

دليل أعمال تشغيل و إدارة محطات مياه الشرب

مقتبس من البرنامج التدريبى لمشغلي محطات تنقية مياه الشرب المستوى (د)

تم وضع هذا المرجع علي أساس المهارات و المعارف اللازمة لمشغلى محطات مياه الشرب و قد تم إعداده بواسطة مشروع دعم قطاع المياه و الصرف الصحي الممول من الوكالة الأمريكية للتنمية الدولية

دليل أعمال تشغيل و إدارة محطات مياه الشرب مقتبس من البرنامج التدريبي لمشغلي محطات تنقية مياه الشرب المستوى (د)

مشروع دعم قطاع مياه الشرب والصرف الصحي مول من الوكالة الأمريكية للتنمية الدولية

()
()
()

()	
(Shor	e Intake)
	()
	()

.....

()
*
()

······································
()

()
()
······································

.....

• • • • • • • • • • • • • • • • • • • •					
					•
	• • • • • • • • • • • • • • • • • • • •				
	• • • • • • • • • • • • • • • • • • • •		(/)
•••••	• • • • • • • • • • • • •			• • • • • • • • • •	
•••••					
					()
	• • • • • • • • • • • • •	• • • • • • • • • • •		• • • • • • • • • •	()
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		•••••	
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••
				•••	
	• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	•••
	• • • • • • • • • • • • • • • • • • • •				()
	•••••			• • • • • • • • • • • • • • • • • • • •	•••••

.....

()

الفصل الأول

مشغلو محطات المياه

:()

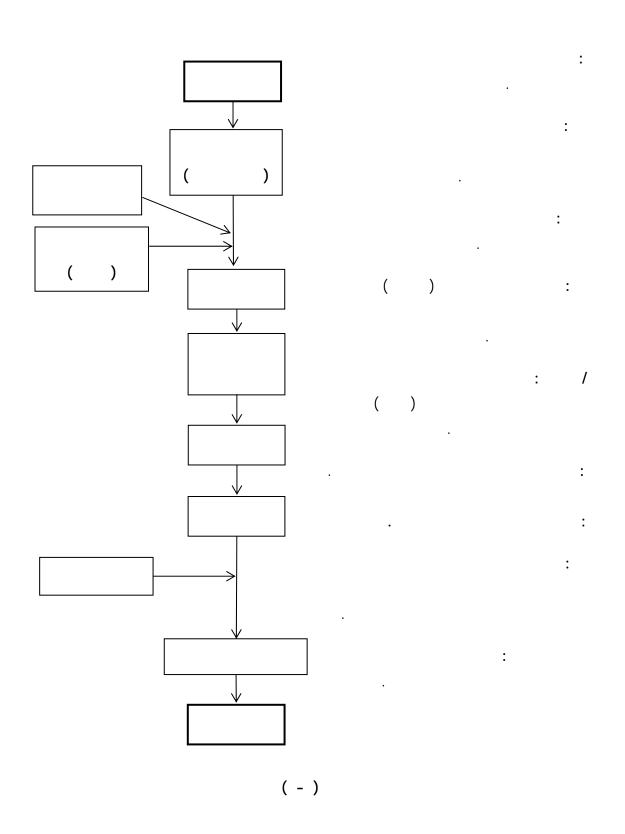
•

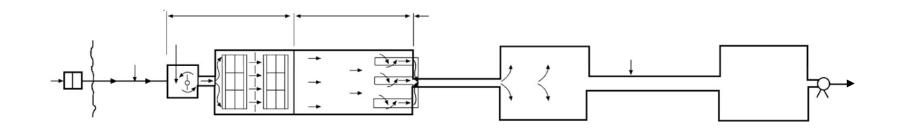
•

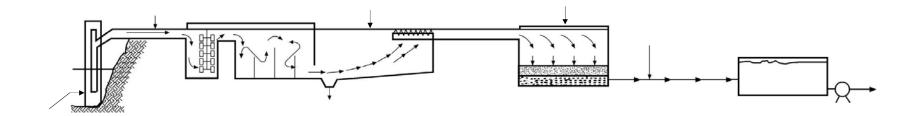
•

•

•


•


•


)

.(

(-) (-)

(-)

مشروع دعم قطاع مياه الشرب والصرف الصحي كيمونكس الدولية : : :

.

•

)

برنامج اعتماد مشغلي ومحللي مرافق مياه الشرب والصرف الصحي الفصل الأول- ١٩

.

(

.

الفصل الثاني

المياه ومصادرها

()

•

•

•

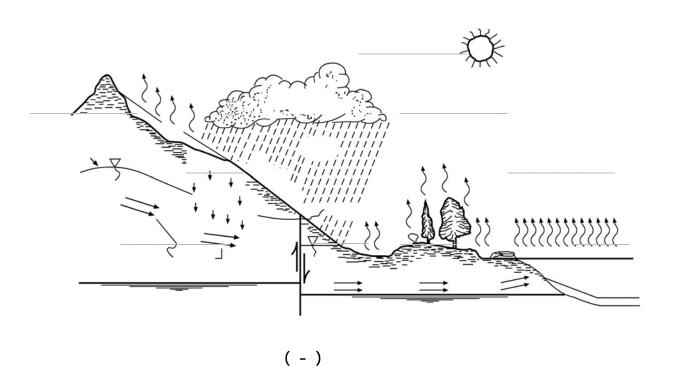
•

•

•

.

·


: - . - . - .

: :

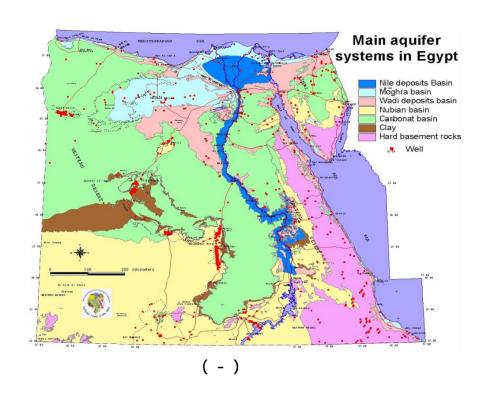
.

.

.(-)

كيمونكس الدولية

مشروع دعم قطاع مياه الشرب والصرف الصحي


%

%

%

الفصل الثاني- ٣٠

(-)

(Phreatic Aquifer)

.(Leaky Aquifer)

()

.(Confined Aquifer)

:

.(

· :

· :

. :

. :

.

.

:

:

:

:

(pH)

)

. pH

pН

.

الفصل الثاني- ٣٦

برنامج اعتماد مشغلي ومحللي مرافق مياه الشرب والصرف الصحي

: •

.

.

.

()

:()

•

•

•

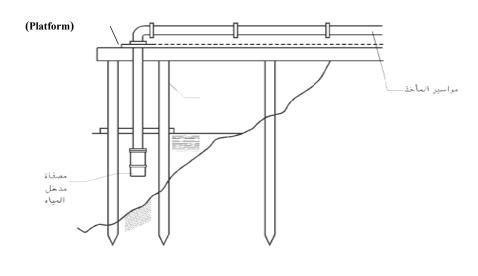
•

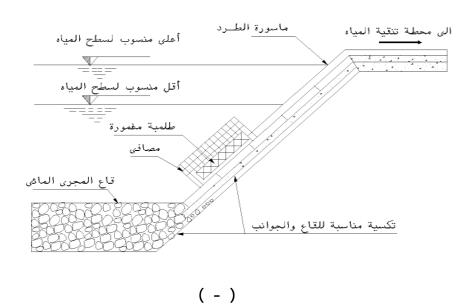
·

:

•

•

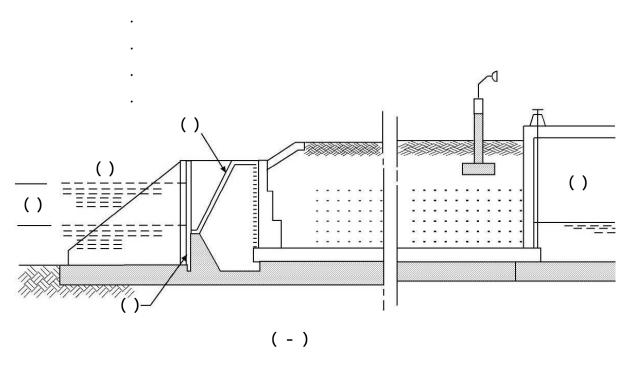

•

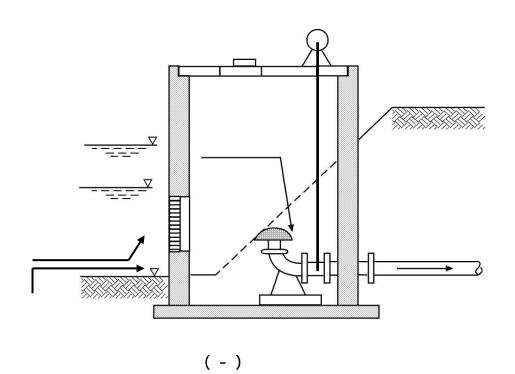

.(

.()

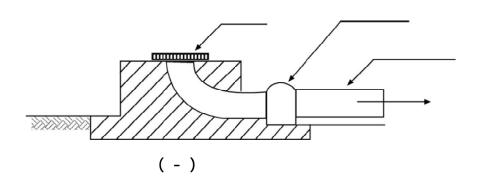
:(Pipe Intake) -

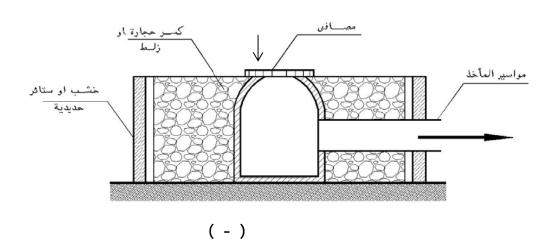
(-) (-)

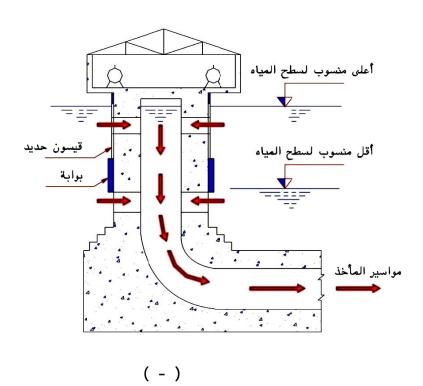



```
:(Shore Intake)
-)(-)
                 :(Submerged intake)
- )
                                      ( - ) (
                 :(Emergency intake)
                     :(Tower Intake)
                                      .( - )
```

كيمونكس الدولية


مشروع دعم قطاع مياه الشرب والصرف الصحي




مأخذ الشاطئ (Shore Intake)

نموذج آخر لمأخذ الشاطئ (مغمور)

.(Mechanic – Rotating)

(Intake Conduit)

/ –

القصل الرابع

الترويب والتنديف

:()

•

•

•

•

•

•

•

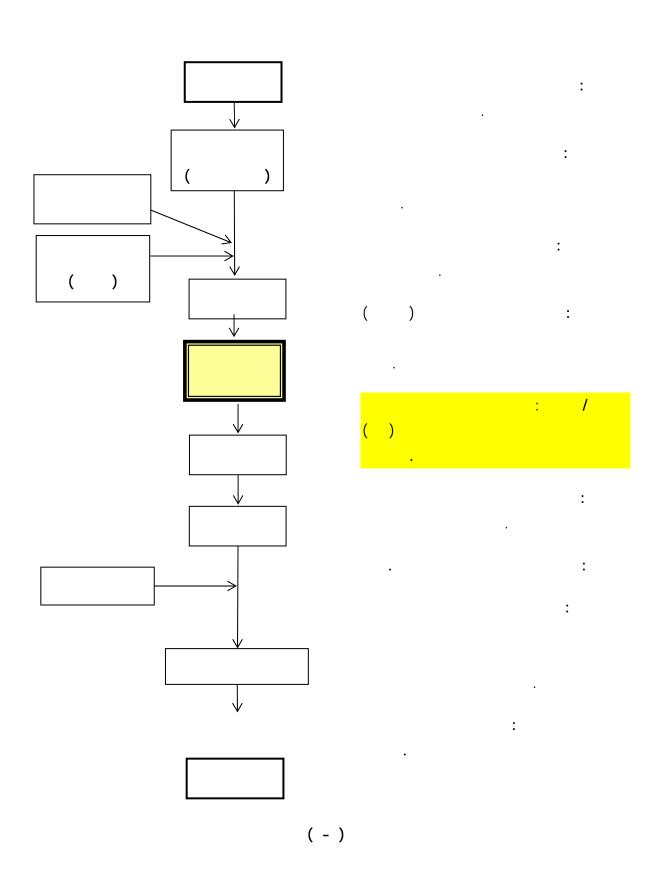
•

•

.

)

()


ı

.

.

Non-Settleable

.Colloidal

(Non-Settleable)

()

```
مشروع دعم قطاع مياه الشرب والصرف الصحي
كيمونكس الدولية
```

()

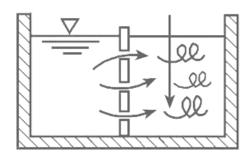
.

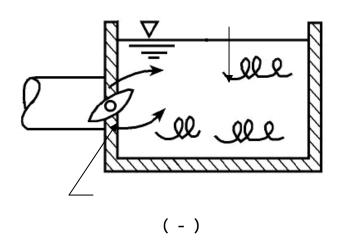
	X	
	X	
	X	
	X	
X	X	
X	X	
X	X	
X	X	
X		
X		
X		
X		
X		

;

()

.

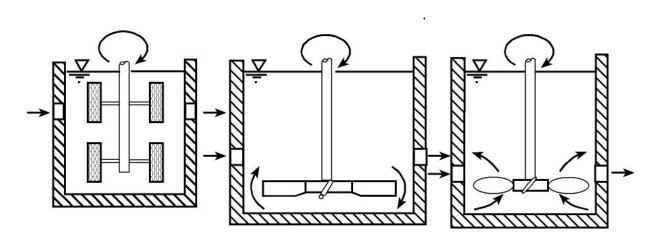

.

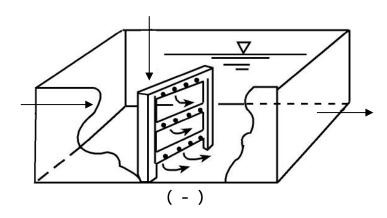

·

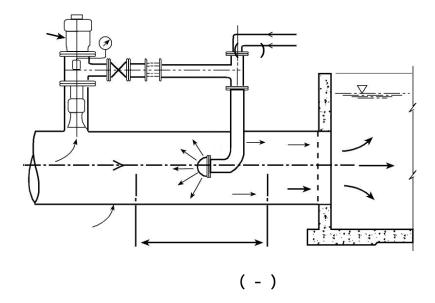
()

.

.




(


•

(-)

(-)

Source: Water Treatment Plant Design, AWWA, ASCE, Fourth Edition 2005

(Jet

orifice)

.

.(

:

.()

•

•

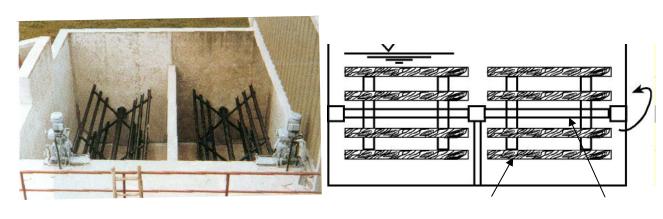
.

