامل بازان

معامل بازان	نوع القناة	الرقم
0.11	قناة اسمنتية او من الخشب الممسوح	1
0.21	قناة من الخشب غير الممسوح او من البيتون	2
0.83	قناة من الحجر المنحوت او القرميد	3
1.54	قناة ترابية في حالة جيدة	4
2.36	قناة ترابية في حالة متوسطة	5
3.17	قناة ترابية في حالة سيئة	6

بينت الحسابات التي أجريت للأقنية الموجودة أن النتائج التي تعطيها معادلة بازان ليست بالدقة الكافية مثل معادلة مانينغ.

2-3-4 معادلة فورشخيمر:

في عام 1923 استنتج فورشخيمر العلاقة التجريبية الآتية لتحديد معامل شيزي C:

$$C = \frac{1}{n} R_h^{0.5}$$
 (16-2)

حيث قيمة معامل الخشونة n يمكن تحديدها من جدول مانينغ.

2-3-2 معادلة بافلوفسكي:

في عام 1925 استنتج العالم السوفيتي بافلوفسكي معادلته لتحديد قيمة معامل شيزي على الشكل التالي:

$$C = \frac{1}{n} R_h^a$$
 (17-2)

حيث:

n: معامل خشونة مانينغ

a: يمكن حساب قيمته من المعادلة:

$$a = 2.5\sqrt{n} - 0.13 - 0.75\sqrt{R_h}(\sqrt{n} - 0.1)$$
(19-2)

هذه المعادلة تعطى نتائج مرضية إذا طبقت في حدود:

$$0.1 < R_h \le 3$$

 $0.009 < n \le 0.004$ (20-2)

كما اقترح بافلوفسكي لتسهيل الحسابات استخدام a من معادلة مبسطة وذلك بدون تأثير كبير على دقة النتائج على الوجه الآتى:

2-3-4 معادلة أجروسكين:

في عام 1949 استنتج السوفيتي أجروسكين معادلته لتحديد قيمة معامل شيزي على الوجه التالى:

$$C = \frac{1}{n} + 17.72 \log R_h \tag{21-2}$$

حيث n معامل خشونة مانينغ.

تجدر الإشارة إلى أنه لا تستخدم أي علاقة من العلاقات السابقة في حالة الجريان في الأنهار والأقنية العريضة حيث b>>10 y

إن جميع العلاقات السابق ذكرها هي علاقات تجريبية، تختلف دقتها حسب الظروف التي استنتجت على أساسها، وكذلك الظروف المستخدمة فيها.

كما ذكرنا سابقاً فإن أكثر العلاقات استخداماً في تطبيقات الجريان المنتظم هي معادلة مانينغ وذلك نظراً لبساطتها وسهولتها في الحسابات.

2-4 العوامل المؤثرة على أمثال الخشونة:

يعتبر المهندسون عادةً أن للقناة قيمة وحيدة ل n في مختلف الظروف. ولكن في الحقيقة تتغير قيمة n كثيراً وتتعلق بعدد من العوامل نذكر أهمها:

- 1) خشونة السطح: يعبر عن خشونة السطح ببعد وشكل حبيبات المادة المؤلفة للمحيط المبلول والتي تسبب بطئ الجريان. وبشكل عام يمكن أن نقول أن الحبيبات الناعمة تؤدي إلى قيم صغيرة لـ n والحبيبات الكبيرة تعطى قيم كبيرة ل n.
- 2) الأعشاب: يمكن اعتبارها كنوع من خشونة السطوح ولكنها تخفض كثيراً من سعة القناة وتبطئ الجريان. يتعلق هذا التأثير بارتفاع الأعشاب، كثافتها وتوزيعها ونوعها (علماً بأن هذا التأثير يتغير من فصل لآخر). وهذا العامل مهم جداً في تصميم أقنية الصرف الصغيرة.

لقد قيست قيمة لـ n تساوي 0.033 في شهر آذار لبعض أقنية الصرف الصحي حيث كانت الأقنية نظيفة ولكن قيمتها ارتفعت إلى 0.055 في شهر نيسان بسبب نمو الأعشاب وازدادت كثافة العشب في الصيف مما أدى إلى ارتفاع قيمة n إلى القيمة 0.115 لذلك يمكن القول أنه يمكن أخذ القيمة n0.04 لأقنية الصرف ذات الصيانة الجيدة والمعرضة لنمو بعض الأعشاب الصغيرة ولكن لا تنبت فيها نباتات كثيفة، بينما تعتبر القيمة n0.05 لحالة الأقنية ذات الصيانة المتوسطة والقيمة n0.05 لحالة الأقنية ذات الصيانة غير الجيدة أو المهملة.

- (3) عدم انتظام القناة: ويشمل ذلك عدم انتظام المحيط المبلول والتغيرات في المقطع في أبعاده وشكله مع طول القناة. في الأقنية الطبيعية يظهر عدم الانتظام هذا بوجود تجمعات رملية أو حفر وتموجات في أرضية القناة. بشكل عام لا يسبب التغير التدريجي في مقطع القناة وشكلها تأثيراً محسوساً على قيمة n ولكن التغيرات المفاجئة لمقاطع ضيقة وعريضة تسبب تزايداً في قيمة n.
- n تخطيط القناة: يعطي الانحناء الخفيف ذا نصف القطر الكبير قيمة صغيرة نسبياً ل n بينما الانحناء الشديد والمنعطفات الحادة تسبب زيادة في قيمة n. وبشكل عام يمكن القول أن ازدياد الخشونة مهمل في أقنية سرعة الجريان فيها صغيرة. بينما تسبب المنعطفات الكثيرة في الانهار الطبيعية ازدياداً قد يصل إلى 30%.

- 5) الترسب والتآكل: يمكن للترسب أن يعير قناة غير منتظمة إلى قناة منتظمة نسبياً وبالتالي ينقص من قيمة n بينما يؤدي مفعول التآكل إلى نتيجة عكسية ويزيد n. ومع ذلك فإن تأثير الترسب يتعلق بطبيعة المواد المترسبة وكيفية ترسبها، فمثلاً ترسب أمواج رملية في قناة منتظمة يزيد في الخشونة. تتعلق كمية التآكل وانتظامه بالمواد المشكلة لجدران القناة فالجدران الرملية والبحصية تتآكل بشكل أكبر من الجدران الغضارية.
- 6) الانسداد الجزئي للمقطع: إن وجود أغصان الأشجار وما شابه ذلك من العوائق في مجرى القناة يسعى لزيادة n وقيمة هذه الزيادة تتعلق بطبيعة العوائق وأبعادها وشكلها وعددها وتوزيعها.
- 7) المنسوب والتدفق: تتناقص n في أكثر الحالات بازدياد المنسوب وبازدياد التدفق فعندما يكون عمق الماء صغيراً يكون تأثير خشونة قاع القناة أكبر نسبياً في تبطئ الجريان، ولكن مع ذلك يمكن أن تكون n كبيرة في المناسيب العالية للمجاري ذات الضفاف الخشنة والمعشبة.

بعد التعرف على العوامل الأساسية التي تؤثر في أمثال الخشونة وضع Cowan طريقة لحساب n اعتباراً من العلاقة:

$$\mathbf{n} = (\mathbf{n}_0 + \mathbf{n}_1 + \mathbf{n}_2 + \mathbf{n}_3 + \mathbf{n}_4) \,\mathbf{m} \tag{22-2}$$

حيث:

القيمة الأساسية لـ n لقناة مستقيمة منتظمة السطوح.

. قيمة تضاف لـ n_0 لتصحيحها بسبب عدم انتظام السطوح.

n₂: قيمة تبين تأثير شكل وأبعاد مقطع القناة.

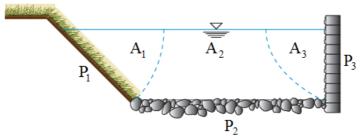
n₃: قيمة تبين تأثير الانسداد.

ا: قيمة تبين تأثير النباتات وشروط الجريان. n_4

m: عامل تصحيحي من أجل المنعطفات في القناة.

وببين الجدول (2-3) القيم المناسب اختيارها لهذه الأمثال:

الجدول (2-2) قيم الخشونة


القيم	شروط القناة القيم		شروط ال
0.020		ترابية	
0.025	\mathbf{n}_0	صخرية	
0.024		بحص ناعم	المواد المنشأة منها القناة
0.028		بحص خشن	
0.005	\mathbf{n}_1	ضعيفة	
0.01		متوسطة	درجة عدم الانتظام
0.02		شديدة	
0.00		تدريجي	
0.005	n_2	متغير من حين لآخر	تغير مقطع القناة
0.015-0.01		متواتر كثيراً	
0.00		مهمل	
0.01-0.015	n	ضعيف	التأثير النسبي للانسداد
0.02-0.03	n_3	محسوس	العاليل التعلبي للرتعداد
0.04-0.06		شدید	
0.005-0.01		ضعيفة	
0.01-0.025	n ₄	متوسطة	النباتات
0.025-0.05		عالية	ر تونین
0.05-0. 1		عالية جداً	
1.0		ضعيفة	
1.15	m	محسوسة	أهمية المنعطفات
1.30		شديدة	

2-5 تصميم الأقنية المكشوفة لجريان منتظم

لأي مسألة تتعلق بحساب جريان منتظم في قناة مكشوفة نجد أن هناك متغيرات عديدة يجب إيجادها وهي:

- 1) التدفق المارQ: يمكن أن يكون التدفق مفروضاً علينا كأن يكون علينا بناء قناة لجر مياه إلى منطقة تجمع سكاني فحاجة هذا التجمع إلى المياه يحددها عدد السكان وسوية معيشتهم وحاجات الصناعة والسقاية والمواشي.. أو كأن يكون علينا بناء قناة لسقاية مساحة معينة من الأراضي الزراعية فإن الحاجة إلى الماء تحددها المساحة ونوع الزراعة ونوع الزراعة
- 2) السرعة V: لهذا الحساب عدة تطبيقات عملية مثلاً دراسة مفعول التآكل والترسيب في القناة.
 - 3) عمق الماء y: يطلب هذا الحساب لتعيين منسوب الماء في القناة.

عامل الخشونة n: فمثلاً قناة ترابية، ترابية مكسية داخلياً بصبة اسمنتية، حجرية، قرميدية، خشبية، معدنية، أنابيب مسبقة الصنع (بيتونية – أو بلاستيكية أو معدنية أو اسمنت امينتي). وإذا كانت الخشونة الوسطى غير متساوية على طول القناة الشكل (3-2) (بنية القاع تختلف عن بنية الجوانب مثلاً) لتطبيق علاقة مانينغ لقناة كهذه يصبح من الضروري حساب الخشونة المعادلة لكامل المحيط المبلول.

الشكل (2-3) بنية القاع تختلف عن بنية الجوانب

لحساب الخشونة المعادلة نقسم السطح الى N جزء $(A_1,A_2,\dots A_N)$ بمحيط مبلول $(n_1,\ R_{h1},A_{h2},\dots A_{hN})$ وتكون الخشونة $(P_1,P_2,\dots P_N)$ وتكون الخشونة $n_2,\dots n_N)$

ان لكل جزء من المقطع نفس السرعة الوسطية أي أن:

$$V_1 = V_2 = \dots = V_N = V = Q/A$$

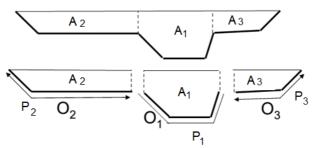
$$A_1 + A_2 + \dots + A_N = \sum_{i=1}^N A_i = A$$
 وباعتبار أن

یکون:

$$V = \frac{1}{n_1} \left(\frac{A_1}{P_1}\right)^{2/3} J^{1/2} = \frac{1}{n_2} \left(\frac{A_2}{P_2}\right)^{2/3} J^{1/2} = \cdots$$
$$= \frac{1}{n_N} \left(\frac{A_N}{P_N}\right)^{2/3} J^{1/2} = \frac{1}{n_{eq}} \left(\frac{A}{P}\right)^{2/3} J^{1/2}$$

وبالتالى يمكن الحصول على قيمة امثال الخشونة بالعلاقة التالية:

$$n_{eq} = \left[\frac{\sum_{i=1}^{N} P_{i} n_{i}^{3/2}}{P} \right]^{2/3}$$
 (23-2)


1) الميل الطولي لقاع القناة J :يفرض الميل الطولي علينا بموجب الشروط الطبوغرافية كأن يكون علينا تصميم قناة مكشوفة تصل بين موقعين البعد بينهما J وفرق المنسوب بينهما J فيكون الميل J غير أن بروفيل الأرض بين الموقعين غير مستو تماماً فقد يكون على القناة أن تجتاز هضبات وأودية لذلك تؤخذ وصلات متتالية ويجري الحساب لكل منها على حدى ونجد سلسلة من الميول J ...

$$J_{n} = \frac{y_{n}}{L_{n}} \tag{24-2}$$

ومن الممكن أن نلجأ صنعياً إلى تعديل الميل كأن نخفضه بقصد تخفيف السرعة في موقع ما حتى لا تتآكل كل جدران القناة أو أن نزيده بقصد زيادة السرعة في موقع حتى لا تنبت الأعشاب في القناة.

2) مقطع القناة A والعناصر الهندسية لمقطع القناة: يمكن أن يكون مقطع القناة مفروضاً علينا كما هو في حالة المجاري الطبيعية للمياه وبالإمكان إجراء بعض الاصلاحات في هذا المقطع كما يمكن أن يطلب منا تصميمه ويكون بشكل مستطيل شبه منحرف (ميول متعددة لجوانب القناة)، دائري، بيضوي (بأشكاله المتعددة) أو مركب وضمن الشكل الواحد يمكن أن نبني أبعاداً متفاوتة ففي القناة المستطيلة مثلاً يمكننا أن نزيد عرض قاع القناة على حساب العمق.

وعندما يكون المقطع مركباً يمكن تجزئته إلى مقاطع متجانسة الشكل ويكون التدفق المار في القناة مساوياً لمجموع التدفقات المارة في القسم الأوسط وفي القسمين الجانبيين الشكل.

الشكل (2-4) المقطع المركب

$$Q = A_1 V_1 + A_2 V_2 + \dots + A_N V_N$$

$$Q = \sum Q_i$$
(25-2)

أما المعادلات المستخدمة للحل فهي:

$$Q = \frac{1}{n} A R_h^{2/3} J^{1/2}$$
 معادلة مانينغ:

$$Q = A V$$
 ومعادلة الاستمرار

لحل مسألة ما يجب أن يكون هناك كميتين مجهوليتين فقط وذلك حتى يمكن إيجاد حل للمسألة.

فإذا اخترنا المقطع شبه المنحرف كمثال للمسائل الهيدروليكية الأساسية أثناء تصميم الأقنية المكشوفة، نجد أن معطيات التصميم تتحدد من خلال:

- 1) الأبعاد الهندسية للمقطع المائي وهي: عرض القناة من الأسفل (b) وميل الجوانب m وعمق الماء في القناة y.
 - .Q والميل الطولي للقناة J والتدفق المطلوب تمريره خلال القناة J

سوف ندرس الآن الحالات المختلفة التي يمكن أن نصادفها أثناء تصميم الأقنية المكشوفة. حيث يمكن تصنيف جميع الحالات إلى نوعين رئيسين من المسائل.

1) النوع الأول: يعطى في هذا النوع من المسائل الأبعاد الهندسة للمقطع المائي (b,y,m) وضمن هذا النوع من الممكن أن نصاف نماذج عدة نذكر منها:

(1) ♦(1)

J تعطي الأبعاد الهندسية للمقطع المائي (b,m,y) كما يعطى ميل قاعدة القناة Q وعامل الخشونة D ويطلب تحديد التدفق المار في القناة D.

الحل:

نحدد في البداية سطح المقطع المائي A والمحيط المبلول بالعلاقات الآتية:

A =
$$(b+m y) y$$

P = $b+2 y \sqrt{1+m^2}$

• نحدد نصف القطر الهيدروليكي

$$R_h = \frac{A}{P}$$

- نحدد ثابت شيزي C بإحدى العلاقات المناسبة.
 - نحدد السرعة الوسطية للجربان بعلاقة شيزي

$$V = C\sqrt{R_h J}$$

• نحدد التدفق بالعلاقة

$$Q = A V$$

(2) النموذج

يعطى أبعاد المقطع المائي (b,y,m) ويعطى أيضاً عامل الخشونة n والتدفق Q ويطلب تحديد الميل الطولى للقناة J.

