

برناهج إدارة هياه الشرب و الصرف الصدى

Water and Wastewater Management Program

gtz

Since the 1st of January 2011

Beutsche Gesellschaft
für Internationale
Zusammenarbeit (GIZ) GmbH

ميكروبيولوجيا المياه البرنامج الثاني ميكروبيولوجيا المياه السطحية والجوفية

Water Microbiology
Module 2
Microorganisms in Surface and
underground water

WATER MICROBIOLOGY

Module 2

Microorganisms in Surface

&

Underground Water

(Origins of Pollution – Survey of Microbial Groups in Water – Fundamentals – Public Health Microbiology-

Water Treatment Processes and Fate of Microorganisms)

Prof. Dr. Helmy Tawfik El-Zanfaly

May 2008

مقدمه

التعرف على مصادر التلوث الميكروبية بالنسبة لمصادر المياه المستخدمة في إنتاج مياه الشرب سواء كانت هذه المصادر مياه سطحية أو جوفية هو الوسيلة نحو اتخاذ التدابير التي تحمى مصادر المياه من التلوث الميكروبي من جانب ومن جانب آخر يكون اختيار المصدر الذي سيستخدم في إنتاج مياه الشرب بعيدا بقدر الإمكان عن تلك المصادر الملوثة أو المحتمل أن يصل إليها التلوث. ذلك إيمانا بأن اختيار المصدر الجيد هو المفتاح لإنتاج مياه الشرب الجيدة.

ومن المهم بالنسبة للمشتغل بميكروبيولوجيا المياه أن يكون على علم بأقسام الكائرات الدقيقة المختلفة، من بكتريا، فيرس، بروتوزوا، فطر، وطحالب والتي من الممكن أن تتواجد في المياه السطحية والجوفية من حيث خصائصها العامة.

ومن الضرورى معرفة بعض الأسس بالنسبة للكائنات الدقيقة مثل عمليات التمثيل الغذائى والتنفس لأنها من أسس تقسيم الكائنات الدقيقة كذلك نمو الكائنات الدقيقة والعوامل المؤثرة على النمو لأنها تلغي دورا رئيسيا في نمو الكائنات سواء في الطبيعة أو المعمل وتمتد الضرورة إلى التعرف على الجزء المرضى منها ممثلا في أقسام الكائنات الدقيقة بأقسامها المختلفة والسابق ذكرها. وأساس الاهتمام بالتعليل الميكروبيولوجي للمياه هو التأكد من صلاحية المياه من الناحية الصحية وهذا يتمشى مع تحقيق الهدف العام لمعالجة مياه الشرب وكذلك الهدف الخاص من عملية التطهير وهو القضاء التام على مسببات الأمراض وبالتالي ضمان وصول مياه الشرب إلى المستهلك دون مخاطر صحية وبمعرفة مخاطر عدم مطابقة المياه المنتجة للمواصفات والمخاطر المصاحبة لذلك يتحقق زيادة الاهتمام بالمعالجة وكذلك الاختبارات التي تجرى بالمعمل لتأكيد الصلاحية.

وكما أشرنا أن من خلال المعالجة بخطواتها المختلفة من المفروض أن يتم إزالة والقضاء على مسببات الأمراض، لذلك فمن المهم أن يكون القائمون بالعمل، في محطات المعالجة بوجه عام والعاملون في معامل التحليل الميكروبيولوجي بوجه خاص، على علم بالدور الذي تلعبه كل مرحلة من مراحل المعالجة على الصورة الميكروبيولوجية للمياه

المستخدمة لإنتاج مياه الشرب. وبمعرفة ذلك يمكن تقييم أداء محطة المعالجة من خلال التأكد من أن كل مرحلة من مراحل المعالجة تقوم بالدور المفروض أن تؤديه واذا كان هناك قصور في أي مرحلة من المراحل يكون هناك تحرك من المسئولين عن التشغيل لضبط أداء خطوات المعالجة. هذا ولم نتطرق إلى جزئية هامة من المعالجة وهي مرحلة التطهير وهي آخر حاجز أمام مسببات الأمراض والذي من خلاله يتم تأكيد سلامة المياه لضيق الوقت. ولكن لا يغيب عن الذهن أن التأكد من أداء كل مرحلة من مراحل معالجة المياه هو الطريق إلى الإقلال من الحمل الملقي على الخطوة الأخيرة من خطوات المعالجة وهي التطهير وبالقالي تقل الجرعة اللازمة من المطهر مع تحقيق إنتاج مياه للشرب على درجة عالية من الأمان وبالتالي يتحقق الهدف العام وهو إنتاج كوب ماء نظيف لكل مواطن

المحتويات

سفحة	_
	الباب الأول: منشأ مصادر تلوث مصادر المياه
8	تلوث المياه السطحيه
14.	التلوث من المصادر التحت سطحية
	الباب الثاني: نظرة عامة على عالم الميكروبات
17	الدووتستا
	نظرة شاملة على المجاميع الميكروبيه
20	البكتريا
35	الفطر
37	الطحالب
41	البروتوزوا
43	الفيروسات
	الباب الثالث: التمثيل الغذائي والنمو في الكائنات الدقيقة
50	الانزيمات
51	التمثيل الغذائي في الميكروبات
55	حركية النمو الميكروبي
	الباب الرابع: ميكروبيولوجيا الصحة العامة
66	تعاریف.
66	
	الممرضات والطفيليات الموجودة في المخلفات السلئلة الأدمية
71	والممكن تواجدها في المياه
71	البكتريا

	78	الفير س
85		البروتوزوا الطفيلية
90		الديدان المتطفلة
	باه الشرب من خلال المعالجة	الباب الخامس: التحكم في ميكروبات مب
93.		تخزين المياه الخام
96		التحكم في العسر
		المعالجة التقليدية
97		التجلط
98		الترشيح
102	2	المراجع