.(

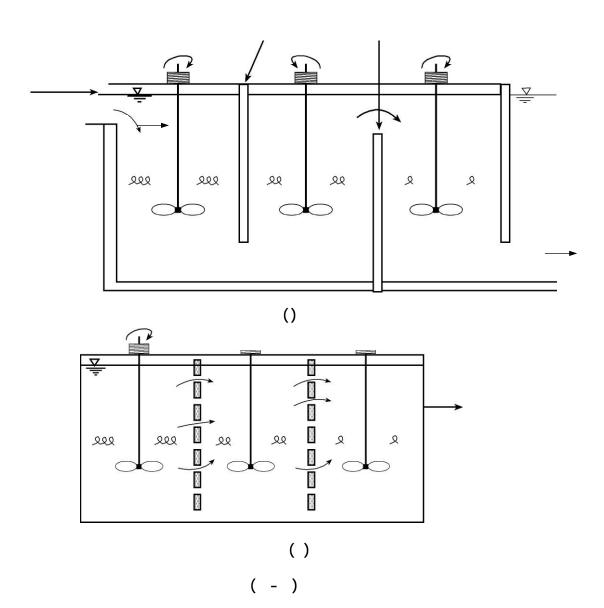
.

. ()

الفصل الرابع - ٦٦


) .

()


(-)

(Baffles)

" .(Orifice)

)

(Non-Settleable)

(Trihalomethanes)

:

·

•

.(

.

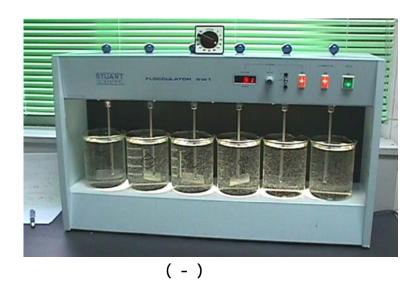
.

(

```
مشروع دعم قطاع مياه الشرب والصرف الصحي
كيمونكس الدولية
                                     )
            (Short circuit)
              )
                                           .(
                                  برنامج اعتماد مشغلي ومحللي مرافق مياه الشرب والصرف الصحي
الفصل الرابع - ٧٣
```

:

(Short circuit)


.

الفصل الرابع - ٧٥

•

(-)

(

•

.

:

.

.() .

•

·

:

			1
ı	ı	,	()

•

.

·

.

.

.(

.()

كيمونكس الدولية		حي	ىرف الص	الشرب والص	مم قطاع مياه	مشروع د=
)						
	.(
			•			
/						

. /

:

()

.

,

%) %

.

(/)

.(/)

الفصل الخامس

الترسيب

:()

•

•

•

•

ullet

•

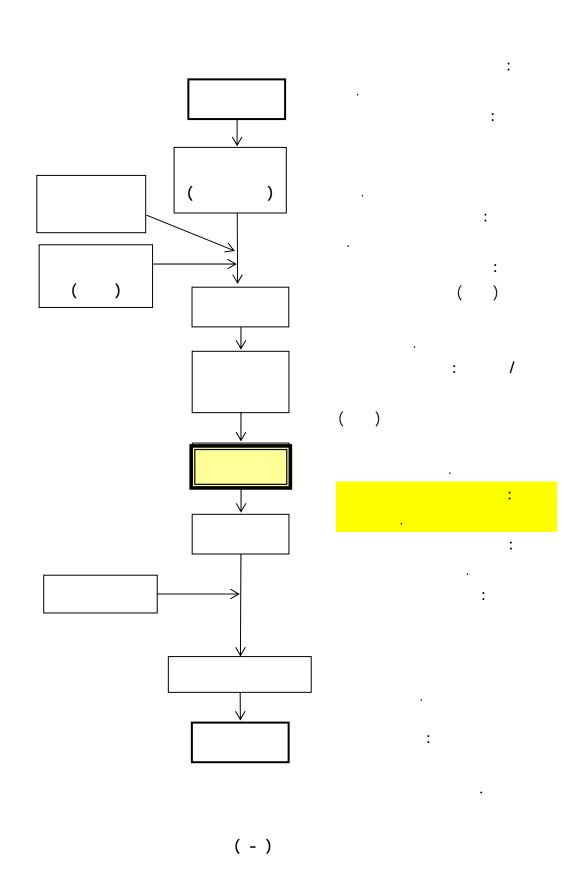
(,)

() . (-) .

() .

) (-

(-)


·

-

()

. ()

•

الفصل الخامس - ٨٧

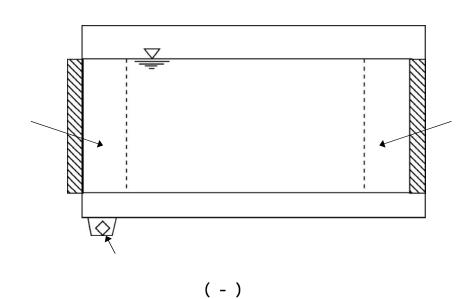
-

.

-

:

(Baffles)


()

·

(-) :

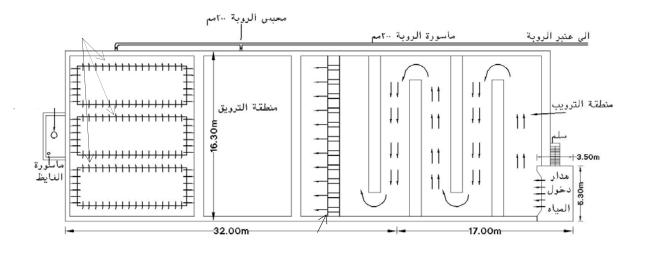
.

.

.

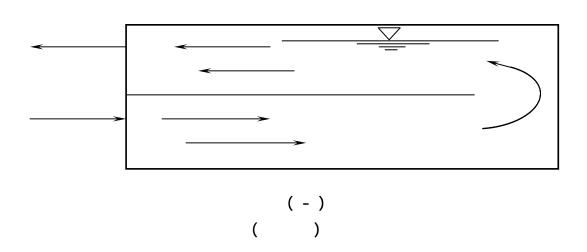
برنامج اعتماد مشغلي ومحللي مرافق مياه الشرب والصرف الصحي الفصل الخامس - ٩٠

(-)

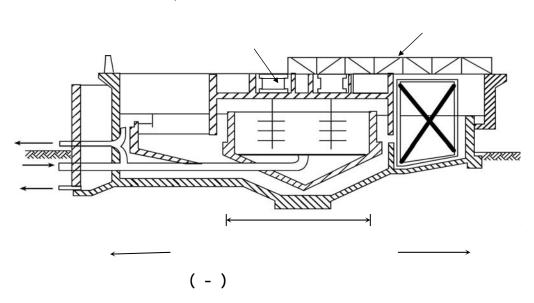

(-)

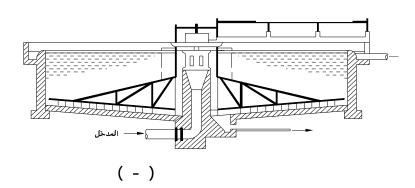
.

_


.

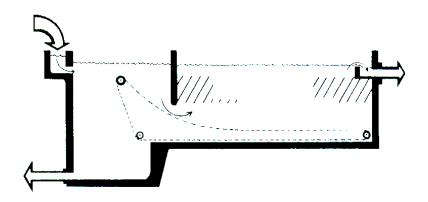
.

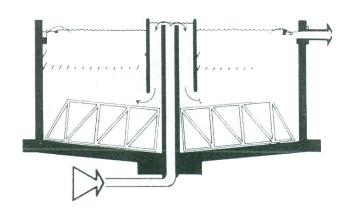

(-)


() -

: -

(-)

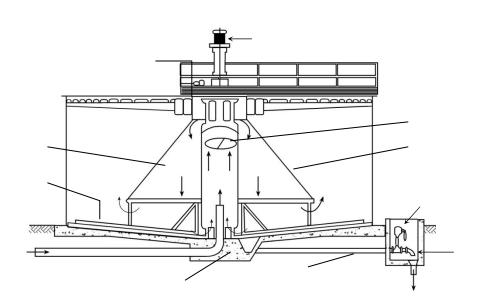


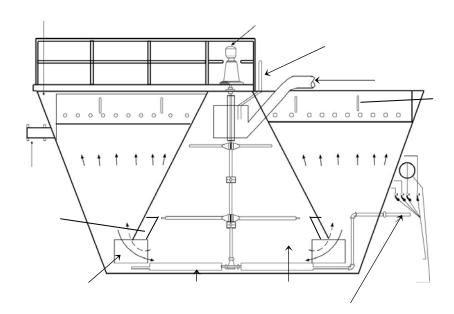


-

()

(-)





(Sludge Blanket) (

.

.

(-)

(Sludge Blanket)

•

.

(Short Circuits

) .

(

%

.%

% .

%

.

)

·

ı

).

.(

)

مشروع دعم قطاع مياه الشرب والصرف الصحي كيمونكس الدولية

·

(

.

			-
	*	*	*
	*	*	*
			*
-			
-			
-			
-			
			-
	*	*	*
	()	*	*
*	*	*	() *
*	()		
*			
			-
-	*	*	*
-	*	*	*
	()		

-								
_			*	*				
:	()	*	*				
*								
()								
*								
				-				
-		*	*	*				
				*				
- -	(*	*					
_	(,		*				
		*	*					
	()		*				
		*	*					

: .

لقصل السادس

الترشيح

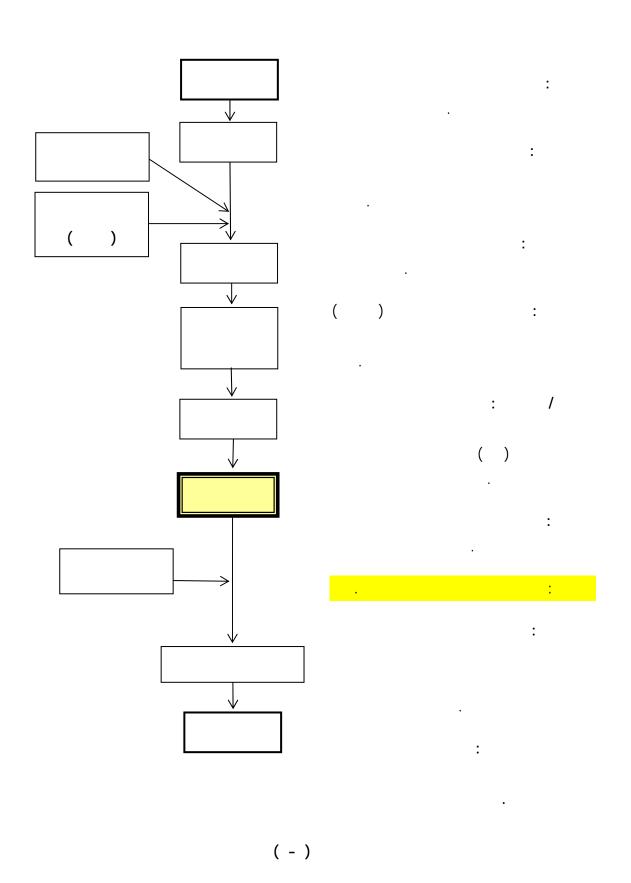
()

•

•

•

•

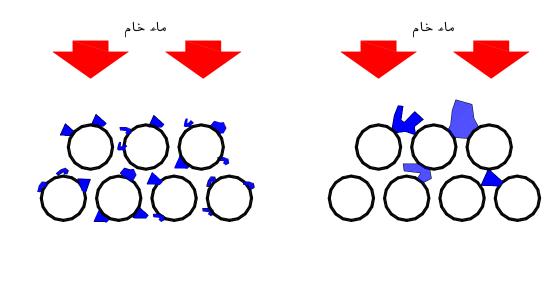

•

ullet

•

•

•



الفصل السادس - ١٠٨

(Filtration)

.(film)

"Adsorption

•

•

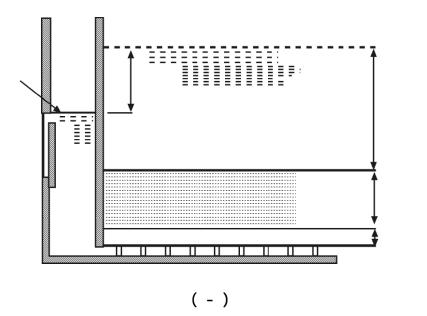
.

: *

: *

. *

.


(Slow Sand Filter)

-. / /

(-)

-

(-)

•

•

ullet

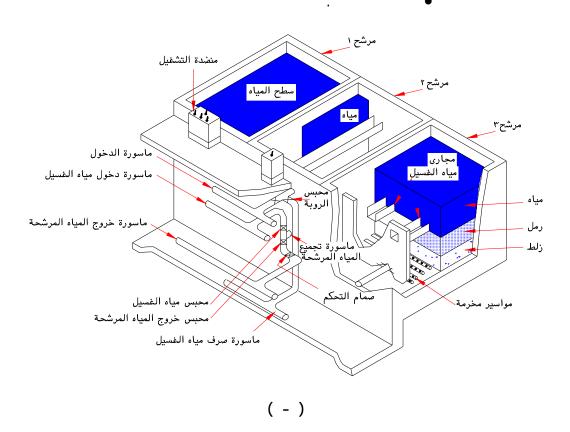
•

•

)

(

(Rapid Sand Filters)


:

-

•

.

:(-)
. ()
. (M-Block)

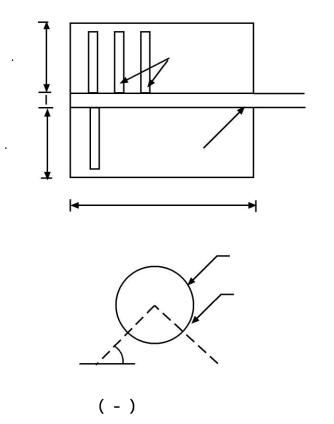
()
, - ,
, (
, . , . ,

%
) %
(
, . , . ,

%
()
, . ()

.

.


•

(M-Block)

: -

,(-)

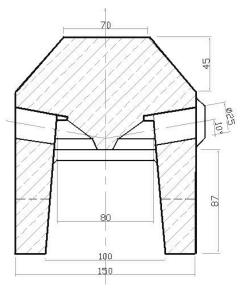
. -

) - - (.(-) كيمونكس الدولية

مشروع دعم قطاع مياه الشرب والصرف الصحي

-

. - .


%

```
)
  / / -
N
                      M
                  .(
   % -
```


(-)

M (-)

(M-Block)

:

(Regulating Value)

(Loss of head)

(Turbidity Meter)

(Flow meter)

(Operating Table)

:

(Inlet Valve) •

(Outlet Valve) •

(Waste Valve) •

(Wash Water Valve) •

(Air Blower)

(Rewash) •

()

.(Waste)

-

.

.

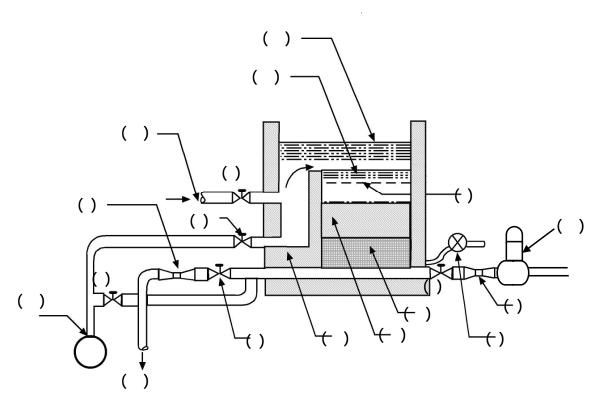
(-)

()

-)

.

()()

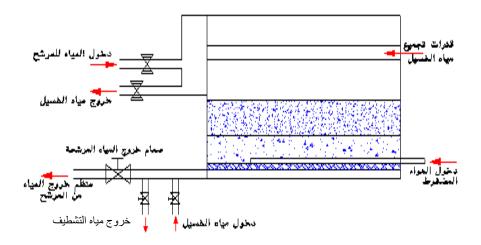

·

; ()()() ()()

.

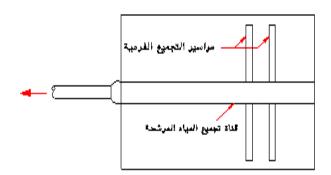
() () () () (—)

. (–)

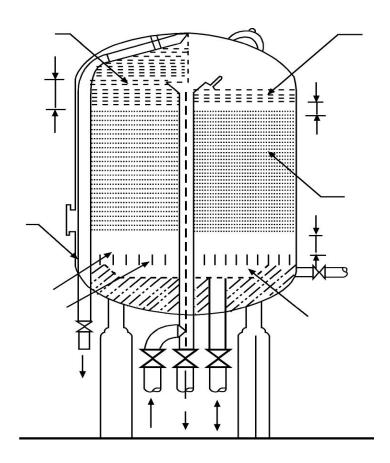

() - .