الحل:

- نحدد القيم (C, R_h, P, A) كما في النموذج
 - نحدد السرعة الوسطية للجريان من العلاقة

$$V = \frac{Q}{A}$$

• نحدد الميل الطولي للقناة من العلاقة:

$$J = \frac{V^2}{C^2 R_h}$$

2) النوع الثاني: يعطى في هذا النوع من المسائل المواصفات الهيدروليكية للمقطع المائي (Q, J, n) كما يعطى ميل الجوانب (Q, J, n) ويطلب تحديد عمق الماء في القناة (Q, J, n) القناة في الأسفل (D, J, n) وضمن هذا النوع من المسائل يمكن أن نصادف النماذج التالية:

♦ النموذج (1)

يعطى في هذه الحالة المواصفات الهيدروليكية للمقطع المائي كما ذكرنا سابقاً وعرض القناة من الأسفل b ويعطى أيضاً ميل جوانب القناة m

الحل

• نحدد في البداية أمثال التدفق بالعلاقة

$$K = \frac{Q}{\sqrt{J}}$$

- نعطي لعمق الماء عدة قيم مفترضة ونحدد في كل حالة من هذه الحالات قيم K = f(y)
 - K = f(y) نرسم المنحني •
- نضع على المنحني قيمة K التي حصلنا عليها من شروط المسألة ونحدد عمق الماء المقابل لها والذي يؤمن التدفق المطلوب.
 - أو البحث عن قيمة y التي تؤمن قيمة التدفق المطلوب بالتقريب المتتالي.

(2) **♦** النموذج

يعطى في هذه الحالة المواصفات الهيدروليكية للمقطع المائي (Q,y,J) ويعطى أيضاً m ويطلب تحديد عرض القناة من الأسفل b.

الحل:

• نحدد أمثال التدفق المطلوب بالعلاقة

$$K = \frac{Q}{\sqrt{J}}$$

- نعطي عرض القناة من الأسفل عدة قيم مقترحة ونحدد أمثال التدفق المقابل لكل قيمة من هذه القيم K = f(b).
 - \cdot K = f(b) نرسم المنحنى

- نضع قيمة K والتي حددت من معطيات المسألة مع المنحني المذكور ونحصل على العرض b المطلوب والذي يمرر التدفق المطلوب في المسألة تحديداً.
 - أو البحث عن قيمة b الى تؤمن التدفق المطلوب بالتقريب المتتالى.

2-6 السرعة العظمى والسرعة الدنيا للجريان في الأقنية المكشوفة:

تحدد السرعة الوسطية V للجريان في الأقنية المكشوفة على أن تكون أقل من السرعة العظمى V_{max} المسموح بها وأكبر من السرعة الصغرى V_{max} المقنية المكشوفة.

 $V_{min} < V < V_{max}$

أقل سرعة مسموح بها هي السرعة التي ستبقي الرواسب في حالة عالقة في القناة ولا تسمح بترسيب الطمي في القناة. إنها أيضاً السرعة التي لا تؤدي إلى نمو النباتات المائية والطحالب في القناة. وهذه الظروف تغير شكل مقطع القناة العرضي وتسبب انحرافاً للجريان عن القيمة التصميمية المحسوبة من معادلة الجريان المنتظم. إن القيمة المقبولة عادة كأقل سرعة مسموح بها تتراوح من 0.6-0.9.

بتطبيق معادلة الجريان المنتظم ،مثل معادلة مانينغ ، يتبين ان سرعة الجريان تعتمد على ميل قاع القناة. أي عملياً ، إن ميل قاع القناة يعتمد على تضاريس السطح التي تمر فوقها القناة. ويجب التأكد من أن الميل في المقاطع المنتظمة يسمح بأقل سرعة مسموح بها.

ومن الممكن تحديد قيمة السرعة الدنيا المسموح بها في الأقنية المكشوفة بحيث لا تسمح بحدوث ترسبات للمواد العالقة في المياه وتتعلق هذه السرعة بنوعية وكمية المواد المحمولة وبعمق غزارة المياه، بعلاقة تجرببية من الشكل:

$$V_{\min} = a.y^{0.64} \tag{26-2}$$

حيث:

a: ثابت يتعلق بنوع المواد المحمولة في المياه وتعطى قيمتها في الجدول (4-2). y: عمق الماء في القناة. V_{min} : السرعة الدنيا المقدرة.

وبشكل عام يمكن تحديد السرعة الدنيا $\, {
m V}_{
m min} \,$ في الأقنية:

 $V_{min} \ge 0.25 \, ext{m/sec}$ الماء الحاوي على جزيئات صغيرة جداً

جدول (2-2) قيمة الثابت

a الثابت	المواد المحمولة في المياه	
0.4	طمي خفيف مع رمل ناعم جداً	1
0.55	رمل ناعم d=0.4mm	2
0.63	رمل متوسط القطر	3
0.9	رمل خشن	4
0.67	رمل ذو قطر كبير نسبياً	5

قد يسمح في بعض الأحيان والحالات الخاصة بأن تكون سرعة الجريان الوسطية في القناة أصغر من السرعة الدنيا المسموح بها وفي مثل هذه الحالات يجب إجراء تنظيف دوري ومستمر للقناة من المواد المترسبة بها.

تحدد السرعة العظمى المسموح بها V_{max} بحيث لا تحدث عملية جرف وحت لجدران القناة غير المكسوة أو لا يحدث تخريب لكسوة القناة. إن السرعة العظمى تعتمد على نوع تربة أو تكسية القناة، حيث هناك علاقات تجريبية تحدد قيمة السرعة العظمى في الأقنية المشكوفة والجدول (2-5) يحدد عمود قيمة السرعة العظمى في الأقنية المكشوفة بحسب مادة جدران وقاع القناة.

أما إذا كانت سرعة الجريان أكبر من السرعة العظمى المسموح بها فيجب في هذه الحالة اتخاذ إجراءات هندسية لتحقيق الشرط التالى:

$$V \le V_{\text{max}} \tag{27-2}$$

الإجراءات المتخذة عادة لرفع قيمة السرعة العظمى المسموح بها $\, V_{max} \,$ هي تكسية القناة بمواد البناء المختلفة.

أثناء تصميم الأقنية قد نحصل على قيم عالية للسرعة الوسطية للجريان، وذلك نتيجة للميول الكبيرة للأرض الطبيعية، في هذه الحالة نعمل على تخفيض قيمة هذه السرعة بطرق مختلفة وذلك بالاعتماد على علاقة شيزى والتي تكتب على النحو التالى:

$$V = C \sqrt{R_h J}$$

الجدول (2-2) قيمة السرعة العظمى في الأقنية المكشوفة

العمق الوسطي في القناة				
3m	2m	1m	نوع تربية القناة أو الكسوة	
V _{max} m/sec		ec		
0.6	0.55	0.45	تربة القناة مؤلفة من رمال ذات حبيبات صغيرة	1
0.85	0.75	0.7	تربة القناة مؤلفة من رمال ذات حبيبات كبيرة	2
1.1	1	0.85	تربة القناة مؤلفة من الحصى الصغيرة	3
1.85	1.65	1.45	تربة القناة مؤلفة من الحصى الكبيرة	4
4.65	4.3	3.8	القناة مكساة بأحجار الرصف المتوسطة	5
5. 5	5.35	-	القناة مكساة بأحجار قطرها يزيد عن 10cm	6
4.5	4.0	3.5	تربة القناة من صخر كلسي	7
22	20	18	تربة القناة صخر متسع ذو بنية متحولة	8
1.1	0. 95	0.85	تربة القناة من الطين متوسط التراخي أو الانضغاط	9
9	8	7	تكسية بيتونية أو بيتون مسلح مع تنفيذ بيتون عادي السطح	10
12	11	9	تكسية مشابهة للبند 10 مع بيتون مائي	11
4.5 4.0 3.5	- 40 25	سية من حجر الرصف لطبقة الفلتر العاكس ثن الأحجار المتكسرة ذات سماكة 20cm	12	
	4.0		عجار المتكسرة ذات سماكة 20cm	من الأحجار المتكسرة ذات سماكة 20cm
_	0.1	0.1	المجرى يحتوي على أشنيات ريشية أو قصبية	13
1.4	1.2	1	التكسية من التربة الحاوية على الأعشاب والجذور	14
0.8	0.7	0.6	تربة القناة تحتوي على حشائش مزروعة	15

إذا نظرنا إلى هذه العلاقة فإننا نلاحظ امكانية تخفيض السرعة الوسطية للجريان وذلك من الناحية المبدئية عبر الاحتمالات التالية:

1- تخفيض قيمة نصف القطر الهيدروليكي: تعطى قيمة نصف القطر الهيدروليكي بالعلاقة التالية $\frac{A}{P}=\frac{A}{P}$ لذا نلاحظ من هذه العلاقة أن إنقاص قيمة $R_h=\frac{A}{P}$ يتم إما بإنقاص سطح المقطع المائي أو بزيادة المحيط المبلول P وهذا لا يمكن الحصول عليه عملياً لأن أية زيادة أو نقصان لسطح المقطع المائي ستتبعه بالضرورة زيادة أو نقصان للمحيط المبلول بالنسبة نفسها تقريباً وبالتالي لا نستطيع عملياً الحصول على نتائج ملموسة عير هذا الحل.

يلاحظ من العلاقة أن إنقاص قيمة ثابت شيزي يتم نظرياً بزيادة قيمة عامل الخشونة n وهذا يستدعي عملياً تغيير نوع التربة المشكلة للقناة أو تغير نوع التكسية التي تغطي القناة وهذا الحل مكلف من الناحية الاقتصادية وغير عملي.

3- تخفيض قيمة الميل الطولي للقناة J: يتم تخفيض قيمة الميل الطولي للقناة عن طريق انشاء ما يسمى بالمدارج المائية على المقطع الطولي للقناة.

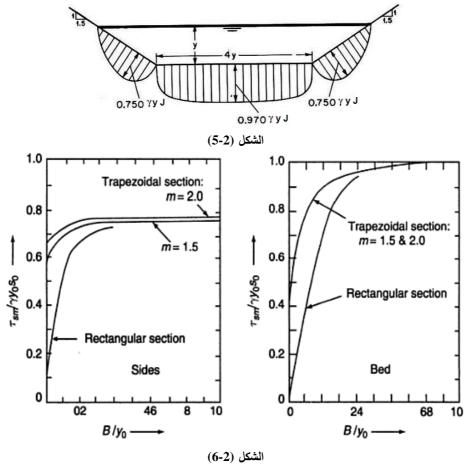
2-6-1 الاقنية القابلة للحت بدون ترسيب:

يمكن دراسة هذه الاقنية على مبدأ السرع الحدية ، الاصغرية أو الاعظمية التي ذكرناها في الفقرة (2-5). الا انه يمكن أيضاً عمل هذه الدراسة معتمدين على مبدأ القوة الجارة كما يلى:

عنما يجري الماء في قناة تؤثر باتجاه الجريان على سرير القناة. تسمى هذه القوة بالقوة الجارة أو قوة القص. في الجريان المنتظم تساوي قوة الجر الى مركبة قوة الثقالة المؤثرة على كتلة الماء باتجاه مواز لارضية القناة وتساوي γ A L J (كما راينا في الفقرة 2-2). وبالتالي فان القيمة الوسطية لقوة الجر في وحدة السطح المبلول أو جهد القص على طول المحيط المبلول يساوي:

$$\tau = \frac{\gamma A L J}{P L} = \gamma R_h J \tag{28-2}$$

حيث: ٧: الوزن النوعي للماء.


نصف القطر الهيدروليكي. R_h

في قناة مكشوفة عريضة جداً يمكن اعتبار أن نصف القطر الهيدروليكي يساوي للعمق وبالتالي:

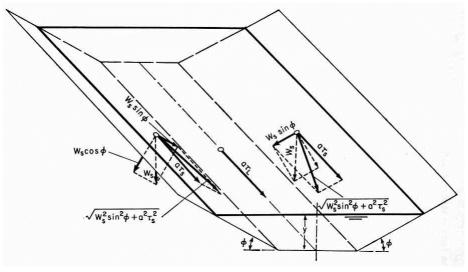
$$\tau = \gamma \text{ y J} \tag{29-2}$$

نلفت النظر إلى أن القوة الجارة الواحدية τ ليست موزعة بانتظام على طول المحيط المبلول، ماعدا في حالة الاقنية العريضة جداً. يبين الشكل (2-5) توزيعاً نموذجياً للقوة الجارة في قناة ذات مقطع شبه منحرف. يتعلق شكل التوزيع مع شكل المقطع ولكنه لايتغير عملياً مع أبعاد المقطع.

نتيجة لعدة دراسات تجريبية أمكن وضع منحنيات الشكل (2-6) تعطي قيمة القوة الجارة الواحدية الاعظمية على الجوانب وعلى القعر. بصورة عامة من أجل أقنية ذات مقطع شبه منحرف المستعمل عادة ،تصل القيمة الاعظمية للقوة الجارة على القعر الى قيمة قريبة من $0.75\gamma \ y \ J$ وعلى الجوانب الى قيمة قريبة من $0.75\gamma \ y \ J$

نسبة القوى الجارة:

على كل جزيئة صلبة موجودة على الجانب المائل للقناة الشكل (2-7) التي يجري فيها الماء. تؤثر قوتان: قوة الجر a τ ومركبة قوة الثقالة (الوزن) $W_s \sin \phi$ التي تسعى لدحرجة الجزيئة الصلبة لأسفل المنحدر.


حيث: a:السطح الفعال للجزيئة. W: الوزن المغمور للجزيئة.

W :زاوية ميل الجوانب.

محصلة هاتين القوتين المتعامدتين تساوي:

$$\sqrt{W_{s}^{2} \sin^{2} \phi + a^{2} \tau^{2}}$$
 (30-2)

عندما تكون هذه القوة كبيرة بشكل كاف تتحرك الجزيئة الصلبة.

الشكل (7-2)

حسب مبدأ الحركة والاحتكاك في الميكانيك يمكن أن نفرض أن قوة المقاومة لحركة الجزيء مساو للقوة النسبية للحركة عند بدء الحركة. ان قوة المقاومة لحركة الجزيئة تساوي للقوة الناظمية $\cos \phi$ ، مضروبة بأمثال الاحتكاك أو $\cos \phi$ حيث $\cos \phi$ هي زاوية الاحتكاك.

$$W_{s} \cos \phi \, tg\theta = \sqrt{W_{s}^{2} \sin^{2} \phi + a^{2} \tau^{2}}$$
 (31-2)

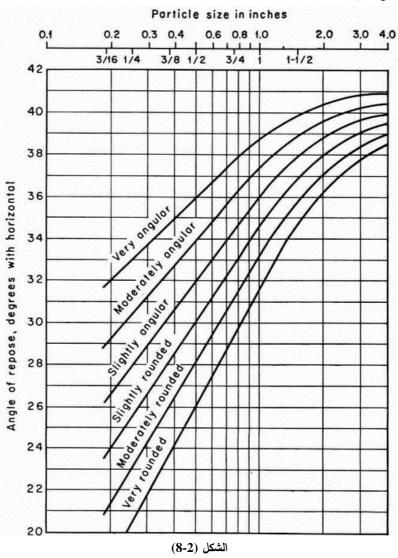
التي نستنتج منها قيمة القوة الجارة الواحدية التي تسبب بدء الحركة:

$$\tau_{s} = \frac{W_{s}}{a} \cos \varphi \, tg \, \theta \sqrt{1 - \frac{tg^{2}\varphi}{tg^{2}\theta}}$$
 (32-2)

بنفس الطريقة، عندما تبدأ الجزيئة الصلبة بالحركة على القعر $(\phi=0)$ نتيجة القوة الجارة $a \tau L$

$$\tau_{L} = \frac{W_{s}}{a} \operatorname{tg} \theta \tag{33-2}$$

إن نسبة $\tau_{\rm L}$ الى $\tau_{\rm L}$ تدعى نسبة القوى الجارة.


 χ من العلاقتين (2-32) و (2-33) نستنتج قيمة هذه النسبة

$$\chi = \frac{\tau_s}{\tau_t} = tg \,\theta \,\sqrt{1 - \frac{tg^2 \phi}{tg^2 \theta}}$$

التي بعد الاختصار تصبح:

$$\chi = \sqrt{1 - \frac{tg^2 \varphi}{tg^2 \theta}} \tag{34-2}$$

نرى من هذه العلاقة ان النسبة χ تتبع فقط ميل الجوانب وزاوية الراحة للمواد θ من أجل المواد المتماسكة تكون قوى التماسك كبيرة بالنسبة لمركبة الثقالة التي تسبب دحرجة الجزيئات بحيث يمكن اهمال الثقالة. وبالتالي تؤخذ زاوية الراحة للمواد بعين الاعتبار فقط في حالة المواد غير المتماسكة. نبين في الشكل (2-8) منحنيات تغير الزاوية θ تبعاً لقطر الحبيبات وشكلها.

