

برنامج اعتماد مشغلی مرافق میاه الشرب و الصحی Certification Program for Water and Wastewater Treatment Plant Operators and Lab. Analysts

دليل المتدرب البرنامج التدريبي لمحللي معامل تحاليل مياه الشرب المستوى (ج)

Training Course for Drinking Water Laboratory Analysts
Level C
Trainee Guide

برنامج اعتماد مشغلی مرافق میاه الشرب و الصرف الصحی Certification Program for Water and Wastewater Treatment Plant Operators and Lab. Analysts

مشروع دعم قطاع مياه الشرب و الصرف الصحي ممول من الوكالة الأمريكية للتنمية الدولية

دليل المتدرب البرنامج التدريبي لمحللي معامل تحاليل مياه الشرب المستوى (ج)

Training Course for Drinking Water Laboratory Analysts
Level C
Trainee Guide

مقدمة

هذا الدليل يمثل حلقة في سلسلة من أعمال التطوير الشامل والدائم في أداء قطاع مياه الشرب والصرف الصحي وكافة مرافقه، كجزء من برنامج "اعتماد مشغلي ومحللي مرافق مياه الشرب والصرف الصحي" والذي يهدف لتأهيل العاملين في هذا القطاع بصورة معتمدة وترتبط بأفضل الممارسات الدولية المعروفة في الدول المتقدمة، بحيث يتم وضعهم في مستويات تمكنهم من تبادل خبراتهم مع كافة المستويات المساوية في أي دولة في العالم واكتساب الخبرات التي تيسر لهم الاطلاع على كل ما هو جديد في مجال أعمالهم واستيعاب التجارب والأبحاث والتقنيات الجديد في هذا المجال.

ومن المؤكد أن برنامج "اعتماد مشغلي ومحللي مرافق مياه الشرب والصرف الصحي" يخدم العديد من الأغراض على مستويات مختلفة، كما يهدف لإنجاز أهداف عديدة للجهات التي سعت إلى وضعه والتخطيط لتنفيذه، فمن أهم أغراض هذا البرنامج أن أي جهة تشارك فيه سوف تكون قادرة على أن:

- تشارك في تنفيذ السياسات القومية للحفاظ على البيئة والصحة العامة وحماية المجتمع من سلبيات أي قصور في أداء مرافق الخدمات العامة.
- تحقق مستويات أداء فني وإداري للمرافق تضمن الحفاظ على استثمارات البنية الأساسية ومشروعاتها وكفاءة تقديم خدماتها وأصول مرافقها ومنشآتها.
- تطور أداء الكوادر الفنية والإدارية المختصة بالتشغيل والصيانة وإدارتها في منشآت مرافق المياه
 والصرف الصحى لمستويات الدول المتقدمة.
- تضع تصنيفًا واقعيًا لمنشآت المياه والصرف الصحي يرتبط بمستويات تأهيل فني وإداري متميز للقائمين على تشغيلها وجودة خدماتها.
- تطور النظم القائمة للتسجيل والمتابعة والتقييم لأداء كافة أعمال التشغيل والصيانة وفق أحدث النظم ومتطلبات الحفاظ على جودة الخدمات.
- تراجع متطلبات العمالة المدربة والمؤهلة للأداء الأمثل في المرافق وتتبع سياسات متطورة في الاستجابة لهذه المتطلبات مع تطور الأعمال وحجمها.
- تشارك في إنشاء وإتباع نظام تأهيل مستدام ودائم النطور يضمن تدريب وتقييم العاملين في تشغيل المرافق ومعاملها موثقة ومتجددة.

وأهمية البرنامج هو أنه بتحقيق هذه الأغراض يضع قطاع المياه والصرف الصحي ومنشآتها في مصاف مثيلاتها بالدول المتقدمة ويساهم في تحقيق سياسات الجهات المعنية بهذا القطاع، بداية من وزارة الإسكان والمرافق والتتمية العمرانية والشركة القابضة للمياه والصرف الصحي وشركاتها التابعة، وجهاز تنظيم مياه الشرب والصرف الصحي والمركز القومي لبحوث الإسكان والبناء، وصولاً إلى كافة المرافق والمنشآت والوحدات بمرافق وخدمات القطاع.

وفي إطار هذه الأغراض، تم إعداد هذا الدليل ليغطي احتياجات السادة "محللي معامل تحاليل مياه الشرب"، وذلك في المستوى (ج) من برنامج الاعتماد، وتم فيه مراعاة كل ما يضمن الوفاء باحتياجات بناء قدرات هذه الفئة الهامة من العاملين في مرافق المياه وتوفير مادة مرجعية يسهل الرجوع إليها، وكذلك عند التعامل مع مواقع ومنشآت ومعدات العمل في محطات تتقية مياه الشرب، وما تتطوي عليه من أهمية وارتباط مباشر بالصحة العامة ورضا وثقة العملاء الذين يتلقون هذه الخدمة الحيوية.

والدليل يتم إعداده بواسطة هذا المشروع هو النواة الأولى لسلسة من تسلات مستويات حيث يتبعه مستويان آخران أكثر تقدما هما (ب، أ) حيث سيتم إضافة ما يحقق ويستوفى الأهداف الموضوعة لهذين المستوبين الأعلى منه مباشرة ، كما يشكل هذا الدليل أساسا للملامح الرئيسية للعديد من مناهج ودورات التدريب التالية، وهذا الدليل يحتوى بلا جدال على معارف هامة شارك في وضعها خبراء حائزون على خبرات عالية ومتخصصة ، حيث تخصصوا وعملوا مع جهات دولية عديدة في مجال تشغيل وصيانة معامل التحاليل بشكل عام، ومعامل مرافق ومحطات تتقية المياه بصورة خاصة، وقد تم الاعتماد في الإعداد بصورة أساسية على المراجع المعدة لتشغيل معامل تحاليل المياه مثل كتاب الطرق القياسية لفحص مياه الشرب ومياه الصرف الصحى المعد بواسطة هيئة أشغال المياه الأمريكية المحالية المعام الخلاصة القياسية لفحص مياه الشرب ومياه الصرف الصحى المعد بواسطة هيئة أشغال المياه الأمريكية المحالية المعام الخلاصة القياسية لفحص مياه الشرب ومياه الصرف الصحى المعد بواسطة هيئة أشغال المياه الأمريكية المحالية المعام الخلاصة القياسية لفحص مياه الشرب ومياه الصرف الصحى المعد بواسطة هيئة أشغال المياه الأمريكية المولون القياسية لفحص مياه الشرب ومياه الصرف الصحى المعدة لتشغيل معامل المهام الأمريكية المولون القياسية لفحص مياه الشرب ومياه الصرف الصحى المعدة لتشغيل معامل المهاه الأمريكية الطرق القياسية لفحص مياه الشرب ومياه الصرف الصحى المعدة لتشغيل معامل تحاليل المياه الأمريكية المعدة لتشغيل المهام "Standard Methods for the Examination of Water and Wastewater".

مع مرجعية لا يمكن تجاهلها لعديد من المصادر الأخرى المرموقة في هذا المجال، ممثلة في مساهمات واضعي المواد التدريبية التي تم الرجوع إليها بواسطة أصحابها ومن خلال الجهات التي أشرفت على أعمالهم.

وهذا الدليل يغطي كافة الجوانب العملية لإجراء التحاليل المعملية لمياه الشرب بما تتضمنه من منشآت ومعدات وأجهزة وعمليات، وسوف نجد كل ما يختص بجودة المياه وخواصها وكيفية تحديدها والاختبارات الكيميائية والبكتريولوجية والبيولوجية والمواد المستخدمة وجرعاتها وطرق إجراء كل

ذلك وضوابطه وأنواع المعدات والأجهزة وأغراض استخدامها وصيانتها، كذلك إجراءات الأمن والصحة المهنية وسلامة العاملين وكافة ما يختص بعمليات تشغيل المعامل، والجوانب الإدارية المرتبطة بكل ذلك.

ونأمل أن تكون هذه المادة وافية وعلى المستوى الذي يكافئ متطلبات تنفيذ هذا المستوى من البرنامج الهام والضروري والذي يمثل إضافة خبرة ومسئولية كبرى لمن يشارك فيه، لما له من أهمية وضرورة تمس وترتبط مباشرة بكافة سياسات الدولة في مجالات الخدمات الهامة والسكان والصحة العامة والبيئة وإدارة الموارد الطبيعية لصالح المجتمع والمواطنين والله الموفق.

المحتويات

الفصل	الأول: الأسس النظرية والعملية للتحاليل الكيميائية	
	أهداف الأداء (التعلم)	1-1
	طرق التعبير عن نتائج التحاليل	۲ – ۲
	العيارية والمولارية	۳-۱
	تحضير المحاليل العيارية	7 - 1
	استخدام الماصات	۸-۱
	الأدلة	11-1
	المحاليل المنظمة	1-71
	عض العلاقات الرياضية في التحاليل الكيميائية	19-1
الفصل	الثانى: مصادر وخصائص ومواصفات مياه الشرب ومصادر تلوثها	
	أهداف الأداء (التعلم)	1-7
	مقدمة ٢	7 - 7
	مصادر مياه الشرب	7 - 7
	خصائص مياه الشرب	٣-٢
	مصادر تلوث مياه الشرب	٧-٢
	مواصفات المياه المستخدمة في الشرب	1 4 - 7
	المتطلبات الضرورية لمياه الشرب	11-7
الفصل	الثالث: متطلبات الجودة في معامل التحاليل (متطلبات مواصفة الأيزو ٢٥٠٢٥)	
	أهداف الأداء (التعلم)	1-4
	مقدمة	۲ - ۳
	المتطلبات الإدارية	٣-٣
	نظام الجودة	7-5
	التحكم في أعمال الاختبارات غير المطابقة	۸-۳
	الإجراءات الوقائية	9 – ٣
	المتطلبات الفنية	11-4
	جمع وتداول العينات	11-4

۲ • - ۳	الكواشف والمواد المرجعية والكيماويات القياسية	
77-5	قياس اللا يقين Uncertainty Measurement	
	ل الرابع: الأمان والسلامة في معامل التحاليل الكيميائية	الفصر
۱ – ٤	أهداف الأداء (التعلم)	
۲ – ٤	الوقاية من مخاطر المعمل وتجهيزاته	
۲ – ٤	توصيلات الكهرباء	
٧-٤	خزانات الغازات والتهوية	
۸-٤	التسخين والتجفيف	
۸-٤	الخراطيم والسدادات المطاطية	
٤ - ۲ ا	استخدام الماصات	
٤ - ٢ ١	التعامل مع الأجهزة الزجاجية والزجاج المكسور	
٤ - ٦ (تخزين الكيماويات	
19-5	التخلص الآمن من المخلفات والنفايات الكيميائية	
Y 1 - £	التخلص من المخلفات البيولوجية الخطرة	
7	التعامل مع الانسكابات	
٤ - ٤	معدات الوقاية الشخصية	
٤ - ٢٣	الإسعافات الأولية	
	ل الخامس: تقنيات جمع عينات المياه للتحاليل	الفصا
) - 0	ر المساحق الأداء (التعلم) أهداف الأداء (التعلم)	,
Y - 0	العينات الممثلة واختيار موقع أخذ العينات	
17-0	حجم العينات	
17-0	خطة مراقبة وتأكيد الجودة في جمع العينات	
11-0	سجلات العينات	
	ل السادس: الأجهزة الرئيسية المستخدمة في قياسات ملوثات مياه الشرب وطرق معايرتها	الفصل
۲ – ۱	أهداف الأداء (التعلم)	
7-7	مقدمة	
7-7	الأجهزة المستخدمة في قياسات العناصر الفلزية	
7 – 7	الأجهزة المستخدمة في قياسات المركبات العضوية	

vi

برنامج اعتماد محللي معامل تحاليل مياه الشرب (مستوى ج)