() () .() () () .() .() .() () () ()

•


(-)

•


مسقط أفقى لقنوات مياء المسيل


```
مشروع دعم قطاع مياه الشرب والصرف الصحي
كيمونكس الدولية
                   (Pressure Filters)
             (
(Compact Units)
        / /
                            / /
                               .( )
```

.

•

· -

-

- . -

-

<u>-</u>

- . . -

h			
	-	-	(/ /)
	-		
			()
-	×	×	
-			
	. – .	-	()
	يستخدم الماء والهواء		
	-	-	(%)

القصل السابع

التطهير

:()

(Microorganisms)

(Pathogens)

(Disinfection)

(Pathogens)

(Sterilization)

:

*

*

*

*

) (Ozone O₃) (Pathogens)

()

.

·

ı

/ , ° /

.

° , -)

كيمونكس الدولية

مشروع دعم قطاع مياه الشرب والصرف الصحي

•

_

. ()

.

% NaOCl

() $\text{CaCl}_2\text{Ca}(\text{OH})_2 \qquad)$ $\text{(Ca}(\text{OCl})_2\text{Ca}(\text{OH})_2$

%

.

: "Pre-Disinfection"

.

.

.

•

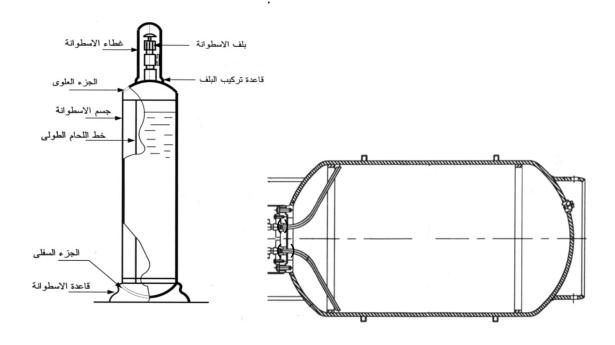
.

•

•

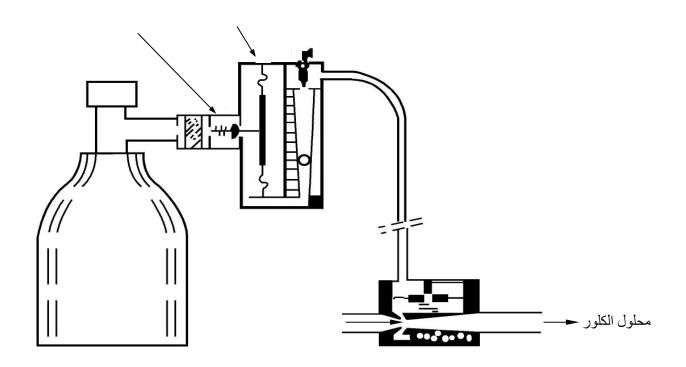
(Post-Disinfection)

·

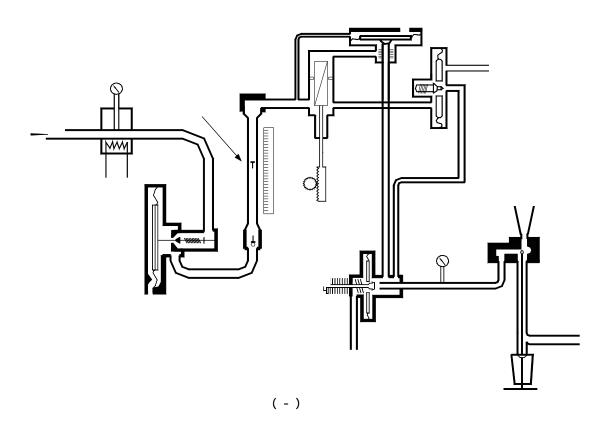

·

. /

° .(°)


برنامج اعتماد مشغلي ومحللي مرافق مياه الشرب والصرف الصحي الفصل السابع - ١٣٩

()



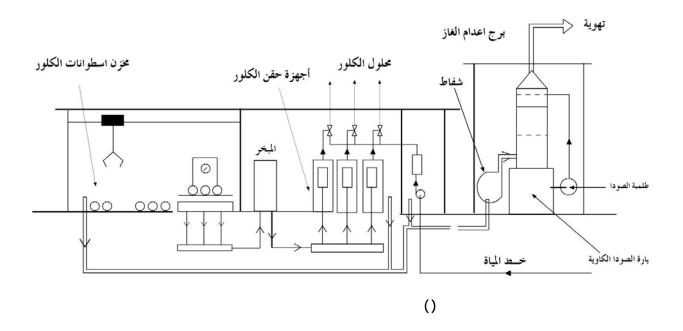
الفصل السابع - ١٤١

. (-)

(-) جهاز الكلور المدمج

1

.


: •

.%

- ()
- ()
 - . ()

(-)

.

(-)

:()

•

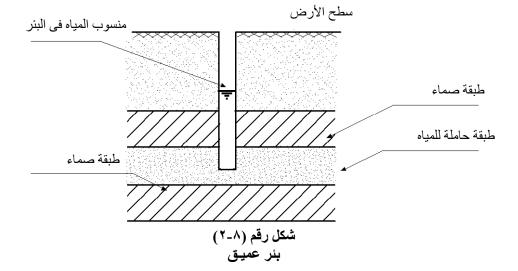
•

ullet

ullet

•

•

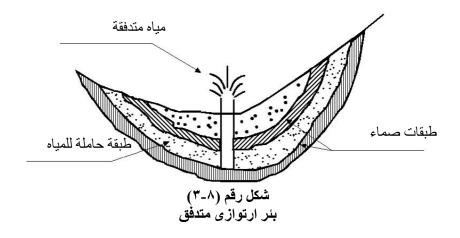

•

()

.

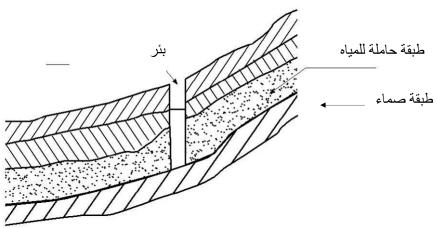
()

منسوب المياه الجوفية سطح الأرض طبقة حاملة للمياه طبقة صماء طبقة صماء شكل رقم (۸-۱)



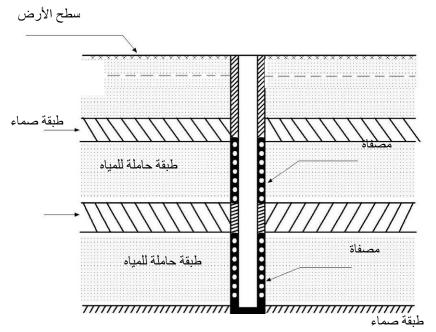
:

: -


_

.(-)

: - 4


.(-) .

شکل رقم (۸-٤) بئر ارتوازی غیر متدفق

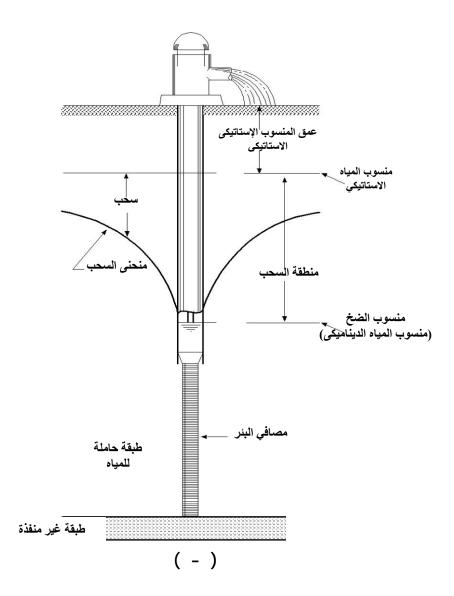
: _~

.(-) .

شکل رقم (۸-٥) بئر متعدد الطبقات

•

: .


.

.

(Stainless Steel)

:

uPVC

ı					
				:	
Vertical ()			_
				.Turbine Pumps	
Submersible	()		-
				.Pumps	

(-)

.

شكل رقم (٨-٧) طلمبة الأعماق التربينية والطلمبات الأفقية بعمليات الآبار

(Vertical Turbine Pump "Multistage")

(-)

```
1.
       2.
       3.
       4.
       5.
       6.
                    ( )
       7.
       8.
       9.
       10.
       11.
       12.
        13.
                           (
                                    )
        14.
        15.
        16.
        17.
        18.
       19.
       20. (
                    )
-20
-21
       21.
       22.
```

(-)

Suction Strainer **Suction Case** Discharge Case Bowls (Pump Shaft Line shaft ()) Discharge head (

Well casing vent

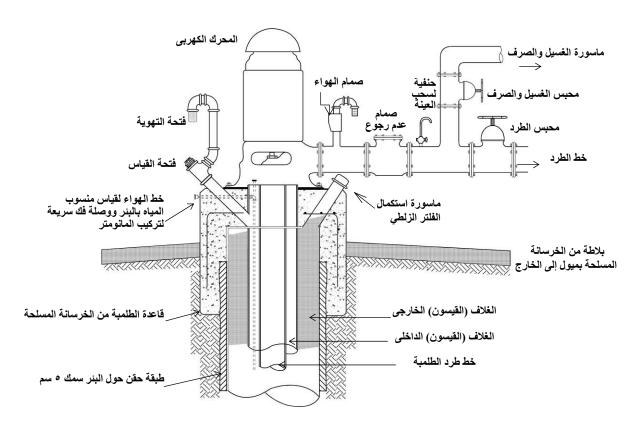
Gravel Filter Tube

Sounding tube .

Pump pedestal

Pump motor base seal

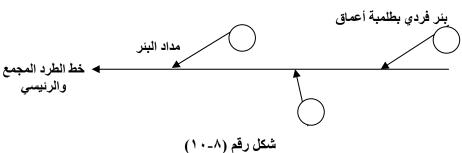
Sampling tap .


Air ()

release-vacuum breaker

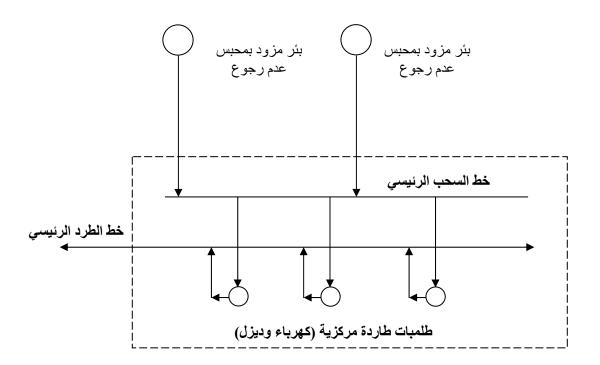
(Foot-valve)

Wash and drain valve


. (-)

شكل رقم (٨-٩) قطاع في تركيبات بنر المياه الجوفية

:


.(-)

شكل رقم (٨-١٠) النظام الأول لتشغيل الآبار

.

.(-)

شكل رقم (٨-١١) النظام الثاني لتشغيل الآبار

(Septic

(Cesspit) () tank)

(Force main) (Sewers)

. ...

.

.

(Draw down)

•

•

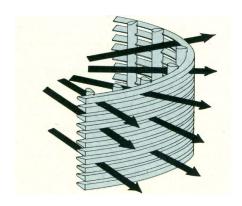
uPVC

(Stainless steel)

•

() .

.

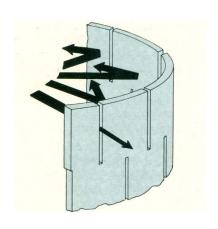

uPVC .

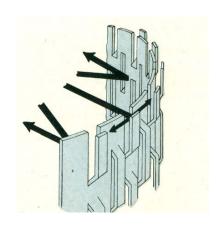
(-)

(PVC)

.

•


٣. مصافي ذات مشقبيات مستمرة


٢. مصافي ذات مشقبيات طولية

١. مصافي مثقبة

٦. مصافى ذات مشقبيات قنطرية

٥. مصافي ذات مشقبيات طولية

٤. مصافي ذات فتحات تهوية

(-)

()

لىة	الده	کیمو نکس
Ų.	y	ـــِــر ــــر

مشروع دعم قطاع مياه الشرب والصرف الصحي

(%) ()

·

:

: :

.

-. -

.

: :

.

•

; -

. -

(Hardness of Water)

•

.(-)

(-)

/ -	()	
/ –		
/ -		
/		

```
:(Cations)
:(Anions)
```

```
)
                .(precipitation Chemical
.(Ion Exchange
```

(Lime & Soda Ash)

•

+ +

-

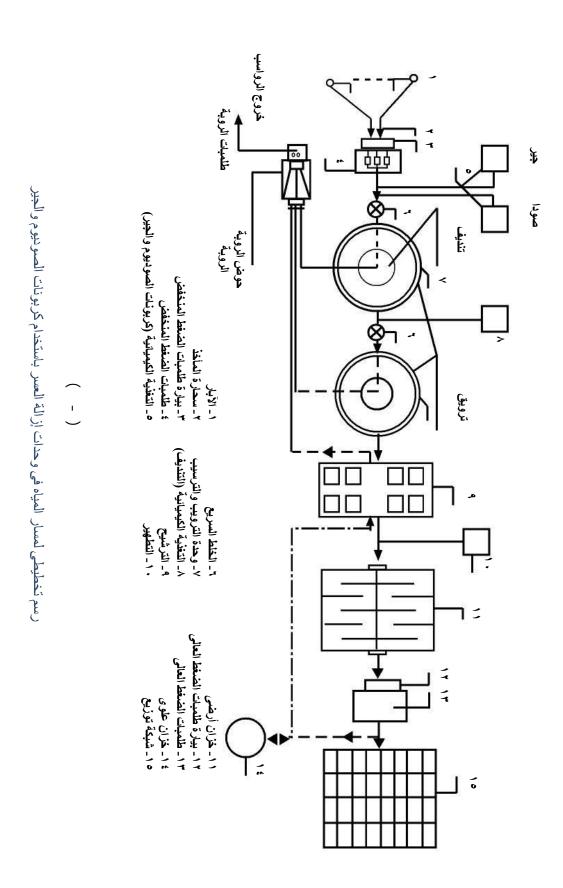
.