القوة الجارة المسموح بها:

القوة الجارة المسموح بها هي القيمة الاعظمية للقوة الجارة الواحدية التي لا تسبب حتاً هاماً للمواد المشكلة لسرير القناة. يمكن تحديد هذه القيمة بالتجارب المخبرية وتسمى القيم التي تنتج عن هذه التجارب القوة الجارة الحرجة. ولكن بينت التجربة أن الاقنية الحقيقية المنشأة من مواد خشنة غير متماسكة تتحمل قيماً أكبر من القيم الحرجة للقوة الجارة المقاسة في المختبر ويعود ذلك لاحتواء الماء والتربة كمية من الكولوئيد والمواد العضوية التي تسبب شيئاً من التماسك كما أنه يمكن قبول وجود حركة ضعيفة للمواد في الاقنية الحقيقية دون أن يؤدي ذلك الى خطر في استقرار القناة. بما أن القيمة المسموح بها للقوة الجارة هي معيار للشروط الحقلية فيمكن أن تعتبر القيمة المسموح بها أصغر من القيمة الحرجة.

تطبيق طريقة القوة الجارة:

ان الخطوة الاولى لتصميم قناة ترابية بطريقة القوة الجارة تتألف من اختيار مقطع تقريبي (تعتمد على خبرة المصمم)، جمع عينات من المواد المشكلة لسرير القناة، وتعيين خواص هذه العينات. من هذه المعطيات يمكن للمصمم أن يفحص هذا المقطع للتأكد من استقراره على كل قسم من القناة ولتعيين المقطع الاصغري الذي يظهر مستقراً. اذا كانت المواد غير متماسكة يجب الاخذ بعين الاعتبار تأثير المركبة اتي تدحرج المواد بالإضافة الى تأثير توزيع القوى الجارة. من أجل الاقنية المشكلة من مواد متماسكة يمكن اهمال تأثير المركبة المدحرجة والاكتفاء بتوزيع القوى الجارة كمعيار للتصميم. ان الاختيار النهائي لأبعاد المقطع يعتمد اخيراً على اعتبارات عملية (غير هيدروليكية).

2-7 تصميم المقطع الأفضل هيدروليكياً Design for the best hydraulic section:

يمكن أثناء التصميم الهيدروليكي للأقنية أن نختار مقاطع عرضية مختلفة، فمثلاً نستطيع أن نغير من عمق القناة ومن عرضها وكذلك نستطيع أن نغير من الميل الطولي للقناة مع المحافظة على المواصفات الهيدروليكية المطلوبة. وفي النهاية فإننا نختار المقطع الأقل كلفة من الناحية الاقتصادية والأسهل تنفيذاً في الإنشاء والأفضل أثناء الاستثمار. ولذلك فإننا عادةً ما نجري مقارنة فنية اقتصادية لحلول مختلفة ونختار منها الحل الأفضل فنياً واقتصادياً.

لإمرار تدفق معين Q في مقطع قناة يجب على هذا المقطع أن يخضع إلى الشروط الآتية:

- 1- عرض أقل ما يمكن: سهولة الصيانة، فاقد بالتسرب أقل، تكاليف حفريات أقل.
 - 2- مقطع أصغر ما يمكن: لإنقاص حجم الحفريات والكلفة الكلية للمشروع.
 - 3- محيط مبلول أصغر ما يمكن: لإقلال كلفة الإكساء.
- 4- جعل المقطع بحيث تكون السرعة ليست صغيرة جداً لتجنب ترسب المواد العالقة ولا كبيرة جداً لتجنب الحت.

إذا عدنا إلى معادلة التدفق:

$$Q = C A \sqrt{R_A j} = \frac{1}{n} A R_h^{2/3} J^{1/2} = K J^{1/2}$$

تبين أن التدفق يزداد بزيادة أمثال التدفق K لمقطع الجريان والتي تزيد بدورها بزيادة نصف القطر الهيدروليكي R_h أي بزيادة مساحة مقطع الجريان A أو بنقصان طول المحيط المبلولP.

لمقطع جريان له مساحة محددة وله شكل هندسي محدد على شكل مستطيل مثلاً مساحته A = b y عمكن اختيار عدد لا نهائي من المقاطع لها نفس الشكل الهندسي (المستطيل) ونفس المساحة وتختلف فيما بينها في قيمة كل من y و d ، أي في قيمة النسبة b/y. بين هذه المقاطع كلها يوجد مقطع واحد فقط يمتلك أقل قيمة لطول المحيط المبلول. هذا المقطع بالتالي يمتلك قيمة أكبر لنصف القطر الهيدروليكي وبالتالي فهو الذي يمرر أكبر تدفق بين هذه المقاطع كلها. يعرف هذا المقطع بأنه المقطع الأفضل هيدروليكياً أو الأكثر اقتصاديةً.

أي أن المقطع الأفضل هيدروليكياً لقناة ذات شكل هندسي محدد ومساحة مقطعها معلومة، يعرف بأنه المقطع الذي يمرر أكبر تدفق ممكن أو المقطع الذي يمتلك أقل طول للمحيط المبلول. فما هو الشرط اللازم حتى يكون مقطع الجريان هو الأفضل هيدروليكاً؟ يعطى التدفق بالعلاقة:

$$Q = A V = C A \sqrt{R_h J} = C A \sqrt{\frac{A}{P} J}$$

$$Q = C \sqrt{J} (\frac{A^3}{P})^{1/2} = K (\frac{A^3}{P})^{1/2}$$

نحصل على التدفق الأعظمي في الحالة العامة بوضع $\frac{dQ}{dv} = 0$ أي:

$$d(\frac{A^3}{P})^{1/2} = 0$$

أو:

$$\frac{3A^2dA \ P - dP \ A^3}{P^2} = 0$$

$$3A^2dA P - dP A^3 = 0$$

بالتقسيم على A^2 نحصل على المعادلة العامة التي تعطي شرط حدوث التدفق الأعظمي وهي:

$$3P dA - dP A = 0$$
 (35-2)

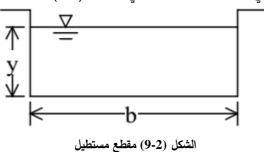
إذا انطلقنا من معادلة التدفق بالاعتماد على معادلة مانينغ بدلاً من شيزي نجد:

$$Q = \frac{1}{n} A R_h^{2/3} J = K A \frac{A^{2/3}}{P^{2/3}} = K \frac{A^{5/3}}{P^{2/3}}$$

وبالتالي يكون التدفق أعظمياً عندما:

$$\frac{dQ}{dy} = 0 \Rightarrow d(\frac{A^{2/3}}{P^{2/3}}) = 0 \Rightarrow d(\frac{A^5}{P^2}) = 0$$
$$\frac{5A^4dA P^2 - 2P dP A^5}{P^4} = 0$$

ويصبح لدينا:


$$5P dA - 2 dP A = 0$$
 (36-2)

لنستعرض فيما يلي أمثلة على طريقة تحديد المقطع الأفضل هيدروليكياً إذا كان الشكل الهندسي للمقطع معلوم:

2-7-1 مقطع مستطيل

من أجل أن يعطي مقطع ثابت A تدفقاً أعظمياً نضع dA=0 في العلاقة السابقة فينتج أن dP=0 أي أن المحيط المبلول يجب أن يكون أصغر ما يمكن.

نحسب P بدلالة عرض القناة b أو عمق القناة y ثم نعدم المشتق P فنستخرج العلاقة بين v و v التي تحقق التدفق الأعظمي الشكل v العلاقة بين v العلاقة

إن مساحة المقطع لقناة مستطيلة المقطع:

$$A = b y \Rightarrow b = \frac{A}{y}$$

$$P = b + 2 y$$

بالتعويض نجد:

$$P = \frac{A}{y} + 2y$$
 (37-2)

وحتى يكون المقطع أفضلياً نضع:

$$\frac{dP}{dy} = 0$$
$$-\frac{A}{y^2} + 2 = 0$$
$$\frac{b y}{y^2} = 2$$
$$b = 2 y$$

وبالتالي يصبح:

$$b = 2 y$$
 $A = 2 y^{2}$
 $T = b$
 $P = 2 y + 2 y = 4 y$
 $R_{h} = \frac{y}{2}$
(38-2)

أي حتى يكون المقطع المستطيل الأفضل هيدروليكياً يجب أن يكون عرض القناة يساوي ضعف ارتفاع الماء في القناة.

2-7-2 قناة ذات مقطع شبه منحرف

تعطى أبعاد المقطع الموضح بالشكل (2-10)، وبالتالي يكون:

A = (b + m y) y $P = b + 2y \sqrt{1 + m^2}$ $\sqrt{\frac{y}{m}}$ $\sqrt{\frac{b}{m}}$ $\sqrt{\frac{1}{m}}$ $\sqrt{\frac{1}{m}}$ $\sqrt{\frac{1}{m}}$ $\sqrt{\frac{1}{m}}$

ولكي يكون هذا المقطع أفضلياً ويعطي أكبر تدفق ممكن من أجل مقطع ثابت dP=0 أي dA=0 فيجب أن يكون المحيط المبلول أصغرياً dA=0 ومن علاقة المقطع نجد:

$$b = \frac{A}{y} - m y \tag{39-2}$$

بالتعويض في علاقة P

$$P = (\frac{A}{y} - m y) + 2y \sqrt{1 + m^2}$$

$$P = \frac{A}{y} + y (2 \sqrt{1 + m^2} - m)$$

نرمز ب λ للمقدار λ الشكل: $2\sqrt{1+m^2}-m$ نرمز ب λ للمقدار

$$P = \frac{A}{y} + \lambda y \tag{40-2}$$

فیکون:

$$\frac{dP}{dy} = 0 \Rightarrow -\frac{A}{y^2} + \lambda = 0$$

$$A = \lambda y^2$$
(41-2)

نعوض في معادلة b السابقة فيصبح:

$$b = \frac{\lambda y^2}{y} - m y = \lambda y - m y$$

$$b = (\lambda - m) y$$
(42-2)

نعوض b في معادلة P فيكون:

$$P = \frac{\lambda y^2}{y} + \lambda y = 2 \lambda y \tag{43-2}$$

ومنه فإن نصف القطر الهيدروليكي في المقطع الثابت كي يعطي أعظم تدفق ممكن يساوى:

$$R_{h} = \frac{A}{P} = \frac{y}{2} \tag{44-2}$$

نلاحظ أن المقطع المستطيل يمثل حالة خاصة من المقطع شبه المنحرف حيث $b=2\;y\;\;\text{ephilip}\;\;\lambda=2\;\;\text{m}=0$ وبالتالي $m=0\;\;\text{cphilip}\;\;$

نلاحظ اننا في العلاقات السابقة لعناصر المقطع الأفضلي بأننا لم نتعرض إلى زاوية ميل جوانب القناة θ على الأفق، أي انه من أجل كل قيمة لميل الجوانب θ ميل جوانب القناة θ على الأفق، أي انه من أجل كل قيمة لميل الجوانب θ على المساحة المائية θ ثابتة هنالك تدفق أعظمي يحدث θ بعين θ بين θ

على أن هناك قيمة معينة لـ θ يكون عندها التدفق أكبر من أية قيمة أعظمية أخرى وندعو المقطع عندئذ بالمقطع الأفضلي الاقتصادي most economical section مع الإبقاء على المساحة الثابتة، ونحصل على تلك القيمة لـ θ كما يلى:

تبين العلاقة $\frac{y}{2}=R_h$ بكون أعظمياً إذا كانت y أعظمية في المقطع ذي المساحة y الثابتة والذي يحقق علاقات المقطع الاقتصادي وتكون y أعظمية عندما يكون y أصغر ما يمكن كما تشير إلى ذلك العلاقة السابقة y إذن:

نشتق المقدار λ بالنسبة لـ θ ونجعل المشتق صفراً فيكون:

وجدنا سابقاً أننا اعتبرنا

$$\lambda = 2\sqrt{1 + m^2 - m}$$

$$\lambda = 2\sqrt{1 + \frac{\cos^2 \theta}{\sin^2 \theta}} - \frac{\cos \theta}{\sin \theta} = \frac{2}{\sin \theta} - \frac{\cos \theta}{\sin \theta}$$

$$\lambda = \frac{2 - \cos \theta}{\sin \theta}$$

فيكون:

$$\frac{dy}{d\theta} = \frac{\sin^2 \theta - \cos \theta (2 - \cos \theta)}{\sin^2 \theta} = 0$$

$$\sin^2 \theta - 2 \cos \theta + \cos^2 \theta = 0$$

$$1 - 2 \cos \theta = 0$$

$$\cos \theta = 0.5 \Rightarrow \theta = 60^{\circ}$$
(45-2)

أي يكون في المقطع الذي تميل جدرانه بزاوية $\theta = 60^{\circ}$

$$\lambda = 1.732$$

$$A = 1.732 \text{ y}^{2}$$

$$b = 0.828 \text{ y}$$

$$P = 3 \text{ b}$$
(46-2)

ملاحظات على المقطع الافضلي الاقتصادي لشبه المنحرف:

وجدنا أن:

$$P = \lambda y^{2} = \left(2\sqrt{1+m^{2}} - m\right)y^{2} = \left(b + m y\right)y$$
 (47-2)

فينتج:

$$2 y \sqrt{1+m^{2}} - m y = b + m y$$

$$y \sqrt{1+m^{2}} = \frac{b}{2} + m y = \frac{T}{2}$$
(48-2)

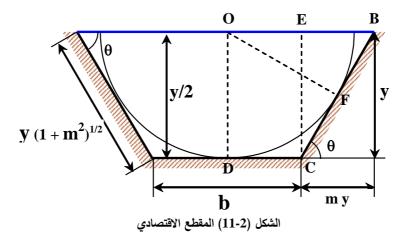
وهذا يعني أن نصف طول السطح الحر يساوي طول الجانب المائل للمقطع ، وبما $m = \frac{1}{\sqrt{3}} \ \ {\rm reg} = 60^\circ \ \ {\rm fi}$ أن الزاوية $\theta = 60^\circ$ تكون $\theta = 60^\circ$

بالتطبيق نجد:

$$y\sqrt{1+\frac{1}{3}} = \frac{b}{2} + \frac{y}{\sqrt{3}}$$

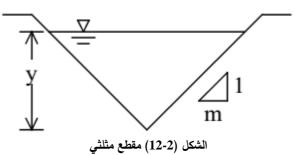
$$\frac{2y}{\sqrt{3}} = \frac{b}{2} + \frac{y}{\sqrt{3}}$$

$$\frac{b}{2} = \frac{2y}{\sqrt{3}} - \frac{y}{\sqrt{3}}$$
(49-2)


وتكون:

$$b = \frac{2y}{\sqrt{3}}$$

وبما ان طول الجانب المائل مقداره


$$y\sqrt{1+m^2} = \frac{2y}{\sqrt{3}} = b ag{50-2}$$

أي أن هذا المقطع الأفضل هيدروليكياً هو هندسياً عبارة عن شكل نصف مسدس حيث يمكن رسم هذا المقطع مماساً لدائرة قطرها ينطبق على السطح الحر للماء كما هو واضح بالشكل (2-11).

2-7-2 قناة ذات مقطع مثلثى:

يبين الشكل (2-2) مقطع مثلثي حيث يكون هذا المقطع أفضلياً ويعطي أكبر تدفق ممكن من أجل مقطع ثابت A=cte أي A=cte فيجب أن يكون المحيط المبلول أصغرياً dP=0:

$$A = \lambda y^2 \implies y = \sqrt{\frac{A}{m}}$$
 (51-2)

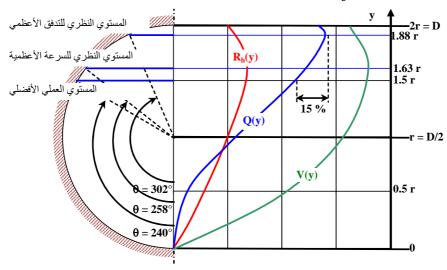
$$P = 2 y \sqrt{1 + m^2}$$
 (52-2)

نعوض قيمة y في علاقة المحيط المبلول فيكون:

$$P = 2\sqrt{\frac{A}{m}}\sqrt{1+m^2} = 2\sqrt{A}\left(\frac{1+m^2}{m}\right)^{\frac{1}{2}}$$

$$\frac{dP}{dm} = 0$$

$$2\sqrt{A}\left(\frac{1+m^2}{m}\right)^{-\frac{1}{2}}\left(\frac{2m^2-1-m^2}{m^2}\right) = 0$$


$$m^2 - 1 = 0 \qquad m = 1$$
(53-2)

ولكن:

$$m = 1$$
 $\cot g \theta = 1 \implies \theta = 45^{\circ}$
(54-2)

2-7-4 قناة ذات مقطع دائري:

في هذه الحالة سنفتش عن ارتفاع الماء y في قناة دائرية المقطع ذات نصف قطر ثابت r الذي يعطي أعظم تدفق ممكن الشكل (2-13). أي سنعين زاوية القوس المبلل p الموافقة للتدفق الاعظمي.