المحتويات

	الفصل السابع: الأجهزة المساعدة والتقنيات المعملية
1-7	أهداف الأداء (التعلم)
۲-٧	أو لاً: الأجهزة المساعدة
10-4	ثانيًا: التقنيات المعملية
	الفصل الثامن: التحاليل الكيميائية لمياه الشرب
١ - ٨	أهداف الأداء (التعلم)
۲ – ۸	أنواع التحاليل التي تجرى على المياه
7- A	التحاليل الكيميائية والفيزيائية
	プランディ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 – 9	الفصل التاسع: التحليل البكتريولوجي لمياه الشرب باستخدام طريقة الأنابيب المتعددة
Y - 9	أهداف الأداء (التعلم) مقدمة
Y - 9	معدمه طرق التحاليل البكتريولوجية
9 – 9	طرق التحاليل البختريونوجية البيئات وماء التخفيف
Y £ - 9	البيتات وماء التحقيف استمار ات التسجيل
, - ,	المتعارات المتعبين
	الفصل العاشر: التحليل البكتريولوجي باستخدام طريقة الترشيح الغشائي
1-1.	أهداف الأداء (التعلم)
7-1.	المبدأ الأساسي
۳-1.	التجهيزات
٤-١.	المستنبتات (الأوساط) وماء التخفيف
0-1.	تعيين إجمالي القولونيات
9-1.	مصادر الخطأ في التحاليل البكتريولوجية
١٠-١٠	الاحتياطات الواجب مراعاتها عند جمع العينة
١٠-١٠	اختبارات مراقبة الجودة
	الفصل الحادى عشر: التحاليل البيولوجية (الميكروسكوبية) لمياه الشرب
1-11	أهداف الأداء (التعلم)
7-11	الغرض من التحاليل البيولوجية
٤-١١	المتاعب التي تتتج عن وجود الطحالب في مصادر إمداد المياه

كيمونكس انترناشيونال	مشروع دعم مياه الشرب والصرف الصحى
٤-١١	الفحص الميكروسكوبي
7-11	المحاليل المستخدمة
٦- ١١	طريقة عد الطحاليب
	الفصل الثانى عشر: أنواع ومصادر الأخطاء وضبط وتأكيد جودة التحاليل
1-17	أهداف الأداء (التعلم)
٣- ١٢	أولا: أنواع ومصادر الأخطاء في التحاليل المعملية
7-14	ثانيًا: ضبط جودة تحاليل مياه الشرب
۸- ۱۲	رسومات الضبط البيانية Control Charts
1 2 - 1 7	عينات الجودة الضابطة
19-17	ثالث: تأكيد جودة تحاليل مياه الشرب
74-17	جمع العينات ومعالجتها
71-17	المراجعة والتفتيش
	الفصل الثالث عشر: إعداد وتداول وحفظ التقارير والسجلات والوثائق
1-18	أهداف الأداء (التعلم)
%- 1 %	مداك المداع السجلات وصيانتها وحمايتها واستدعائها
٤- ١٣	
	أنواع السجلات
9-15	تسجيل النتائج
11-18	السجلات Records
17-18	تقارير الاختبارات
1 8 - 1 4	ضبط البيانات
18-18	ضبط الوثائق
10-15	استخدام الحاسبات

المراجع

حماية البيانات

قابلية التطبيق

حفظ السجلات/ الأرشيف

11-14

19-18

References:

- 1. "Standard Methods for the Examination of Water and Wastewater", AWWA, Edition 21.
- 2. "Water Treatment Plant Operation", Office of Water Programs, College of Engineering, and Computer Science, California State University, Sacramento. (Fifth Edition), 2008, Volume II.

المراجع العربية:

دورات تدريبية سابقة من كيمونكس مصر للاستشارات ومنها:

- " التحاليل المعملية لمياه الشرب والصرف الصحى " A (8-03) Aمشروع المدن الثانوية الممول من الوكالة الأمربكية للتنمية الدولية ٢٠٠٤.
- خطوات العمل القياسية للتحاليل المعملية لمياه الشرب والصرف الصحى " P (8-03) P، مشروع المدن الثانوية الممول من الوكالة الأمريكية للتنمية الدولية ٢٠٠٤.
- "إدارة نظم السلامة والصحة المهنية لقطاع مياه الشرب والصرف الصحى" A (8-42) OHV (8-42) من الوكالة الهولندية ضمن مشروع التدريب الإداري لقطاع مياه الشرب والصرف الصحي الممول من الوكالة الهولندية للنتمية الدولية

الفصل الأول

الأسس النظرية والعملية للتحاليل الكيميائية

:()

•

•

.

•

.

. (-)

. (-)

(ppm)

(ppb)

(-)

Ţ		
(mg/L) /	/	
(g/L) /	/	
(ppm)	/	
(ml/L) /	/	
(g/ml) /	/	
(%wt) %	+ / ×	
(Vol %) %	+ / ×	
(N)	/	
(M)	/	
(L)	1	
	/ ()	

(-)

	•	1
(mg)	-	
(µg)	-	
(ng)	-	
(pg)	-	
(fg)	-	
(ag)	18-	
(zg)	-	

/
/
/
/
% (%)

() (/) - - -) = () (....

:

. = ÷ . = = ÷ = . = ÷ =

- ()

:

·

= ()

/ = / =

:

 $NaOH + HCl = NaCl + H_2O$

 $Na_2CO_3 + 2 HCl = 2 NaCl + H_2O + CO_2$

= () .()

:

= __

=

= - = =

 $MnO_{4}-=Mn_2+$

 MnO_{4} - = MnO_{2}

.(-)

(-)

1	Fe ²⁺	Fe ³⁺
2	Fe $^{2+}$ Sn $^{2+}$ 2 Cr $^{3+}$ As $^{3+}$	Fe ³⁺ Sn ⁴⁺
6	2 Cr ³⁺	Cr ₂ O ₇ ²⁻ As ⁵⁺
2	As^{3+}	As^{5+}
2	21	I_2
1	$2S_2O_3^{2-}$	$S_4O_6^{2-}$
6	I ⁻	IO_3
3	Mn ⁴⁺	Mn ⁷⁺ (OH ⁻)
5	Mn ²⁺	$\mathrm{Mn}^{7+}(\mathrm{H}^{+})$
1	Mn ²⁺ Ce ³⁺	Ce ⁴⁺
2	Cl ⁻	OC1 ⁻

Ag+ + Cl- = AgCl

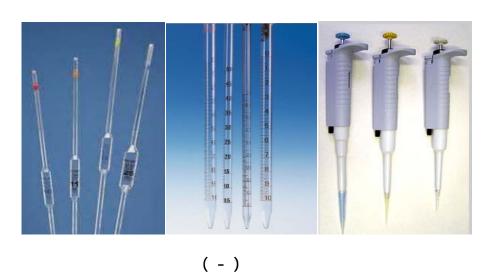
=

()

:

(mg/equivalent weight = N X V)

: .


.

.

;

.

.

(-)

.

<u>:</u>____

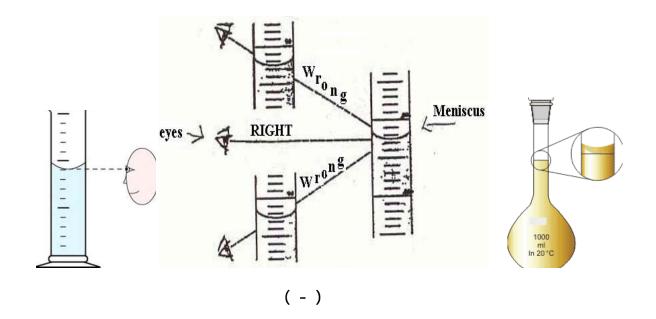
•

:

.

.

. (-)



(-)

.(-)

. Indicators

.

.(

Indicator Error

:

= () % (10-4 x
$$2V_1/10-1$$
 x V_1) x $100 = -0.2$ %

 V_2 , V_1

= () % [
$$10$$
-(14-9) x $2V_1$ / 10 -2 x V_1] x 100 = + 0.02 %

(-) (-)

(-)

		pН	
		0.1 - 2.0	Crystal violet
		1.2-2.8	Thymol Blue
		2.9-4.0	Methyl yellow
		3.1-4.4	Methyl orange
		3.0-4.6	Bromphenol blue
		4.0-5.6	Bromcresol green
		4.4-6.2	Methyl red
		5.2-6.8	Bromcresol purple
		6.2-7.6	Bromphenol blue
		8.0-9.6	Thymol blue
		8.0-10.0	Phenolphthalein
		0.1 - 2.0	Crystal violet
N—————————————————————————————————————		Metl	nyl orange
H		Phene	olphthalein

()

(-)

рН	
8.5 – 9.5	2-Naphthol -3,6-disulfonic acid
3.5 – 4.5	Chromotropic acid
12.0 – 13.0	Naphthionic acid
2.5 – 3.5	Salicylic acid
10.0 – 14.0	Eosin B
1.0 – 3.5	Eosin Y
4.0 – 4.5	Fluoroscein sodium

(-)

	pH = 7	pH = 0	
	-0,29	+0.24	Neutral red
	-0.29	+0.24	Safranine
	-0.11	+0.29	Indigo carmine
	+0.01	+0.53	Methylene blue
	+0.23	+0.67	2,6-Dichloroindophenol
	-	+0.76	Diphenylamine
	+1.06	+1.14	o-Phenanthroline
H	Diphenylamin	е	
\bigcirc			
	o-Phenanthroli	ne	

Bromids, iodides	Eosine B	
Bromine, peroxide	Fluorescein acid	
Chloride, bromide, iodide	Fluorescein sodium	
Nitrates	Alizarin saturated	
Br omide, chloride	Bromophenol blue	
СООН	Fluorescein	
	Eosin Y Eosin B (NO2 instead of Br)	
Br Br Br		

• Sodium alizarinsulfonate

• Bromophenol blue

• Bromophenol blue sodium salt

• Ferric ammonium sulfate

• Potassium chromate

• Eriochrome black T

• Murexide

• Morin

• Eriochromocyanine

• Hematoxylin

• Sym.Diphenylcarbazide

• Xylenol Orange

Eriochrome black T

Murexide

Buffer Solutions

pH = pKa + log [A-]/[HA]

. pKa

. [AH]

. [A-]

•

(-)

(-)

(-)

Ka pKa 1.75 x 10⁻⁵
7.54x 10⁻³
6.23x10⁻⁸
4.78x10⁻¹³ 4.75 Acetic acid 2.12 Phoshoric acid 7.20 12.32 4.78x10

4.47x 10⁻⁷

5.62x10⁻¹¹

8.7x 10⁻⁴

1.8x10⁻⁵

3.9x10⁻⁷

5.8x10⁻¹⁰ 6.35 Carbonic acid 10.25 Citric acid 3.1 4.7 6.4 9.24 Boric acid 5.01x10⁻² 1.30 Oxalic acid 5.13x10⁻⁵ 4.29

()

(-)