(-)

_ -

_

- -

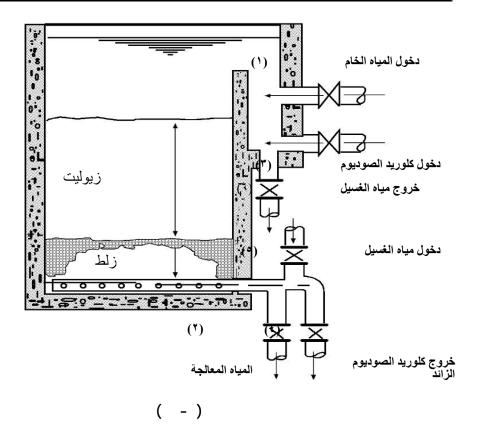

Ion)] :[(Exchange

. (Na Al Si O₄)

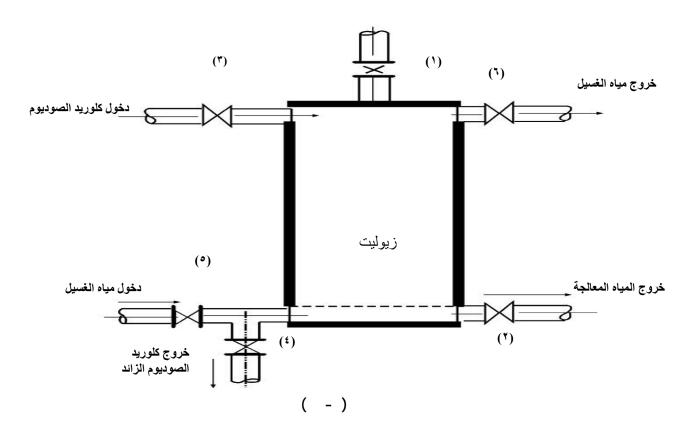
:

+ . +

_ _ _

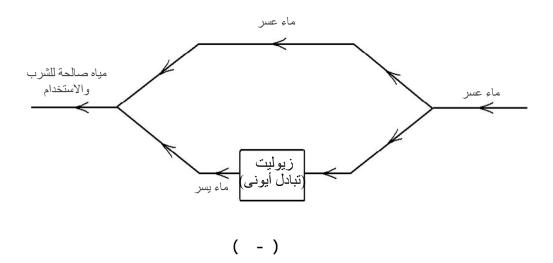


()


.()

. (-)

(-)



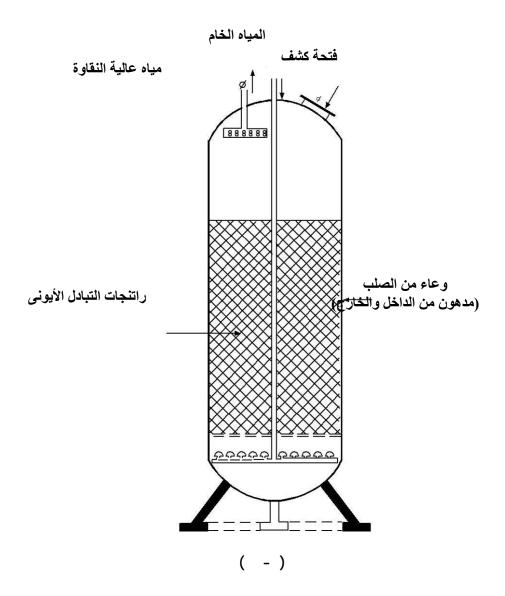
دخول المياه الخام

					:	
•					-	
					_	
	•				-	
				_	_	
•						
			•		_	
					<u>:</u>	
_					_	
	,	`				

. () -

:

.


(Exchange Resin Cation)

•

.

-.(-)

. / -

(Iron & Manganese)

:

. -

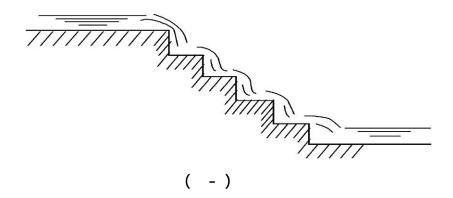
الفصل الثامن - ١٨٢

برنامج اعتماد مشغلي ومحللي مرافق مياه الشرب والصرف الصحي

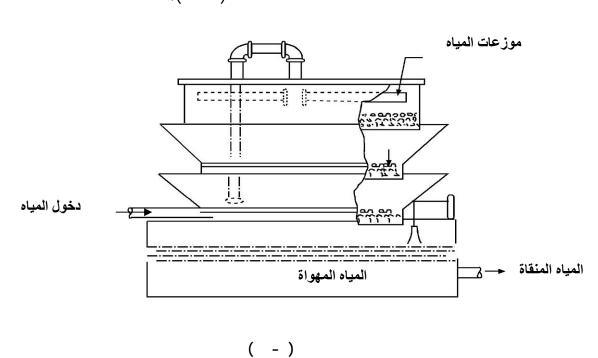

. -. -

:(Spray Nozzles)

.


•

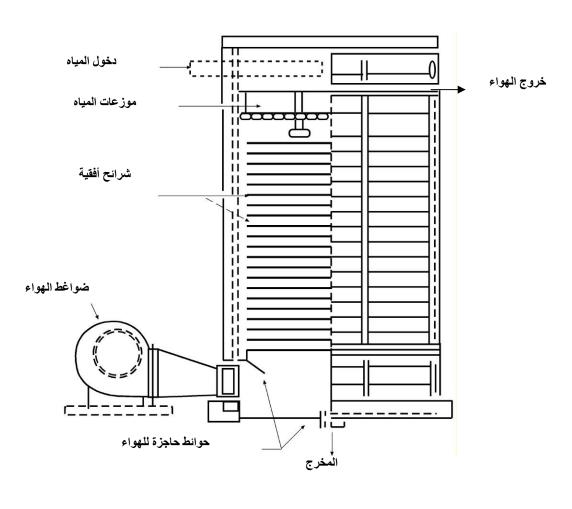
.


:(Cascade Falls) :

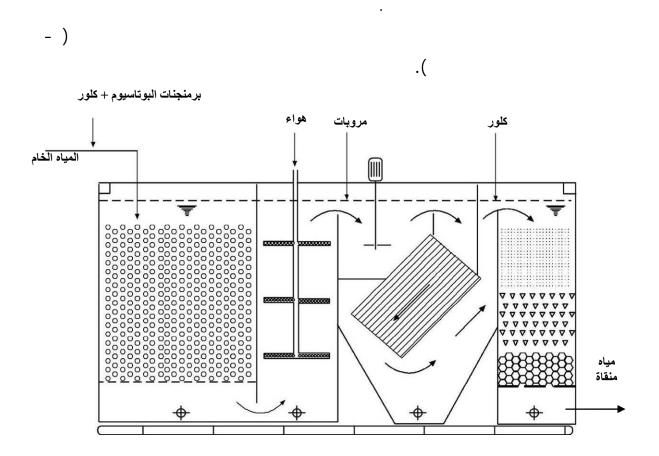
.((-))

ثالثًا: استخدام الهوايات ذات الصواني المتعددة (Multiple Tray Aerator):

(Ceramic Balls)



:(Compressed Air) :


. -

•

.(-)

(-)

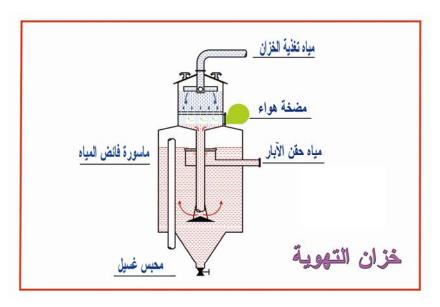
شكل رقم (٨-٢٢) وحدة إزالة الحديد والمنجنيز

:BURMAN

(NMCP) (AWS)

.BURMAN

BURMAN


خزن النهوية خزن النهوية عداد تصرف سياه الحان عداد تصرف سياه الحان خط المحتب الحاد تصرف المحتب الحاد تصرف المحتب الحاد تصرف المحتب الحاد المحتب المحتب الحاد المحتب الحاد المحتب ا

شكل (٨-٢٣) نظام الإزالة للحديد والمنجنيز باستخدام طريقة بيرمان

: .

_

(-)

شكل رقم (٨-٢٤) خزان التهوية يستخدم أثناء عملية الحقن

: ...

:

•

/ . . /

:

()

.

•

) .(

•

.
)

•

(

.

(-)

(-)

%

•

Burman

Burman

:

كيمونكس الدولية	روع دعم قطاع مياه الشرب والصرف الصحي
1	•
.(
	•
	•
%	•
. / .	•

/ . - .

. (-)

(-)

الفصل التاسع

وحدات تنقية المياه النقالي

:()

- •
- •
- •
- •
- •
- •
- •
- •

(Compact Units)

(/) /

-

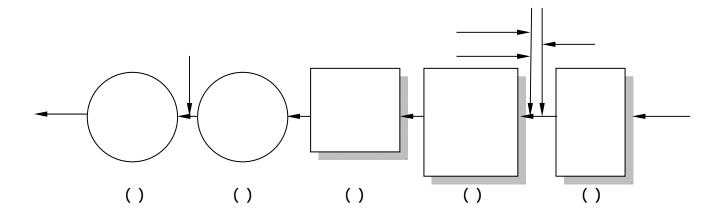
.

(-)

(-)

: .

п п .


.(Pressure Filters)

.

: (-) -

. --

(-) مخطط لوحدة تنقية مياه نقالي

•

:

•

يوضح المثال التالى المواصفات الفنية لبعض وحدات التنقية النقالي والمصنعة بمصر :(% % ,

```
= %
                 %
                   .( / )
.( /
```

برنامج اعتماد مشغلي ومحللي مرافق مياه الشرب والصرف الصحي

كيمونكس الدولية

الفصل التاسع - ٢٠٢

مشروع دعم قطاع مياه الشرب والصرف الصحي

كيمونكس الدولية مشروع دعم قطاع مياه الشرب والصرف الصحي (Compact Unit)

-

.

-

_

_

-

-

-

-

_

-

-

_

- () - ()

-

, -

--

-.

. -. -. -

.
(Compact Unit)

:

. •

.

•

.

```
مشروع دعم قطاع مياه الشرب والصرف الصحي
   كيمونكس الدولية
       (0)
                                    .(
(0)
                                                     )
                                                (
```

.

·

.

.

:

.(/ /%) /, . .() .

كيمونكس الدولية

مشروع دعم قطاع مياه الشرب والصرف الصحى

•

.(-) .

.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

:

:

•

•

.

:

.(

•

:

.(:() •

•

; •

: • .()

برنامج اعتماد مشغلي ومحللي مرافق مياه الشرب والصرف الصحي الفصل التاسع - ٢١٣

: •

•

: •

; •

:

:() • . -

-

· :

•

•
.

· • %

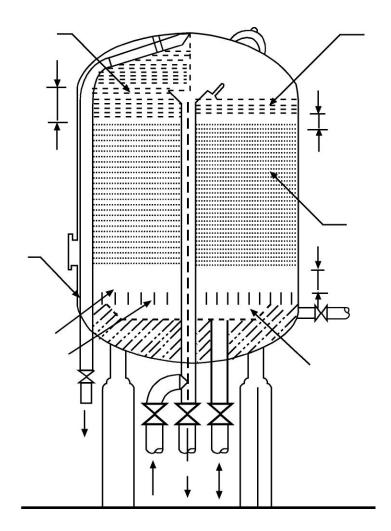
%

. ()

--

. -

.


.

-

_

.

. (-)

. -

. - .

- . -

. -

. - -

- . -

(-)

•

•

•

•

. /

•

. /

.

- •
- •
- •
- •
- •

:

- •
- •
- •
- •
- •
- •

•

- •
- •
- •
- •

.

•

•

•

•

•

•

· •

•

.(

:

'

•

•

•

:

1

) ()

.(/) /

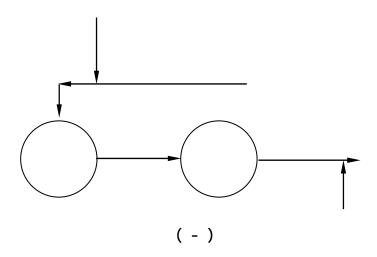
:

) / .(-)

: .(

-

•


% -

•

.

() -

.

))

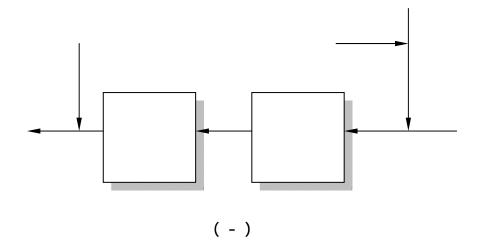
In-) (

.(line Mix

(Rough/Contact Filter)

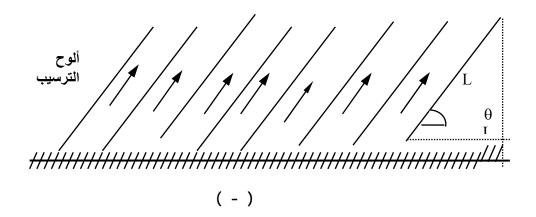
:

%


:

.

.


(-) : **(**

+) -.(

كيمونكس الدولية			شروع دعم قطاع مياه الشرب والصرف الصحي				
		:				-	
()					
	:()		: :	-		
			·				
				()		

(-)

N =

L =

= B =

 $N * L * \cos \theta * B =$

:______

الفصل العاشر

تشغيل محطات تنقية مياه الشرب

:()

•

•

•

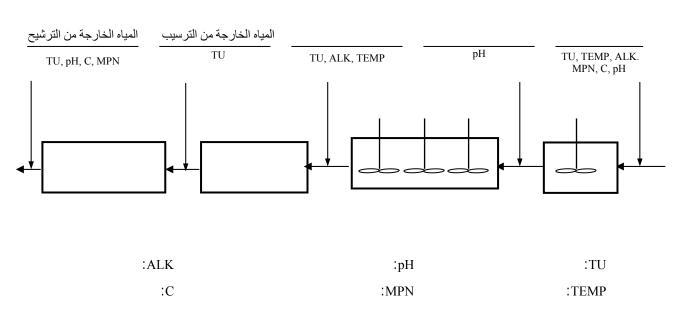
lacktriangle

lacktrian

•

•

•


•

. (Composite Samples)

(-)

)

```
مشروع دعم قطاع مياه الشرب والصرف الصحي كيمونكس الدولية (
```


(-)

.

```
)
(
.(
```

.

.(

(-) - ()

(Checklist)

:()

(

الفصل العاشر - ٢٣٥

برنامج اعتماد مشغلي ومحللي مرافق مياه الشرب والصرف الصحي

_

. -

.

.

.

· · ·

•

.

--

.

· :

· -

.

: . -

.

(-)

.

.(

)

الفصل العاشر - ٢٤١

(-)

	Hand		
	Head Loss		
()			
		()	

; . . .

•

: -

(

•

.(/ /)

.

.(/ ,)

= % = :) .(% = %

) ()

()

.(

(Remote readings)

```
مشروع دعم قطاع مياه الشرب والصرف الصحي
      كيمونكس الدولية
                                / )
(
                                          .(
                         (Solid-state circuitry)
```

```
- (Analog Gauges)
                     - (Digital Indicators)
            .[(Cathode Ray Tube Displays)
    (
                   .[(Relay logic systems)
      .(On/Off)
                  ) Time-Impulse Control
                 .(
                  )
```

.(

.(Hybrid Systems)

."Relay Logic"

(Contacts)

(Timers)

()

```
:
.
( )
.( – )
```

(Demand-Feedback)

)

```
كيمونكس الدولية
                                        مشروع دعم قطاع مياه الشرب والصرف الصحي
.(
```

الفصل العاشر _ ٢٤٨

.

.

.

.(/) /

:

. -

. -

()

.

<u>:</u> :

/

مشروع دعم قطاع مياه الشرب والصرف الصحي كيمونكس الدولية

, / + /

()

.

<u>:</u> :

. , = ___ =

. / = × , =

. / , = , × =

/ ()

. /

.

.

(

```
.(Material Safety Data Sheet "MSDS")
(MSDS)
```

(Comments)	(Commercial Concentration)	(Chemical Formula)	(Chemical Name)
	47-50% (Al ₂ (SO ₄) ₃)	Al ₂ (SO ₄) . 14 H ₂ O	()
	59-61% FeCl ₃	FeCl ₃ . 6 H ₂ O	
	90-94% Fe ₂ (SO ₄) ₃	Fe ₂ (SO ₄) ₃ . 9 H ₂ O	
	55% (FeSO ₄)	FeSO ₄ . 7 H ₂ O	
		_	
		_	
		_	
	12-15% (Cl ₂)	NaOCI	
	65-70% (Cl ₂)	Ca(OCl) ₂ . 4 H ₂ O	(HTH)
/	99.8% (Cl ₂)	Cl ₂	
/	99-100% (NH ₃)	NH ₃	
	29.4% (NH ₃)	NH₄OH	
	6.3% (NH ₃)	(NH4) ₂ SO ₄	
	26.3% (Cl ₂)	ClO ₂	
	_	O_3	
		С	
	100%	KMnO ₄	
	000//(0.00)	0.00 5110	
	99% (CuSO ₄)	CuSO ₄ . 5 H ₂ O	
			()
	75-99% (CaO)	Ca(OH) ₂	()
	98.9% (NaOH)	NaOH	()
	75-99% (CaO)	CaO	
	99.4% (Na ₂ CO ₃)	Na ₂ CO ₃	()
	77.70 (1Na2CO3)	1402003	

·
(- -) (- -) .() -

.