الشكل (2-13) المقطع الدائري

وقد وجدنا أن حدوث التدفق الأعظمي باستخدام ثابت شيزي هو:

$$3P dA - dP A = 0$$

من أجل r = cte ينتج:

$$A = \frac{r^2}{2}(\theta - \sin \theta) \tag{55-2}$$

$$dA = \frac{r^2}{2} (1 - \cos \theta) d\theta \tag{56-2}$$

المحيط المبلول:

$$P = r \theta$$

$$dP = r d\theta$$
(57-2)

بالتعويض في المعادلة العامة للمقطع الافضلي لشيزي

$$3r\theta \frac{r^2}{2}(1-\cos\theta) - \frac{r^2}{2}(\theta-\sin\theta)r = 0$$
(58-2)

 $2\theta - 3\theta\cos\theta + \sin\theta = 0$

وهي التي تعطي الزاوية θ للقوس المبلل الموافقة للتدفق الأعظمي في القناة ذات D=2r . تحل هذه المعادلة بالتجريب فينتج:

$$\theta = 308^{\circ} \tag{59-2}$$

ويكون ارتفاع الماء الموافق لأعظم تدفق في المقطع الدائري:

$$y = r + r \cos \left(\frac{2\pi - \theta}{2}\right) = r + r \cos \left(\pi - \frac{\theta}{2}\right)$$

$$y = r \left(1 - \cos \frac{\theta}{2}\right)$$
(60-2)

$$y = 0.95 D$$
 (61-2)

بالتعويض في المعادلة العامة للمقطع الافضلي لمانينغ

5P dA - 2 dP A = 0

نجد:

$$5 r \theta \frac{r^2}{2} (1 - \cos \theta) - 2 \frac{r^2}{2} (\theta - \sin \theta) r = 0$$

$$3 \theta - 5 \theta \cos \theta + 2 \sin \theta = 0$$

$$(62-2)$$

بالتجريب:

$$\theta = 302^{\circ} \ 20'$$

y = 0.938 D (63-2)

ينقص التدفق في القناة فوق هذا الارتفاع كما يظهر في الشكل لأنه بزيادة y يزداد المحيط المبلول، إن الزيادة الحاصلة في المحيط المبلول هي أكبر من الزيادة الحاصلة في سطح المقطع المائي وهذا يؤدي لنقصان السرعة لزيادة الاحتكاك.

$$V = \frac{1}{n} R_h^{\frac{2}{3}} J^{\frac{1}{2}}$$

 $Q = A \ V$ أما نقصان التدفق فيمكننا تغسيره بالاعتماد على معادلة الاستمرار $Q = A \ V$ إن الزيادة الحاصلة في المقطع المائي A هو أقل من النقصان الحاصل في السرعة وبالتالى فإن ذلك يؤدى إلى نقصان التدفق.

عملياً نأخذ $\theta = 240^{\circ}$ بدلاً من $\theta = 308^{\circ}$ لدرء احتمال انسداد المقطع المائي بالأجسام الطافية التي قد تكون محمولة بالمياه مما قد يسبب انغلاق المقطع المائي وتحويل الجربان من مكشوف الى مضغوط.

من أجل $\theta = 240^{\circ}$ يكون $y = 0.75\,\mathrm{D}$ وتمثل هذه الأبعاد التصميم العملي للأنابيب الدائرية.

تجدر الملاحظة بان ارتفاع الماء الموافق لأعظم تدفق في القناة ليس هو الارتفاع الموافق لأعظم سرعة لان زيادة θ لا تزيد دوماً قيمة V.

لتكون السرعة أعظمية يجب ان يكون R_h أعظمياً كما تظهر العلاقة التالية:

$$V = C \sqrt{R_h J} = C \sqrt{J} \sqrt{\left(\frac{A}{P}\right)}$$
 (64-2)

أى:

$$d\left(\frac{R_{h}}{d\theta}\right) = d\left(\frac{A/p}{d\theta}\right) = 0 \tag{65-2}$$

P dA - dP A = 0

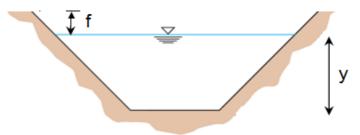
نجد:

$$r \theta \frac{r^2}{2} (1 - \cos \theta) - \frac{r^2}{2} (\theta - \sin \theta) r = 0$$

$$\theta - \theta \cos \theta = \theta - \sin \theta$$

$$tg \theta = \theta$$
(66-2)

بالتجريب:


$$\theta = 257^{\circ} 5'$$

y = 0.81 D (67-2)

إن الشكل النصف دائري هو الأفضل هيدروليكياً من بين كل الاشكال الهندسية للأقنية المكشوفة. في مناطق محددة من العالم ،تكون المقاطع النصف دائرية والدائرية هي السائدة وهي السمة الواضحة لمشاريع الري الكبيرة، فيما تبدو مقاطع شبه المنحرف هي المستخدمة بسبب سهولة الانشاء.

إن اختيار التصميم على مبدأ المقطع الافضلي الامثل يطبق فقط على الاقنية الغير قابلة للانجراف، اما التصميمات للأقنية المشيدة بمواد قابلة للحت أو الانجراف فيجب أن تأخذ في الاعتبار السرعة العظمي لإبقاء القناة مستقرق.

2-8 الارتفاع الحر:

الارتفاع الحر للماء في قناة مكشوفة هو المسافة الشاقولية بين قمة اكتاف القناة وسطح الماء الشكل (2-14). يجب أن يكون هذا الارتفاع كافياً لتجنب انسكاب الماء من الجوانب وبرمز له ب f.

الشكل (2-14) الارتفاع الحر

وقد نصح دافيس اعتبار الارتفاع الحر بالقيمة التالية:

$$f = 0.30 + 0.25 y \tag{68-2}$$

y < 4 m وذلك من أجل

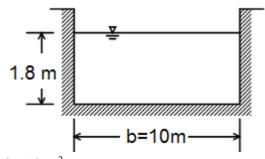
ولكن هناك دراسات أخرى اعتبرت القيم التالية:

• من أجل الاقنية الترابية

$$f = 0.8 \text{ V} \sqrt{y}$$
 (69-2)

• من أجل الاقنية المكساة

$$f = 0.5 \text{ V} \sqrt{y}$$
 (70-2)


وذلك باعتبار V سرعة الماء في القناة وy عمق الماء

تطبيقات الفصل الثاني

تطبيق (1-2)

قناة ذات مقطع مستطيل مبين بالشكل المجاور ميلها الطولي J=0.001 والمطلوب إيجاد التدفق باعتماد عامل كيتر –مانينغ–بازان–بافلوفسكي.

الحل

$$A = b y = 10 \times 1.8 = 18 \text{ m}^2$$

$$P = b + 2 y = 10 + 2 \times 1.8 = 13.6 m$$

$$R_h = \frac{A}{P} = \frac{18}{13.6} = 1.32m$$

وبالتالي: n = 0.16 فإن Kutter •

$$C = \frac{23 + \frac{0.00155}{J} + \frac{1}{n}}{1 + \left[23 + \frac{0.00155}{J}\right] \frac{n}{\sqrt{R_h}}} = 65.67 \text{ m}^{1/2} / \text{sec}$$

ويكون التدفق:

$$Q = C A.\sqrt{R_h J} = 65.67 \times 18 \times \sqrt{1.32 \times 11 \times 10^{-5}} = 14.24 \text{ m}^3/\text{sec}$$

• تبعاً لـ Basim يكون: 0.45 وبالتالي:

$$C = \frac{87}{1 + \frac{m}{\sqrt{R_h}}} = \frac{87}{1 + \frac{0.45}{\sqrt{1.32}}} = 62.51 \,\text{m}^{1/2} / \text{sec}$$

ويكون التدفق:

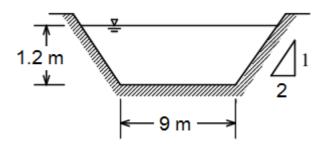
$$Q = C A.\sqrt{R_h J} = 62.51 \times 18 \times \sqrt{1.32 \times 11 \times 10^{-5}} = 13.56 \text{ m}^3/\text{sec}$$

• تبعاً لـ Manning يكون n = 0.016 يكون:

$$C = \frac{1}{n} R_h^{1/6} = \frac{1}{0.016} \times 1.32^{1/6} = 65.46 \text{ m}^{1/2} / \text{sec}$$

ويكون التدفق:

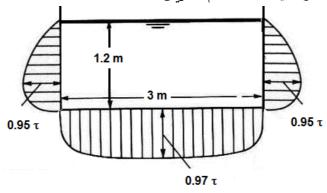
Q = C A.
$$\sqrt{R_h J}$$
 = 65.46×18× $\sqrt{1.32\times11\times10^{-5}}$ = 14.2 m³/sec


• تبعاً لـ Pavlovski يكون n = 0.016 يكون:

$$\begin{split} &C = \frac{1}{n} \, R_h^{\,y^*} \\ &y^* = 2.5 \sqrt{n} - 0.13 - 0.75 \sqrt{R_h} \times (\sqrt{n} - 0.1) \\ &y^* = 2.5 \sqrt{0.016} - 0.13 - 0.75 \sqrt{1.32} \times (\sqrt{0.016} - 0.1) = 0.163 \\ &C = \frac{1}{n} \, R_h^{\,y^*} = \frac{1}{0.016} \times 1.32^{0.163} = 65.4 m^{1/2} \, / \, \text{sec} \end{split}$$

ويكون التدفق:

$$Q=C~A.\sqrt{R_h~J}=65.4\times18\times\sqrt{1.32\times11\times10^{-5}}=14.18~m^3/sec$$
 تطبیق (2-2)


قناة ذات شكل شبه منحرف تمرر تدفقاً قدره $Q=16.5m^3/\sec$ فإذا علمت أن عامل شيزي C=49.5 وأن معدل ميل الجوانب m=2 فالمطلوب إيجاد الميل الطولي للقناة ومعامل الخشونة مانينغ n.

A = b y + m y² = 13.68 m²
P = b + 2 y
$$\sqrt{1 + m^2}$$
 = 12.75 m
R_h = $\frac{A}{P}$ = $\frac{13.68}{12.75}$ = 1.07 m
Q = C A $\sqrt{R_h}$ J
16.5 = 49.5×13.68× $\sqrt{1.07 \times J}$ \Rightarrow J = 5.5×10⁻⁴
C = $\sqrt{\frac{8 \text{ g}}{\psi}}$
49.5 = $\sqrt{\frac{8 \times 9.81}{\psi}}$ \Rightarrow ψ = 0.032
C = $\frac{1}{n}$ R_h^{1/6}
49.5 = $\frac{1}{n}$ × (1.07)^{1/6} \Rightarrow n = 0.02 sec/ m^{1/3}

تطبيق (2-3)

يبين الشكل المجاور قناة ذات مقطع مستطيل موضحاً نسبة قيمة جهد القص على المجدران من قيمة جهد القص المتوسط فإذا علمت أن J=0.001 وثابت شيزي $V=10^{-6}$ m²/sec واللزوجة الحركية $V=10^{-6}$ m²/sec فالمطلوب حساب قيمة جهد القص على القاعدة والجدران الجانبية وتحديد طبيعة نظام الجربان.

$$A = b y = 3 \times 1.2 = 3.6 \text{ m}^2$$

 $P = b + 2 y = 3 + 2 \times 1.2 = 5.4 \text{ m}$

$$R_{h} = \frac{A}{P} = \frac{3.6}{5.4} = 0.667$$

$$\tau = \gamma R_{h} J$$

$$\tau = 9810 \times 0.667 \times 0.001 = 6.54 \text{ N/m}^{2}$$

إجهاد القص على الجدران الجانبية:

$$0.75 \tau = 0.75 \times 6.54 = 4.9 \text{ N/m}^2$$

إجهاد القص على القاعدة:

$$0.98 \tau = 0.98 \times 6.54 = 6.4 \text{ N/m}^2$$

لتحديد طبيعة نظام الجربان نحسب ثابت ربنولدس على الشكل التالي:

$$V = C \sqrt{R_h J} = 70 \times \sqrt{0.667 \times 0.001} = 1.81 \text{ m/sec}$$

$$R_e = \frac{V R_h}{V} = \frac{1.81 \times 0.667}{10^{-6}} = 1.2 \times 10^6 > 2000$$

وبالتالى الجريان مضطرب

$$F_{r} = \frac{V}{\sqrt{g y_{m}}} = \frac{V}{\sqrt{g \frac{A}{T}}} = \frac{V}{\sqrt{g y}} = \frac{1.81}{\sqrt{9.81 \times 1.2}}$$

$$F_r = 0.53 < 1$$

وبالتالى الجربان نهري

تطبيق (2-4)

قناة ذات مقطع مستطيل تمرر تدفقاً قدره $Q=12m^3/\sec$ فإذا علمت أن اللزوجة لتحركية للسائل $v=10^{-6}m^2/\sec$ فالمطلوب إيجاد نظام الجريان من أجل أعماق جريان $2\,m$, $1\,m$, $0.3\,m$

$$A = b y = 0.3 \times 3 = 0.9 \text{ m}^2$$

 $P = b + 2 y = 3 + 2 \times 0.3 = 3.6 \text{ m}$

$$R_h = \frac{A}{P} = \frac{0.9}{3.6} = 0.25 \text{ m}$$

$$V = \frac{Q}{A} = \frac{12}{0.9} = 13.33 \text{ m/sec}$$

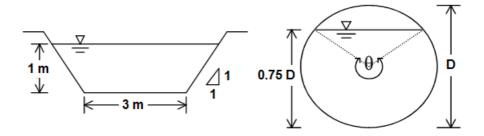
$$R_e = \frac{V R_h}{v} = \frac{13.33 \times 0.25}{10^{-6}} = 3.3 \times 10^{-3} > 2000$$

وبالتالى الجربان مضطرب

$$F_{\rm r} = \frac{V}{\sqrt{g \ y_{\rm m}}} = \frac{V}{\sqrt{g \ \frac{A}{T}}} = \frac{V}{\sqrt{g \ y}}$$

$$F_r = \frac{13.33}{\sqrt{9.81 \times 0.3}} = 7.75 > 1$$

وبالتالي الجريان شلالي.