K _b	pK _b	
1.75×10^{-5}	4.76	Ammonia
1.07×10^{-9}	8.97	Pyridine
6.6×10^{-9}	8.18	Hydroxylamine
6.53×10^{-9}	3.18	Triethylamine

$$pH = -log [H+]$$
:

×

:

[H+] =
$$2.0 \times 10^{-3} \text{ M}$$

pH = $-\log (2.0 \times 10^{-3})$
= $3 - \log 2.0$
= $3 - 0.3 = 2.70$

$$pH + pOH = 14.00$$

~

[pOH] =
$$2.0 \times 10^{-3} \text{ M}$$

[pOH] = $-\log (2.0 \times 10^{-3})$
= $3 - \log 2.0$
= $3 - 0.3 = 2.70$
pH = $14.00 - 2.7 = 11.3$

- (

 $HA = H^{+} + A^{-}$ $HA-x \quad x \quad x$ K = [x][x]/[HA-x]

X

 $10^{-5} \times 1.75$

 $K = [x]^2/[HA-x] = 1.75 \times 10^{-5}$ $K = [x]^2/[AOH-x] = 1.75 \times 10^{-5}$

: $1.00 \times 10^{-3} \text{ M}$

 $1.75 \times 10^{-5} = x^2 / 1.00 \times 10^{-3}$ $x = 1.32 \times 10^{-4} M$ [H or OH]

 $pH = -\log 1.32 \times 10^{-4} = 3.88$

 $pOH = -log 1.32 \times 10^{-4} = 3.88$

pH = 14.00 - 3.88 = 10.12

Volumetric analysis

$$N \times V = N^{\hat{}} \times V^{\hat{}}$$

 $mg = Eq.wt \times N \times V$

:

V N

Eq.wt

mg

Spectrophotometric analysis

$$A = \varepsilon \times C \times L$$

$$mg/ml = \frac{A \times MW}{L \times \varepsilon}$$

$$A = 2\text{-log}(\%T)$$

:

= A

Molar absorpitivity = ε

= C

. = L

 $. \qquad \qquad = \qquad \qquad MW$

= mg/ml

. = %T

Potentiometric analysis

$$E = E^{o} \pm \frac{RT}{nF} \log C$$

$$E = E^o \pm S \log C$$

()

Conductometric analysis

$$G = \frac{1}{R} = K\frac{A}{L}$$

$$A = 1000 \frac{K}{C}$$

Cconductance = G

(

الفصل الثانى

مصادر وخصائص ومواصفات مياه الشرب ومصادر تلوثها

أهداف التدريب (التعلم):

:

•

•

•

•

ullet

•

()

% (%) % %) .(

0

()

•

.

•

.

.

.

.

.

:

()

.

<u>:</u> .

<u>:</u> . (pH)

. .OH- H+

ОН- Н+

- ()

,

· _____.

- ()

<u>:</u> .

•

·

•

)

:

•

() -: .

:

. – . . – . . –

. – –

. –

: (-)

.

- ()

	T	1
	1	
·		

^{*} Water Treatment Plant Operation. Volume II. 5th edition. California State University. Sacramento 2006.

- ()

(-)

,	
,	
•	

- ()

1	
	()
	()
·	
·	
·	
·	

()

: (-) (-)

_ _ _ _

:

. . .

.

(-)

	:
	*
	*
·	
	()
·	

- ()

:
*
*
*

(Ultra-filtration)

.

.

•

- ()

,

/ /

(-)

(-)

(NTU)	
/	
/ .	
/ .	
/ . _/	
/ .	()
/	()
/	()
/	
/	
/ .	
	:
1 .	
/ .	
/ .	
/ .	

- ()

/ .	
/ .	
/ .	
/	as (NO ₃)
,	as (NO ₂)
, ,	(NH_3)
/	:
	Alachlor
	Aldicarb
	Aldrin and dieldrin
	Atrazine
	Bentazone
	Carbofuran
	Chlordane
	chlorotoluorn
	D.D.T
	1.2-Dibromo 3-chloropropane (DBCP)
	1.2-Dioronio 3-emoropropane (BBC1)
	2.4-Dichlorophenoxyacetic acid (2.4 D)
	- 1.2-Dichloropropane (1.2-DCP)
	-
	1.2-Dichloropropene (1.2-DCP)
	Hexachlorobenzene
	Isoproturon
·	Lindane
·	Methylchlorophenoxyacetic acid (MCPA)
	Methoxychlor
	Metoachlor
	Molinate

- ()

	Pendimethalin	
	Pentachlorophenol	
	Permethrin	
	Propanil	
	Pyriproxyfen	
	Simazine	
	Trifluralin	
	DB-2.4 .	
	Dichloroprop-2.4	
	Fenoprop	
	Mecoprop	
	2.4.5-T -	
	Monochloramine	
	chlorine	
	Bromate	
	Chlorite	
	2.4.6-Trichlorophenol -	
	Trihalomethanes	
	Dichloroacetate	
	Trichloroacetate	
	Trichloroacetaldehyde	
	Dichloroacetonitrile	
	Dibromoacetonitrile	
	Trichloroacetonitrile	
	Carbon tetrachloride	
	Dichloromethane	
	1.2-Dichloroethane -	
	1.1.1-Trichloroethane -	
	Vinyl chloride	
	1.1-Dichloroethene -	
	1.2-Dichloroethene -	
,	Tetrachloroethene	

- ()

	Toluene	
	Benzene	
	Benzo[a]pyrene ()	
	Monochlorobenzene	
	1.2-Dichlorobenzene -	
	1.4-Dichlorobenzene -	
	Trichlorobenzenes (Total)	
	Di (2-ethylhexyle)adipate (-)	
	Di (2-ethylhexyl)phthalate (-)	
	Acrylamide	
	Epichlorohydrin	
	Hexachlorobutadiene	
	Edetic acid (EDTA)	
	Triacetic Nitril	
	Endrin	
	Chlorate	
	Bromoform	
	Chloroform	
	Chloralhydrate	
	Dimethoate	
	Formaldehyde	
	Cyanogens Chloride	
	Tributyltin oxide	
	Phenol	
	Di- and Trichloramine	
·	Xylenes	
·	Ethylbenzene	
	Styrene	
	Bromodichloromethane	
	Trichloroethene	

- ()

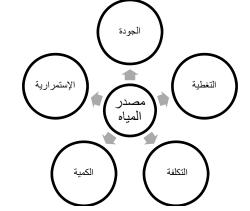
:

(-)

/	poured plate method		
%	"MF" "MPN"		
		Total Coliform	
/			
•		п п	
/			
. Blue Green Algae			
-			

•

1 .	(α)	
/	(β)	


- ()

:

•

(-)

.

(-)

- ()

الكاور (محطة باماج) الكاور في كال المحطفة ماعدا باماج الكاور (محطة باماج) الكاور في كال المحطفة ماعدا باماج الماخذ المرتبع الرملي السريع خزان التقديم والمروق غرفة المزج (التقايد)) ()

)

()

()

الفصل الثالث

متطلبات الجودة في معامل التحاليل (متطلبات مواصفة الأيزو ١٧٠٢٥)

:()

()

```
(
(Accreditation)
                                         (
```

. • . . .) .(

()

(

·
.
.
.
.
.
.
.
.
.
.

() :

-

() () . () : -

· • • · () -:

:

. -

. -

. -

. -

. -

. -

. -

. -

. -

:

()

•

•

• (

. .

()

-

		·		
•				
·				
-	,	()	:	
	()	:	

.

()

. /

•

:
()
()

.

.
/ ·

_ _ . - () ;

) (---

•

.

(

.

.

()

:

.

:

-

- : (Tolerance)
% . ()
% . . ()

()

()

. ()

. . . · -() :

Uncertainty Measurement

()

)

.(

.
)
(.) (.... – .

.(Repeatability) .(Reproducibility) (W) (

. $[W/(2\sqrt{3})]$ (Student's t) $. (\hspace{1cm} \% \hspace{1cm} . \hspace{1cm})$

•

(Confidence interval)

.%

.

.

- ()

• . · -() :

الفصل الرابع

الأمان والسلامة في معامل التحاليل الكيميائية

:()

.

•

·

.

.

•

: . :

______=

•

•

•

• •

•

•

· .

.

:

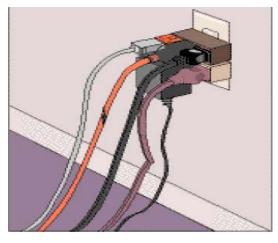
•

:

•

.((Ground-fault Circuit Interrupter)

(


(Circuit Breaker)

(Fuse)

(-)

(-)

(

.(-)

(-)

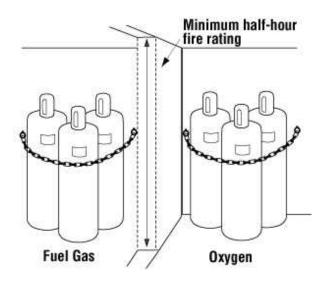
.

.

.

.

.%


) 。 .(.(.(. () (-) (-)

- ()

:

(-)

(-)

()

:

) 。 .(。 ()) .(

•
•
•
(MSDS)

. .

.

(-) : . . .

. . .

.

(-)

•

•

•

•

•

• . () ·
.(
.(
.

.((Fume Hood)

.

(Face . Shield)

.

() .

- ()

.

<u>:</u> .

.

() . ()

:

- ()

•

.

: •

.

•

.

•

- -

. - - - -

: :()

· :()

•

- ()

:() :() . () (()

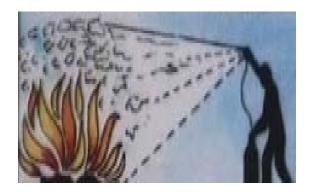
(-) (-) . (-)

- ()

(A)

(D)

(C B)


(-)

- ()

(-)

- (

<u>:</u> .

:

.

(-)

- ()

, ,

(-)

:

.

. . .

. . . .

()

• .(.

: . ·

- ()

) .(

- ()

. • • • . .

(MSDS)

()

Figure A

Figure D

Figure E

Figure E

()

القصل الخامس

تقنيات جمع عينات المياه للتحاليل

:()

()

. .

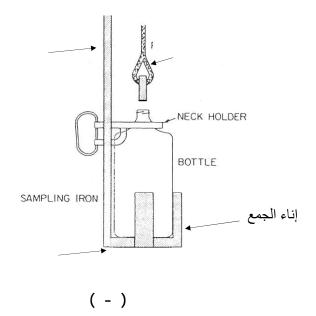
: - - - - - - -. -

:

. () :

۲_

) .(

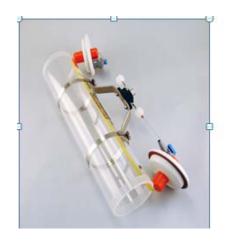

.(-)

(-)

(Heyroth Water Sample)

. (-)

r₋ ()


•

ξ- ()

(-)

(-) (Kemmerer)

°- ()

(-)

(

% / .((-)

()

٧_

۸- ()

() () .

۹- () :

(+)

. .

% EDTA %

(Animal) (Plant) Phytoplankton: Algae
.Zooplankton: Protozoa

1.-

(Holding Time)

(۱۱ –

:(Grab)
- - - - (Composite)

17-

Time	Composit	te (TC):		
Flow Proportioned Composi	te (FPC)			
(TVCV)				
	•			
				(TCVV
Areal	Composit	te		
			•	
Vertical Con	mposite			
	:			
		.()	
				•

()

:

١٣_

. (–) .