قائمة بالجداول

صفحة	بل	رقم الجدو
9	مكونات الصرف الصحى من الأدلة لمجتمعات في الو لايات المتحدة	1
10	كثافة الميكروبات في مخلفات الصرف الصحى الغير معالجة	2
11	محتوى مخلفات الصناعة من الميكروبات المختلفة	3
12	البكتريا المعوية في مخلفات الصناعة المعالجة	4
12	بعض خصائص مياه الأمطار	5
	حيوية بكتريا القولون البرازية والبكتريا السبحية البرازية في	6
15	راشح الدافن الصحية	
16	تصنيف الكائنات الدقيقة في مياه الراشح من مدافن تجارية	7
18	مقارنة بين البروكاريوتس والايوكاريوتس	8
44	أقسام الفوتوتروفيك بكتريا	9
58	أقل جرعة ممرضة من بعض الممرضات والطفيليات	10
60	تأثير معالجة المياه على نسبة المتفشيات	11
63	الأمراض البكتيرية المتولدة عن المياه	12
70	بعض الفيروسلت المعوية الأدمية	
71	طرق تركيز الفيروسات من المياه	14
76	المتفشيات من الروتا فيرس المتولدة عن المياه	15
77	الأمراض المتسببة عن البروتوزوا المتولدة عن المياه	16
82	الديدان المتطفلة	17
85	معدل الترسيب للجسيمات المتولدة في المياه	18
87	النوعية الميكروبية الموسمية للمياه الجوفية المعالجة بالتهوية	19
89	معدل الترسيب للحسيمات بالمحلط في المياه	20

قائمة بالأشكال

صفحة		رقم الشكل
19	مقارنة بين تركيب البروكاريوتس والايوكاريوتس	1
20	أشكال الخلايا البكتيرية	2
21	تركيب الخلية البكتيرية	3
23	اشكال البكتريا الغير عادية	4
24	توضيح لشكل بعض الأكتينوميسيتس	5
26	بعض السيانوباكتريا	6
29	أقسام الفطر	7
31	بعض الطحالب المتواجدة في المياه والمخلفات السائلة	8
33	مجاميع البروتوزوا المتواجدة في المياه والمخلفات السائلة	9
35	فيروسات معوية	10
36	دورة الفيرس التحليلية	11
38	عد الفيرس بطريقة تكون البقع	12
47	منحنى النمو للبكتريا	13
50	كيموستات للمزرعة المستمرة	14
53	العلاقة بين معدل النمو وتركيزات المادة التي يعمل عليها الانزيم	15
73	انتقال الأمراض المتولدة عن المياه	16
78	جيارديا لامبليا (التروفوزويت ــ سست)	17
79	دورة حياة الكربتوسبوريديم	18
83	دورة حياة الاسكارس	19

الباب الأول

منشأ تلوث مصادر المياه Origins of Source water pollution

■ مقدمة

إن حماية مياه الشرب من التلوث بمخلفات الإنسان والحيوان ، مخلفات الصناعات الغذائية ومياه العواصف (ربما لا تكون موجودة في مصر) هي في غاية الأهمية بالنسبة لكل شخص . ومن ناحية الصحة العامة فإنها إلى جانب ما سبق تلقى اهتمام بالغ على ضرورة توافر إمداد مستمر من المياه حيث أن المياه ضرورية لاستدامة الحياة ، مع الاهتمام الأول بأن تكون المياه خاليه من العوامل الممرضة أو مستوى معنوى من المواد الكيماوية السامة وتكون من حيث المظهر والطعم سارة . هذه المتطلبات الأساسية تشت مل على ضرورة حماية المصادر المائية ، الحفاظ Conservation على المصادر المائية ، والمعالجة إلى درجات مختلفة لتحقيق الهدف المطلوب ، والإمداد المستمر بمياه الشرب.

• منشأ تلوث مصادر المياه Origins of Sources water Pollution

1. تلوث المياه السطحية

نوعية المياه السطحية تتعرض تكراريا إلى تغيرات شديدة في النوعية الميكروبية كنتيجة للتغير في الأنشطة الحيوية على طول المجرى . هذه التغيرات تتسبب عن صرف المخلفات الآدمية بدون معالجة أو المعالجة معالجه غير كاملة عند نقط تمثل مصدر هذه المخلفات إلى المياه المستقبلة والتي قد تكون نهر أو بحيرة ، كذلك مياه السيول التي قد تصل إلى مجرى المياه عند نقط مختلفة على طول المجرى. وبينما تم تخفيض المخاطر الصحية من خلال الاهتمام بنظم تجميع مخلفات الصرف الصحي في المجتمعات التي تعيش في المدن

Urban Communities ، فإن

تجميع المخلفات السائلة يخدم فقط في تحويل ما ينتج من الجمهور الكبير إلى نقطة واحدة مختارة ، حيثما يجب استعمال المعالجة للإقلال من خروج الممرضات إلى

Downstream المجارى المائية والتى هى تمثل مصدراً للمياه لمن هم أسفل التيار المياه و غالباً من المستعملين لتلك المياه. ولقد وجد أن صرف المخلفات الآدمية على المياه و غالباً ما يحتوى على نو عيات مختلفة من الممرضات ، (وسيأتي ذكر ها فيما بعد) ، بكثافة ونو عية ترتبط بحجم السكان المخدومين ، التوزيع الموسمي لأمراض معينة ، ومدى انتشار الأمراض بين أفراد المجتمع . ويظهر (جدول 1) ، الاختلاف فى النو عية الميكر وبية (من حيث كثافة دلائل التلوث فى مجتمعات مختلفة من الولايات المتحدة)

<u>Table 1 Composition of indicator organisms in raw sewages from various communities in USA</u>

	Estimat		Densities per 100	ml		
Sewer Source	ed sewered populati on	Total coliforms	Fecal coliforms (FC)	Fecal streptococci (FS)	Perce nt FC	Rati o FC/F S
Esparto, California		23.500.00	6.200.000		26.4	
Shastina, California		9.600.000	2.300.000		24	
Los Barrios, California	6.090	62.000.00 0	23.000.000		37	
Anoka, Minnesota	9.500	47.400.00 0	10.200.000		21.5	
Newport, Minnesota	800	13.600.00 0	3.580.000		26.3	
Red Wing, Minnesota	11.000	17.700.00 0	4.050.000		22.9	
Mankato, Minnesota	81.490	5.525.000	2.630.000		47.6	
Oakwood Beach, New Jersey	45.000	13.250.00 0	4.240.000		32.0	
Perth Amboy, New Jersey	38.000	1.600.000	387.000		24.2	
Middlesex, New Jersey	300.000	12.900.00 0	1.070.000		8.3	
Keyport, New Jersey	5.600	2.210.000	641.000		29.0	
Omaha, Nebraska	180.000	45.800.00 0	5.360.000		11.7	
Anderson Township, Ohio	11.000	17.200.00 0	4.600.000		26.7	
Mt. Washington, (Cincinnati) , Ohio	20.000	34.800.00 0	4.900.000		14.1	
Linwood (Cincinnati), Ohio	22.000		10.900.000	2470.000		4.4
Preston, Idaho	3.640		340.000	64.000		5.3
Fargo. North Dakota	50.500		1.300.000	290.000		4.5
Moorhead, Minnesota	22.934		1.600.000	330.000		4.9
Lawrence, Massachusetts	67.000		17.9000.000	4.500.000		4.0
Monroe, Michigan	22.968		19.200.000	700.000		27.9
Denver, Colorado	520.000		49.000.000	2.900.000		16.9
Average values		21.900.00	8.260.000	1.610.000	3.37	5.1

Data from Geldreich (1978)

كما يظهر (جدول 2) تواجد الممرضات المختلفة في المخلفات الأدمية الخام (دون معالجه) لسكان مدينتين بجنوب إفريقيا.