بنفس الطريقة تتم إعادة الحساب من أجل أعماق الجريان فتكون النتائج على الشكل التالى:

у	Α	P	R _h	V	R _e	F _r	R_{e}			
0.3	0.9	3.6	0.25	13.33	3.3×10 ⁵	7.75	جريان مضطرب شلالي			
1	3	5	0.6	4	2.4×10 ⁶	1.27	جريان مضطرب شلالي			
2	6	7	0.857	2	1.7×10 ⁶	0.45	جریان مضطرب نهر <i>ي</i>			

تطبيق (2-5)

قناة مكشوفة على شكل شبه منحرف عرض قاعدتها $b=3\,m$ ومعدل ميل الجوانب $y=1\,m$ والميل الطولي للقناة J=0.001 يجري فيها الماء جرياناً منتظماً بعمق m=1 ينقل التدفق بواسطة قناة دائرية مغلقة لها نفس الميل الطولى والمطلوب: حساب

ينفن المتدفى بوالمنطق قناه دائرية معطه لها لعمن المعين المطولي والمطلوب. حملت قطر القناة اللازم حتى يمر فيها التدفق فيها بعمق y=0.75~D علماً أن أمثال الخشونة للقناة الأولى $n_1=0.025~$ وللقناة الثانية $n_2=0.013~$

الحل

من معطيات المسألة بالنسبة للقناة شبه المنحرفة نقوم بحساب قيمة التدفق المار في القناة الدائرية باعتبار التدفق نفسه وفقاً لمعطيات المسألة:

$$Q = \frac{1}{n} A R_h^{2/3} \sqrt{J}$$

$$A = b h + m h^2 = 3 \times 1 + 1 \times (1)^2 = 4 m^2$$

$$P = b + 2 h \sqrt{1 + m^2} = 3 + 2 \times 1 \times \sqrt{2} = 5.828 m$$

$$Q = \frac{1}{0.025} \times 4 \times (\frac{4}{5.828})^{2/3} \times \sqrt{0.001} = 3.937 m^3 / sec$$

الآن نكتب بالنسبة للمقطع الدائري:

$$A = \frac{r^2}{2}(\theta - \sin \theta)$$

$$P = r\theta$$

$$y = r(1 - \cos \frac{\theta}{2})$$

$$0.75D = \frac{D}{2}(1 - \cos \frac{\theta}{2}) \implies 1.5 = 1 - \cos \frac{\theta}{2} \implies \theta = \frac{4}{3}\pi$$

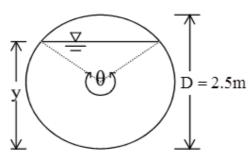
يحصل التدفق الأعظمي في المقطع الدائري عندما يكون $y = 0.95\,\mathrm{D}$ أي من أجل $\theta = 308^\circ$ ولكن عملياً لدرء احتمال انسداد المقطع المائي بالأجسام الطافية التي قد تكون محمولة بالمياه، فيتحول بالتالي الجريان إلى جريان مضغوط. لذلك تؤخذ عملياً $\theta = 240^\circ$

$$Q = \frac{1}{n} A R_h^{2/3} \sqrt{J}$$

$$A = \frac{r^2}{2} (\theta - \sin \theta) = \frac{r^2}{2} (\frac{4}{3} \pi - \sin \frac{4}{3} \pi) = 2.527 r^2$$

$$P = r \frac{4}{3} \pi \qquad \qquad R_h = \frac{A}{P} = 0.603 r$$

$$3.937 = \frac{1}{0.013} \times 2.527 r^2 \times (0.603 r)^{2/3} \times \sqrt{0.001}$$


$$r^{8/3} = 0.897 \quad \Rightarrow r = 0.96 m$$

$$D = 1.92 \quad m$$

تطبيق (6-2)

يمر تدفق قدره $Q=6.86 m^3/sec$ في قناة ذات مقطع دائري ميلها الطولي J=0.00082 وأمثال خشونتها J=0.00082 والمطلوب: حساب ارتفاع الماء في القناة D=2.5 m

الحل

يعطى التدفق حسب علاقة مانينغ بالعلاقة:

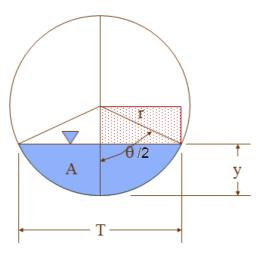
$$Q = \frac{1}{n} A R_h^{2/3} \sqrt{j}$$

حيث:

$$A = \frac{r^2}{2} (\theta - \sin \theta) = 0.781(\theta - \sin \theta)$$

$$P = r \theta = 1.25\theta$$

$$y = r \left(1 - \cos \frac{\theta}{2}\right) \Rightarrow \theta = 2 \arccos \left(1 - \frac{y}{r}\right)$$


يتم الحل بالتجريب بفرض قيم لy ومن ثم حساب قيم θ وتعويضها في معادلة y=1.8m التدفق حيث نجد أن:

تطبيق (2-7)

قناة مكشوفة ذات مقطع دائري قطرها $1 \, \mathrm{m}$ الميل الطولي للقاع $^{-5}14 \times 10$ ومعامل مانينغ لها 0.02 يمر بها جربان منتظم بأعماق مختلفة وتدفقات مختلفة.

- 1- احسب بطريقة رياضية قيم اعماق الجريان التي توافق قيم نصف القطر الهيدروليكي والسرعة المتوسطة والتدفق الأعظمي (باعتبار ثابت مانينغ).
 - $V_{
 m f}, Q_{
 m f}$ عين قيمة تدفق القناة وسرعتها الوسطية عندما يكون المقطع بكامله مملوءً
- $5~{\rm cm}$ والسرعة الوسطية من أجل ارتفاعات مائية في القناة متغيرة كل $y=0.1 \rightarrow 1$ من أجل $y=0.1 \rightarrow 1$ وعين ارتفاع الماء الموافق لكل من التدفق الأعظمي والسرعة الوسطية ونصف القطر الهيدروليكي الأعظمي في المقطع.
- $\frac{R_{h}}{R_{hf}}$ ، $\frac{V}{V_{f}}$ والسرعة النسبية والسرعة النسبية والسرعة النسبية -4
 - بدلالة الارتفاع النسبي $\frac{P}{d}$ بدلالة الارتفاع النسبي بدلالة الارتفاع بدلالة الارتفاع بدلالة العناة.

الحل:

نفرض عمق الجربان y فتكون مساحة المقطع المائي

$$A = \frac{r^2}{2}(\theta - \sin \theta) \tag{1}$$

المحيط المبلول:

$$P = r \theta \tag{2}$$

نصف القطر الهيدروليكي:

$$R_{h} = \frac{A}{P} = \frac{r}{2} \left(1 - \frac{\sin \theta}{\theta} \right) \tag{3}$$

ارتفاع الماء في المقطع الدائري:

$$y = r \left(1 - \cos \frac{\theta}{2} \right) \tag{4}$$

السرعة المتوسطة V يمكن حسابها من معادلة مانينغ

$$V = \frac{1}{n} \, R_{_h}^{^{2/3}} J^{1/2}$$

$$V = 0.592 R_{\perp}^{2/3}$$
 (5)

ويحسب التدفق من معادلة الاستمرار:

$$Q = A V = 0.592 A R_{b}^{2/3}$$
 (6)

تحديد قيمة y الموافقة لقيمة

$${{
m d}R_{_h}\over {
m d}\theta}=0$$
 تكون عندما: R تكون الهيدروليكي تكون الهيدروليكي أقصى قيمة لنصف القطر الهيدروليكي

من العلاقة (3) نجد أن:

$$\frac{dR_{h}}{d\theta} = \frac{d}{d\theta} \left[\frac{r}{2} \left(1 - \frac{\sin \theta}{\theta} \right) \right] = -\frac{r}{2} \frac{\theta \left(\cos \theta \right) - \sin \theta}{\theta^{2}} = 0$$

 $\theta\cos\theta = \sin\theta$

 $\theta = 257.453'$

$$\theta = tg\theta$$

بحل المعادلة بالتجريب نج أنها تتحقق من أجل:

$$y = r \left(1 - \cos \frac{\theta}{2} \right) = 0.813 \text{ m}$$
 نجد أن:

 V_{max} تحديد قيمة y الموافقة لقيمة

من العلاقة (3) و (5) نجد أن:

$$V = 0.592 R_h^{2/3}$$

$$V = 0.592 \left(0.5 r \right)^{2/3} \left(1 - \frac{\sin \theta}{\theta} \right)^{2/3}$$

$$V = 0.235 \left(1 - \frac{\sin \theta}{\theta} \right)^{2/3}$$

$$\frac{dV}{d\theta} = 0$$

ومنها نجد أن أقصى قيمة للسرعة المتوسطة تحدث عندما

من العلاقة (3) نجد أن:

$$\frac{dV}{d\theta} = \frac{2}{3} \times 0.235 \left(\frac{1}{\left(1 - \frac{\sin \theta}{\theta}\right)} \right) \left(-\frac{\theta \left(\cos \theta\right) - \sin \theta}{\theta^2} \right) = 0$$

 $\theta \cos \theta = \sin \theta$

$$\theta = tg\theta$$

بحل المعادلة بالتجريب نجد أنها تتحقق من أجل:

$$\theta = 257.453'$$

y = r $\left(1 - \cos\frac{\theta}{2}\right)$ = 0.813 m

من العلاقة (4) نجد أن:

 Q_{max} قيمة y الموافقة لقيمة

$$Q = A V = 0.592 A R_{h}^{2/3}$$

من العلاقة (6) نجد أن:

ومنها نجد أن أقصى قيمة للتدفق تحدث عندما

$$\frac{dQ}{d\theta} = 0$$

$$\frac{d}{d\theta} \left(\frac{A^{5/3}}{P^{2/3}} \right) = 0$$

$$3\theta - 5\theta\cos\theta + 2\sin\theta = 0$$

وبالاختصار نجد أن
$$\frac{dQ}{d\theta} = 0$$
 عندما تكون:

تحل المعادلة بالتجريب

$$\theta = 302.41'$$

$$y = r \left(1 - \cos \frac{\theta}{2} \right) = 0.938 \text{ m}$$

من العلاقة (4) نجد أن:

نحسب عناصر المقطع الملئ:

$$A_f = \pi r^2 = 0.785 \text{ m}^2$$

 $P_f = 2 \pi r = 3.14 \text{ m}$
 $R_{hf} = \frac{r}{2} = 0.25 \text{ m}$

فتكون قيمة السرعة عندما يكون المقطع ملئ

$$V_f = \frac{1}{0.02} \times (0.25)^{2/3} \sqrt{14 \times 10^{-5}} = 0.235 \text{ m/s}$$

 $Q_{\rm f}=A_{\rm f}~V_{\rm f}=0.785\times0.235=0.184~{
m m}^3/{
m s}$ وقيمة التدفق عندما يكون المقطع ملئ نظم جدول لإيجاد القيم المميزة باعتبار