()

:

۱٤-

_____.

(Blank)

·

.

10-

```
(Duplicate)
                (Replicate)
                                        (
      (Spiked, Standard Addition)
                                              ( - )
                                             (
۱٦_
```

(-)

()	
()	

.

. (-)

(-)

*

_
_
_
_
_
_
_
_
_
_
-
_
_
_

1٧- ()

_
_
-
-
_
-
-
-
-
-
-
-
_
-
-
_
_
_

^{*} Small water System Operation and Maintenance, 5th ed., 2009 California State University, Sacramento

١٨-

			:
		:	
			:
(-) ·(
		:	
		:	
	•	:	
	•	:	
	•	:	

19-

·

(-)

				<u>:</u>
	o	() ()		
	o	() ()		
	o	() ()		
	>			
	o	()		
		()		
,		() ()		
	o	() ()		
,		() ()	-	
		() ()		
				<u>:</u>
		() ()		
	>			
	0			
		() ()		
	o	() ()		
		() ()		
	>			
		() ())
	>			(

Y·- ()

	0	() () () () ()	
,	0	() () () () () () () ()	
,	<	() ()	<u>:</u>
	> 0	() ()	
	>	() ()	

Y1- ()

	o	() ()	+
	> o	() ()	()
,	>	() ()	
,		() () ()	
	0	()	<u>.</u>
	> 0 0	() () () () ()	
	/()		

YY_ ()

0	() ()		<u>:</u>	
	() ()			
> o	()			
> ° -	() () () ()		()	
> o	()			
0	() ()			
> ds for the Evamination of Wa	0.11	ast 1 200		

^{*} Standard Methods for the Examination of Water & Wastewater, 21st ed. 2005

77- ()

القصل السادس

الأجهزة الرئيسية المستخدمة في قياسات ملوثات مياه الشرب وطرق معايرتها

:() ()

Spectrophotometer			-
Flame Photometer			-
			_
Atomic Absorption Spectrometer			
Inductively Coupled Plasma		I.C.P	-
Ion Chromatograph			_
Gas Liquid Chromatograph .			-
High Pressure Liquid Chromatograph			-
-	()	

•

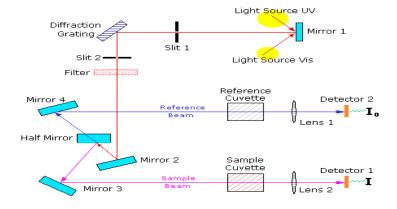
.

•

•

:

:


.

.

.

.

```
Mass Spectrometer.
      Infrared Spectrometer .
UV-Vis - Spectrophotometers
   ( )
                           Single Beam ( ) .
                          Double Beam ( ) .
           .( - )
```


• ()

•

:

()

:

Holmium Oxide filter

 $\pm 1 \text{ nm}$

360.8, 385.8, 418.5, 453.4, 459.9, 536.4, 637.5 nm

SRM NIS

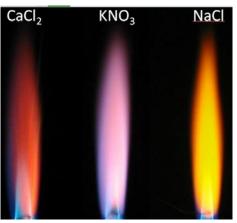
'

.

;

(A)	(nm)
0.747	
0.869	
0.293	
0.644	

.± %


- ()

```
:Flame Photometer
```

) () (-)

. (

(-)

•

.

. = .) .(- ()

nm nm nm nm nm **Turbidimeter and Nephelometer** Dispersed) (Particles .(Nephelometry)) (

(

(Turbidity Coefficient)

 $\begin{tabular}{c|ccccc} Species & Method & Suspension & Reagent \\ Ag^+ & T,N & AgCl & NaCl \\ Cl^- & T,N & AgCl & AgNO_3 \\ Sulfate & T,N & BaSO_4 & BaCl_2 \\ \hline \end{tabular}$

.(Beer's law)

 $\begin{array}{c|cccc} Sulfate & T \,,\, N & BaSO_4 & BaCl_2 \\ Se & T & Se\,\,Cl_2 & SnCl_2 \\ Ca & T & CaC_2O_4 & H_2C_2O_4 \end{array}$

N: Nephelometry

: ()()

. :()

T: Turbidity

:()

() . () . •

- ()

. (NTU)

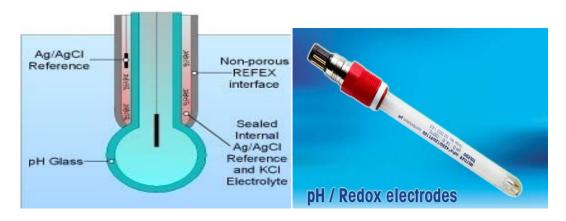
•

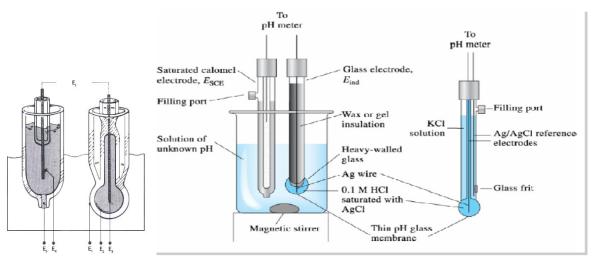
(NTU)

•

•

pH-meters


(Glass electrode)
(Reference electrode)


(Ag/AgCl electrode) (Calomel electrode)

(-)

. (-)

()

()

•

•

•

•

.pH

•

•

(

Ion Selective Membrane Electrodes

:

(Ion selective electrodes)

()

•

()

(-)

- ()

(Semi log) :Conductometers (-)

- ()

.141.2 mS/m or 1412 μmhos/cm

•

•

±

. (mS/m) = [141. mS/m] / [1 + 0.0191 (t-25)]

 $(\mu mho/cm] = [1412 \mu mho/cm) / [1 + 0.0191 (t-25]]$

(

Dissolved Oxygen Meter

.(-)

(Diffusion Current)

(-)

•
()
.(

•

- ()

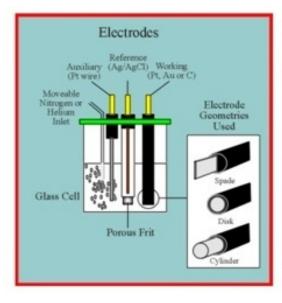
```
(MnSO_4.4H_2O)
(MnSO<sub>4</sub>. H<sub>2</sub>O)
                                           (MnSO_4.2H_2O)
                                            Na_2S_2O_3 \, 5H_2O
                                                            %
```

(

)

• (- -) . : . . (-)

.


()

.

.

- ()

(N,N-Diethyl-p- phenylenediamine)

(-)

:Cyanide Analyzer

-) (

(

. : . · : . (-) . .

()

الفصل السابع

الأجهزة المساعدة والتقنيات المعملية

أهداف التدريب (التعلم):

•

•

•

•

•

•

•

•

•

(

Drying Ovens and Muffle Furnaces

	(Drying Ovens)
- () °	
;	
(Mechanical Convection Ovens)	
(Gravity Convection Ovens)	
(Vacuum Ovens) •	
	(Muffle Ovens)
0	
: · · · -	

()

· :

()

•

()

(-)

() - (°) (30 psi) (Autoclaves)

(Geobacillus Stearothermophilus)

(Spores)

()

- (

(Incubators)

(-)

.

)

•

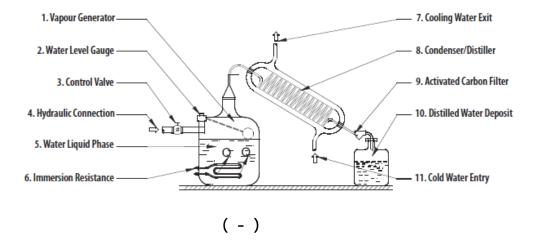
. ()

(Top Loading Balance)

Analytical Balances

(Electronic Balance)

•
.
()


٥ - أجهزة تقطير وتنقية الماء Water Distillation and Water Purification

(Water Distillation)

- . ° م × : ()

(

)

(Water Purification)

_

•

•

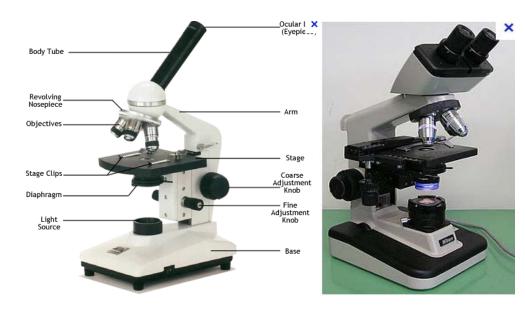
•

(ASTM)

()

(-)

Type I	Type II	Type III	Type IV	1
0.06	1.0	4	5.0	(μS/cm ⁻¹)
18.0	1.0	4.0	0.2	(MΩ-cm)
NA	NA	NA	5.0-8.0	рН
50	50	200	No limit	(ppb)
1	5	10	50	صوديوم (ppb)
1	5	10	50	(ppb)
3	3	500	No limit	(ppb)
GF-AAS. ICP- .MS. GC HPLC. AAS	General Lab reagents	Electro- analysis media- preparation	Washing machine. autoclaves	



•

.

```
(Microscope)
.(
     .(
```

(

(-)

•

•

•

•

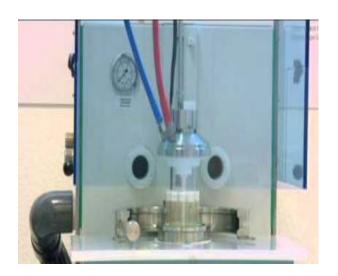
•

•

()

Sample Digestion Equipment

(Microwave Digestion)

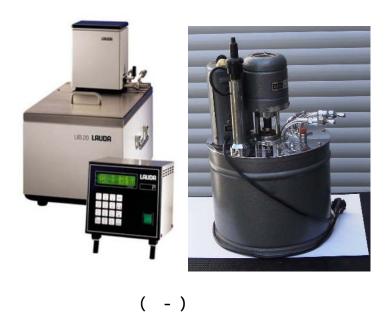

(nm 220)

(OH⁻)

(Photolysis)

()

0


() ()

()

•

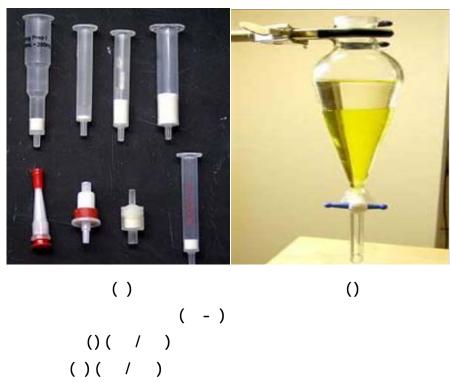
•

.

Glass Desiccators

()

()


(-)

Extraction

```
(Solid Phase Extraction)

( )
```

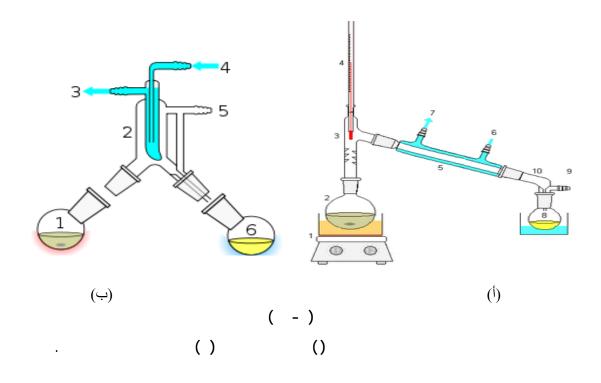
· .