Table 2Microbial densities in municipal raw sewage
(Two hospitals in South Africa)

	Average count per 100 ml		
Parameters	Worcester	Pietermaritzburg sewage	
	sewage	rictermantzourg sewage	
Aerobic plate count (37 °C; 48hr)	1.110.000.000	1.370.000.000	
Total coliforms	10.000.000		
E.coil type 1	930.000	1.470.000	
Fecal streptococci	2.080.000		
C. perfringens	89.000		
Staphylococci	41,000	20 100	
(coagulase positive)	41.000	28.100	
Ps. Aeruginosa	800.000	400.000	
Salmonella	31	32	
Acid-fast bacteria	410	530	
Ascaris ova	16	12	
Taenia ova	2	9	
Trichuris ova	2	1	
Enteroviruses and reoviruses	2.890	9.500	
(TCID ₅₀)			

Data from Grabow and Nupen (1972) for two cities in South Africa

حيث أنه لم يتم تحديد نسبة كل الممرضات (لعدم توافر الطرق المناسبة) ، فإن ما ذكر يمثل فقط

جزء من الأضرار الصحية الممكن أن تحدث نتيجة وصول هذه المخلفات إلى المصادر المائية . وإذا كانت العوامل الاجتماعية والاقتصادية وانتشار الأوبئة قد غطى بالتواجد العادى لصرف المخلفات ، فإن حجم المشكلة حقيقة وبوضوح أكبر بكثير.

ولقد اقترح أن جمع المخلفات من 50 – 100 منزل هو الحد الأدنى للحجم اللازم قبل أن يكون هناك فرصه للنجاح فى الكشف عن تواجد السالمونيلا فى نظام لتجميع المخلفات السائلة . ولقد ذكر أن تواجد سلالات من السالمونيلا فى نظام للصرف الصحى يخدم منطقة سكانية من 4000 نسمة كان منتظما وبالطريقة المناسبة ، فإن تواجد الفيروسات فى هذه النظم الصغيرة يلزم أن يتم تداركه على أساس موسمي . الغذاء ، المشروبات المنعشة ، اللحوم المحفوظة ، لب الخشب wood pulp الغذاء ، المشروبات المنعشة ، اللحوم المحفوظة ، لب الخشب العضوية وبعض مخلفات الورق ربما تحتوي على تركيزات جوهرية من المغذيات العضوية وبعض الممرضات وذلك إذا لم تعالج كما ينبغي . والسالمونيلا غالباً تدخل مباشرة أو غير مباشرة فى هذه المواد من خلال ما يسقط من مخلفات القوارض أو الطيور فى مصدر المواد أو من إضافة المخلفات الصحية للمخلفات السائلة الناتجة عن التصريف فى المصنع (جدول 3)

Table 3 Enteric bacterial profiles in raw industrial wastes

	Wood pulp and paper	Beverag e	Food processin g	Meat processing
Percent of	f various colifor	<u>m species</u>		
E. coli	0.4	5.6	35.0	56.9
Klebsiella pneumoniae	92.3	68.0	55.0	21.5
Enterobacter species	6.7	15.0	3.3	13.8
Pectobactrium	0.6	7.0	6.0	0.5
Salmonella strains	0.008	4.4	0.7	7.3
Viable counts/100ml				
Klebsiella	$10^5 - 10^6$	$10^4 - 10^7$	$10^3 - 10^5$	$10^5 - 10^8$
Fecal coliform	$10^1 - 10^4$	$10^3 - 10^5$	$10^2 - 10^4$	$10^6 - 10^9$

DatafromHerman(1972)

فصل أو عزل المحطة التي تعالج المخلفات الصحية يساعد في حل المشكلة ولكن معالجة كلا من

المخلفات الصحية ومخلفات الصناعة لخفض المواد العضوية والحمل الميكروبي الذى يصل إليها يلزم أن يكون محل اهتمام بيئي لحماية من هم أسفل التيار والذين يستخدمون تلك المياه كمصدر للإمداد بالمياه وبدون خفض فى المغذيات فى عمليات المعالجة المناسبة ، سيكون هناك تحسن قليل فى الحمل البكتيري الذى سيصل إلى المياه (جدول 4).

Table 4. Enteric bacterial profiles in treated industrial waste effluents

Waste effluent	Klebsiella	E. coli	Entero- bacter	Pecto - bacterium	Salmonella
		%			
Wood pulp& paper	85.0	4.4	9.5	0.8	0.3
Potato	81.1	0.9	9.4	0.9	1.6
Beverage production	68.9	5.6	15.0	7.0	4.4
Food processing	55.0	24.0	3.3	6.0	0.7
Meat processing	21.5	56.9	13.8	0.5	7.3
Municipal sewage	18.0	62.0	14.3	3.6	2.1

Data adapted from Herman (1972

مياه السيول والعواصف الممطرة هي مصدر لا يستهان به يمكن أن يمثل مصدرا للتدهور في نوعية مصدر المياه ويرتبط باستعمالات الأرض المختلفة فالمياه المنهمرة تأتي بزيادة في المواد الصلبة المعلقة ، المواد العضوية ، الكائنات إلى مصدر المياه وحوض الصرف . فسقوط الأمطار العادي يدخل القليل من المواد المغذية في صورة نيتروجين وكربون وكمية غير معنون من الملوثات البكتيرية (جدول 5).