.

()

.

1	,	ı	1	,	,	(/)

/

(/)

:

() () .

. ()

. ()

.

كيمو نكس الدو لية

مشروع دعم قطاع مياه الشرب والصرف الصحي

()

-

_

_

_

_

•

-

.

· . -

.(As Built Drawings) -

<u>-</u>

: :

									/	1																	
Г														4			3			2			1				
												2	1														
																											9
								-																			10
																											11
																											12
																											1
																											3
																											4
																											5
																											6
<u> </u>																							_				7
-								_							\vdash				\vdash			_	_				8
																			\vdash			\vdash					10
																											11
																											12
-								_																			1
								-																			3
																											4
																											5
																											6
																											7
H																											
-	, T	6	5	4	3	2	1	12	11	10	9	8	7	6	5	4	3	2	1	12	11	10	9	8		_	
	t																										1
	1																										!
																											2
	+																										-
	1																										3
	1																										4
	#																								7		<u> </u>
-	+																								2		
	1																								1		
\vdash						<u> </u>	<u> </u>		L	<u> </u>	(2.)	Lati S. C	ىل ن ن	الغس	. 44	12 500	ساعات	والوقت	التاريخ	<u> </u>		Г					
																باه (م	كمية المي	الزمن	بدء	ايقاف	النتنعين	-su					1
																											_
																									-		2
		()																									3
-																											
																											4
		7			يعتم																						

											ı		
	T	T	T										
									1	ı	ı		
									ı		ı		
											ı		
									,	ı	ı		
									1	1	ı		
											I		
											ı		
										٤ جم/م٣			
										٤ جم/م٣			
										۱ جم/م۳			

كيمو نكس الدولية

مشروع دعم قطاع مياه الشرب والصرف الصحي

_

_

_

_

-

.(

:

(

(Jar Test)

•

.

.

:**()** - () :

الفصل العاشر - ٢٦٩

برنامج اعتماد مشغلي ومحللي مرافق مياه الشرب والصرف الصحي

•

-

· -

.(

.

.

· -

.

() %

```
.(
.( )
```

الفصل العاشر - ٢٧١

كيمو نكس الدو لية	ه لنة	، الد	نکس	کیمہ
-------------------	-------	-------	-----	------

مشروع دعم قطاع مياه الشرب والصرف الصحي

<u>:</u>

_

_

_

(pH)

.(BOD)

%

(Drying Beds)	(Lagoo	ons)
:		(Thickeners)
) (Lagoons)		_
, ,		:(
	•	
<u>:(</u>) (Thickening)	
		-
•		
<u>:(</u>)	
(D)	1. Fil. P	
(Be	lt Filter Presses)	
·		

-

. --

-

· -

.

(-) (-)

.

:	-		:	-
	=			-
	_			_
. ()	_			_
·	_			
·	-			-
:	-			
	-			=
	=			=
	_			
	_		:	_
•	_		•	_
				-
		:		-
				-
				-
				_
			•	_
				_

:	-		:	-
	-			_
	-			_
	-			_
	-			_
				_
	-			-
	-			_
	-			-
	-			
			:	-
:	-			_
	-			_
	-			
.(-			-
		•		-

	: -	: -
	-	-
	-	-
		-
:	-	-
•	_	
		_
		: -
		-
		-
		-
		·
		<u> </u>

		:	-		•	-
			-			-
			-			-
			-			-
			-			-
			-			
			-			
					:	-
	:		-			-
			-	•		_
,	,		-			_
()		-			
		•	-			_
				•		_
	:		-			
•			_			

	: -	: -
	-	-
	-	-
	-	-
	-	-
		: -
·	<u>-</u>	-
		_
	· -	_

	: -	:	-
(pH)	-		-
	-		-
	_		-
			_
	_		
•	-		-
(pH)	-		-
	_		-
	-		
:	_		: -
·			_
	_		_
	_		-
	_		-
	-		-
	-		
	_		
	_		
	_		
	-		

	: -	:	-
	(pH) -		-
	-		-
	-		-
:			-
-	(pH) -		_
	(P11) -		_
	-		
		:	-
:	-		-
	-		
	-		-
	-		-
()	-		
()	-		
	_		
	•		

الفصل الحادي عشر

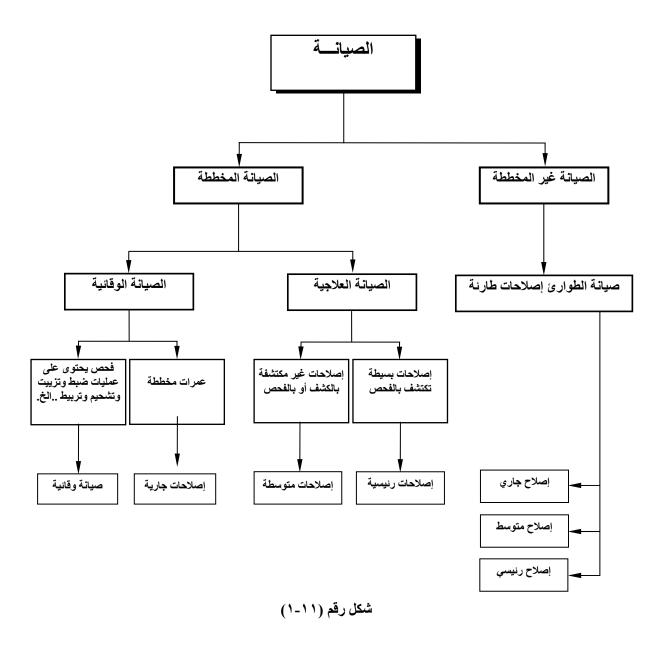
الصيانة

:()

•

•

•


•

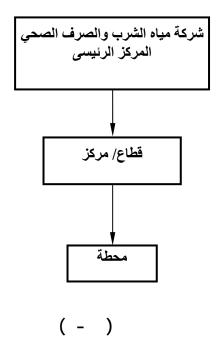
•

·

: (-)

```
كيمونكس الدولية
                                     مشروع دعم قطاع مياه الشرب والصرف الصحي
     Feel
     Inspection
     Tightening
     Cleaning
     Adjusting
     Replacing
     Lubricating
( ... / / )
```


.


•

•

()

مستوى القطاع/ المركز |

/

(Mechanical Equipment)

(Scrapers) (Valves) (Pumps)

(Moving Equipment)

.

(Equipment Service Cards) ()					
		() :			
/					
		Packing Gland	Boxes		
		Bearings			
		(Alignme	ent)		
(Service red	cord cards)() () :			
)			

.

.(- -)

(- -)

.

:

(Rotodynamic pumps) -

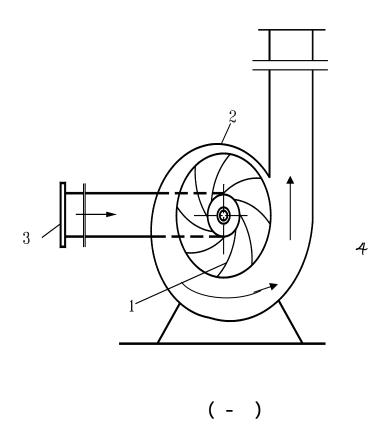
(Positive displacement pump) -

(Compact)

·

:

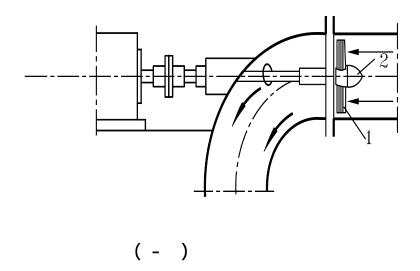
:(Centrifugal pump) -


(-)

(2) (1) .() / (4) (3)

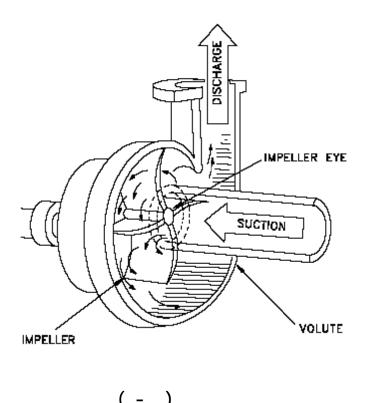
(4)

.()


.

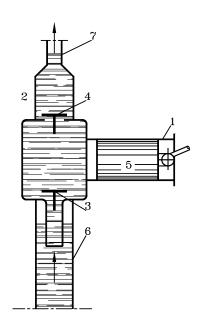
:(Axial flow pump) -

(2) (1)


. (

(Mixed Flow Pumps)

•


. (/)

(Positive displacement pumps)
(Rigid)
(Piston)
.(Gears) (Sliding Gate)
.
. : (-)
(Reciprocating-positive displacement pump)
(2) (1)

.(5) .(4) (3) .(7) (6)

(Pulsating)

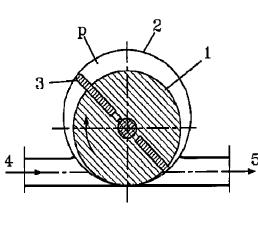
(-)

: - (-)

(Rotary-positive displacement pump)

(1) (2)

.(P)


. (3)

)

(

.(5)

.

(-)

:

(-

: (/) (/) -(/) (/) -

•

(Axial flow pump)

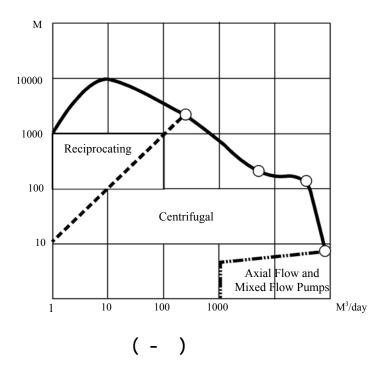
(Reciprocating pump)

.

(-)

:

_ _


-

· :

- -

.

*

:

.

.

_

<u>:</u>

:

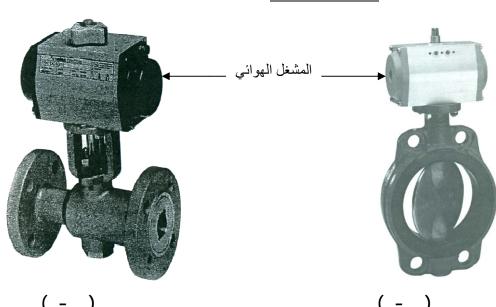
```
مشروع دعم قطاع مياه الشرب والصرف الصحي
      كيمونكس الدولية
      (
                                  (Shaft)
                      (Flexible Coupling)
                                            (Belts)
Electric Current )
                                         (Characteristics
                             .(Wiring)
Thermal ) (
                           )
                                                    (Unit
                               (Rotational Arrows)
Separate Water )
Vacuum Primer )
                                             (Seal Units
                                                (Systems
                  (Discharge Valve)
                                             )
```

(Direction of Rotation) (Design flows and Pressure) (Performance Curves)

(Impeller)

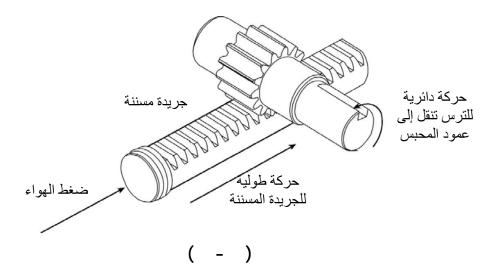
```
.( )
.( )
  .( )
        .( )
    .( )
  .( )
 .( )
 .( )
 .( )
```

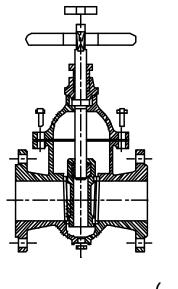
.


:

•

.()


.()


. : -

Pneumatic Actuator : -

.

(-)

:

()

(-)

:

.()

.()

(-)

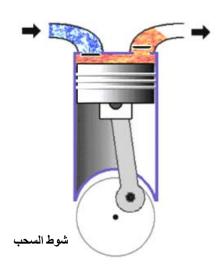
:

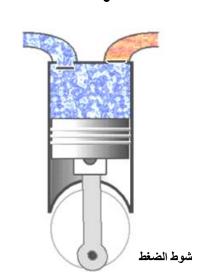
() ()

,

()

•





:

:

(-)

شكل رقم (١١ـ٥١) ضاغط ترددي ذو المرحلة الواحدة

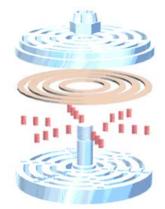
(Gear :(Screws) ()

(-) Pump)

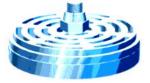
شكل رقم (١٦-١٦) ضاغط حلزوني

.(-)

1st 2nd 3rd Stage Stage Stage


شكل رقم (١١-١٧) ضاغط متعدد المراحل مع مبرد بعد المرحلة الاولي

(Air End)


•

() ()

. (-)

مقعد الصمام غالق (إغلاق) الصمام يايات

شكل رقم (۱۱ـ۱۸) مكونات محبس التفريغ

.(Air Receiver)

.

(/) .(-)

.(-) .

(Electro Magnetic Flow

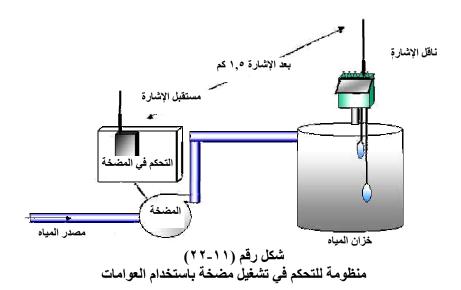
Meter)

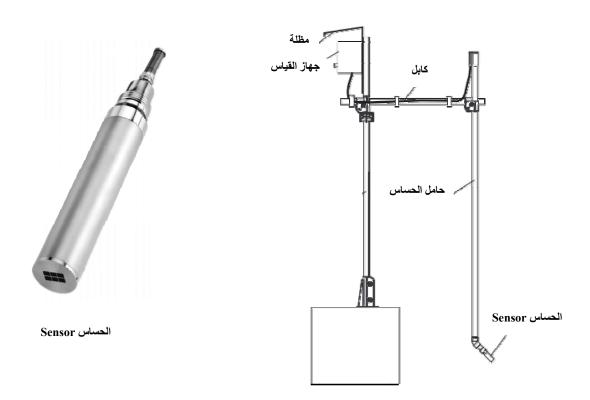
Ultrasonic Flow Meter

شكل رقم (۱۹-۱۱) جهاز قياس التدفق (Electromagnetic)

شكل رقم (۱۱-۲۰) جهاز قياس التدفق (Ultrasonic)

(Pressure Logger)


(USB)



شكل رقم (١١-١١) بعض أنواع عدادات قياس الضغط

(-)

(pH)

شكل رقم (۱۱-۲۳) حساس وشكل توضيحي لتركيب أحدى نوعيات أجهزة قياس pH

()

.

()

•

.

:

=)

·

- .() - -

.(

.(

(/)

·

:

()

()

(-

)

:():

:

()

:

:

/ *

(A) "S" *

. "R" *

.

.