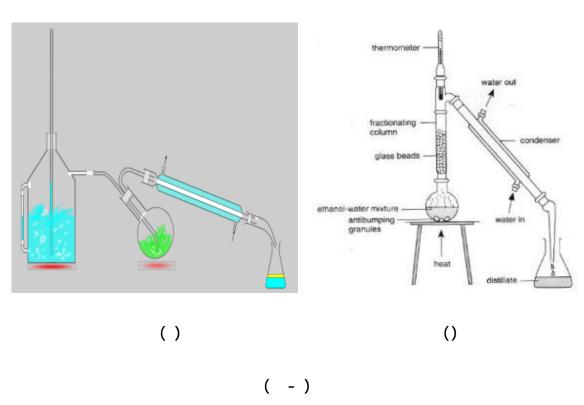
(Buchner (Buchner Flask)

Filtration

Funnel)

()


:


Distillation

. • .

.

.

- ()

:

الفصل الثامن

التحاليل الكيميائية لمياه الشرب

:()

•

•

·

•

()

:

•

•

.(

- - - - -) •

.(- -) •

- - -) • .(-) •

. •

•

.

() $(^{\circ}C = 5/9 (^{\circ}F-32))$ Temperature

•

.

.(DO)

Electrical Conductivity (EC)

Conductivity at $25^{\circ}\text{C} = \frac{Conductivity}{C} =$ $1 + 0.0191 \quad (T-25)$

:T

Milli Siemens/meter (ms/m):

(

```
(Conductivity Water)
                                                                  .( / )
                 "Cloudiness"
                                                                                              Turbidity
Hydrazine
                                                Sulfate (H<sub>2</sub>N)<sub>2</sub>H<sub>2</sub>SO<sub>4</sub>
Hexamethylene-tetramine . (CH_2)_6N_4
                                                         (
```

<u>:</u>

.N.T.U

<u>:</u>_____

(Turbidity Meter)

.() N.T.U. .

<u>:</u>

·

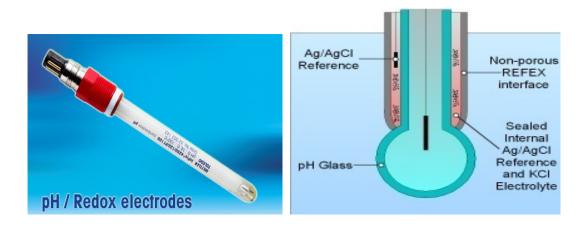
Sample NTU = $\frac{\text{NTU measured}}{\text{Pr oportion of sample in dilution}}$

(Nephelometric Turbidity Units) NTU:

.

<u>:</u>

(WHO) .NTU .() () pН pН $pH = - Log [H^+]$ (-) (OH⁻) (H^{+}) [pH] + [pOH] = 1.(LSI)


()

٧_

.(-)

:pH

(Glass Electrode –)
(Reference Electrode)

(-) pH

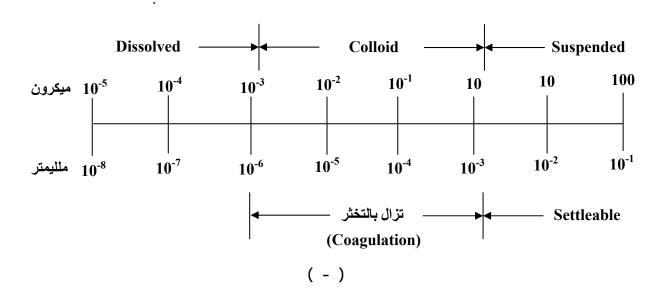
 $^{\circ}$. = pH $^{-}$

. -

```
(pH7. pH4. pH10) Buffer Solution
                                   .(
                              pН
                                                                         Solids
                                      Suspended
```

(

:


Settleable

(Imhoff Cone)

Filterable or Dissolved

(

/

C

•

()

١ • -

:Total Solids

()

.

.

:

=

:Dissolved Solids

.

0

.

:

:Suspended Solids

.

-

:

=

Water Hardness

(/)

: (/)

(/) : .

: .

 $Ca(HCO_3)_2 = CaCO_3 + CO_2 + H_2O$

 $Mg(HCO_3)_2 \quad = \ MgCO_3 \ + CO_2 + H_2O$

.(RO)

E.D.T.A (

()

.(as CaCO₃) /

E.D.T.A

EBT

. Murexide

/ 50000 × EDTA × EDTA = /

:

Alkalinity :) $Alkalinity = \frac{A \quad x \quad N \quad x \quad 50,000}{ml \quad sample}$

- ()

. = N

(mg/L CaCO₃:

<u>:</u>

.

<u>:</u>

•

.

<u>:</u>

. /

 $SnCl_2$

-()

10_

<u>:</u>____

.

.

Phosphate – P (μ g P/L) = $\frac{\mu P measured x 1000}{sample volume (ml)}$

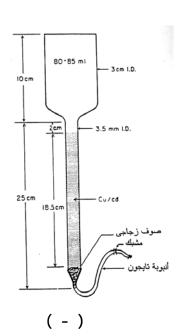
 $(mg P/L) (\mu g P/L)$:

<u>:</u>

.

.
/

- (.) N


Nitrite - N = $\frac{1000 \text{ x } (UgNO_2 - N)}{Vol. \text{ sample (ml)}}$.(mg /L) $(\mu g$ /L) :

() ١٧_

mesh

0/

% .(-)

<u>·</u>

•

- - . EDTA

.

14-

,

•

 $\frac{1}{1000} \text{ M} = \frac{1}{1000} \text{ M} = \frac{1}{1000}$

(mg/L):

<u>:</u>

-) .(

· . /

.(Methomoglobinemia)

<u>:</u>

·

° _

:

19-

<u>:</u>

. %

<u>:</u> .

<u>:</u> .

 $NH_3 - N = \frac{(A - B) \quad N \quad x \quad 14 \quad x \quad 1000}{S}$

= A = B

Y._ ()

. = N . = S

: .

 $NH_3 - N = \frac{A - x - 1000}{D} \times \frac{B}{C}$

. – = A

. = B

. = C . = D

<u>:</u>____

·

-

.

: .

•

. / . .

•

.

·

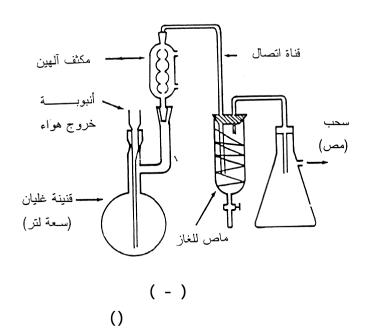
• (Semilog paper)

Y)_ ()

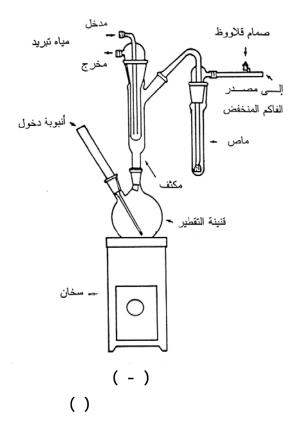
 $NH_3 - N = \frac{(A - B) - x - 1000}{C}$

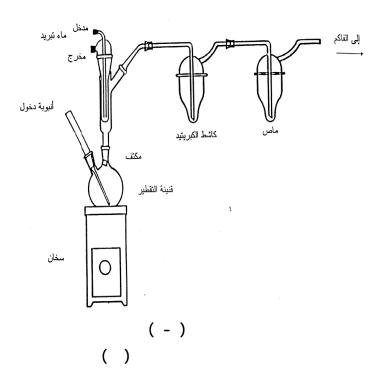
. - = A . - = B

.(mg/L):


<u>:</u>

 $NH_3 + H_2O \longrightarrow NH_4 + OH$


77-


:

(-) (-) (-)

7٣- ()

Υ ٤ – ()

$$CN = \frac{(A - B) \times 100}{\text{ml original sample}} \times \frac{250 \times 26 \times N}{\text{ml of aliquat titrated}}$$

= A

= B

$$CN = \frac{A \times 100}{B} \times \frac{50}{C}$$

= C

 $\mu g/L$:

() Y0_

<u>:</u>

•

•

HCN

· _ _ _

<u>:</u> .

.

Sulfide = $\frac{400 \quad (A - B)}{ml \quad sample}$

. = A . = B

.(mg/L):

77-

<u>:</u>

. */*

<u>:</u>____

<u>:</u>

. ()

<u>:</u>____

 $SO_4 = \frac{mgSO_4 \quad x \quad 1000}{ml \quad sample}$

.(mg/L):

<u>:</u>

. /

YY- ()

(SPADNS) nm (CDTA) $F = \frac{mgF - x - 100}{1}$

ml of sample .(mg/L):

() ۲۸_

<u>:</u>

<u>:</u>

·

<u>:</u>

Chloride = $\frac{(A - B) \quad N \quad x \quad 35.5}{\text{ml} \quad \text{of} \quad \text{sample}}$

: = A

= B = N

.(mg/L):

. / -

.

. /

19-

(N.N-diethyl-p-) DPD

nm

phenylenediamine

 $Q_2 = \frac{(A - 5B) \quad x \quad 200}{C}$

.(.

(mg/L):

()

- =

. .

:DPD

: :

N.N-Diethyl-p-phenylenediamine

(FAS)

<u>-</u>

. / (FAS) -

<u>:</u>

:

:() .

[$Fe(NH_4)(SO_4)_2.6H_2O)$] . (:)

.

mı- ()

```
\textbf{:} \textbf{(DPD) N.N-Diethyl-p-pheneyline} \textbf{diamine} \quad .
               DPD
                        N.N-Diethyl-p-pheneylinediamine
                         (EDTA) disodium ethylenediamine dehydrate
                 :(
                                          )
"Anhydrous disodium hydrogen phosphate":
                                (KH2PO4)
                                                            (Na_2HPO_4)
                    E.D.T.A
                             .DPD
                                        F.A.S
                               F.A.S
```

TY_ ()

```
/ ( ) F.A.S
        D.P.D.
                        (Hach powder pillow)
                             D.P.D.
     F.A.S
                                           D.P.D.
                                        (Iodide \rightarrow Iodine)
                            F.A.S.
     ) - (
                                 ) = ( / )
                                     × (
                                        (
                                             )
٣٣_
```

```
= (% )
. . × ( ) /
           (% )
  . ( / ) .
: ( )
                 ( )
۳٤ –
```

:
(/)
. = ———— =

<u>:</u> .

.

<u>:</u> : –

. / .

۳o_ ()

: -

: -

.

:

.
/ .
.

. / : •

/ -

. / : •

. / .

()

:

. /

/

:

٣٦_

: . / . : • : • . / . : • . / : •) o (

·- ()

٣٧_

```
(:)
        ( : )
.( - )
                                     .(
                          ( - )
```

٣٨- ()

الفصل التاسع

التحليل البكتريولوجي لمياه الشرب باستخدام طريقة الأنابيب المتعددة

:()

.

•

.

•

•

.