 Table 5
 Selected characteristics for rainwater

	Season				
Parameter	Spring	Summer	Autumn	Win	
Nitrogen (mg/L)	0.93	0.83	0.59	0.49	
Carbon (mg/L)	< 0.01	0.05	0.01	0.05	
pH	4.5	5.6	5.6	5.6	
Total coliforms*	<1.0	<1.0	< 0.4	< 0.8	
Fecal coliforms*	< 0.3	< 0.7	< 0.4	< 0.5	
Fecal streptococci*	<1.0	<1.0	< 0.4	< 0.5	

Data adapted from Geldreich et al. (1968). * Median denusities/100 ml

ومصدر هذه البكتريا في مياه المطر هي جزيئات التراب التي تكنس مع الرياح وتحمل إلى مئات الأميال . وعلى ذلك فإن نوعية مياه الأمطار تتدهور بمرورها خلال طبقات الهواء الملوثة وفي النهاية بملامستها سطح الأرض.

وعموما فإن المياه المنهمرة في السيول تعكس النشاط الآدم ي من حيث الخواص التي سنكتسبها وعلى ذلك فإنها تختلف في النوعية ومدى تكرارية السيول أيضا سيؤثر على درجة التغير في نوعية المياه الناتجة عنها ويلعب تواجد الحيوانات البرية دوراً في التغيرات الميكروبيولوجية للمياه التي ستصل إلى مصادر المياه والتي ربما تؤثر على النسبة ما بين بكتريا القولون والبكتريا السبحية البرازية وهناك فرصة لتواجد بعض الممرضات.

ونوعية المياه السطحية تتأثر أيضاً من الكائنات المجودة في الرواسب الموجودة في قاع المجرى . وفي دراسة أجريت على رواسب شواطئ الاس تحمام ، البحيرات ، الأنهار ، بدا واضحاً أن هناك تركيزات عالية من بكتريا القولون مقارنة بالمياه الموجودة أعلى هذه الرواسب تصل إلى آلاف المرات . وكذلك تتركز الممرضات في الرواسب نتيجة تواجدها في المياه وترسيبها مع الرواسب وتوادها بتركيز أعلى من المياه أعلى هذه الرواسب تصل إلى آلاف المرات . وكذلك تتركز الممرضات في الرواسب نتيجة تواجدها في المياه وترسبها مع الرواسب . وتواجدها بتركيز أعلى من المياه الموجودة أعلى هذه الرواسب.

وفى النهيرات Streams ، فعدم ثبات جوانب الحمأة تحت مصبات المخلفات يمكن أن تتسبب فى إعادة تدوير Recirculting الممرضات من القاع إلى الم ياه التى تعلوها. هذه الحالة تنتج من الزيادة السريعة فى سرعة المياه نتيجة وصول مياه جديده إلى المجري والتى قد تكون نتيجة فيضان أو أمطار فى صورة سيول يحدث ذلك أيضاً نتيجة عمليات التكريك Dredging فى قاع المجرى لتسهيل الملاحة مما يثير ما كان موجود فى الرواسب م ن ممرضات مما يؤدي إلى تغير نوعيات الميكروبات المتواجدة فى المياه . وهناك نوعان من التكريك ميكانيكي وهيدروليكي. والتكريك الميكانيكي والمناه عن المواد المكركة.

وعلى العكس فإن التكريك الهيدروليكي يتسبب فى تهيج من خلال استعمال طلمبات عالية السرعة. ومن المهم أن نلاحظ أن أى من العكارة أو التأثير البكتريولوجي للتكريك يستمر أسفل التيار لمسافة طويلة فى المجرى الملاحى. ففى نهر المسيسهي كان خلال أقل من 22م أسفل منطقة التكريك قد تلاشي التأثير وعادت النوعية للمياه إلى حالتها الطبيعية وذلك ربما راجعا لسرعة ترسيب مواد القاع باستقرار الإثارة التى حدثت بالتكريك. وعلى ذلك فإن التجمعات من البكتريا المرضية والفيروسات فى المواد البرازية ربما تهاجر إلى مسافات أبعد ، فمحطات معالجة المياه أسفل التيار يلزم أن تكون يقظه للاحتياج إلى زيادة الكلور وكذلك إمكانية الكثافة العالية من الممرضات للقضاء عليها أثناء المعالجة.

طرق تدوير الممرضات في رسوبيات القاع للبحيرات والخزانات أو المستودعات هي مجال اهتمام آخر، خاصة عندما تتواجد مصادر المياه هذه في مناطق معتدلة والتي فيها تحدث تغيرات موسمية شديدة في حرارة الماء. هذه المياه ربما تتعرض لفترة من المطابقة الحرارية Thermal stratification في الصيف والشتاء، فترات انقلاب المياه إلى أعلى (water turnover) Destratification التي تحدث في الربيع والخريف.

خلال فترة الانقلاب إلى أعلى ، فإن حركة المياه في الأجز اء الأعمق من مستودعات المياه الخام تكون ممنوعة ، وبصفة عامة تخلق منطقة للتواجد الأعظم للبكتريا في طبقة المياه أعلى الانحدار الحراري Thermocline ، وبالانقلاب Destratification ، المياه من الباطن والطبقات العليا تختلط وينشأ معلق متواز ن في نوعية عملية الخلط هذ ه تتسبب في تحلل النباتات والكائنات المحبوسة في الجسيمات الراسبة لدخول عمود المياه مرة أخرى . وكنتيجة ، ستزداد في المياه بصفة استثنائية كمزايا القولون ، العكارة ، وحامض الهيوميك Humic acid نتيجة التحلل الجزئي للنباتات وبدخول هذه لمواد مع مياه المدخل يؤدي هذ ا إلى زيادة الكلور المحتاج Chlorine demand.

2- التلوث من المصادر تحت السطحية

الخزانات المركزة من الممرضات ربما تكون مصاحبه للطرق الغير تقليديه للتخلص من المخلفات. استعمال المخلفات السائلة المعالجة للحد الأدني في الأرض يمكن أن تجد طريقها إلى المياه الجوفية مسببة تلوثها في المناطق العالية في معدل المرشح High Percolation rate للمرشح المرشح High Percolation المرشح التربة. والمرشح Self purification المنافسة من كائنات التربة ، التضاد ، الافتراس) الأرض الحمضية ، ضوء الشمس، المنافسة من كائنات التربة ، التضاد ، الافتراس) سوف تكون غير فعالة أو لا تعمل وعمليات ملأ التربة (الدفن) Land fill الصحبة بالمخلفات الحيوانية من عمليات التسمين ، حمأة محطات المياه ، القمامة والتي لم والسطحية معا . المخلفات الصلبة الناتجة عن سكان المدن (القمامة) تحتوي ليس والسطحية معا . المخلفات الصلبة الناتجة عن سكان المدن (القمامة) تحتوي ليس فقط على فضلات الغذاء ، نفايات الحدائق ، النواتج المهملة ، تربة ، صخور ، بقايا الرماد وأيضاً مواد برازية هذه المواد البرازية تأتي من فضلات الأطفال فضلات الحيوانات المستأنسة المنزلية ، فضلات القوارض والطيور والتي تتعرض لتجميع الخيات المستأنسة المنزلية ، فضلات القوارض والطيور والتي تتعرض لتجميع الفضلات.