$$V = 0.592 \text{ R}_{h}^{2/3}$$

$$Q = A \text{ V} = 0.592 \text{ A R}_{h}^{2/3}$$

$$\theta = 2 \cos^{-1} \left(1 - \frac{y}{r}\right)$$

$$\frac{2}{5} \cdot \frac{1.05}{0.05}$$

$$0.85$$

$$0.85$$

$$0.65$$

$$0.55$$

$$0.45$$

$$0.35$$

$$0.25$$

$$0.05$$

$$0.05$$

$$0.01$$

$$0.05$$

$$0.01$$

$$0.02$$

$$0.03$$

$$0.04$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
0.95	0.9	0.85	0.8	0.75	0.7	0.65	0.6	0.55	0.5	0.45	0.4	0.35	0.3	0.25	0.2	0.15	0.1	0	y/d
1.9	1.8	1.7	1.6	1.5	1.4	1.3	1.2	1.1	1	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0	y/r
5.38	5.00	4.69	4.43	4.19	3.96	3.75	3.54	3.34	3.14	2.94	2.74	2.53	2.32	2.09	1.85	1.59	1.29	0.00	teta(rad)
0.771	0.745	0.712	0.674	0.632	0.587	0.540	0.492	0.443	0.393	0.343	0.293	0.245	0.198	0.154	0.112	0.074	0.041	0.000	A
2.691	2.498	2.346	2.214	2.094	1.982	1.875	1.772	1.671	1.571	1.471	1.369	1.266	1.159	1.047	0.927	0.795	0.644	0.000	P
0.286	0.298	0.303	0.304	0.302	0.296	0.288	0.278	0.265	0.250	0.233	0.214	0.193	0.171	0.147	0.121	0.093	0.064	0.000	Rh
0.4345	0.4462	0.4514	0.4523	0.4498	0.4444	0.4363	0.4256	0.4125	0.3969	0.3787	0.3580	0.3345	0.3080	0.2781	0.2441	0.2051	0.1592	0	Rh2/3
0.257	0.264	0.267	0.268	0.266	0.263	0.258	0.252	0.244	0.235	0.224	0.212	0.198	0.182	0.165	0.144	0.121	0.094	0.000	V
0.198	0.197	0.190	0.180	0.168	0.154	0.140	0.124	0.108	0.092	0.077	0.062	0.049	0.036	0.025	0.016	0.009	0.004	0.000	Q
0.982	0.948	0.906	0.858	0.805	0.748	0.688	0.627	0.564	0.500	0.437	0.374	0.312	0.252	0.196	0.142	0.094	0.052	0.000	A/Af
0.857	0.796	0.747	0.705	0.667	0.631	0.597	0.564	0.532	0.500	0.468	0.436	0.403	0.369	0.334	0.295	0.253	0.205	0.000	P/Pf
1.146	1.192	1.213	1.217	1.207	1.185	1.153	1.111	1.060	1.000	0.932	0.857	0.774	0.684	0.587	0.482	0.372	0.254	0.000	Rh/Rhf
1.095	1.124	1.137	1.139	1.133	1.119	1.099	1.072	1.039	1.000	0.954	0.902	0.843	0.776	0.700	0.615	0.517	0.401	0.000	VNf
1.078	1.069	1.033	0.980	0.914	0.840	0.759	0.674	0.587	0.501	0.418	0.338	0.264	0.196	0.137	0.088	0.049	0.021	0.000	Q/Qf
	1.9 5.38 0.771 2.691 0.286 0.4345 0.257 0.198 0.982 0.857 1.146 1.095	1.8 5.00 0.745 2.498 0.298 0.4462 0.264 0.197 0.948 0.796 1.192 1.124 1.9 5.38 0.771 2.691 0.286 0.4345 0.257 0.198 0.982 0.857 1.146 1.095	1.7 4.69 0.712 2.346 0.303 0.4514 0.267 0.190 0.906 0.747 1.213 1.137 1.8 5.00 0.745 2.498 0.298 0.4462 0.264 0.197 0.948 0.796 1.192 1.124 1.9 5.38 0.771 2.691 0.286 0.4345 0.257 0.198 0.982 0.857 1.146 1.095	1.6 4.43 0.674 2.214 0.304 0.4523 0.268 0.180 0.858 0.705 1.217 1.139 1.7 4.69 0.712 2.346 0.303 0.4514 0.267 0.190 0.906 0.747 1.213 1.137 1.8 5.00 0.745 2.498 0.298 0.4462 0.264 0.197 0.948 0.796 1.192 1.124 1.9 5.38 0.771 2.691 0.286 0.4345 0.257 0.198 0.982 0.857 1.146 1.095	1.5 4.19 0.632 2.094 0.302 0.4498 0.266 0.168 0.805 0.667 1.207 1.133 1.6 4.43 0.674 2.214 0.304 0.4523 0.268 0.180 0.858 0.705 1.217 1.139 1.7 4.69 0.712 2.346 0.303 0.4514 0.267 0.190 0.906 0.747 1.213 1.137 1.8 5.00 0.745 2.498 0.298 0.4462 0.264 0.197 0.948 0.796 1.192 1.124 1.9 5.38 0.771 2.691 0.286 0.4345 0.257 0.198 0.982 0.857 1.146 1.095	1.4 3.96 0.587 1.982 0.296 0.4444 0.263 0.154 0.748 0.631 1.185 1.119 1.5 4.19 0.632 2.094 0.302 0.4498 0.266 0.168 0.805 0.667 1.207 1.133 1.6 4.43 0.674 2.214 0.304 0.4523 0.268 0.180 0.858 0.705 1.217 1.139 1.7 4.69 0.712 2.346 0.303 0.4514 0.267 0.190 0.906 0.747 1.213 1.137 1.8 5.00 0.745 2.498 0.298 0.4462 0.264 0.197 0.948 0.796 1.192 1.124 1.9 5.38 0.771 2.691 0.286 0.4345 0.257 0.198 0.982 0.857 1.146 1.095	1.3 3.75 0.540 1.875 0.288 0.4363 0.258 0.140 0.688 0.597 1.153 1.099 1.4 3.96 0.587 1.982 0.296 0.4444 0.263 0.154 0.748 0.631 1.185 1.119 1.5 4.19 0.632 2.094 0.302 0.4498 0.266 0.168 0.805 0.667 1.207 1.133 1.6 4.43 0.674 2.214 0.304 0.4523 0.268 0.180 0.858 0.705 1.217 1.139 1.7 4.69 0.712 2.346 0.303 0.4514 0.267 0.190 0.906 0.747 1.213 1.137 1.8 5.00 0.745 2.498 0.298 0.4462 0.264 0.197 0.948 0.796 1.192 1.124 1.9 5.38 0.771 2.691 0.286 0.4345 0.257 0.198 0.982 0.857 1.146 1.095	1.2 3.54 0.492 1.772 0.278 0.4256 0.252 0.124 0.627 0.564 1.111 1.072 1.3 3.75 0.540 1.875 0.288 0.4363 0.258 0.140 0.688 0.597 1.153 1.099 1.4 3.96 0.587 1.982 0.296 0.4444 0.263 0.154 0.748 0.631 1.185 1.119 1.5 4.19 0.632 2.094 0.302 0.4498 0.266 0.168 0.805 0.667 1.207 1.133 1.6 4.43 0.674 2.214 0.304 0.4523 0.268 0.180 0.858 0.705 1.217 1.139 1.7 4.69 0.712 2.346 0.303 0.4514 0.267 0.190 0.906 0.747 1.213 1.137 1.8 5.00 0.745 2.498 0.298 0.4462 0.257 0.198 0.982 0.857 1.146 1.095	1.1 3.34 0.443 1.671 0.265 0.4125 0.244 0.108 0.564 0.532 1.060 1.039 1.2 3.54 0.492 1.772 0.278 0.4256 0.252 0.124 0.627 0.564 1.111 1.072 1.3 3.75 0.540 1.875 0.288 0.4363 0.258 0.140 0.688 0.597 1.153 1.099 1.4 3.96 0.587 1.982 0.296 0.4444 0.263 0.154 0.748 0.631 1.185 1.119 1.5 4.19 0.632 2.094 0.302 0.4498 0.266 0.168 0.805 0.667 1.207 1.133 1.6 4.43 0.674 2.214 0.304 0.4523 0.268 0.180 0.858 0.705 1.217 1.139 1.7 4.69 0.712 2.346 0.303 0.4514 0.267 0.190 0.906 0.747 1.213 1.137	1 3.14 0.393 1.571 0.250 0.3969 0.235 0.092 0.500 0.500 1.000 1.000 1.1 3.34 0.443 1.671 0.265 0.4125 0.244 0.108 0.564 0.532 1.060 1.039 1.2 3.54 0.492 1.772 0.278 0.4256 0.252 0.124 0.627 0.564 1.111 1.072 1.3 3.75 0.540 1.875 0.288 0.4363 0.258 0.140 0.688 0.597 1.153 1.099 1.4 3.96 0.587 1.982 0.296 0.4444 0.263 0.154 0.748 0.631 1.185 1.119 1.5 4.19 0.632 2.094 0.302 0.4498 0.266 0.168 0.805 0.667 1.207 1.133 1.6 4.43 0.674 2.214 0.304 0.4523 0.268 0.180 0.858 0.705 1.217 1.139 <	0.9 2.94 0.343 1.471 0.233 0.3787 0.224 0.077 0.437 0.468 0.932 0.954 1 3.14 0.393 1.571 0.250 0.3969 0.235 0.092 0.500 0.500 1.000 1.000 1.1 3.34 0.443 1.671 0.265 0.4125 0.244 0.108 0.564 0.532 1.060 1.039 1.2 3.54 0.492 1.772 0.278 0.4256 0.252 0.124 0.632 0.564 1.111 1.072 1.3 3.75 0.540 1.875 0.288 0.4363 0.258 0.140 0.688 0.597 1.153 1.099 1.4 3.96 0.587 1.982 0.296 0.4444 0.263 0.154 0.748 0.631 1.185 1.119 1.5 4.19 0.632 2.094 0.302 0.4498 0.266 0.168 0.805 0.667 1.207 1.133 <	0.8 2.74 0.293 1.369 0.214 0.3580 0.212 0.062 0.374 0.436 0.857 0.902 0.9 2.94 0.343 1.471 0.233 0.3787 0.224 0.077 0.437 0.468 0.932 0.954 1 3.14 0.393 1.571 0.250 0.3969 0.235 0.092 0.500 0.500 1.000 1.000 1.1 3.34 0.443 1.671 0.265 0.4125 0.244 0.108 0.564 0.532 1.060 1.039 1.2 3.54 0.492 1.772 0.278 0.4256 0.252 0.124 0.627 0.564 1.111 1.072 1.3 3.75 0.540 1.875 0.288 0.4363 0.258 0.140 0.688 0.597 1.153 1.099 1.4 3.96 0.587 1.982 0.296 0.4449 0.263 0.154 0.748 0.631 1.185 1.119 <	0.7 2.53 0.245 1.266 0.193 0.3345 0.198 0.049 0.312 0.403 0.774 0.843 0.8 2.74 0.293 1.369 0.214 0.3580 0.212 0.062 0.374 0.436 0.857 0.902 0.9 2.94 0.343 1.471 0.233 0.3787 0.224 0.077 0.437 0.468 0.932 0.954 1.1 3.14 0.393 1.571 0.250 0.3969 0.235 0.092 0.500 0.500 1.000 1.000 1.1 3.34 0.443 1.671 0.265 0.4125 0.244 0.108 0.564 0.532 1.060 1.039 1.2 3.54 0.492 1.772 0.278 0.4256 0.252 0.124 0.627 0.564 1.111 1.072 1.3 3.75 0.540 1.875 0.288 0.4363 0.258 0.140 0.688 0.597 1.153 1.099	0.6 2.32 0.198 1.159 0.171 0.3080 0.182 0.036 0.252 0.369 0.684 0.776 0.7 2.53 0.245 1.266 0.193 0.3345 0.198 0.049 0.312 0.403 0.774 0.843 0.8 2.74 0.293 1.369 0.214 0.3580 0.212 0.062 0.374 0.433 0.471 0.843 1.9 2.94 0.343 1.471 0.233 0.3787 0.224 0.077 0.437 0.468 0.932 0.954 1.1 3.14 0.393 1.571 0.250 0.3969 0.235 0.092 0.500 0.500 1.000 1.000 1.1 3.34 0.443 1.671 0.265 0.4125 0.244 0.108 0.564 0.532 1.060 1.039 1.2 3.54 0.492 1.772 0.278 0.4256 0.252 0.124 0.688 0.597 1.153 1.099	0.5 2.09 0.154 1.047 0.147 0.2781 0.165 0.025 0.196 0.334 0.587 0.700 0.6 2.32 0.198 1.159 0.171 0.3080 0.182 0.036 0.252 0.369 0.684 0.776 0.7 2.53 0.245 1.266 0.193 0.3345 0.198 0.049 0.312 0.403 0.774 0.843 0.8 2.74 0.293 1.369 0.214 0.3580 0.212 0.062 0.374 0.436 0.857 0.902 0.9 2.94 0.343 1.471 0.233 0.3787 0.224 0.077 0.437 0.468 0.932 0.954 1 3.14 0.393 1.571 0.255 0.4125 0.024 0.108 0.564 0.532 1.060 1.009 1.1 3.34 0.443 1.671 0.265 0.4125 0.124 0.627 0.564 1.111 1.072 <	0.4 1.85 0.112 0.927 0.121 0.2441 0.144 0.016 0.142 0.295 0.482 0.615 0.5 2.09 0.154 1.047 0.147 0.2781 0.165 0.025 0.196 0.334 0.587 0.700 0.6 2.32 0.198 1.159 0.171 0.3080 0.182 0.036 0.252 0.369 0.684 0.776 0.7 2.53 0.245 1.266 0.193 0.3345 0.198 0.049 0.312 0.403 0.774 0.843 0.8 2.74 0.293 1.369 0.214 0.3580 0.212 0.062 0.374 0.436 0.857 0.902 0.9 2.94 0.343 1.471 0.233 0.3787 0.224 0.077 0.437 0.468 0.932 0.954 1.1 3.14 0.393 1.571 0.255 0.4125 0.244 0.108 0.564 0.532 1.060 1.009	0.3 1.59 0.074 0.795 0.093 0.2051 0.121 0.009 0.094 0.253 0.372 0.517 0.4 1.85 0.112 0.927 0.121 0.2441 0.144 0.016 0.142 0.295 0.482 0.615 0.5 2.09 0.154 1.047 0.147 0.2781 0.165 0.025 0.196 0.334 0.587 0.700 0.6 2.32 0.198 1.159 0.171 0.3080 0.182 0.036 0.252 0.369 0.684 0.776 0.7 2.53 0.245 1.266 0.193 0.3345 0.198 0.049 0.312 0.403 0.774 0.843 0.8 2.74 0.293 1.369 0.214 0.3580 0.212 0.062 0.374 0.436 0.857 0.902 0.9 2.94 0.343 1.471 0.233 0.3787 0.224 0.077 0.437 0.468 0.932 0.954	0.2 1.29 0.041 0.644 0.054 0.1592 0.094 0.004 0.052 0.205 0.254 0.401 0.3 1.59 0.074 0.795 0.093 0.2051 0.121 0.009 0.094 0.253 0.372 0.517 0.4 1.85 0.112 0.927 0.121 0.2441 0.144 0.016 0.142 0.295 0.482 0.615 0.5 2.09 0.154 1.047 0.147 0.2781 0.165 0.025 0.196 0.334 0.587 0.700 0.6 2.32 0.198 1.159 0.171 0.3080 0.182 0.036 0.252 0.369 0.684 0.776 0.6 2.32 0.198 1.159 0.171 0.3080 0.182 0.049 0.312 0.403 0.774 0.843 0.7 2.53 0.245 1.266 0.193 0.3345 0.198 0.049 0.312 0.403 0.843	0 0.00 0.00 0.000

يبين الشكل بأنه يمكن تعيين التدفق الجزئي والسرعة الجزئية بالنسبة لأي مقطع دائري من أجل أي ارتفاع للماء في المقطع وذلك بالاستفادة من المخطط المذكور وبعد تعيين القيم الموافقة للمقطع المليء أي أن لهذا المخطط قيمة عملية مفيدة في التصميم. تطبيق (8-2)

يستخدم مصرف فرعي قطره $d=150 \, \text{mm}$ من شبكة صرف صحي في مدينة وذلك لتصرف مياه الفضلات المنزلية من حي سكني فيه 250 منزلاً. المصرف من الفخار المزجج معامل خشونة مانينغ n=0.015 وميله الطولي 0.01. الاستهلاك المائي للفرد الواحد يساوي 200 ليتراً في اليوم الواحد وهو ما يدعى بجريان الطقس الجاف dwf والكثافة السكانية تعادل 3.5 نسمة لكل منزل. والمطلوب التحقق من كفاءة المصرف المذكور.

إمكانية المصرف على التصريف وهو ملآناً:

$$V_{f} = \frac{1}{n} R_{h}^{\frac{2}{3}} J^{\frac{1}{2}} = \frac{1}{0.015} \left(\frac{0.15}{4} \right)^{0.66} \times (0.01)^{\frac{1}{2}} = 0.76 \text{ m/s}$$

$$Q_f = V_f A_f = 0.76 \times \frac{3.14 \times (0.15)^2}{4} = 0.013 \text{ m}^3 / \text{s} = 13 \text{ L/s}$$

إمكانية التصريف الاعظمي للمصرف عند الارتفاع y = 0.95 d أو ما يدعى باستيعاب المصرف:

$$Q_{max} = Q_{\rm f} \times 1.06 = 0.013 \times 1.06 = 13.8 \, L/s$$

تصمم عادة مصارف مياه الفضلات المنزلية (أو ما يدعى بالمياه المالحة) بحيث تستوعب حوالي 6 أضعاف قيمة جريان الطقس الجاف وتحقق السرعة الدنيا من أجل قيمة للتدفق تساوى 2 مرة تصريف الطقس الجاف:

$$Q_P = 2 \text{ dwf} = \frac{2 \times 250 \times 3.5 \times 200}{24 \times 3600} = 13 \text{ L/s}$$

وبالتالي:

$$\frac{Q_P}{Q_f} = \frac{4.05}{13} = 0.31 \, L/s$$

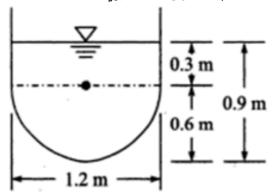
ومن المخطط السابق تنتج قيمة $\frac{y}{d}$ الموافقة:

$$\frac{y}{d} = 0.38 \rightarrow y = 0.38 \times 0.15 = 0.057 \text{ m} = 57 \text{ mm}$$
 $\frac{V_p}{V_f} = 0.89 \rightarrow V_p = 0.89 \times 0.76 = 0.68 \text{ m/s} > 0.6 \text{ mm/s}$

أي ان السرعة التصميمية في الطقس الجاف تزيد عن السرعة الدنيا لمنع حدوث الترسبات (0.5 mm/s).

 $6 \times dwf = 12.15 L/s < 13.8 L/s$

تحقيق التصريف الاقصىي:


أي ان المصرف مقبول نظراً لأن استيعابه على التصريف أكبر من التصريف الأقصى المطلوب.

ملاحظة:

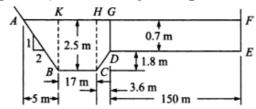
عادة نزيد قطر المصرف لاستيعاب التصريف الأقصى المطلوب من أجل ارتفاع يساوي $y=0.75\,\mathrm{d}$ بدلاً من $y=0.95\,\mathrm{d}$ كما ذكرنا سابقاً لدرء احتمال انسداد المصرف بالأجسام الطافية المنقولة بمياه الفضلات ونقبل في تصميم شبكات الصرف قطراً أدنى بمقدار mm 200 ، وفي هذه الحالات نزيد الميل الطولي للمصرف كي تكون السرعة الموافقة لجريان قدره تساوي أو تزيد عن سرعة التنظيف الذاتي للمصرف (أي السرعة التي لا تسمح بحدوث الترسبات وتقدر بحوالي $0.4-0.5\,\mathrm{m/s}$

تطبيق (9-2)

أوجد قيمة التدفق المار في القناة المكشوفة ذات المقطع المبين بالشكل علماً ان الميل الطولى للقناة J = 1/2500 وأن ثابت شيزي J = 1/2500

$$Q = c A \sqrt{R_h J}$$

$$A = 1.2 \times 3 + 0.5 \times \pi (0.6)^2 = 0.925 \text{ m}^2$$

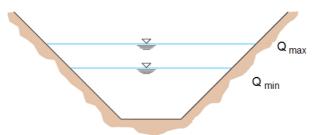

$$P = 0.3 + 0.3 + \pi \times 1.2 / 2 = 2.48 \text{ m}$$

$$R_h = \frac{A}{P} = \frac{3.57}{5.4} = 0.372 \text{ m}$$

$$Q = C A \sqrt{R_h J} = 54 \times 0.925 \times \sqrt{0.372 \times 1/2500} = 0.0693 \text{ m}^3 / \text{sec}$$

تطبيق (2-10)

قناة عرضها من الأسفل m ، 17m ميل الجانب 1شاقولي: 2أفقي، يمتد ميل أحد الجوانب إلى ارتفاع $1.8\,m$ ويمتد بعدها أفقياً إلى مسافة m 150 ويرتفع شاقولياً. إذا كان ميل القناة C=35 ، C=35 ، C=35 ميل القناة الرئيسية D=35 ، D=35 عمق القناة الرئيسية D=35 أوجد التدفق.


الحل:

$$\begin{split} A &= ABK + KBCH + HEDG + GDEF \\ A &= (\frac{1}{2} \times 5 \times 2.5 + 17 \times 2.5 + \frac{2.7 + 7}{2} \times 3.6 + 150 \times 0.7) = 159.51 \, \text{m}^2 \\ P &= AB + BC + CD + CE + EF \\ &= (\sqrt{5^2 + 2.5^2} + 17 + \sqrt{3.6^2 + 1.8^2} + 150 + 0.7) = 177.315 \, \text{m} \\ R &= \frac{A}{P} = \frac{159.51}{177.315} = 0.899 \text{m} \\ Q &= AC\sqrt{R \, s_b} = 159.51 \times 35 \times (0.899)^{1/2} \times \left(\frac{1}{2300}\right)^{1/2} \\ &= 110.406 \, \text{m}^3 \, / \, \text{s} \end{split}$$

تطبيق (11-2)

قناة ترابية شبه منحرفة ميلها الطولي J=0.001 خشونتها n=0.027 ، معدل $V_{max}=0.9~m/sec$ السرعة العظمى المسموح بها لمنع الحت m=1.5 والمطلوب: والسرعة الصغري المسموحة لتجنب الترسبات $V_{min}=0.4~m/sec$

عين أبعاد المقطع المناسب لتمرر تدفق أعظمي قدره $Q_{max}=5~m^3/sec$ بينما تبلغ وين أبعاد المعتاد الأصغري الذي يحدث في أغلبية الأوقات $Q_{min}=0.3m^3/sec$ المحل

بما أنه لم تفرض علينا أية أبعاد وطلب من ان نصمم أبعاد المقطع المناسب لنمرر أكبر تدفق نختار المقطع الأفضلي.

الدراسة في حالة تدفق أعظمي:

نبدأ بدراسة التدفق الأعظمي ونصمم أبعاد القناة (عرض القناة – ارتفاع الماء) ثم نأخذ نفس القناة لتمرر التدفق الأصغري أي نفس عرض القناة ولكن نحسب ارتفاع الماء في هذه الحالة ضمن الشروط المسموحة للسرعة العظمى والصغرى.