•

- ()

(Pathogenic Bacteria)

(E. Coli) (Escherichia Coli)

(E.Coli)

%

(E. Coli)

(

.(MPN)
. (EPA)
/

()

0

```
.(Nutrient)
                         (Standard Plate Count Test)
                                (
                                        )
                         (Bacterial Cluster)
)
          (
                                          .( °
```

- ()

Multiple Tube Fer				•	
. (N	Membrane Filte	r Method)		•	
	:(Multi	ple Tube Fermen	tation Method)		
			<u>:</u>		
)					
			(
		•			
	<u>:</u>				
	:			•	
			-		
			-		

.

•

•

(MPN)

:

: _-

.

; -

•

.

- ()

() .(-)

<u> </u>
-
-
-

()

. (Presumptive positive)

•

(Most Probable Number (MPN))

- ()

.(MPN) (Reliability) .(MPN) .(Double-strength)

- (

(MPN)

(Media)

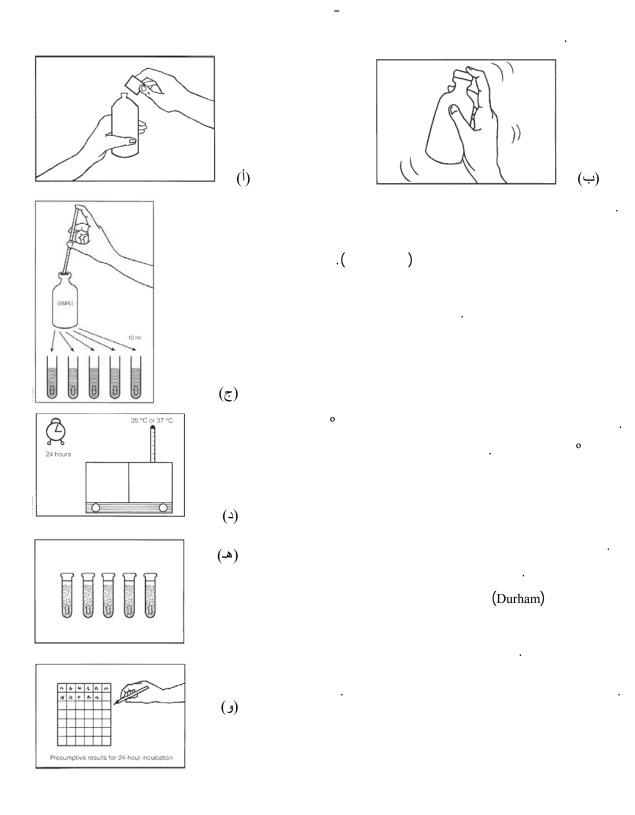
(Media)

(LTB)
(MacConkey)
(Lactose) -

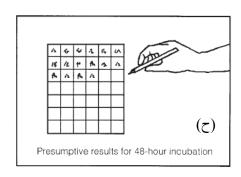
(

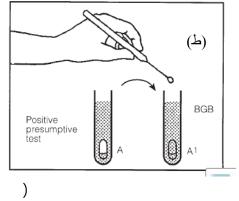
(Confirmatory medium)

.(FC)


(BGB)

(BGB)


```
:(
                                                        )
                                  )
                                         .(
(Durham)
                                                (Pressure Cooker)
                                        .(
 (Disaccharides)
                                             (Buffer)
            (Stock)
                                 (Phosphate Buffer)
                                :(
                                                      (KH<sub>2</sub>PO<sub>4</sub>)
                                                         (pH)
                                                             .(
                                                     (
                                                              )
```


.) (NaOH) .(:() (MgCl₂.6H₂O) .() .()

- ()

()

.BGB

24 hours (G)

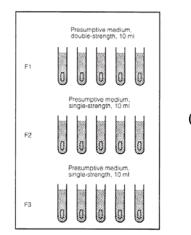
(BGB

()

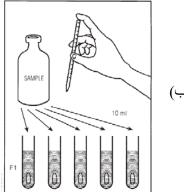
(MPN) .(-) (-)

(MPN)

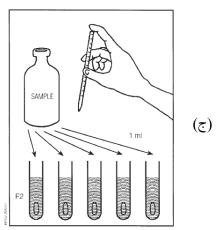
(MPN)	


(MPN)

(MPN)


(MPN)

(


:(

([†])

(ب)

()

```
(7)
                              (هـ)
                                              (Incoulum)
                   35 °C or 37 °C
                                  (و)
( - )
        .(
                                                     (
                                                             )
```

```
.( . )
         ( - )
. ×
      ( - )
(Tenfold)
              .( - )
            ( - )
                       (
                         )
```

(-)

(MPN)

(Code)

- (Code)

- - ((-)

- (-)

- (-)

- ()

:

(-) (MPN)

		I				I	Γ
2.5	2	•	4	41.0	0	•	0
25	3	0	4	<1.8	0	0	0
17	0	1	4	1.8	1	0	0
21 26	1 2	1	4	1.8	0	1	0
31	3	1 1	4	3.6	0	2	0
22	0	2	4	5.5	1	2	0
26	1	2	4	5.6	0	3	0
32	2	2	4	2	0	0	1
38	3	2	4	4	1	0	1
27	0	3	4	6	2	0	1
33	1	3	4	4	0	1	1
39	2	3	4	6.1	1	1	1
34	0	4	4	8.1	2	1	1
40	1	4	4	6.1	0	2	1
47	2	4	4	8.2	1	2	1
41	0	5	4	8.3	0	3	1
48	1	5	4	10	1	3	1
23	0	0	5	10	0	4	1
31	1	0	5	4.5	0	0	2
43	2	0	5	6.8	1	0	2
58	3	0	5	9.1	2	0	2
33	0	1	5	6.8	0	1	2
46	1	1	5	9.2	1	1	2
63	2	1	5	12	2	1	2
84	3	1	5	9.3	0	2	2
49	0	2	5	12	1	2	2
70	1	2	5	14	2	2	2
94	2	2	5	12	0	3	2
120	3	2	5	14	1	3	2
150	4	2	5	15	0	4	2
79	0	3	5	7.8	0	0	3
110	1	3	5	11	1	0	3
140	2	3	5	13	2	0	3
170	3	3	5	11	0	1	3
210	4	3	5	14	1	1	3
130	0	4	5	17	2	1	3
170	1	4	5	14	0	2	3
220	2	4	5	17	1	2	3
280	3	4	5	20	2	2	3

()

350	4	4	5	17	0	3	3
430	5	4	5	21	1	3	3
240	0	5	5	24	2	3	3
350	1	5	5	21	0	4	3
540	2	5	5	24	1	4	3
920	3	5	5	25	0	5	3
1600	4	5	5	13	0	0	4
>1600	5	5	5	17	1	0	4
				21	2	0	4

(-)

:(")

. (-)

: Confirmed Test

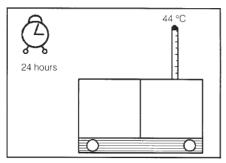
(-)

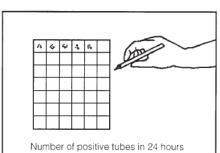
) . (" " . (" ")

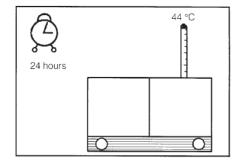
	•						
>							

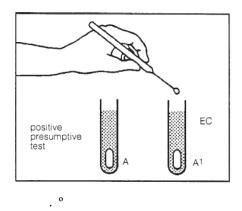
. () .

:

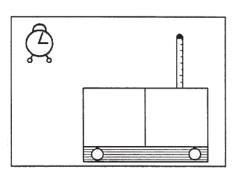

:


. •


•


·

() : -



MPN

(Sampling)

. (-)

```
( )
   ( - )
    ( )
```

(Most probale number)
(Azide dextrose broth)
:

.)()
(
. /
:()

:

- ()

,

(Catalase test) % (Catalase negative)

		. (Catalase)
(Short		.(Catalase)
·		chain)
		.(-)
	(-	-)

:

(Pseudomonas aeruginose) (MPN) :

+

+

:

: (Acetamid agar)
. •

•

•

•

•

(Staphlococcus aureus)
(M. Staphlococcus broth) (MPN)

Egg yolk tellurite)

(Egg yolk tellurite)

(Yellow zone)

(Catalase)

(Catalase positive)

.(Staplylscocci)

الفصل العاشر

التحليل البكتريولوجي باستخدام طريقة الترشيح الغشائي

:() :

•

•

•

.

(MF)

•

•

(Superimposed)

. (Inhibition)

(-)

·

(-)

×								
•	•	•	•					
							×	
							×	
					×	×	×	
					×	×	×	
			×	×	×			
			×	×	×			
	×	×	×	×				
		×	×	×				
×	×	×	×					

- ()

•

```
(Factor of ten)
                          (
                                          ) (MT)
                          :(MF)
(Vacuum pump)
                                 (Water aspirator)
                            (
       (Porous)
                                           (Petri)
                      )
```

(

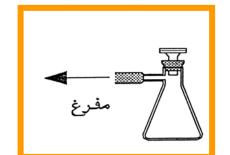
)

(Nutrient pads)) (TTC) (Endo-type) (MFC) (Endo-type) (Ingredients) (Nutrient) % . - . :(MFC) (M-Endo MF) :M-Endo MF .%

(

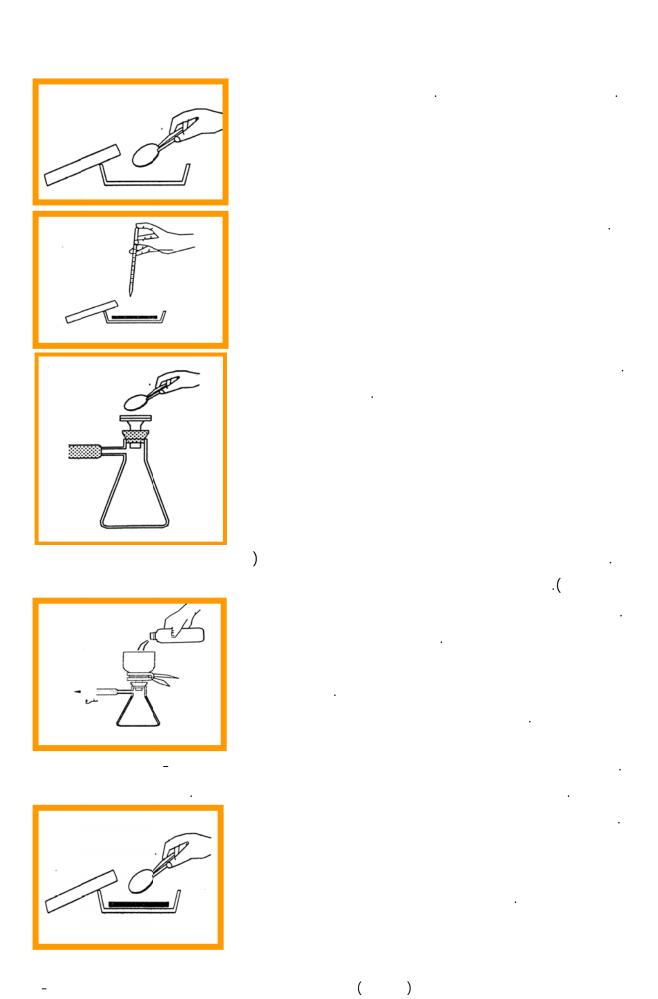
)

:MFC

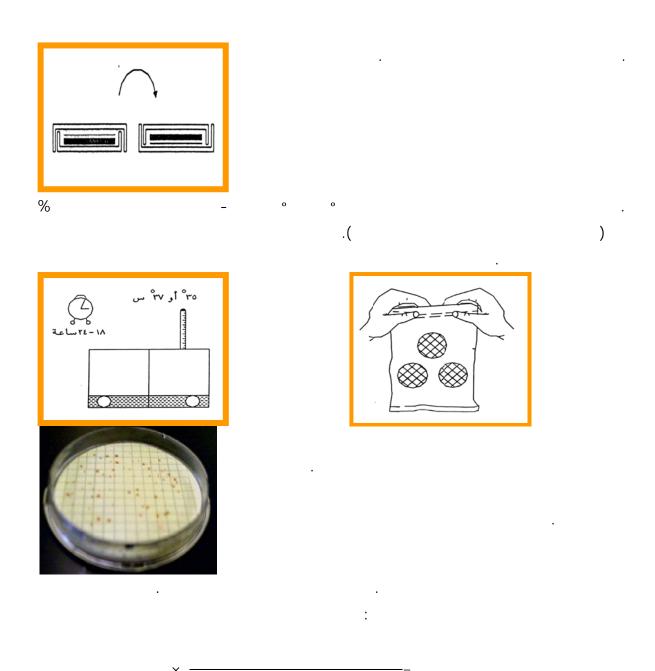

.