المدفن الصحي بالتربة ، إذا صمم كما ينبغي لدفن المخلفات الصلبة ، يمنع مشاكل أخرى والمصاحبة للمقالب المفتوحة . وعلى ذلك إذا أمكن اختراق التبطين غير المنفذ في قاع المدفن يكون هناك مخاطر أن راشح المخلفات الصلبة يتسرب خلال المياه الجوفية المحيطة أو تنبثق من الموقع وتلوث المياه السطحية . وتسرب المياه من الأمطار أو التخلص منها على سطح التربة توفر وسيلة هجرة الكائنات البرازية الغير ممسوكة والتي تبقى حيه بإعداد كبيرة حتى لمدة شهرين من امتصاصها (جدول 6).

<u>Table 6</u>. Fecal coliform and fecal streptococcus survivals in leachates from sanitary landfills

Days after placement	Densities per 100mL			
Days after pracement	Fecal coliforms	Fecal streptococci		
42	2.600.000	240.000.000		
43	4.900.000	790.000		
56	2.000	79.000		
63	9.000	33.000		
70	33.000	170.000		

Data from Blannon and Peterson (1974)

العديد من العوامل تؤثر على بقاء الأدلة البكتيرية حيه Persistance ، وتشمل التركيب الكيماوى للمخلفات الصلبة ، التحلل الحراري للمخلفات ، المحتوي من الرطوبة ، والتأثير المضاد للعديد من الميكروبات Antagonistic action. العامل الأخير يمكن أن يلاحظ من العديد من ال بكتريا ، الفطر التى ثم عزلها من راشح المواد المدفونة في التربة (جدول 7) والتي تشتمل أيضاً على بعض الممرضات والممرضات الانتهازية والتي وجدت بعض الأحيان في بعض المياه.

Table 7. Microorganisms Identified in Commercial Landfill Leachates

Organism	Coliform	Coliform antagonist	Pigmented organism	Opportunis tic pathogen	Primary pathogen
Bacteria					
Acinetobacter sp.				X	
Alcligenes sp.		X		X	
Bacillus sp.		X		X	
Clostridium perfringens				X	
Corynebacterium sp.				X	
Enterobacter agglomerous	X			X	
Enterobacter cloacae	X			X	
Listeria monocytogenes				X	
Micrococcus sp.			X	X	
Moraxella sp.		X		X	
Mycobacterium				X	
Proteus sp.		X		X	
Providencia alcalifaciens				X	
Pseudomonas sp.		X	±	X	
P. fluorescens		X	X	X	
Salmonella sp.					X
Staphyloccoccus sp.			±	X	X
Streptococcus faecalis				X	
S. durans				X	
Fungi					
Aspergillus niger					X
Cephalosporium sp.					X
Fusarium sp.					X
Neurospora					
Penicillium sp.				X	
Pseudallescheria boydii				X	

Data adapted from Donnelly and Scarpino (1984)

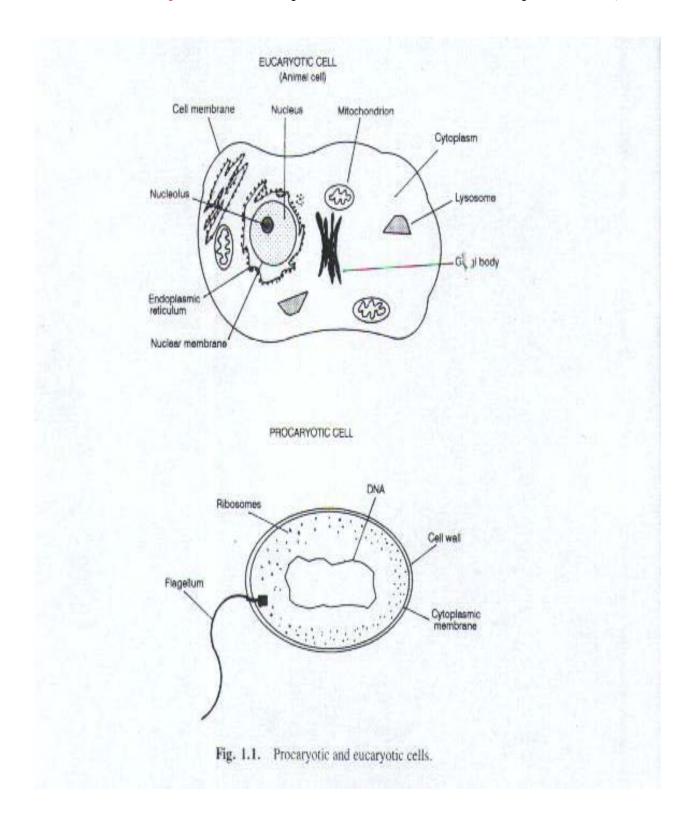
الباب الثاني

نظرة عامة على عالم الميكروبات Overview on Microbial World

- البروتيستاThe Protista

تنقسم البروتيستا Protista إلى مجموعتين، البووكاريوتس Prokaryotes والتى تتبعها البكتريا والمجموعة الثانية هى الايوكاريوتس Eukaryotes والتى يتبعها الفطر Fungi البكتريا والمجموعة الثانية هى الايوكاريوتس Algae والخلايا النباتية والحيوانية. الفيروسات ، البروتوزواProtozoa ، الطحالب Algae ، والخلايا النباتية والحيوانية. الفيروسات طفيليات إجباريا Obligate داخل الخلايا الخلايا Intracellular ولا تتبع أى مجموعة من الاثنتين المذكورتين.