"()"

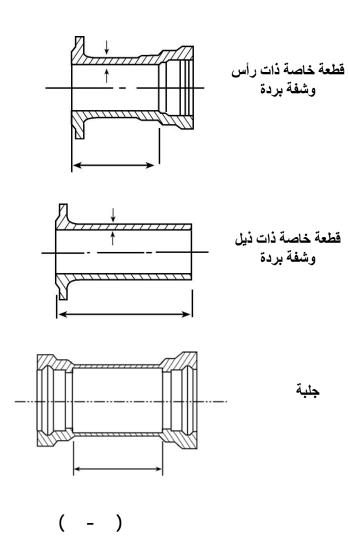
•

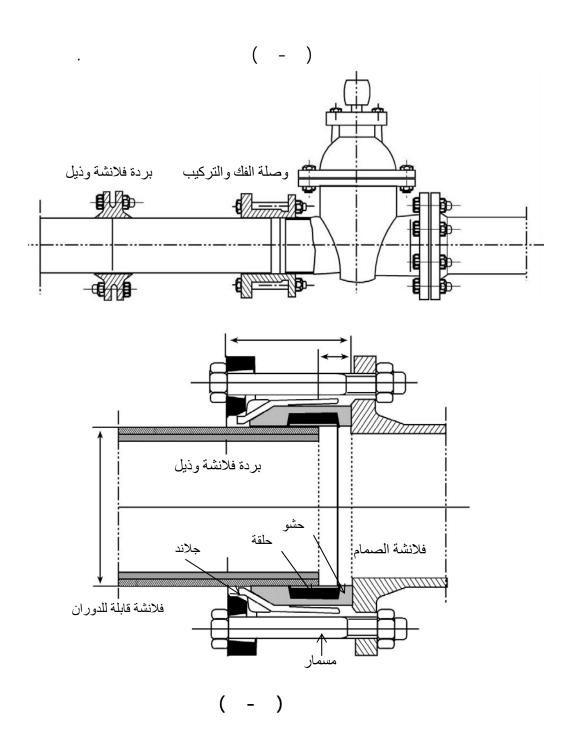
110

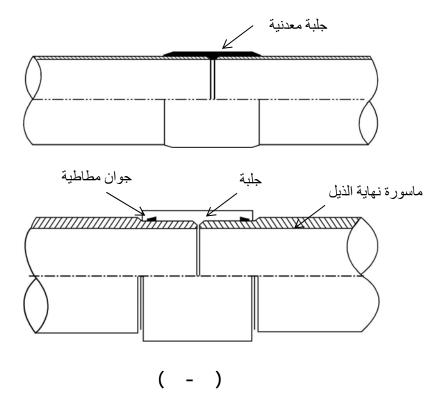
."O"

(-)

:

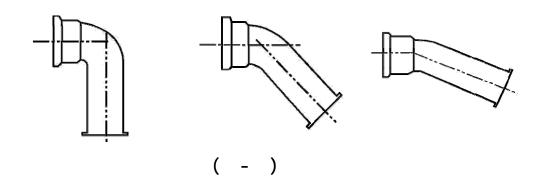

T					1	
	/	()			
	•					
	•					
	•					
	•					
	•					
	(C.B)	(C.B)				
(Governer)				•		
		(-		


(-)	
. (Pres-Switch)	
%	


.(GRP) -

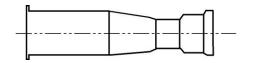
. ... [()

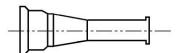
. (-)



(GRP Pipe)

.

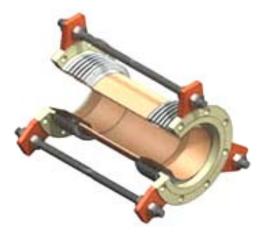

(+ T) .(y)

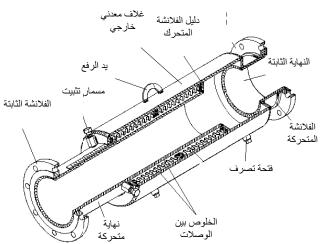

$$(Y) \qquad \qquad (\frac{\tau}{\tau} Y) \qquad : \qquad (Y)$$

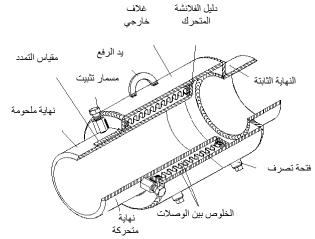
.

- .

.(-)






(-)

.

.(-

الفصل الثاني عشر

السلامة والأمان في الموقع

:()

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

*

*

*

.

*

*

*

*

*

*

*

*

*

*

*

```
مشروع دعم قطاع مياه الشرب والصرف الصحي
كيمونكس الدولية
  ( % , % , )
```

برنامج اعتماد مشغلي ومحللي مرافق مياه الشرب والصرف الصحي

الفصل الثاني عشر - ٣٤٦

:

.

الفصل الثاني عشر - ٣٤٧

برنامج اعتماد مشغلي ومحللي مرافق مياه الشرب والصرف الصحي

·

(-)

	•
·	
	•
-	•
•	
	•
·	•
	•
·	
-	•

: -

-

· :

-

· -

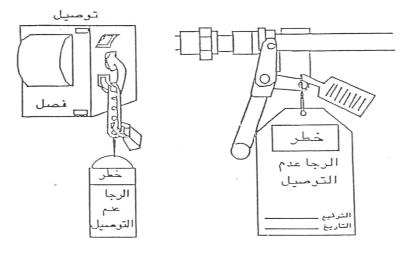
--

() -

· -

-

-


.

•

-

_

()

الفصل الثاني عشر - ٣٥٤

برنامج اعتماد مشغلي ومحللي مرافق مياه الشرب والصرف الصحي

: -

:

_

.(-)

_

·

:

·

-•

-.

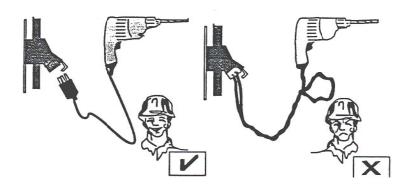
:

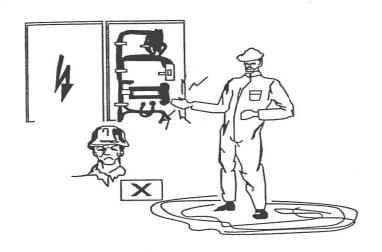
: -

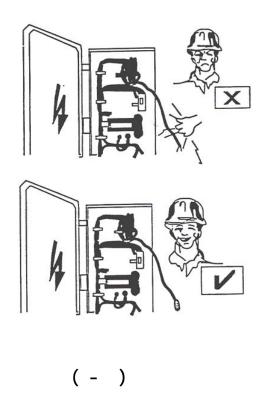
. -

-

·


-- ()


-


-

.

```
.( - )
       (Short Circuits)
```


: ()

.()

•

.

.

.

.

.

.

.

·

.

(Terminal boxes)

.

)

.

.

.

.

.(

. (

:

_

-

. -

:

.

(Test lamp)

.

•

·

•

11

.

.

.

.

·

.

-" -

:

: * * *

· *

*

*

*

·

() -.

· --

· -

--

-. -

· -


-

_

_

(-)

:

.

	-		
	-		
	-		
·	-		
	-	-	
	-		
	-	•	
	-		
	-		
	-		
	-		
·	-		
·	-		
·			
	·	_	
·	_	•	

-		
•		
1	1	
) -		
.(
	, -	
-		
, -		
-	. –	

_ !	_	
	•	
. -	-	
_		
	•	
_	_	
•		
	-	
_	_	
•	•	
_	_	
•		
_ !		
•		
!		
_ '	_	
	• -	
	_	
_ '		
•	·	
	_	

:

· _

·()
- ()
- ()
- ()

_

) ("CPR" Cardiopulmonary Resuscitation

("

()

الفصل الثاني عشر - ٣٧٥

الفصل الثالث عشر

الإجراءات الإدارية في مرافق المياه

()

•

•

•

•

•

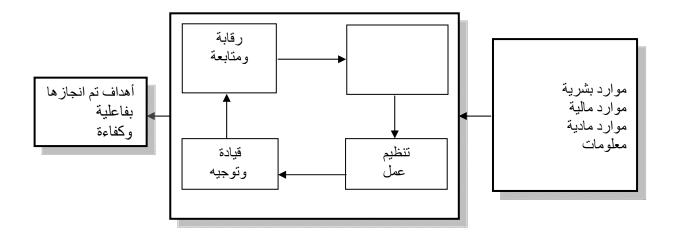
•

•

•

.()

.(


) (.....

.(-)

•

-

.

(-)

:

. (

كيمونكس الدولية			رب والصرف الصحي	مشروع دعم قطاع مياه الشر
		:()	
	·			
		:()	
) (
:			•	
			:	
		:		

:() :(.(Objectives) .(Environment)

)

.(

_

. (Alternative)

_

_

ullet

•

•

•

•

•

ullet

ullet

•

п

.() ()

(Products) (Functional)
(Customers)
(Geographic)

)

الفصل الثالث عشر - ٣٨٥

<u>:</u>

•

•

•

•

•

•

•

_ 1

٦_

_٣

٤ ـ

•

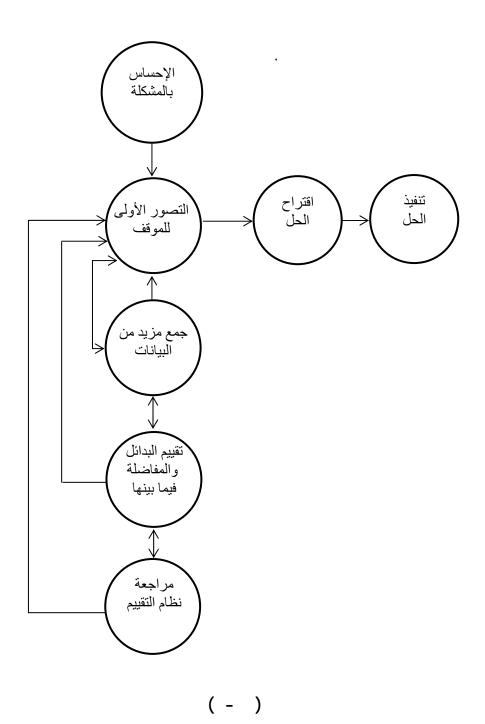
•

•

•

.

•

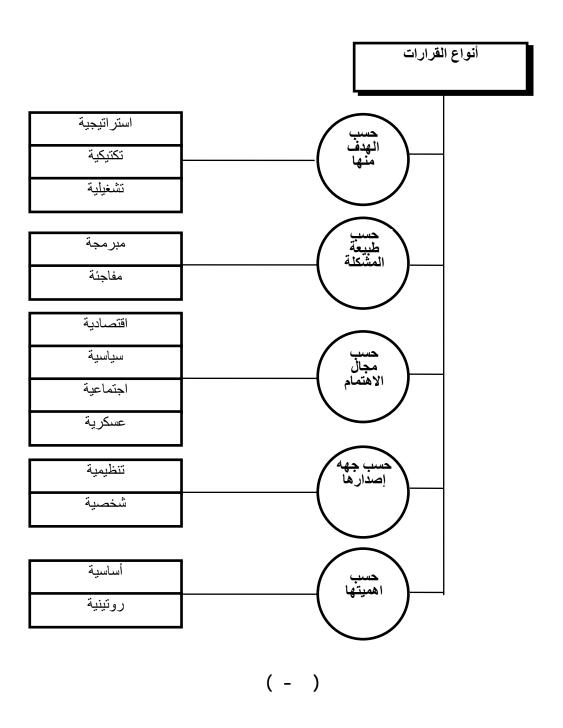

•

•

•

(-)

(Symptoms)


.... (%) () ()

:

.

(Independent Variables)

كيمونكس الدولية		مشروع دعم قطاع مياه الشرب والصرف الصحي
:		
	<u>:</u>	
	<u>:</u>	

	كيمونكس الدولية	شروع دعم قطاع مياه الشرب والصرف الصحي		
	:			
		<u>:</u>		
		<u>:</u>		
:				
		<u>:</u>		
		<u>:</u>		
		· .		
		<u>:</u>		
	:			
		<u>:</u>		
		•		

كيمونكس الدولية		شروع دعم قطاع مياه الشرب والصرف الصحي :
:		
	()	<u>:</u> ()
	·	<u>:</u>

<u>:</u> .

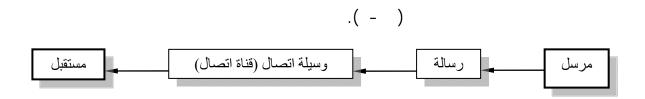
<u>:</u>

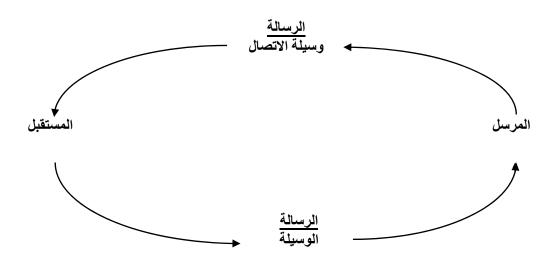
<u>:</u>

(Standard)

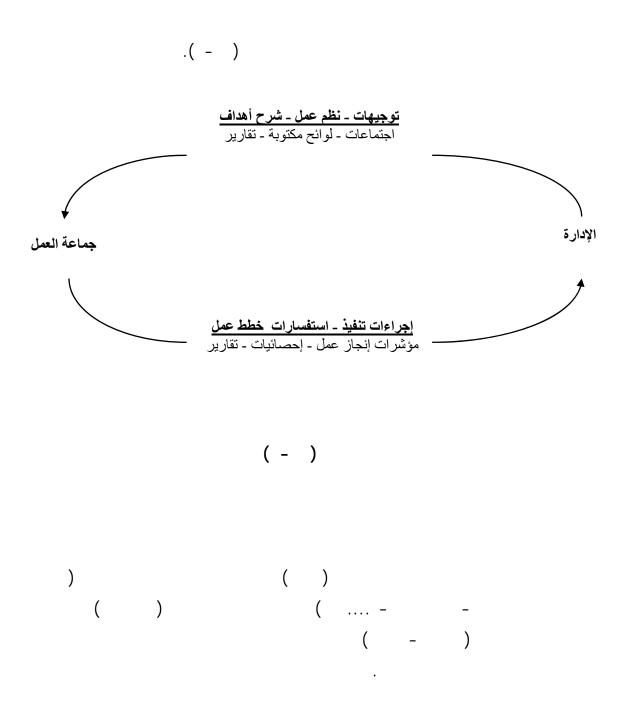
(Indicators)

•


٠


.

)


-

.

(-)

.

-

•

· -

· -

·

(-)

()		
•	•	•
•	•	•
•	•	
•		•
•	•	•
	-	•
- •	•	•
	•	

.

: . .

.

.

تحديد الاحتياجات التدريبية

•

.

. ...

. . . .

.

. . . .

.

. (-)

(-)

طرق وأساليب التدريب

•

•

•

•

_

_

•

•

•

)

.

•

•

•

أ- عناصر خطة التشغيل •

•

· -

.

Record Keeping and Using Technical Reports

. -

.()

.()

. -

(...... -)

;

--

;

.

كيمونكس الدولية مشروع دعم قطاع مياه الشرب والصرف الصحي

:

.(Assets) -

-

.(Liabilities)
.(Owners Equity)

.

+ =

()

.()

_

.

:

التكلفة: هى نفقات لم يتم الانتفاع بها بعد. المصروف: هى نفقات تم استنفادها أو تم الانتفاع بها. الخسارة: هى نفقات تم استنفادها دون الانتفاع بها.

إجمالي الإير ادات للمبيعات = عدد الوحدات المباعة \times سعر بيع الوحدة = كمية المياه المباعة $\left(\mathbf{a}^{\mathsf{T}} \right) \times$ سعر المتر

:			لربح أو الخسارة الدخل)
		*	
		*	
		*	
:			
	=		
	=		
_	=		

•

(-)

. -

(-)

(%)	(%)	()	()	
			1 1	:
				:
ı	ı	ı	ı	
ı	ı	ı	1 1	
ı	ı	ı	1 1	
ı	ı	ı	1 1	
ı	ı	ı	,	
ı	ı	ı	ı	
ı	ı	ı	ı	
ı	ı	,	1 1	
1		ı		* :
,		1		: **
		ı		

*

الملاحق

لىة	الده	نکس	کیمہ
بب	9-11	ىحسر)	حيمو

مشروع دعم قطاع مياه الشرب والصرف الصحي

()

:

. ()

برنامج اعتماد مشغلي ومحللي مرافق مياه الشرب والصرف الصحي

(-)

.