أبعاد المقطع الأفضلي

$$\lambda = 2\sqrt{1+m^2} - m = 2.106$$

$$A = \lambda y^2$$

$$R_h = \frac{y}{2}$$

$$Q = \frac{1}{n} A R_h^{2/3} J^{1/2} = \frac{1}{n} A (\lambda y^2) (y/2)^{2/3} J^{1/2} = \frac{1}{n} \lambda \frac{y^{8/3}}{2^{2/3}} J^{1/2}$$

$$y^{8/3} = \frac{n Q}{\lambda \sqrt{J}} 2^{2/3} \Rightarrow y = 2^{1/4} (\frac{n.Q}{\lambda \sqrt{J}})^{3/8} = 1.55 m$$

$$b = (\lambda - m) y = (0.606) \times 1.55 = 0.94 m$$

$$A = 2.106 \times (1.55)^2 = 5.06 m^2$$

$$V = \frac{Q}{A} = \frac{5}{5.06} = 0.99 m/sec > (V_{max} = 0.9 m/sec)$$

هذه السرعة أكبر من السرعة الأعظمية المسموحة ولكن بنسبة قليلة بحيث يمكن تصغيرها إلى السرعة المسموحة بتعديل المقطع (لا حاجة لتغيير الميل واحداث سقوط لنثبت السرعة بالقيمة المسموحة العظمى فيكون:

$$V = V_{max} = 0.9 \text{ m/sec}$$

$$A = \frac{Q}{V_{\text{max}}} = \frac{5}{0.9} = 5.556 \text{ m}^2$$

ونختار معادلات المقطع العادي لشبه منحرف

$$V = \frac{1}{n} R_h^{2/3} J^{1/2} \Rightarrow R_h = (\frac{n V}{\sqrt{J}})^{3/2} = 0.674 m$$

$$R_h = \frac{A}{P} \Rightarrow P = \frac{A}{R_h} = \frac{3.634}{0.545} = 8.243 \text{m}$$

$$A = (b + m y) y$$

5.556 = b y + 1.5 y² (1)

$$P = b + 2 y \sqrt{1 + m^2}$$
8.243 = b + 3.606 y

من المعادلتين الأخيرتين نستنتج b و y فيكون:

$$b = 8.243 - 3.606 \text{ y}$$

$$5.556 = 8.243 \text{ y} - 3.606 \text{ y}^2 + 1.5 \text{ y}^2$$

$$2.106 \text{ y}^2 - 8.243 \text{ y} + 5.556 = 0$$

وهي معادلة من الدرجة الثانية بحلها:

$$b = 5.12 \text{ m}$$

$$y = 0.865 \text{ m}$$

الدراسة في حالة التدفق الأصغري كما يلي:

$$Q_{min} = 0.3 \,\mathrm{m}^3 / \mathrm{sec}$$

$$Q_{\min} = \frac{1}{n} A R_h^{2/3} \sqrt{j}$$

$$0.3 = \frac{1}{0.027} \text{ A R}_{h}^{2/3} \sqrt{0.001} = 1.171 \text{ A R}_{h}^{2/3}$$

لنحسب ارتفاع الماء الموافق لهذا التدفق

$$A = (b + m y) y$$

$$A = (5.12 + 1.5 y) y$$

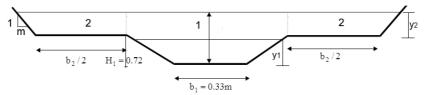
$$P = b + 2 y \sqrt{1 + m^2}$$

$$P = 5.12 + 3.606 \text{ y}$$

$$R_h = \frac{A}{P}$$

بالتعويض والتجريب نجد أن:

$$y = 0.165 \text{ m}$$


$$b = 5.12 \text{ m}$$

$$A = 0.886 \text{ m}^2$$

$$V = \frac{Q_{min}}{A} = \frac{0.5}{0.886} = 0.34 \text{m/sec} < V_{min}$$

أي أن السرعة الناتجة أقل من القيمة الاصغرية المسموحة.

نختار للتغلب على هذه الصعوبة المقطع المزدوج المتناظر بحيث يصمم القسم المركزي حسب المقطع الأفضلي الموافق للتدفق الأصغري.

$$Q_{max} = 5 \text{ m}^3 / \text{sec}$$

$$\lambda = 2\sqrt{1 + m^2} - m = 2.106$$

$$A_1 = \lambda y_1^2$$

$$R_h = \frac{y_1}{2}$$

$$Q = \frac{1}{n} A_1 R_h^{2/3} J^{1/2} = \frac{1}{n} A_1 (\lambda y_1^2) (y_1/2)^{2/3} J^{1/2} = \frac{1}{n} \lambda \frac{y_1^{8/3}}{2^{2/3}} J^{1/2}$$

$$y_1^{8/3} = \frac{n Q}{\lambda \sqrt{J}} 2^{2/3} \Rightarrow y_1 = 2^{1/4} \left(\frac{n.Q}{\lambda \sqrt{J}}\right)^{3/8} = 0.54 \text{ m}$$

$$V_1 = \frac{Q}{A_1} = \frac{0.3}{2.106(0.54)^2} = 0.49 \text{m/sec} > (V_{\text{min}} = 0.4 \text{ m/sec})$$

والسرعة محققة.

الارتفاع الحر:

$$f_{_1} = 0.5 \times V_{_1} \times \sqrt{y_{_1}} = 0.5 \times 0.49 \times \sqrt{0.54} = 0.18 \text{ m}$$

العمق الكلى للقسم المركزي:

 $H_1 = y_1 + f_1 = 0.54 + 0.18 = 0.72m$

وتكون أبعاد القسم المركزي:

$$b_1 = (\lambda - m) y_1 = (2.106 - 1.5) 0.54 = 0.33m$$

أي:

$$b_1 = 0.33m$$
 $H_1 = 0.72 m$

ندقق الآن المقطع من أجل التدفق الأعظمي

نعتبر أن عرض الجوانب فوق الارتفاع H_1 يساوي $b_2/2$ من كل طرف وارتفاع الماء y_2 فوق y_3 ونفرض نفس ميل الجوانب ومعامل الخشونة.

لندرس القسم المركزي(1):

عرض السطح الحرحتى منسوب H_1 هو

$$T_1 = b_1 + 2 \text{ m H}_1 = 0.33 + 0.72 \times 2 \times 1.5$$

 $T_1 = 2.49 \text{ m}$

وتكون الأبعاد

$$\begin{aligned} A_1 &= (b_1 + m \ H_1) \ H_1 + T_1 \ y_2 \\ A_1 &= (0.33 + 1.5 \times 0.72) \ 0.72 + 2.49 \ y_2 \\ A_1 &= 1.0152 + 2.49 \ y_2 \\ P_1 &= b_1 + 2 \ H_1 \ \sqrt{1 + m^2} = 0.33 + 0.72 \times 2 \ \sqrt{1 + \left(1.5\right)^2} \\ P_1 &= 2.926 \ m \end{aligned}$$

ملاحظة: لا يجوز أن يتم الحساب وفق الشكل

$$A_{1} = \lambda H_{1}^{2} + T_{1} y_{2}$$

$$P_{1} = 2 \lambda H_{1}$$

$$T_{1} = (\lambda + m) H_{1}$$

 $H_1 = y_1 + f_1$ ولكن ولكن $Y_1 = y_1 + f_1$ أصبح المقطع عادي.

سندرس الجزء (2) كمقطع شبه منحرف واحد.

$$A_2 = b_2 y_2 + m y_2^2$$

$$A_2 = b_2 y_2 + 1.5 y_2^2$$

$$P_2 = b_2 + 2 y_2 \sqrt{1 + m^2} = b_2 + 3.606 y_2$$

.(2) (1) التدفق الناتج في المقطع المركب ينتج عن جمع التدفقين في المقطعين $\mathbf{Q}_{\max} = \mathbf{Q}_1 + \mathbf{Q}_2$

$$Q_{\text{max}} = \frac{1}{n} \; A_1 \; R_{\text{h1}}^{\, 2/3} \; J^{1/2} + \frac{1}{n} \; A_2 \; R_{\text{h2}}^{\, 2/3} \; J^{1/2}$$

$$Q_{\text{max}} = \frac{\sqrt{J}}{n} \left(A_1 R_{\text{h1}}^{2/3} + \frac{1}{n} A_2 R_{\text{h2}}^{2/3} \right)$$

$$A_{1} R_{h1}^{2/3} + \frac{1}{n} A_{2} R_{h2}^{2/3} = 4.269$$
 (3)

تحتوي المعادلة على مجهولين y_2 و y_2 لذلك إما أن نفرض قيمة للعرض الاجمالي يحتوي المعادلة على مجهولين y_2 واستنتاج قيمة y_2 أو فرض قيمة y_2 واستنتاج عادة نفرض قيمة y_2 تتناسب مع الشروط المجاورة أو بفرض نسبة y_2 الى y_2 .

لنفرض الشرط

$$\mathbf{b}_2 = 6 \, \mathbf{y}_2$$

ينتج لدينا:

$$A_1 = 1.0152 + 2.49 y_2$$

$$P_1 = 2.926 m$$

$$A_2 = 6 y_2^2 + 1.5 y_2^2 = 7.5 y_2^2$$

$$P_2 = 6 y_2 + 3.606 y_2 = 9.606 y_2$$

بالتعويض في المعادلة (3) والتجربب نجد:

$$b_2 = 3.798 \text{m}$$
 $y_2 = 0.633 \text{ m}$

لنحسب السرعة في المقطع (2)

$$V_2 = \frac{1}{n} R_{h2}^{2/3} J^{1/2}$$

$$V_2 = \frac{1}{0.027} (0.4942)^{2/3} \sqrt{0.001} = 0.732 \text{ m/sec} < V_{max} = 0.9 \text{ m/sec}$$

$$f_2 = 0.5 V_2 \sqrt{y_2} = 0.291 m$$

لنتأكد من السرعة الوسطية في كامل المقطع

$$V_{\rm m} = \frac{Q}{A_1 + A_2} = \frac{5}{2.5914 + 3.0052} = 0.893 \,\text{m/sec} < V_{\rm max} = 0.9 \,\text{m/sec}$$

 $V_{min} < V \le V_{max}$:وتحقق السرعة

تطبيق (12-2)

قناة ذات مقطع شبه منحرف أفضلي معدل ميل الجوانب m=1 يُطلب أن يمر تدفق $14m^3/\sec$ من خلال ميل طولي للقناة 0.001 وتكون قيمة ثابت شيزي $14m^3/\sec$ في حالة عدم تبطين القناة. أما في حال تم تبطين القناة بالبيتون فإن قيمة هذا الثابت ستكون C=70 فإذا علمت أن كلفة المتر المكعب من الحفر عبارة عن ثلاث أضعاف كلفة تبطين المتر المربع فالمطلوب:

ما هو الأرخص: تبطين القناة أم لا؟

الحل: بما أن القناة ذات مقطع أفضلي نكتب:

$$\lambda = 2\sqrt{1+m^2} - m = 2\sqrt{1+1} = 1.828$$

$$A = \lambda y^2 = 1.828 y^2$$

$$P = 2\lambda y = 2 \times 1.828 \times y = 3.656 y$$

$$b = (\lambda - m) y = (1.828 - 1) y = 0.828 y$$

$$R_h = \frac{y}{2}$$

في حالة القناة غير مبطنة C=45 وبالتعويض في معادلة مانينغ للتدفق نجد:

$$Q = CA \sqrt{JR_h}$$

14 - 45 × 1 828 $v^2 \sqrt{0.5 v \times 0.6}$

$$14 = 45 \times 1.828 \text{ y}^2 \sqrt{0.5 \text{ y} \times 0.001}$$

$$y = 2.25 \text{ m}$$

في حالة تم تبطين القناة C = 70 وبالتعويض في معادلة مانينغ للتدفق نجد:

$$Q = C A \sqrt{J R_h}$$

$$14 = 70 \times 1.828 \text{ y}^2 \sqrt{0.5 \text{ y} \times 0.001}$$

$$y = 1.88 \text{ m}$$

$$b = 0.828 \times 1.88 = 1.55 \text{ m}$$

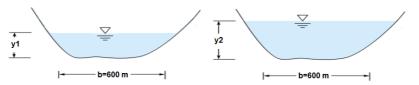
لنفرض أن K هي كلفة التبطين لكل متر مربع من سطح القناة ومن ثم فإن تكلفة حفر المتر المربع تصبح 3K ولندرس كلفة متر طولي واحد من القناة:

أولاً - في حالة القناة غير مبطنة تكون التكلفة للحفر:

$$1 \times A = 1 \times 1.828 \times (2.5)^2 = 9.254 \text{ m}^3$$

E = 3 K × 9.254 = 27.76 K

ثانياً - في حالة تبطين القناة تكون التكلفة للحفر:


$$1 \times A = 1 \times 1.828 \times (1.88)^{2}$$

E = 3 K ×1×1.828×(1.88)² = 19.38 K

E+E'=(6.87+19.38)~K=26.2~K وتصبح الكلفة الإجمالية للقناة المبطنة هي: E+E'=(6.87+19.38)~K=26.2~K وبالتالي كلفة القناة غير المبطنة أكبر من التكلفة الكلية للقناة المبطنة وتكون القناة المبطنة أقل كلفة.

تطبيق (13-2)

نهر عرض قاعدته b=600~m والميل الطولي لقاعه J=8~cm/Km وجد أن مادة J=8~cm/Km والسرعة القاع تبدأ بالحركة إذا وصلت قيمة التدفق إلى $Q=150\times 10^6~m^3/day$ والسرعة المتوسطة للجربان تتغير مع عمق الجربان تبعاً للعلاقة: $V=120~J^{2/3}~y$

والمطلوب حساب الميل الطولي للقاع الذي يكون عنده جهد القص المتوسط على القاع لتدفق مقداره m^3/day مساوياً له في الحالة الأولى.

نبدأ الحل بتحديد معطيات المسألة كما يلي:

$$\begin{split} &Q_1 = 150 \times 10^6 \ m^3 \, / \, day = 1736.11 \, m^3 \, / \, sec \\ &Q_2 = 600 \times 10^6 \ m^3 \, / \, day = 6944.4 \, m^3 \, / \, sec \\ &J_1 = 8 \times 10^{-5} \\ &J_2 = ? \\ &\tau_1 = \gamma \, R_h^{2/3} \, J_1 \\ &R_{h_1} = \frac{A}{P} = \frac{b \, y_1}{b + 2 \, y_1} \approx y \quad ; \quad b >> y \\ &Q_1 = A_1 \, V_1 = 600 \, y_1 \, (120 \, J_1^{2/5} \, y_1) = 1736.11 \\ &y_1 = 3.6 \, m \\ &\tau_1 = 10^3 \times 8 \times 10^{-5} \times 3.6 = 0.288 \, Kg \, / \, m^2 \\ &\tau_1 = \tau_2 = 0.288 \, Kg \, / \, m^2 \\ &\tau_2 = \gamma \, y_2 \, J_2 \\ &0.288 = 10^3 \times y_2 \, J_2 \cdots (1) \end{split}$$

من معادلة الاستمرار

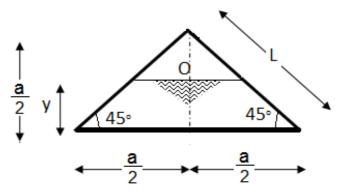
$$Q_2 = A_2 V_2 = 600 y_2 (120 J_2^{2/3} y_2) = 6944.4 \cdot \cdot \cdot \cdot \cdot (2)$$
$$y_2 = \frac{0.288 \times 10^3}{J_2}$$

نعوض في العلاقة (2) فنجد:

$$6944.4 = 7.2 \times 10^{4} \times y_{2}^{2} \times J^{2/3} = 5.972 J_{2}^{4/3}$$

$$J_{2} = 2.82 \times 10^{-5}$$

$$y_{2} = 10.2 m$$


ملاحظة: إذا لم يتم إهمال y أمام b فإننا نصل بالتقريب المتتالي إلى النتائج التالية: $J_2=2.95\times 10^{-5}$ $y_2=10.05~{\rm m}$

تطبيق (2-14)

قناة مثلثية مغلقة ذات مقطع موضح بالشكل، فإذا علمت أن الميل الطولي للقناة J=0.002 ومعامل مانينغ J=0.002

1- النسبة y/a ليمر في القناة جريان نظامي بتدفق أعظمي.

2- حساب هذا التدفق من أجل a = 5m ثم حدد نظام الجريان.