/ % .

•


:

·



Side-arm

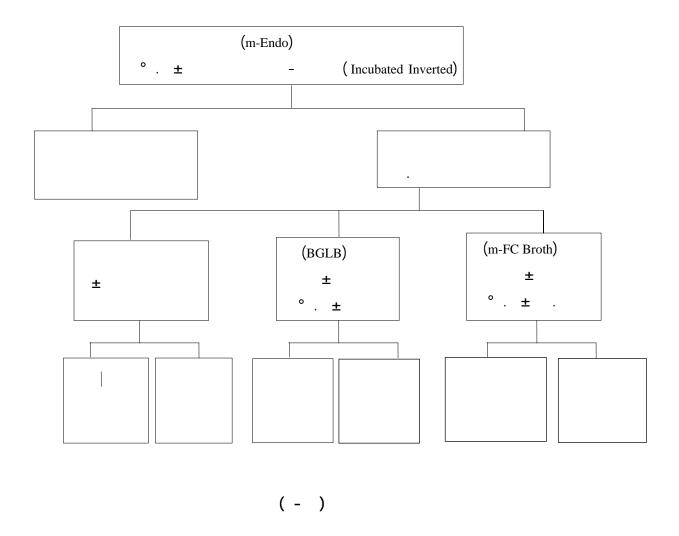
Porous

:

^ -

.(MFC)

° . ± %


·

.

Cream :

× _____ =

(**-**)

:

.

•

.

.

.

: . () . _

•

```
Free Dilution or Rinse ) / (Water

' . ± (Nutrient Broth)

' . ±

(Media list)

(Data Sheet)
(Desiccators)
```

()

.% .%

° . ±

(MPN) .

- ° . ±

. (Batch)

(Autoclave Sheet) .

.(Autoclave)

.

(Labeled) .

·

الفصل الحادى عشر

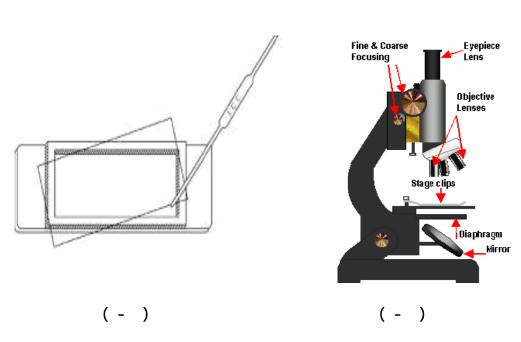
التحاليل البيولوجية (الميكروسكوبية) لمياه الشرب

:()

() :

```
(Blue green algae)
         (Green Algae)
                     (Diatoms)
              (Neurotoxin & Hepatotoxin)
                 (Filter Clogging Algae)
```

()


(-)

	Anabaena laxa		التراب أو الحشائش	
*	Asterionella	دياتومات	السمك	
	Chlamydomonas			
	Oscillatoria Tero			
	Syroira Petersenii			

() (

```
(Melosira)
                                   (
```

.(Bolting cloth)

-()

```
20x
                                      10x
(Sedgwick Rafter Cell)
             .(Whipple Disc)
               ×
       (Whipple disc)
                                         (
```

)

_

· (-)

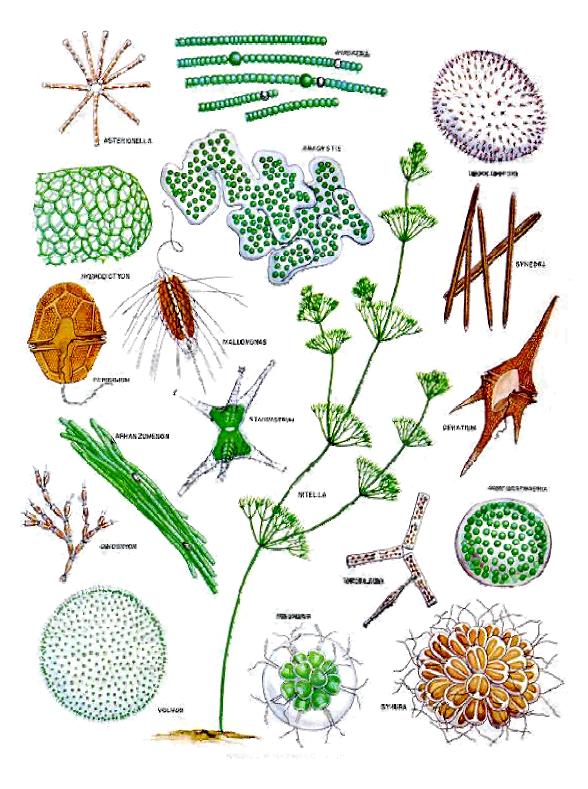
(-)

			-
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	

=

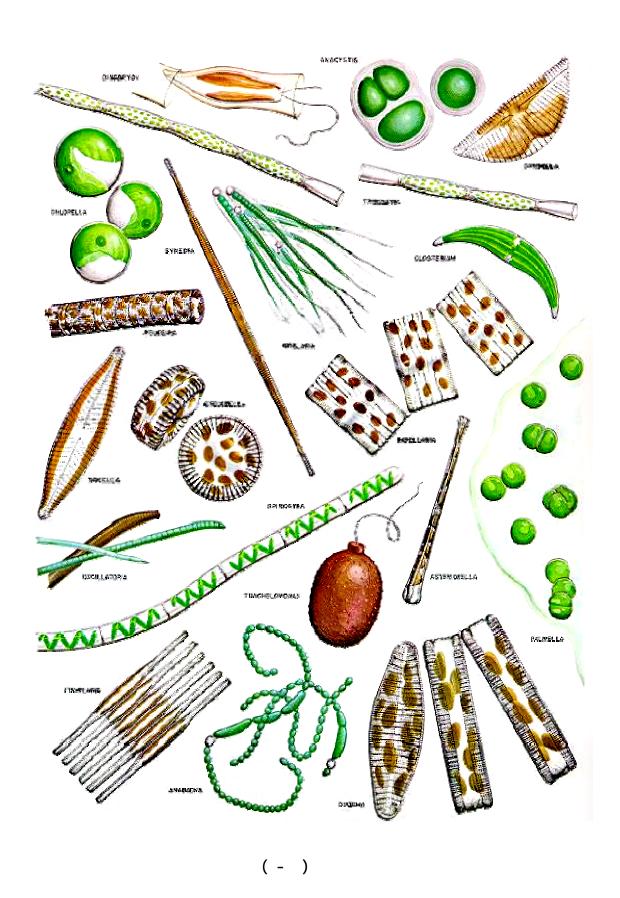
.