الاختلافات الرئيسية بين المجموعتان هي:

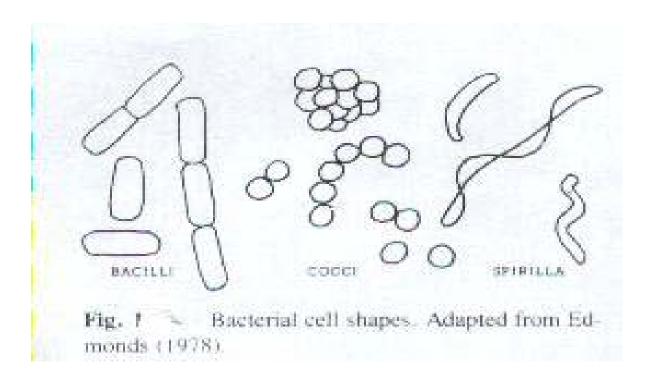

- خلايا الايوكاريوتس بصفة عامة أكثر تعقيدا من البروكاريوتس.
- المادة الوراثية DNA في الايوكاريوتس محصورة بالغلاف النووى Nuclear membrane ومتحدة مع الهستونات
- الأورجانيلا Organelles هي أغشية محدة Organelles في الايوكاريوتس.
- البروكاريوتس تنقسم بالانشطار Binary fission بينما الايوكاريوتس تنقسم
 - میتوزیا.
 - Mitocondria, بعض التراكيب غائبة في النبوكاريوتس مثل Cloroplasts, Golgi complex, endoplasmic reticulum.

= تركيب الخلية

جدول 8 وشكل 1 يوضحان أه م الفروق في التركيب بين الايوكاريوتس والبووكاريوتس.

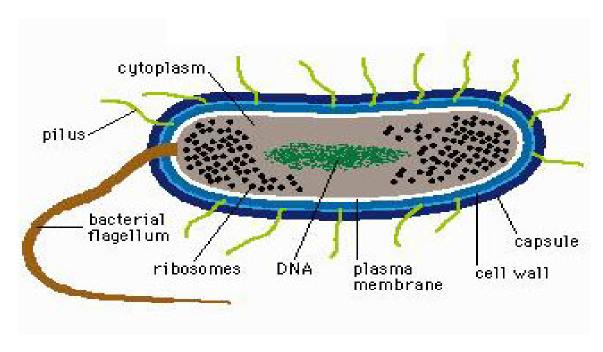
جدول 8. مقارنة بين البروكاريوتس والاي كاريوتس

الايوكاريوتس	البروكاريوتس	التراكيب
(الفطر-البروتوزوا-الطحالب-	(البكتريا)	
النبات – الحيوان)		
غائب في خلايا الحيوان،	يتواجد في معظمها (غائب في	جدار الخلية
		يتواجد
في النبات، الطحالب، والفطر.	الميكوبلازما)؛ مصنع من	
	الببتيدوجليكان	
فوسفوليبيدات + ستير ولس	فو سفو ليبيدات	الغشاء الخلوي
متواجد	غائب	الكلوربلاست
تتواجد	غائبة؛ التنفس مرتبط	الميتاكوندريا
	بغشاء البلازما	
تتواجد	غائبة	أجسام جولجي
يتواجد	غائب	النسيج الاندوبلازمي
غائبة	تتواجد في بعض الأجناس	الفراغات الغازية
غائبة	تتواجد في بعض الأجناس	الاندوسبورس
فلاجلا أو سيليا وتتكون من	الفلاجلا وتتكون من خيط	الحركة
أنابيب دقيقة ؛ حركة أميبية		
يتواجد	غائب	الغشاء النووى
عديد من الكروموزومات	جزئ واحد	الأحماض النووية
DNA مرتبط بالهستونز		(DNA)
میتوز <i>ی</i>	انشطار ی	انقسام الخلية


شكل 1. مقارنة بين تركيب البروكاريوتس والايوكاريوتس

نظرة شاملة على المجاميع الميكروبية Brief Survey of Microbial Groups

■ البكتريا Bacteria


.1. الحجم ، الشكل والتركيب Size, Shape and Structure

البكتريا تتواجد فى 4 أشكال رئيسية : كروية Cocci مثل Streptococcus ، عصوية ، Spirillum volutans مثل ، Bacillus subtilis لولبية Bacillus volutans مثل ، Comma shape الواوية comma shape مثل ، Cocci

شكل 2. أشكال الخلية البكتيرية

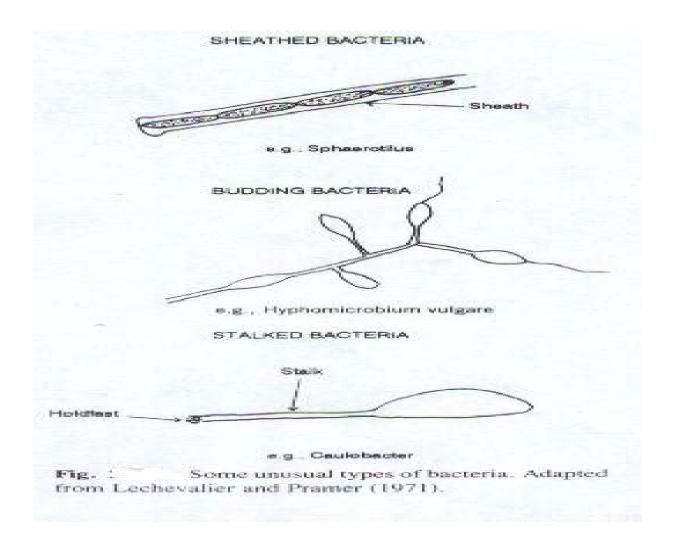
شكل 3. تركيب الخلية البكتيرية

ولصغر حجم البكتريا فنجد أن النسبة ما بين الحجم / السطح عالية وهذا له دور في إمكانية استعالها للمواد في الوسط المحيط بها على صورة كبيرة وسريعة. والتركيب الشائع للخلية البكتيرية يظهر في شكل 3. وهناك بكتريا غير عادية Unusual type of bacteria وهي تتمثل في:

البكتريا ذات الغمد Sheathed bacteria

وهذه البكتريا خيطية Filamentus محاطة بغمد Sheath. الخلية البكتيرية داخل الغمد سالبة لجرام- عصوية وتصبح خيطيه في مجموعة الخلايا المتجمعة (Scummer cells) وعندما تترك الغمد فان الخلايا المتجمعة تنتج أغماد جديدة بسرعة كبيرة. تتواجد تلك البكتريا في النهيرات الملوثة ومحطات معالجة المخلفات السائلة. هذه المجموعة تشمل 3 أجناس: ,Sphaerotilus, Leptothrix هذه البكتريا لها القدرة على أكسدة الحديد المختزل إلى أيدروكسيد الحديديك ومن أمثلتها Crenothrix وكذلك تؤكسد المنجنيز الى أكسيد المنجنيز مثل بكتريا لما بكتريا لها المنجنيز مثل بكتريا (Leptothrix شكل 4).