الحل

$$\mathbf{A} = \mathbf{A}_1 - \mathbf{A}_2$$

$$A_1 = \frac{2a}{2} \times \frac{a}{2} \times \frac{1}{2} = \frac{a^2}{4}$$

$$A_2 = 2(\frac{a}{2} - y)(\frac{a}{2} - y)\frac{1}{2} = (\frac{a}{2} - y)^2$$
 (1)

$$A = \frac{a^2}{4} - (\frac{a}{2} - y)^2 = ay - y^2$$

$$P = a + 2(L - L')$$

$$L = \sqrt{\left(\frac{a}{2}\right)^2 + \left(\frac{a}{2}\right)^2} = \frac{a}{2}\sqrt{2}$$

$$L' = \sqrt{\left(\frac{a}{2} - y\right)^2 + \left(\frac{a}{2} - y\right)^2} = \left(\frac{a}{2} - y\right)\sqrt{2}$$
 (2)

$$L - L' = \frac{a}{2}\sqrt{2} - (\frac{a}{2} - y)\sqrt{2} = \sqrt{2}(\frac{a}{2} - \frac{a}{2} + y) = y\sqrt{2}$$

$$P = a + 2y\sqrt{2}$$

$$R_h = \frac{A}{P} = \frac{ay - y^2}{a + 2y\sqrt{2}}$$

ليمر التدفق أعظمياً يجب أن تتحقق العلاقة التالية:

$$5 P dA - 2 A dP = 0$$

$$dA = a - 2 y$$

$$dP = 2\sqrt{2}$$

$$5(a + 2\sqrt{2}y)(a - 2y) - 2(ay - y^2)(2\sqrt{2}) = 0$$

$$5a^2 + 10\sqrt{2}ay - 10ay - 20\sqrt{2}y^2 - 4\sqrt{2ay} + 4\sqrt{2}y^2 = 0$$

نقسم على a²

$$16\sqrt{2}\frac{y^2}{a^2} - \frac{y}{a}(6\sqrt{2} - 10) - 5 = 0$$

$$22.63\frac{y^2}{a^2} + 1.5\frac{y}{a} - 5 = 0$$

$$\Delta = 2.25 - 4(22.63)(-5) = 454.85$$

$$\sqrt{\Delta} = 21.33$$

$$\frac{y}{a} = \frac{-1.5 + 21.33}{2 \times 22.63} = 0.438 \approx 0.44$$

$$\frac{y}{a} = \frac{-1.5 - 21.33}{2 \times 22.63} = -0.5$$
مرفوض

a = 5 من أجل

$$y = 0.44 \times 5 = 2.2 \text{ m}$$

$$A = a \text{ y} - \text{y}^2 = 6.16 \text{ m}^2$$

$$P = a + 2\sqrt{2} \text{ y} = 11.22 \text{ m}$$

$$R_h = \frac{A}{p} = 0.55 \text{ m}$$

$$Q = \frac{1}{n} A R_h^{2/3} \sqrt{J}$$

$$Q = \frac{1}{0.014} \times 6.16 \times (0.55)^{2/3} \times \sqrt{0.001} = 9.34 \text{ m}^3/\text{sec}$$

$$V = \frac{Q}{A} = \frac{9.34}{6.16} = 1.52 \text{ m/sec}$$

لتحديد نظام الجربان نحسب رقم فرود

$$T = 0.6 \text{ m}$$

$$y_{m} = \frac{A}{T} = \frac{6.16}{0.6} = 10.27 \text{ m}$$

$$F_{r} = \frac{V}{\sqrt{g \, y_{m}}} = \frac{1.52}{\sqrt{9.81 \times 10.27}} = 0.15 < 1$$
 جریان نهري

تطبيق (2-15)

يمر تدفق في قناة على شكل مثلث متساوي الساقين عرض قاعدتها a وجوانبها تصنع زاوية °45 مع القاع والمطلوب:

تحديد العلاقة بين عمق الماء d وعرض القاع a بالنسبة للحالات التالية:

1- حالة السرعة العظمي.

2- حالة التدفق الأعظمي.

وذلك باعتماد صيغة مانينغ مع ملاحظة أن: d < 0.5a

الحل

تعطى السرعة حسب مانينغ

$$V = \frac{1}{n} A R_h^{2/3} \sqrt{J}$$

$$A = \left(\frac{GH + BC}{2}\right) \times d$$

$$GH = BC - 2GC = a - 2d$$

بما أن
$$GC = d$$
 أو $\frac{d}{GC} = 1$ أو $\frac{GH}{GC} = tg45 = 1$ إذن:

$$A = \left\lceil \frac{(a-2d)+a}{2} \right\rceil \times d = (a-d) \times d$$

$$P = BC + BG + HC = BC + 2BG$$

$$BG = \sqrt{d^2 + d^2} = d\sqrt{2}$$

$$P = a + 2\sqrt{2} d$$

$$R_h = \frac{A}{P} = \frac{(a-d) \times d}{a + 2\sqrt{2} d}$$

وبالتالي بالتعويض بمعادلة مانينغ للسرعة نجد:

$$V = \frac{1}{n} \left[\frac{(a-d) d}{a + 2\sqrt{2} d} \right]^{\frac{2}{3}} \sqrt{J}$$

لنحصل على السرعة الأعظمية نكتب:

$$\frac{d}{dd} = \frac{J^{1/2}}{n} \left[\frac{(a-d) d}{a + 2\sqrt{2} d} \right]^{2/3} = 0$$

وبعد التبسيط تصبح لدينا العلاقة بالشكل التالي:

$$a^{2} - 2ad - 2\sqrt{2} d^{2} = 0$$

$$a = \frac{2d \pm \sqrt{4d^{2} + 8\sqrt{2} d^{2}}}{2} = \frac{2d \pm 3.91d}{2} = 2.955 d$$

وذلك بإهمال القيمة السالبة وبالتالي:

$$\frac{d}{a} = \frac{1}{2.955} = 0.338$$

من أجل الحصول على أقصى كمية للتدفق يكون:

$$Q = A \ V = (a - d) \frac{1}{n} \left[\frac{(a - d)d}{a + 2\sqrt{2} d} \right]^{2/3} \sqrt{J}$$

$$\frac{d}{dd} = \left[(a - d) \times d \times \frac{J^{1/2}}{n} \times \left[\frac{(a - d) \times d}{a + 2\sqrt{2} d} \right]^{2/3} \right] = 0$$

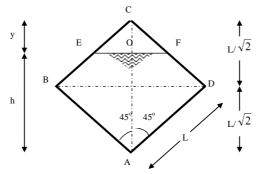
$$\frac{J^{1/2}}{n} \left[\frac{(a + 2\sqrt{2} d)^{2/3} \times \frac{5}{3} \times ((a - d) \times d)^{2/3} \times (a - 2d)}{(a + 2\sqrt{2} d)^{4/3}} \right]$$

$$\frac{((a - d) \times d)^{5/3} \times \left[\frac{2}{3} \times (a + 2\sqrt{2} d)^{4/3} \times 2\sqrt{2} \right]}{(a + 2\sqrt{2} d)^{4/3}} = 0$$

وبعد التبسيط نحصل على الآتي:

$$5 d^{2} - 1.5147 a d - 22.627 d^{2} = 0$$

$$a = \frac{1.5147 \pm d \sqrt{(1.5147)^{2} + 4 \times 5 \times 22.6274}}{10} = 2.284 d$$


$$\frac{d}{a} = \frac{1}{2.284} = 0.4378$$

وذلك بإهمال القيمة السالبة فيصبح:

تطبيق (16-2)

قناة مكشوفة مغلقة ذات مقطع موضح بالشكل المجاور يمر بها جريان منتظم بأعماق مختلفة وتدفقات مختلفة باعتماد معادلة مانينغ في حساب ثابت شيزي:

- 1- اثبت بطريقة رياضية أن التدفق الأعظمي يكون عندما تكون قيمة نسبة عمق الجريان h/L=1.259
- 2- اثبت بطريقة رياضية أن السرعة الاعظمية تكون عندما تكون قيمة نسبة عمق الجريان h/L=1
- h/L . والسرعة مع النسبة h/L من أجل ارتفاعات $L=\sqrt{2}$. والسرعة مع النسبة $L=\sqrt{2}$ وأن الميل h=0 بتزايد $L=\sqrt{2}$ إذا علمت أن $L=\sqrt{2}$ وأن الميل مائية متغيرة من $L=\sqrt{2}$ ومعامل خشونة مانينغ L=0.00 ثم قارن نتائج الطلب الأول مع المخطط.
 - 4- في أحد الأعوام تم الجربان في القناة بعمق نظامي مقداره h=1m والمطلوب:
 - ا الميل الحرج وطبيعة ميل القناة ونوع الجريان
- ب في موضى ما من مجرى القناة تم حدوث قفزة مائية وكانت قيمة الحمولة النوعية في المقطع الموافق للعمق المنضغط (الشلالي) $E_{S1}=2m$ وباعتبار القناة أفقية في منطقة القفزة احسب مايلي:
 - 2- ضياع الحمولة الناتج عن القفزة
- 1- العمقين المترافقين
 - 3- مردود القفزة

الحل:

BE =
$$L - \sqrt{2} y$$

EF = $2y$
P = $4L - 2y\sqrt{2}$
 $y = 2\frac{L}{\sqrt{2}} - h$

$$P = 4 L - 2\sqrt{2} \left(\frac{2 L}{\sqrt{2}} - h \right)$$

$$P = 4 L - 4 L + 2 \sqrt{2} \left(\frac{2 L}{\sqrt{2}} - h \right)$$

$$P = 2\sqrt{2} h$$

$$A = L^{2} - y^{2} = L^{2} - (\frac{4}{2}L^{2} - \frac{4}{\sqrt{2}}Lh + h^{2})$$

$$A = \frac{4}{\sqrt{2}}Lh - L^2 - h^2$$

حساب التدفق الأعظمي

(1)

(2)

$$Q = \frac{1}{n} A R_h^{2/3} \sqrt{J}$$

$$Q = \frac{\sqrt{J}}{n} A \frac{A^{2/3}}{P^{2/3}}$$

$$Q = \frac{\sqrt{J}}{n} \frac{A^{5/3}}{P^{2/3}}$$

$$\frac{dQ}{dh} = 0$$

$$d(\frac{A^{5/3}}{P^{2/3}}) = 0$$

$$5 P dA - 2 A dP = 0$$

$$\frac{dA}{dh} = \frac{4}{\sqrt{2}}L - 2h$$

$$\frac{dP}{dh} = 2\sqrt{2}$$

$$5 (2\sqrt{2} h) (\frac{4}{\sqrt{2}} L - 2h) - 2(\frac{4}{\sqrt{2}} L h - L^2 - h^2) (2\sqrt{2}) = 0$$
$$20\sqrt{2} h^2 + 40 L h - 16 L h + 4\sqrt{2}L^2 + 4\sqrt{2}h^2) = 0$$

$$-16\sqrt{2} h^2 - 24 L h + 4\sqrt{2}L^2 = 0$$

نقسم على $4\sqrt{2}L^2$ لنحصل على معادلة من الدرجة الثانية:

$$-4\left(\frac{h}{L}\right)^{2}+3\sqrt{2}\,\frac{h}{L}+1=0$$

 $\Delta = 34$

$$\frac{h}{L} = \frac{-3\sqrt{2} + \sqrt{34}}{-8} = -0.198$$
 مرفوض

$$\frac{h}{L} = \frac{-3\sqrt{2} - \sqrt{34}}{-8} = 1.259$$

$$V = \frac{1}{n} R_h^{2/3} \sqrt{J}$$

حساب السرعة الاعظمية:

$$\frac{dV}{dh} = 0$$

$$d(\frac{A^{5/3}}{P^{2/3}}) = 0$$

$$dAP-dPA=0$$

$$2\sqrt{2} h \left(\frac{4}{\sqrt{2}} L - 2h\right) - 2\sqrt{2} \left(\frac{4}{\sqrt{2}} L h - L^2 - h^2\right) = 0$$

$$-2\sqrt{2}\,h^2 + 2\sqrt{2}\,L^2 = 0$$

$$\frac{h^2}{L^2} = 1 \implies \frac{h}{L} = 1$$

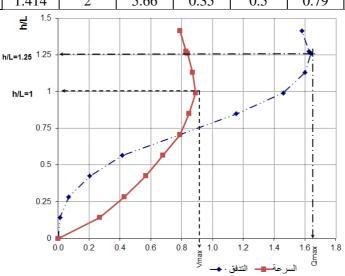
 $h{=}0$ من أجل ارتفاعات مائية متغيرة من h/L لندراسة تحولات قيم التدفق مع النسبة

إلى
$$\frac{2L}{\sqrt{2}}$$
 وبتعويض قيمة $\frac{1}{\sqrt{2}}$ في المعادلتين (1), (2) نجد:

من أجل:
$$h=0$$
 \rightarrow $h=\frac{L}{\sqrt{2}}$ من أجل:

$$A = \frac{1}{2}h \times 2h = h^2$$

$$P = 2\sqrt{2 h}$$


$$h = \frac{L}{\sqrt{2}} \rightarrow h = \frac{2L}{\sqrt{2}}$$
 : من أجل
$$A = -2 + 4h - h^2$$
 : يكون
$$P = 2\sqrt{2h}$$

$$V = \frac{1}{n} R_h^{2/3} \sqrt{J} = 1.581 R_h^{2/3}$$

$$Q = A V$$

ننظم الحسابات في الجدول الآتي:

						•	
h	$\frac{h}{L}$	A	Р	R _h	$R_h^{2/3}$	V	Q
0	0	0	0	0	0	0	0
0.2	0.141	0.04	0.57	0.07	0.17	0.27	0.011
0.4	0.283	0.16	1.13	0.14	0.27	0.43	0.069
0.6	0.424	0.36	1.7	0.212	0.36	0.57	0.205
0.8	0.566	0.611	2.26	0.28	0.43	0.68	0.415
1	0.707	1	2.83	0.35	0.5	0.79	0.79
1.2	0.849	1.36	3.39	0.4	0.54	0.85	1.156
1.4	0.99	1.64	3.96	0.414	0.56	0.89	1.46
1.6	1.131	1.84	4.52	0.407	0.55	0.87	1.601
1.78	1.259	1.95	5.03	0.387	0.53	0.84	1.638
1.8	1.273	1.96	5.1	0.38	0.525	0.83	1.627
2	1.414	2	5.66	0.35	0.5	0.79	1.58

من أجل
$$h=1m$$
 و $Q=0.079$ و $m=1$ والمقطع مثلثي لحساب الميل الحرج نحسب العمق الحرج (انظر الفصل الثالث)

$$y_c = \sqrt[5]{\frac{2Q^2}{g m^2}} = 0.66 m$$

$$Q = \frac{1}{n} A \, R_h^{2/3} \, \sqrt{J_c}$$

$$A_c = 0.44 \text{ m}^2$$
 $P = 1.87 \text{ m}$

$$P = 1.87 \, \text{m}$$

$$R_h = 0.236$$

نعوض فيصبح:

$$0.79 = \frac{0.44}{0.02} \times (0.236)^{2/3} \times \sqrt{J_c}$$

$$J_c = 0.009$$

وهو ميل بسيط الانحدار $J_{c} > J$ ونوع الجربان نهرى

حساب العمقين المترافقين للقفزة (انظر الفصل الخامس)

$$E_{S1} = y_1 + \frac{V_1^2}{2g} = y_1 + \frac{Q^2}{2g A_1^2} = y_1 + \frac{Q^2}{2g y_1^4}$$

$$E_{s2} = y_1 + \frac{0.032}{y_1^4} = 2$$

$$y_1 = 0.374 \text{ m}$$

لحساب العمق المرافق الثاني نلجأ لتابع القوى النوعية:

$$Y = \frac{Q^2}{g A_1} + A_1 \overline{h}_1 = \frac{Q^2}{g A_2} + A_2 \overline{h}_2$$

$$Y = \frac{Q^2}{g y_1^2} + y_1^2 \frac{y_1}{3} = \frac{0.064}{y_1^2} + \frac{y_1^3}{3} = 0.475$$

$$y_2 = 1.08 \,\text{m}$$
 وبالمثل نحصل على $\frac{0.064}{y_2^2} + \frac{y_2^3}{3} = 0.475$ وبالمثل نحصل على وبالمثل نحصل على المثل المثل المثل نحصل على المثل المثل

ضياع الحمولة:

$$E_{s1} = y_2 + \frac{0.032}{y_2^4} = 1.104$$

$$\Delta E_{s} = E_{s1} - E_{s2} = 0.896$$

$$\frac{\Delta E_s}{E_{s1}} = \frac{0.896}{2} = 0.448\%$$

مردود القفزة

$$\eta = \frac{y_2 - y_1}{\frac{V_1^2}{2g} - \frac{V_2^2}{2g}} = \frac{0.706}{\frac{Q^2}{2gA_1^2} - \frac{Q^2}{2gA_2^2}}$$
$$\eta = \frac{0.706}{\frac{0.032}{y_1^4} - \frac{0.032}{y_2^4}} = 0.44\%$$