(-)

	-
	_
:	
:	
:	
:	_
:	
:	
:	
·	_

:

-. - - - -

:

(-)

(-)

	()		
		<u>-:</u>	
			-
			-
•			-
/ /			-
	=====		-:
			· -:
		()()	- :
			-:
			=====
		/_/	· :/

==========

:

	1
	2
	3
(NTU) 1	4
6.5 – 8.5	5

:

(/)		
1000	120°	1
500	as CaCO ₃	2
350	as CaCO ₃	3
150	as CaCO ₃	4
250	SO ₄	5
250	Cl	6
0.3	Fe	7
0.4	Mn	8
2.0		9
	Cu	

3.0	Zn	10
200	Na	11
0.2	AI	12

()

/)		
(
0.01	Pb	1
0.001	Нд	2
0.01	As	3
0.05	CN	4
0.003	Cd	5
0.01	Se	6
0.05	Cr	7
0.5	NH ₃	8
45	as (NO ₃)	9
0.2	as (NO ₂)	10
0.8	F	11
0.02	Sb	12
0.7	Ba	13
0.5	В	14
0.02	Ni	15
0.07	Mo	16

: ()

(/)		
0.02	Alachlor	1
0.01	Aldicarb	2
0.00003	Aldrin and dieldrin	3
0.002	Atrazine	4
0.03	Bentazone	5
0.007	Carbofuran	6
0.0002	Chlordane	7
0.03	Chlorotoluron	8
0.001	D.D.T	9
0.001	3- 2,1-	10
	1,2 Dibromo 3- chloropropane (DBCP)	
0.03	2,4- Dichlorophenoxyacetic acid 4,2 (2,4 D)	11
0.02	1,2 - Dichloropropane (1,2- 2,1 DCP)	12
0.02	1,3 - Dichloropropene (1,3- DCP)	13
0.001	Hexachlorobenzene	14
0.009	Isoproturon	15
0.002	Lindane	16
0.002		17
	Methylchlorophenoxyacetic acid (MCPA)	
0.02	Methoxychlor	18
0.01	Metolachlor	19
0.006	Molinate	20
0.02	Pendimethalin	21

(/)		
0.009	Pentachlorophenol	
0.02	Permethrin	23
0.02	Propanil	24
0.3	Pyriproxyfen	25
0.002	Simazine	26
0.02	Trifluralin	27
0.09	2,4 DB , 4,2	28
0.01	2,4 Dichloroprop - 4,2	29
0.009	Fenoprop	30
0.01	Mecoprop	31
0.009	2,4.5 T 5,4,2 -	32
3	Monochloramine	
5	Chlorine	
0.01	Bromate	35
0.7	Chlorite	36
0.2	2,4,6 Trichlorophenol 2,4,6 -	37
0.1	Trihalomethanes	38
0.05	Dichloroacetate	39
0.1	Trichloroacetate	40
0.01	Trichloroacetaldehyde	41
0.02	Dichloroacetonitrile	42
0.07	Dibromoacetonitrile	43
0.001	Trichloroacetonitrile	44
0.004	Carbon tetrachloride	
0.02	Dichloromethane	
0.03	1,2 Dichloroethane 2,1	47

(/)		
0.07	1.1.1 Trichloroethane 1,1,1	
0.0003	Chloride Vinyl	49
0.03	1.1 Dichloroethene 1,1	50
0.05	1.2 Dichloroethene 2,1	51
0.04	Tetrachloroethene	52
0.7	Toluene	53
0.01	Benzene	54
0.0007	Benzo[a]pyrene) (55
0.3	Monochlorobenzene	56
1	1,2 Dichlorobenzene 2,1	57
0.3	1,4 Dichlorobenzene 1,4	58
0.02	Trichlorobenzenes (Total	59
)	
0.08	Di (2-) (2-	60
0.008	ethylehexyle)adipate Di (2 -ethylehexyle) (2-	61
0.008	phthalate	
0.0005	Acrylamide	62
0.0004	Epichlorohydrin	63
0.0006	Hexachlorobutadiene	64
0.6	Edetic acid (EDTA)	65
0.2	Triacetic Nitril	66
0.0006	Endrin	
0.7	Chlorate	68
0.1	Bromoform	
0.3	Chloroform	
0.01	Chloralhydrate	71

(/)		
0.006	Dimethoate	72
0.9	Formaldehyde	73
0.007	Cyanogen Chloride	74
0.002	Trtibutyltin Oxide	75
0.002	Phenol	76
0.005	Di- and	77
	Trichloramine	
0.5	Xylenes	78
0.3	Ethylbenzene	79
0.02	Styrene	80
0.06	Bromodichloromethane	81
0.02	Trichloroethene	82

poured plate method % " "MF" MPN ". TOTAL **COLIFORM BLUE** GRAEEN ALGAE

:

/ 0	(A)	
/ -1	(B)	

. / /

. /

; -()

() : -

•

; -

.

. : -

/ /

1

()

()

: -

/

; -/ : :

--

·

.

. .

.

:

(1)	
		,	
	ı		
	·		
	1		
	ı		
	1		

(1)	
	1		
	ı		
	ı		
	ı		
	ı		
	ı		
	1		
	1		
	1		

()

()

()

()

_

/

الملحق رقم (١)- ٤٣٨

/

-· · · -

: :

/

.

كيمونكس الدولية	ثروع دعم قطاع مياه الشرب والصرف الصحي
	: :
(Grab	
	.Sampler)
	: :

.(Grab Sampler)

_

(١)عينات مياه الشبكة:

الفحص الميكروسكوبي	العدد الاحتمالي للمجموعة القولونية في ١٠٠ سم	عكاره المياه بوحدات N.T.U	الكلور المتبقي ملجم /لتر	أماكن اخذ العينات

٢ - محطة المياه : الكلور المتبقي من طرد المحطة (.....) ملجم/لتر

ملاحظات	البكتيريا العادية في اسم	العدد الاحتمالي للمجموعة القولونية ١٠٠سم	أماكن اخذ العينات
			الغزانات الأرضية: غزان رقم/ ۱ غزان رقم/ ۳ غزان رقم/ ۶ غروج المرشحات: مرشح رقم/ مرشح رقم/
	ولونية في ١٠٠سم	العدد الاحتمالي للمجموعة القر	7, ,, , 7 ,
			حنفية طرد المحطة

مشرف العمل كيمائى / رئيس المعمل مهندس/ رئيس المحطة مهندس/ رئيس قطاع المياه

```
%
   % ,
```

الملحق رقم (١)- ٤٤٣

(%)

%

:

.

:

$$-$$
النسبة المئوية $=$ و \times \times و

:

=

=

كيمونكس الدولية	شروع دعم قطاع مياه الشرب والصرف الصحي
:	1
(-)	

.

•

:

=

1

.

(/)

.

(

(/)

:

.

برنامج اعتماد مشغلي ومحللي مرافق مياه الشرب والصرف الصحي الملحق رقم (١)- ٤٤٧

.

النسبة المئوية = ح × $\frac{1}{1 \cdot \dots}$ × × النسبة المئوية

=

=

(/)

.

<u>: / / </u>

:

(x) .

%)

()

()

مشروع دعم قطاع مياه الشرب والصرف الصحي كيمونكس الدولية .() () () ()

- J

% (/)

()

()
()

.

لسنة ٢٠٠٤

٣- الخواص الطبيعيةوالكيميائية

% ,	-
%	-
% ,	-
% ,	-
	-
% ,	-
% ,	-
% ,	• -

-

1

1

/ /

.

/ /

-

لىة	الده	کیمو نکس	
ب	9-11	حيمونحس	

مشروع دعم قطاع مياه الشرب والصرف الصحي

()

Glossary

Acid Rains

Appropriative

Artisian

Cistern

()

Contamination

Cross Connection

Detention Time

.

() = ()

Direct Run off :

.

Drawdown :

.

·

Epidemiology :

)

.

Evaporation	.()	:
Evapotranspiration .			:
Geological Log			: .(
Hydrologic Cycle			:
Impermeability			÷
Infiltration			·
Microorganisms			:
Non Potable			:

برنامج اعتماد مشغلي ومحللي مرافق مياه الشرب والصرف الصحي

كيمونكس الدولية

الملحق رقم (۲)۔ ۶۵۹

مشروع دعم قطاع مياه الشرب والصرف الصحي

كيمونكس الدولية

مشروع دعم قطاع مياه الشرب والصرف الصحي

Raw Water		:
		•
	•	•
Riparian		:
Safe Water		:
•		
Safe Yield		:
	.(
Sanitary Survey		:
		•
Sewage		:

كيمونكس الدولية

مشروع دعم قطاع مياه الشرب والصرف الصحي

كيمونكس الدولية		ىروع دعم قطاع مياه الشرب والصرف الصحي
Short Circuiting		:
Topography		:
Transpiration		:
Tri halo methane		: ()
Turbidity		:
Turbidity Units		:
()	NTII

JTU

كيمونكس الدولية	ىروع دعم قطاع مياه الشرب والصرف الصح <i>ي</i>
Wastewater	:
)	
Water Shed	:
Zone of Aeration	:
Zone of Saturation	:
Adsorption .	·
Aeration	:
Aerobic	· :

Algae

الملحق رقم (٢)- ٢٦٤

Algal Bloom							:	
Aliphatic Hydroxy Acids					:			
Anaerobic .()							·	:
Anion ()		. (()					:
Biochemical Oxygen Demand (BOD)				:				
Cathodic Protection	()				BOD	:	
								(

برنامج اعتماد مشغلي ومحللي مرافق مياه الشرب والصرف الصحي

```
Cation
Coliform
Colloids
                                   (
Complete Treatment
Conductivity
Decay
       الملحق رقم (٢)- ٤٦٥
                                      برنامج اعتماد مشغلي ومحللي مرافق مياه الشرب والصرف الصحي
```

كيمونكس الدولية

مشروع دعم قطاع مياه الشرب والصرف الصحي

Density

Detention Time

)

_____ × ____ =

Diatom

()

كيمو نكس الدولية	روع دعم قطاع مياه الشرب والصرف الصحي
Electrolite	
Eutrophic	
Flushing	
,	
Head	
	•
Inorganic .	
•	
Littoral Zone	

Milligram per liter

Nutrient				
Organic)				
Oxidation	.(
РН				
Ph= log 1/h			()
. : ()				_
Potable water				
Precipitate		()	
Reaeration				

كيمونكس الدولية

مشروع دعم قطاع مياه الشرب والصرف الصحي

Reagent									
Secchi disc									
Septic									
Reduction									
						(()	
Sequestration	()	.()	()		
Sewage (Wastewar	ter)					()	

كيمونكس الدولية	روع دعم قطاع مياه الشرب والصرف الصحي	ثىر
Stratification ()	
Thermal Stratification .		
Trihalomethane)	() (
Alkalinity		

Anionic Polymer

Apparent Color

Batch Process

كيمونكس الدولية	مشروع دعم قطاع مياه الشرب والصرف الصحي

Cationic polymer
()

Coagulants

()

Coagulation
()

كيمونكس الدوليه			ك الصحي	رب والصرة	ه فطاع مياه الشر	ىروع دء
Composite Sample						
·				()	
Continuous Sample	()				
Disinfection By-product	()				
Diversion						
Floc		•				
Flocculation .						

Head Loss

Grab Sample

كيمونكس الدولية		روع دعم قطاع مياه الشرب والصرف الصحي
		.()
Jar Test		
	()	
Laundering Weir	V .	()

Molecular Weight

. Whatman no. 40

Turbidity meter

برنامج اعتماد مشغلي ومحللي مرافق مياه الشرب والصرف الصحي الملحق رقم (٢)- ٤٧٤

Effluent) .(

Influent

Surface Loading

Over Flow

Absorption

)

.(

Activated Carbon

Back Washing

•

Air Binding .		
Base Metal .		•
Conventional Filtration		
Particulate		
Permeability		
Pare .		
sensitivity	()

Bacteria

Breakpoint Chlorination

Catalyst)				
,				.(
Chloramines				
Chlorination	•			
Chiormation				
	.()
Chlorine Demand			()
pН		1		
			•	
Residual Chlorine				
()				

Chlorine Requirement

DPD

Disinfection

()

(Unit Conversion)

Standard Prefixes			
Prefix used in code	Prefix for written unit	Multiplier	Comments
da-	deka-	10	
h-	hecto-	10^2	
k-	kilo-	10^{3}	
M-	mega-	10 ⁶	
G-	giga-	109	
T-	tera-	10 ¹²	
d-	deci-	10-1	
c-	centi-	10-2	
m-	milli-	10 ⁻³	
mu-	micro-	10 ⁻⁶	
n-	nano-	10-9	
p-	pico-	10 ⁻¹²	
f-	femto-	10 ⁻¹⁵	

IMPERIAL

Length	Area	Capacity	Weight
1 mile = 1760 yards	1 sq. mile = 640 acres	1 gal. = 4 quarts	1 ton = 20 cwt
1 mile = 8 furlong	1 acre = 4840 sq. yard	1 quart = 2 pints	1 ton = 2240 lb.
1 furlong = 10 chains	1 sq. yard = 9 sq. feet	1 pint = 4 gills	1 ton = 1.12 US ton
1 chain = 4 rods	1 sq. foot = 144 sq.	1 pint = 34.6774 inchs ³	1 cwt = 4 quarters
$1 \text{ rod} = 5 \frac{1}{2} \text{ yards}$	inches	1 gill = 5 fl. oz.	1 quarter = 2 stone.
1 yard = 3 feet		1 fl. oz. = 8 fl. drachms	1 stone = 14 lb.
1 foot = 12 inches		1 US gal = 0.8327 gal	1 lb. = 16 oz.
		1 US pint = 0.8327 pint	1 oz. = 16 drams
		1 US pint = 16 fl. oz.	1 oz. = 437.5 grains
		$1 \text{ yard}^3 = 27 \text{ feet}^3$	$1 \ US \ ton = 2000 \ lb.$
		$1 \text{ foot}^3 = 1728 \text{ inches}^3$	

METRIC

Length	Area	Capacity	Weight
1 km = 10 hm	$1 \text{ km}^2 = 100 \text{ hectares}$	$1 \text{ m}^3 = 1000 \text{ litres}$	1 tonne = 1000 kg
1 km = 1000 m	1 hectare = 100 ares	$1 \text{ litre} = 1 \text{ dm}^3$	1 kg = 1000 g
1 hm = 100 m	1 are = 100 m^2	1 litre = 1000 cc	1 g = 1000 mg
1 m = 10 dm	$1 \text{ m}^2 = 100 \text{ dm}^2$	1 litre = 1000 ml	
1 dm = 10 cm	$1 \text{ dm}^2 = 100 \text{ cm}^2$		
1 cm = 10 mm	$1 \text{ cm}^2 = 100 \text{ mm}^2$		

IMPERIAL to METRIC

Length	Area	Capacity	Weight
1 mile = 1.609 km 1 yard = 0.9144 m 1 foot = 0.3048 m 1 inch = 25.4 mm	1 sq. mile = 2.59 km ² 1 acre = 0.4047 hectares 1 acre = 4046.86 m ² 1 sq. yard = 0.8361 m ² 1 sq. foot = 0.0929 m ² 1 sq. inch = 645.16 mm ²	1 gallon = 4.5461 litres 1 US gallon = 3.785 litres 1 pint = 0.5683 litres 1 cu. inch = 16.3871 cm ³	1 ton = 1.016 tonnes 1 lb. = 0.4536 kg 1 oz. = 28.3495 g 1 US ton = 0.9072 tonnes

METRIC to IMPERIAL

Length	Area	Capacity	Weight
1 km = 0.6214 miles	$1 \text{ km}^2 = 0.3861 \text{ mile}^2$	1 litre = 0.22 gal.	1 tonne = 0.9842 ton
1 m = 1.0936 yards	$1 \text{ km}^2 = 247.105 \text{ acres}$	1litre = 0.2642 US gal.	1 tonne = 1.1023 US ton
1 m = 3.2808 feet	1 hectares = 2.4711 acres	1 litre = 1.7598 pint	1 kg = 2.2046 lb.
1 mm = 0.0394 inches	$1 \text{ m}^2 = 10.7639 \text{ feet}^2$	$1 \text{ m}^3 = 219.969 \text{ gal.}$	1 kg = 35.274 oz.
	$1 \text{ mm}^2 = 0.0016 \text{ inches}^2$	$1 \text{ m}^3 = 35.3147 \text{ feet}^3$	