البكتريا ذات السويقة Stalked bacteria

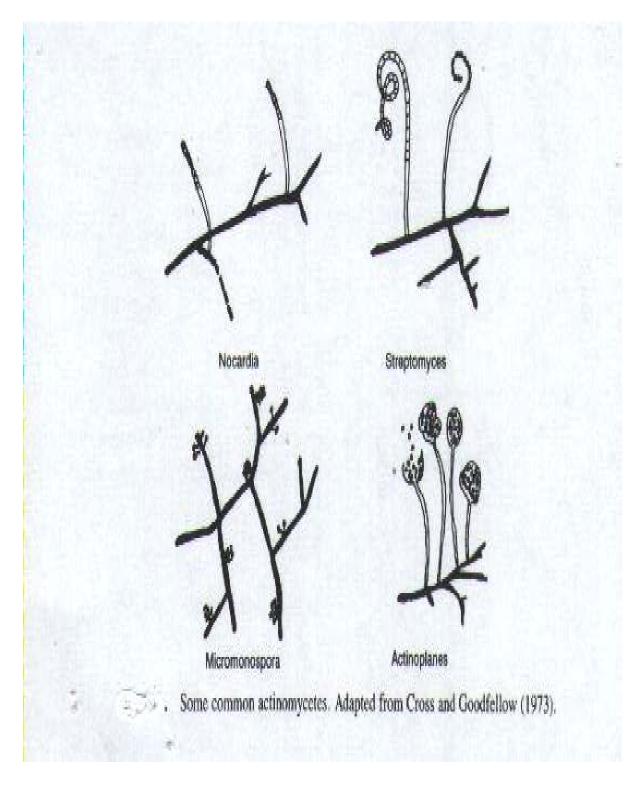

البكتريا ذات السويقة هوائية، ذات فلاجلا طرفية Polar flagellum، سالبة لجرام، عصوية لها سويقة (الشكل 4) وهي ذات سيتوبلازم محاط بغشاء وجدار وفي نهاية السويقة يوجد المثبت Holdfast والذي يسمح للخلايا بالالتصاق بالسطوح. والخلايا ربما تلتصق مع بعضها وتكون شكلا ورديا Rosettes. كيلوباكتر Caulobacter هي بكتريا نم وذج للبكتريا ذات السويقة والتي تتواجد في البيئات المائية ذات المحتوى المنخفض في المواد العضوية. Gallionella مثل في البيئات المائية ذات سويقة ملتفة، وتسمى أحيانا Ribbon وتتركب من نسيج خلوى Matrix عضوى محاط بأيدر وكسيد الحديديك. هذه البكتريا تتواجد في المياه الغنية بالحديد والحديدوز والذي يتأكسد إلى حديديك وبثواجد في المواسير المعدنية المستعملة في شبكات توزيع مياه الشرب.

البكتريا المتبرعمة Budding bacteria

عقب التعلق بالسطح بعض البكتريا تتكاثر بالتبرعم . تنتج خيوط Filaments أو هيفا Hyphae ، وفي نهايتها يتكون البرعم . يظهر البرعم فلاجيلا ويستقر على السطح الذي تعيش عليه البكتريا وتكون هيفات جديدة يتكون على قمتها البراعم . البكتريا ذات الهيفا Hyohmicrobium تنتشر في التربة والبيئات المائية وتحتاج للنمو إلى مركبات بها كربون . والبكتريا Rhodomicrobium التي تحصل على الطاقة اللازمة لها من الضوء Phototrophic هي مثال آخر للبكتريا المتبرعمة (شكل 4) .

Gliding bacteria البكتريا المنزلقه

هذه الكتريا الخيطيه سالبة لصبغة جرام تتحرك بالانزلاق، حركتها بطيئة على السطح الصلب. وهي شبيهة ببعض السيانوباكتريا Cyanobacteria عديمة اللون. Biggiatoa & Thiathrix هي من أمثلة البكتريا المنزلقة وتؤكسد كبريتيد الأيدروجين إلى كبريت 'S'، الذي يتجمع كحبيبات داخل الخلايا . خيوط Thiothrix تتصف بقدرتها على تكوين أشكال وردية . Myxobacteria خيوط هي مجموعة أخرى من البكتريا المنزلقة . تتغذى عن طريق تحليل Lysis خلايا البكتريا، الفطر، الطح الب. الخلايا الخضرة تتجمع لتعطى الأجسام الثمرية Resting structures والتي تؤدي إلى تكوين تراكيب ساكنة Resting structures تسمى ميكسوسبور Myxospores والتي تنبت تحت الظروف المناسبة لتكون خلايا خضريه خلايا خضريه والتي تنبت تحت الظروف المناسبة لتكون


شكل 4. أشكال البكتريا الغير عادية (الغمدية _المتبرعمة _ ذات السويقة)

بديلوفيبريو (B.bacteriovorus) بديلوفيبريو

بكتريا صغيرة الحجم (0.2 - 0.3 ميكرون)، ذات فلاجلات طرفية كالمعتريا صغيرة الحجم (0.2 - 0.3 ميكرون)، ذات فلاجلات طرفية بعد flagellum وهي من المفترسات Predatory. للبكتريا خاصة السالبة لجرام. بعد التصاق تلك البكتريا بالفريسة Prey ، تخترق الخلية إلى داخلها وتتكاثر في الفراغ membrane (فراغ بين جدار الخلية والغشاء البلازمي Periplasmic وحيث أنها تحلل الفريسة، فإنها قادرة على تكوين بقع أو رقع Plagues على سطح البكتريا العائل . بعض البديلوفبريو يمكنها أن تنمو مستقلة ودون اعتماد على البيئات العضوية المعقدة.