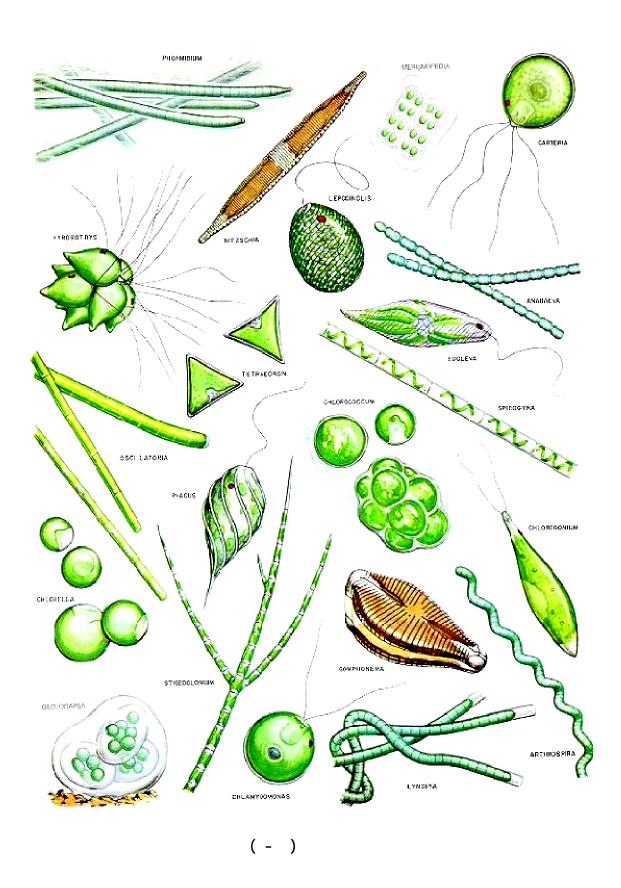
10x -

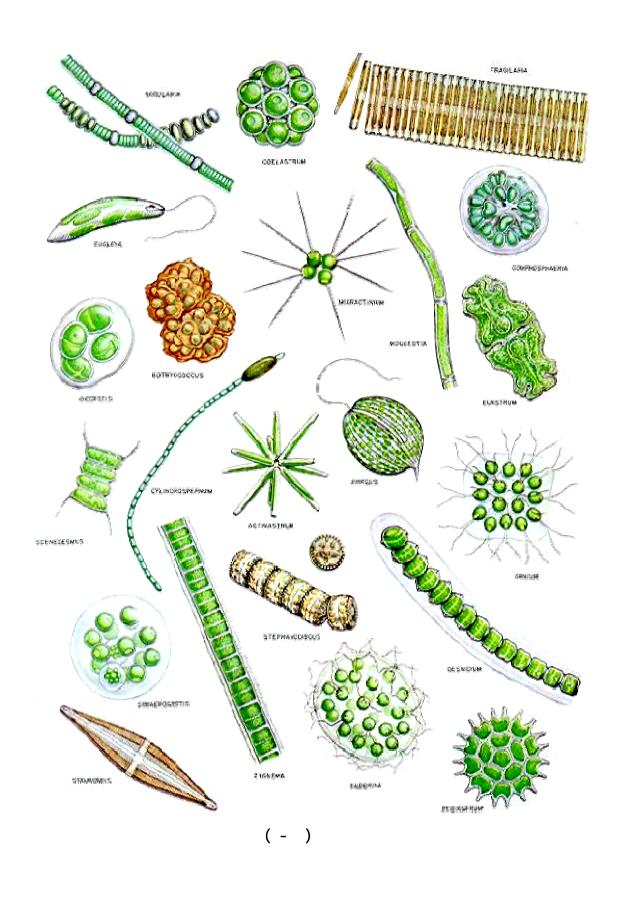

104

_

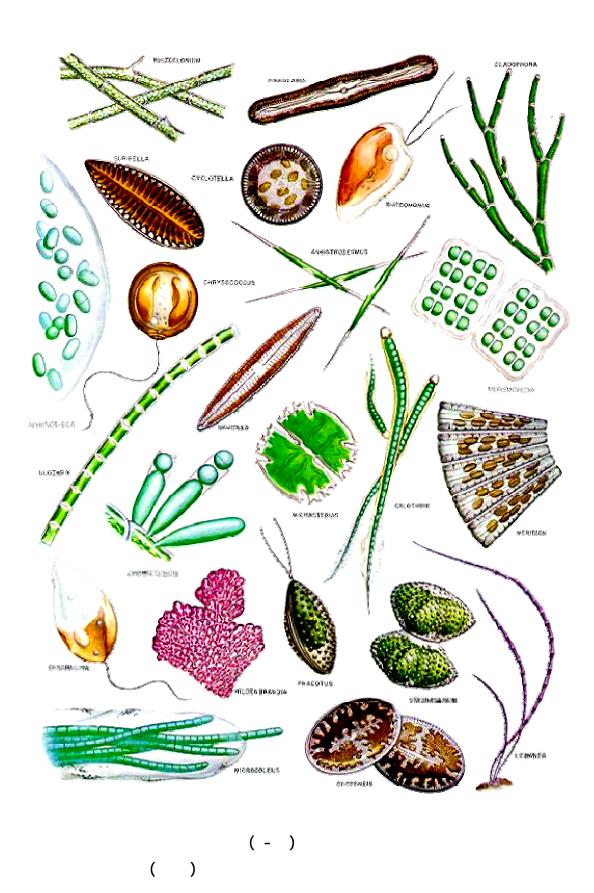
. = (× . + . ×) = -


```
= ( ) /
× ______( )
  . = ( . ) =
  = ( ) / -
  = × —
  = ( ) / -
  = x ____
 = ( ) / -
  = x —
  = / -
.
       ( ) :
```


```
:(Sedgwick Rafter)
           :Hepatotoxin
           (Microcystin)
                       (Cyanobacteria)
            . (Gastro-Eenritis, Dermatosis)
           ( - ) ( - )
         ( - )
```



(-)

() :



-()

() :

الفصل الثاني عشر

أنواع ومصادر الأخطاء وضبط وتأكيد جودة التحاليل

:() :

·
.

.

•

R X

. •

: أنواع ومصادر الأخطاء وضبط وتأكيد جودة التحاليل

•

•

•

•

•

•

Random error

Systematic error

Gross error

:

Rounding error

()

: أنواع ومصادر الأخطاء وضبط وتأكيد جودة التحاليل

.(Precision) .Trueness :(-)

> . : أنواع ومصادر الأخطاء وضبط وتأكيد جودة التحاليل

(-)

.

.

<u>:</u> .

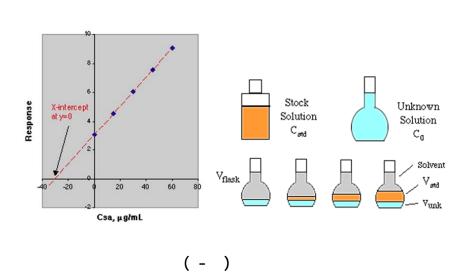
•

.

.

.

·


()

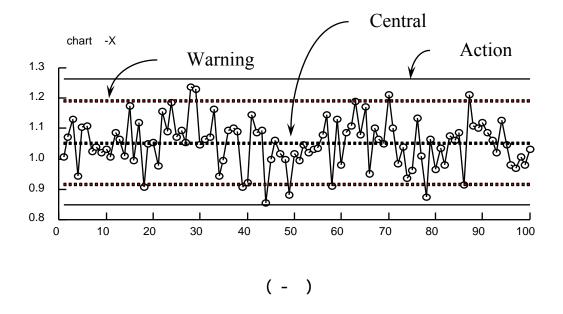
Quality Control .(Blank) .(Replicate) .(Blind) .(Spike) .(Control Charts)

.(Reference Materials)

) ن أنواع ومصادر الأخطاء وضيط وتأكيد جودة التحاليل (Known Addition, Spiking)

%

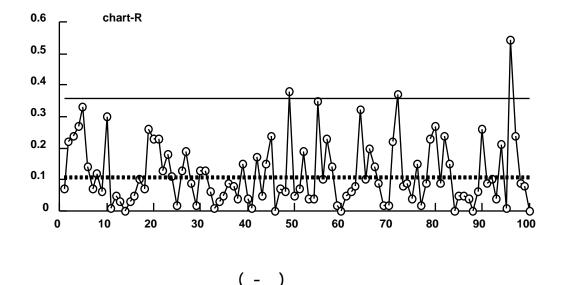
) أنواع ومصادر الأخطاء وضبط وتأكيد جودة التحاليل (Blank)


•

Control Charts

() . (R) (X

> () أنواع ومصادر الأخطاء وضبط وتأكيد جودة التحاليل


```
:Warning Limit
    (lower)
                        (upper)
                                                 %
\pm
                              .(standard deviation)
                             :(Control Limit)
               (Action Limit)
                   %
                                                             \pm
                       (\overline{X} - \text{chart})
                          .(R-chart)
                          (\overline{X} - \text{chart})
                                 ( - )
                                         (CL)
                                                          ( )
             CL \pm 2 S_x =
                                        (WL)
                                                          ( )
             CL \pm 3 S_x =
                                        (AL)
                                                          ( )
                     X
                                                          ( )
                                                          ( )
                                       (AL)
                                      (WL)
                                             (CL)
                                      (WL)
                                       (AL)
```


(R-chart) (-) (CL) () $R = d_2 S_w$ $D_4 * R$ UAL () $D_3 = zero$ LAL () () R () UAL (CL)

-نه اع و مصادر الأخطاء و ضبط و تأكيد حودة التحاليان

(LAL)

(-)

D, d

D ₄	\mathbf{D}_3	\mathbf{d}_2	
·			
·			

:

(COD)
. /
R-) (X-chart)
.(chart

(

(-)

(\overline{X})	(R)	X ₂ ()	X ₁ ()	_
·				
·				
•				
·				
•				
•				
•			=	
			<i>R</i> =	
•			\overline{X}	

•

:
$$(S_x)$$

 $S_x^2 = \sum (X - \overline{X})^2 / (n-1)$
 $S_x^2 = 43.4$
 $S_x = 6.59 \text{ mgO}_2/\text{L}$
 $\overline{X} = 497.5 \text{ mgO}_2/\text{L}$

```
(\overline{X} \text{ chart})-
                                                     ()
                    \overline{X} + 2S_x =
. = ( . × ) + . =
                   \overline{X} - 2S_x =
   . = ( . × ) - . =
                     \overline{X} + 3S_x =
    . = ( . × ) + . =
                \overline{X} - 3S_x =
   . = ( . × ) - . =
                                                   ( )
                                   R =
      . \times . D4× \overline{R}
                        = D3 =
                                              \overline{X}
                                              \overline{R}
```

: أنواع ومصادر الأخطاء وضبط وتأكيد جودة التحاليل

() : أنواع ومصادر الأخطاء وضبط وتأكيد جودة التحاليل

:

Limit of detection

Criterion of detection (CD) =
$$t_{0.95}$$
 (f) $S_{b1,w}$ $\sqrt{1 + \frac{1}{n}}$
Limit of detection (LOD) = 2 CD

t t_{0.95}

(-) f

 $S_{bl,w} \\$

n

0.088, 0.064, 0.073, 0.082, 0.079, 0.05

:

$$S_{\text{w blank}} = 0.0122 \text{ mg/L}$$

 $LOD = 2 \times t_{0.95} \times 0.0122 \sqrt{1 + \frac{1}{2}}$
 $= 0.06 \text{ mg/L}$

Accuracy

:(Trueness)

$$\frac{X}{T} \times 100 \ \overline{X}_s$$

() : أنواع ومصادر الأخطاء وضبط وتأكيد جودة التحاليل

$$\frac{X-T}{T} \times 100$$

:

X

T

Minimum and maximum recovery

$$= \frac{\overline{X}_{s} - \overline{X}}{X_{add}} \times 100$$

$$= X_S$$

$$= X$$

(-)

\overline{X}	(\mathbf{X}_2)	(\mathbf{X}_1)	

$$\overline{X} = S_x = \sqrt{\frac{\sum (x_1 - \overline{x})^2}{(n-1)}} = \frac{1}{2}$$

 (S_w)

Within Batch Standard Deviation Standard Deviation

$$S_W = \frac{R}{d_2}$$

$$S_W = \frac{5}{1.128} = 4.43$$

 (S_b)

Between Batch Standard Deviation

$$S_b = \sqrt{\left(S_x^2 - S_W^2 / n\right)}$$

(-)

\overline{X}	R	(\mathbf{X}_2)	(X ₁)	

Pooled Standard Deviation

$$S_{pooled} = \sqrt{\frac{\sum (n_i - 1).S_i^2}{\sum (n_i - 1)}}$$

Uncertainty

$$U = t(df) S_{pooled} \sqrt{\left[\frac{n_1 + n_2}{n_1 \times n_2}\right]}$$

Quality Assurance

```
.(Personnel and Training)
   .(Equipment Calibration)
                   (Equipment Maintenance)
           (Lab Audit and Review)
      (Sampling Strategy)
 (Analysis Strategy)
                                : (
                                    ر ) : أنواع ومصادر الأخطاء وضبط وتأكيد جودة التحاليل
```

(: أنواع ومصادر الأخطاء وضبط وتأكيد جودة التحاليل

.

:

) واع ومصادر الأخطاء وضبط وتأكيد جودة التحاليل

(: أنواع ومصادر الأخطاء وضبط وتأكيد جودة التحاليل

:

•

•

•

•

(: أنواع ومصادر الأخطاء وضبط وتأكيد جودة التحاليل

·

•

.

- . -

:
Limit of) (Accuracy) (Precision)
.(detection

: أنواع ومصادر الأخطاء وضبط وتأكيد جودة التحاليل

الفصل الثالث عشر

إعداد وتداول وحفظ التقارير والسجلات والوثائق

:()

•

.

.

.

•

•

.

- ()

: ; ----: ---. -.

()

:

-

			-		
	·				
-		()			
				:	

: :

•

:

.

. (

•

-:

:(.(

()

:

. Log book

:

(-)

:

- ()

:

- ()

- ()

:

. --

- ()

.

.

(-) (-)

·

:

:

:

			-			•	
	ı						
			(/)	
	(/)					
	(/)					
				(/)		
	(/) (×		

: :

: :

:

Records

.

-

,

Test reports

()

.(Uncertainty)

) /

.

.

- ()

Data control

:

.

(

Document control

()

•

•

•

•

•

•

•

•

•

•

•

•

•

•

()

```
(Word Processing)
(Microprocessor)
```

- (

(FIMS)

•

. .

. ·

.

.

/

.

.

أعد هذا المستند مشروع دعم قطاع المياه و الصرف الصحي الممول من الوكالة الأمريكية للتنمية الدولية بموجب عقد رقم 00,007-00-00-00 بالتعاون مع الشركة القابضة لمياه الشرب و الصرف الصحى www.egyptwwss.org