TEMPERATURE

Deg. C to deg. F	Deg. F to deg. C	
deg. $C \times 9/5 + 32 = deg. F$	$(\text{deg. F - 32}) \times 5/9 = \text{deg. C}$	

CONVERSION TABLE OF THE VARIOUS UNITS USED IN SCIENCE, ENGINEERING AND INDUSTRY (alphabetically arranged)

Multiply	By	To obtain
acres	43560	square feet
	4046.85	square meters
	4840	square yards
amperes	0.1	abamperes
ampere-hour	0.037 311 7	faraday
··· · · · · · · · · · · · · · · · · ·	3600	coulomb
ampere turns	1.2566	gilberts (magneto motive force)
angstroms	10-8	centimeters
	0.0001	microns
	10 ⁻¹⁰	meters
atmospheres	76	centimeters of mercury
•	760	torts (mms of mercury)
	29.921	inches of mercury
	33.8985	feet of water
	1.033227	kilograms per square centimeter
	14.696	pounds per square inch
	1.013250	bars
	101.325	kilonewton per square meter
atomic mass units (amu)	1.66 x 10_24	grams
	1.49 x 10	ergs
	93 1.494	mev (million electron volts)
barrels	5.6146	cubic feet
	34.97	imperial gallons
	42	U.S. gallons
	158.987	liters
barrels per hour	0.1589	cubic meters per hour
barrels per day (oil)	50	tons per year (depending on the density of the oil)
bars	1.01972	kilograms per square centimeter
	10-5	pascals (newtons per square
		meter)
	10 ⁻⁶	barye
	0.986923	atmospheres
British thermal units (Btu)	778.2	foot-pounds
British thermal units	1055.05585	joules
	0.000293	kilowatt-hours (Kwh)
<u> </u>	0.252	kilocalories
British thermal units per second	1.416	horsepower
British thermal units per pound	2.326	joules per gram
bushels (Imperial)	4	pecks
calories	4.186	joules
candela per square centimeter	П (3.1416)	lamberts
Celsius (centigrade) degree	1.8	Fahrenheit degree
centares	1	square meters
	10.76	square feet
Centiliters	0.01	Liters
Centimeters	0.3937	inches
	0.0328083	feet
	0.01094	yards
	10	Millimeters
	108	angstroms
centimeters of mercury	5.352391	inches of water

Multiply	By	To obtain
- Transpij	0.193368	pounds per square inch
	27.84507	pounds per square foot
	135.951	kilograms per square meter
centimeters per second	1.9685	feet per minute
y variables p var south u	0.036	Kilometers per hour
	0.02237	miles per hour
coulombs	0.1	abcoulombs
Couromos	6.24151 x 10 ¹⁸	electron charges
	3 x 10 ⁹	statcoulombs
cubic centimeters	0.001	liters
	0.06102338	cubic inches
	0.00003532	cubic feet
	0.000264	gallons
cubic decimeters	I	litres
cubic feet	1728	cubic inches
cuote feet	7.480519	U.S. gallons
	6.288	imperial gallons
	28316.8466	cubic centimeters
	28.316846	litres
cubic feet of water	62.42833	pounds
cubic feet of water	0.1247	U.S. gallons per second
edote feet per minute	0.471704	litres per second
cubic inches	16.387064	cubic centimeters
cubic inches	0.0163876	litres
cubic kilometer	109	cubic meters
cubic meter	10^{6}	cubic centimeters
cubic meters (steres)	61023.3753	cubic inches
cubic meters	35.314455	cubic feet
cubic ineters	264.17	U.S. gallons
	219.97	imperial gallons
	6.2989	barrels (bbl)
	999.98	litres
	1.308	cubic yards
cubic meters per hour	151	barrels per day
cubic yards	27	cubic feet
edote yards	0.7646	cubic meters
decigrams	0.1	grams
dovigrams	1.543	grains
decimetres	0.1	metres
decimenes	3.94	inches
degrees arc	0.01745329	radians
degrees are	1.1111	grades
dynes	10-5	newtons
dynes	2.247 x 10 6	pounds
dyne-centimetres	1	ergs
dynes per square centimetre	9.86923 x 10	atmospheres
dynes per square centimetre	10 ⁻⁶	bars
	1	barye(s)
	0.1	newton per square metre (pascal)
electron charge	1.602177 x 10-19	coulombs
orection entities	4.803242x 10-10	la statcoulombs
electron volts (eV)	1.602177 x 10 ⁻¹⁹	joules
electrostatic units of potential	300	volts
ergs	10-7	joules
0153	2.38846 x 10 ⁻⁸	calories
	6.241506 x 10 ⁻⁵	megaelectron volts (MeV)
ergs per second	10 ⁻⁷	watts
orgs per second	10	waiis

Multiply	By	To obtain
faradays	96485.31	coulombs
farads (coulombs/volt)	9 x 1011	electrostatic units of capacitance
feet	30.48006	centimetres
	12	inches
feet (= 30.48 centimetres)	0.3048	metres
feet	0.3333	yards
feet of water	0.88	inches of mercury
	0.29 5	atmospheres
	0.43353	pounds per square inch
feet per minute	0.0113636	miles per hour
	0.508	centimetres per second
feet per second	0.5920858	knots
	0.681818	miles per hour
	1.09728	kilometres per hour
fluid ounces (U.S. liquid measure)	29.573	cubic centimetres
	8	fluidrams (U.S.)
fluid ounces (imperial)	28 .413	cubic centimetres
	8	fluidrams (British)
fluidrams (U.S. liquid measure)	60	minims (U.S.)
	3.696	cubic centimetres
fluidrams (imperial)	60	minims (British)
	3.5516	cubic centimetres
foot-poundals	0.04213	joules
foot-pounds (ft lb)	1.3554	joules (watt-seconds)
foot-pounds	0.138255	metre-kilograms
	1.35582	newton metres
foot-pounds per second	0.00136	kilowatts
	0.00182	horsepower
gallons (U.S. gallons)	0.83268	imperial gallons
gallons (U.S.)	0.13368	cubic feet
gallons (imperial) (= 1.201 U.S. gallons)	0.1605	cubic feet
gallons (U.S.)	3.785411	litres
	4	quarts
gallons (imperial)	0.0285	barrels
gallons (imperial)	4.5461	litres
gallons (U.S.)	0.023809	barrels
gallons (U.S.) per mile	2.8247	litres per kilometre
grams	15.43236	grains
	5	carats
	0.035274	ounces
	0.00224623	pounds
	6.85x10 ⁻⁵	slugs
	1000	milligrams
	0.001	kilograms
	10 ⁻⁶	tons (metric)
	980.665	dynes
	6.022×10^{23}	avograms
gram calories	4.1855	joules
	0.003968	British thermal units
grams per cubic centimeter	8.345	pounds per (U.S.) gallon
	62.42833	pounds per cubic foot
grams per square centimeter	0.0361	pounds per square inch (psi)
	0.00096784	atmospheres
	0.000981	bar
	10	kilogram per square metre
	0.0142233	pounds per square inch
	0.73556	millimetres of mercury

Multiply	By	To obtain
hectares	2.471	acres
hectares	100	ares= 10 ⁴ square metres
horsepower	0.7457	kilowatts
noisepower	0.7068	British thermal units per second
	33000	foot-pounds per minute
	550	foot-pounds per second
	745.7	watts
	0.178 1	kilocalories per second
	1.013872	metric horsepower
horsepower (metric)	75	kilogram metres per second
· · · · · · · · · · · · · · · ·	735.499	watts
horsepower	2545.06	British thermal units (Btu) per
r arr		hour
hundredweights (short)	100	pounds
	45.3592	kilograms
hundredweights (long)	112	pounds
	50.8023	kilograms
inches	0.08333	feet
	2.54	centimetres
	1000	mils
inches of mercury	0.033421	atmospheres
	33.8639	millibars
	13.5951	inches of water
	0.491157	pounds per square inch
	0.03453	kilograms per square centimetre
inches of water	0.073556	inches of mercury
	0.1868324	centimetres of mercury
	0.0361275	pounds per square inch
	0.00246	atmospheres
joules (watt-seconds)	0.2388	calories
joules	10^{7}	ergs
	6.241506x 10 ¹⁸	electron volts (eV)
	0.23892	gram-calories
	2.77778 x 10 ⁻⁷	kilowatt-hour
	6.241506 x 10 ¹²	megaelectron volt (MeV)
	0.7376	foot pounds
kilocalories	3.96707	British thermal units
kilocalorie per mole	4.3393	electron volts
kilograms	2.204622	pounds (avoirdupois)
	2.679	pounds (troy)
	70.931	poundals
	1000	grams
	15432.361	grains
	35.27396	ounces (avoirdupois)
	10-3	tons (metric)
kilogram-metres	7.233	foot-pounds
	9.8066 x 10 ⁷	ergs
kilogram-metres per second	9.8066	watts
kilogram of force	9.8066	newtons
kilograms per square centimetre	0.96784	atmospheres
	0.98066	bar
	28.958	inches of mercury
	73.556	centimetres of mercury (standd)
	14.2234	pounds per square inch (psi)
kilojoule per mole	1.03642 x 10 ⁻²	electron volts
kilometres	10 ⁵	centimetres
	0.62137	miles

Multiply	By	To obtain
A ¥	0.53956	nautical miles
	0.6213712	statute mile
kilometre per hour	27.7777	centimetres per second
-	0.9113426	feet per second
	54.68	feet per minute
	0.9113	feet per second
	0.539	knots
kiloton (of energy)	4.1868×10^{12}	joules
kilowatts	0.9478	British thermal units per second
	3412.1418	British thermal units per hour
	8.59845 x I0 ⁵	calories per hour
	737.6	foot-pounds per second
	1.341	horsepower
kilowatt hour	3412.1418	British thermal units
	3.6×10^6	joules
knots	1	nautical miles per hour
	1.68781	feet per second
	1.15155	miles per hour
	1.852	kilometres per hour
	0.51444	metres per second
lumen per square centimetre	1	Lumen per square centimetre
litres	1000	cubic centimetres
	61.023	cubic inches
	0.0351	cubic feet
	0.006289	barrels
	0.2199	imperial gallons
	0.2642	U.S. gallons
	0.908	quarts (dry measure)
	1.0567	quarts (liquid measure- U.S.)
	1.137	quarts (liquid measure-U.K.)
litres per second	2.11888	cubic feet per minute
lumen	1	candela
	$0.07957 \left(=\frac{1}{4\pi}\right)$	
lumen per square centimetre	1	lambert
rumen per square continuere	1	phot
lumen per square metre	1	phot
maxwell	1	gauss per square centimetre
IIIdA W OII	10-8	volt-seconds
	10 ⁻⁸	weber
maxwell per square centimetre	1	gauss
megaton (of energy)	4.1868×10^{15}	jouies
metres	39.37	inches
mones	3.28084	feet
	1.093611	yards
	4.97	links
	0.5468	fathoms
	0.199	rods
	100	centimetres
	1000	millimetres
	10 ¹⁰	angstroms
metres per second	2.237	miles per hour
menes per second	3.6	kilometres per hour
	196.85	feet per minute
	1.94384	knots
microgram	10 -6	grams
micrometre	10 ⁴	
meromene	10	angstroms

Multiply	By	To obtain
	10 ⁻⁴	centimetres
microns	10-6	metres
	10000	angstroms
miles (geographic)	1.852	kilometres
	6076.115	feet
miles (statute)	5280	feet
	1760	yards
	8	furlongs
	1.609344	kilometres
	0.8683925	nautical miles
miles (nautical-international)	1.852	kilometres
miles (nautical-U.K.)	1.85318	kilometres
miles per hour	1.4667	feet per second
	0.868976	knots (nautical miles per hour)
	0.447	metres per second
	88	feet per minute
	26.8224	metres per minute
millibar	1000	barye
milligram	10-3	grams
	0.005	carats
	0.0 1543	grains
millilitres	1	cubic centimetres
millimetres	0.03937	inches
	1000	microns
	0.001	metres
	0.04	inches
millimetres of mercury	0.00131579	atmosphere
	0.0013332	bar
	1333.22	dyne per square centimetre
	1	torr
million electron volt	1.60219x 10 ⁻¹³	joules
mils	0.001	inches
nanometre	10 10 ⁻⁹	angstrom
	10 ⁵	metres
newtons		dynes
newton	7.233	poundal
	0.22481 10 ⁷	pound (force)
newton-metres		dyne-centimetres (ergs)
	0.737562	joules
	0.737302	foot-pounds electromagnetic units
	2.997925	electrostatic units
ohm	1	gilbert per centimetre
Ollili	109	abohm
	1.11265×10^{-12}	statohm
ounces (avoirdupois)	28.3495	grams
ounces (avonuupois)	437.5	grains
	0.9115	ounces (Troy)
ounces (troy, apothecary)	31.10347	grams
ounces (noy, aponiceary)	20	pennyweight
	24	scruples
	1.097143	ounces (avoirdupois)
ounces (U.S. fluid)	29.5735	cubic centimetres
	8	drams
Pascals	10	dynes per square centimetre
1 430413	10-5	bars
poise	1	gram-centimetre per second
poise	1	gram-centimetre per second

Multiply	By	To obtain
pounds (avoirdupois)	1.215	pounds troy
	256	drams (avoirdupois)
	0 .03 108	slug
	0.45359	kilograms
pounds (or pounds avoirdupois)	16	ounces
pounds	7000	grains
pounds per cubic foot	0. 1337	pounds per U.S. gallon
	16.01837	kilograms per cubic metre
	0.0 1602	grams per cubic centimetre
pounds per cubic inch (psi)	27.68	grams per cubic centimetre
pounds per square inch	2.036	inches of mercury
	2.309	feet of water at 16°C
	70.307	grams per square centimetre
	6894.757	pascals
	0.06805	atmospheres
pounds troy	240	pennyweights
	5760	grains
	0.3732	kilograms
radians	57.29578	degrees arc
radians per second	0. 159155	revolutions per second
	9.8493	revolutions per minute
revolutions	6.283 185	radians
revolutions per minute	0.10472	radians per second
square centimetres	0.0001	square metres
	0.155	square inches
	0.001076	square feet
square feet	929	square centimetres
	144	square inches
	0.092903	square metres
	0.111	square yards
square inches	6.45 1626	square centimetres
	0.0069	square feet
square kilometres	0.386 1	square miles
	106	square metres
1' 1	247.1	acres
square links	62.726	square inches
square metres	10.76	square feet
	1.195985 1550	square yards
amono milas		square inches
square miles	640 258.9	hostores
	2.5899	hectares
square mils	1 x 10 ⁻⁶	square kilometers
square yards	0.836	square inches
stoke	1	square metres square centimetre per second
Stoke	10-4	
tong	20	square metres per second hundredweights
tons tons (long)	2240	pounds (avoirdupois)
tons (tong)	1.0 1605	metric tons (tonne)
tons (short)	2000	pounds (avoirdupois)
tons (snort)	0.9072	tonne
tons (metric)	10^6	grams
tons (moure)	1000	kilograms
	0.9842	long tons
	1.102	short tons
tons (of refrigeration)	72574.8	kilocalories per day
volt (joule/coulomb)	0.00333	electrostatic units of potential
voit (Joure/Couronio)	0.00333	ciccuostatic units of potential

Multiply	By	To obtain
volts	10^{8}	abvolts
volts	0.0033356	statvolts
watts (joules per second)	10^{7}	ergs per second
watts	3 .412 14	British thermal units per hour
	0.001341	horsepower
	860.1123	gram-calories per hour
watt-seconds	10^{7}	ergs
	1	joules
weber	10^{8}	maxwells (of magnetic <i>flux</i>)
webers	1	volts per second
yards	0.9144	metres
	0.5	fathoms
	3	feet

أعد هذا الدليل مشروع دعم قطاع المياه و الصرف الصحي الممول من الوكالة الأمريكية للتنمية الدولية بموجب عقد رقم Oo, Order No. 3 بالتعاون مع الشركة القابضة لمياه الشرب و الصرف الصحى www.egyptwwss.org