Actinomycetes الأكتينوميسيتس

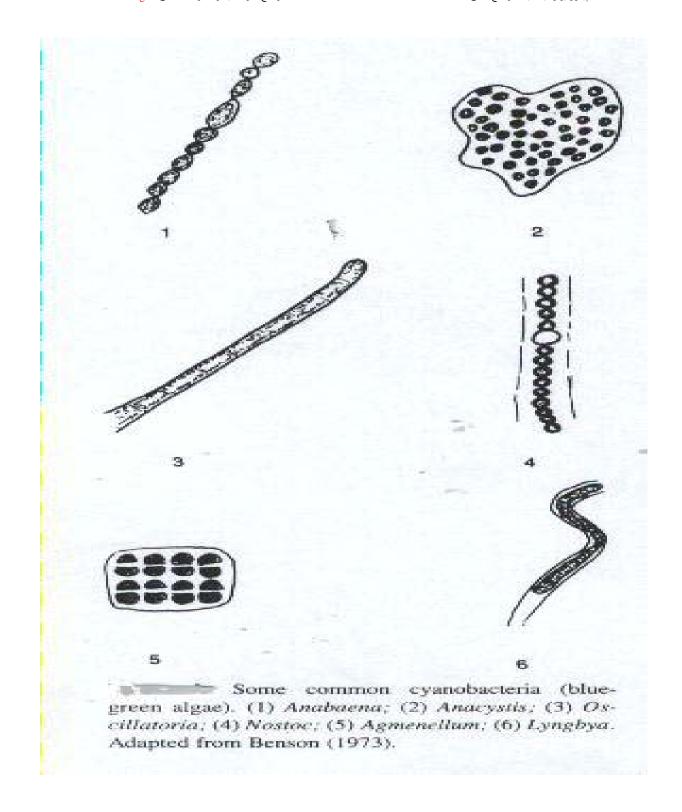
والاستربتوميسس تنتج رائحة ترابية Geosmins والتى ترجع إلى قدرتها على إنتاج مركبات متطايرة تسمى جوسمينس Geosmins. والأكتينوميسيتس تحلل السكريات العديدة Polysaaharides (النشا والسليولوز)، الهيدروكربونات، اللجنين. بعض منها ينتج مضادات حيوية Antibiotics مثل الاستربتومايسين، تتراسيكلين، والكلورامفينوكول. هناك جنسين معروفين من الأكتينوميسيتس هما ستربتوميسيس Streptomyces ونوكارديا Nocardia. الأول يكون ميسيليوم وجراثيم كونيدية Conidia spores على قمة الهيفا. والأكتينوميسيتس مهمة صناعيا لإنتاجها المضادات الحيوية. النوكارديا تتواجد في الماء والمخلفات السائلة وتحلل الهيدروكربونات وهي المسئولة عن تكوين الرغوة Foams في وحدات المعالجة بالحمأة المنشطة Activated sludge. ويوضح شكل 5 صور لبعض الأكتينوميسيتس).

شلك 5. توضيح لشكل بعض الأكتينوميسيتس (نوكار ديا – ستر بتوميسيس – ميكروسبورا - اكتينوبلانس)

السيانوباكتيريا Cyanobacteria

السيانوباكتيريا غالبا يشار إليها بالطحالب الزرقاء المخضرة البكتريا التى تعتمد على وهى تتبع البروكاريوتس Prokaryotes وتختلف عن البكتريا التى تعتمد على الضوء في ما تحتاج إليه من طاقة Photosynthetic في أنها تجرى (شكل 6) الضوء في ما تحتاج إليه من طاقة Oxygenic photosynthesis نها وصبغات ثانوية Oxygenic photosynthesis مثل الفيكوسيانين (صبغة زرقاء)، فيكواريثرين Phycoerythrin (صبغة حمراء). وصفة الطحالب الزرقاء ال مخضرة المكتسبة ترجع الى اتحاد ما بين كلوروفيل أ والفيكوسيانين. وتتواجد السيانوبكتريا ككائنات وحيدة الخلية Unicellular في مستعمرات أو خيطيه. تتكاثر بالانقسام الانشطارى Binary fission أو الانشطار Resting structure البعض يكون تراكيب ساكنة Akinets تسمى أكينات Akinets تنبت تحت الظروف المناسبة إلى صورة خضرة. العديد منها تحتوى على فراغات بها غاز، والتي تساعد على خاصية التعويم وتساعدها على الطفو على سطح الماء، حيث والتي تساعد على خاصية التعويم وتساعدها على الطفو على سطح الماء، حيث Photosynthesis والتمثيل الضوء متاح وبالتالى تقوم بعملية التمثيل الضوئي Photosynthesis

بعض السيانوبكتريا (مثل الأنابينا Anabaena) لها القدرة على تثبيت النيتروجين، موقع تثبيت النيتروجين هو تركيب يسمى هتيروسيست Heterocysts. السيانوبكتريا منتشرة ولمقاومتها للظروف البيئية القاسية (مثل درجات الحرارة المرتفعة والجفاف)، تتواجد في تربة الصحراء والينابيع الساخنة وهي مسئولة عن ازدهار الطحالب Algal bloom في البحيرات والبيئات المائية الأخرى والبعض منها سام.


2. حركة البكتريا

الأسواط Flagella ومفردها سوط Flagellum وهو أداة الحركة في البتكتريا المتحركة، وبواسطة تموج الأسواط تتحرك البكتريا، والسوط رفيع طويل، ذو سمك منتظم غير متفرع، أطول من الخلية، يخرج من السيتوبلازم ويتخلل الجدار ثم الى الخارج. السوط رفيع جدا ، يرى بصبغة خاصة تترسب عليه لتزيد من سمكه، وبذا يمكن رؤيته. ويمكن رؤية حركة البكتريا بالاستعانة بتحضير ما يسمى بالنقطة المعلقة، وهي عبارة عن نقطة من مزرعة البكتريا المراد اختبارها توضع عي غطاء الشريحة ويوضع الغطاء على شريحة خاصة بها فجوة خاصة، تفحص النقطة عند تقليل الضوء الداخل الى العدسة لأن الخلية شفافة.

وتميز البكتريا بعضها عن بعض تبعا لنظام توزيع الأسواط على سطح الخلية ويشمل:

- سوط واحد طرفي Monotrichous كما في بكتريا الكوليرا
- خصلة من الأسواط في احد الطرفين من الخلية Amphitrichous
- خصلة من الأسواط في كل من الطرفين Lophotrichous (البكتريا اللولبية)
- اسواط عديدة موزعة على سطح الخلية Peritrichous (البكتريا العصوية)

والحركة غالبا تكون في البكتريا العصوية والحلزونية, ونادرة في البكتريا الكرية. ووجد أن الأسواط تتكون من بروتين . وللأسواط أهمية خاصة بالنسبة لتكون الأجسام المضادة اذ وجد أنها تحتوى على نوع من أنواع مكونات الأجسام المضادة المسماه H-antigen.

شكل 6. بعض السيانوبكتيريا (الطحالب الزرقاء المخضرة) 1. أنابينا 2. أناسيستس 3. أسكيلاتوريا 4. نوستك 5. أجمينسلليم 6. لينجبيا

3. صبغ البكتريا Gram's staining

مقدمة

هي أهم وأحد خطوات تعريف وتقسيم البكتريا فهي بالاضافه الى معرفة خاصية هامة للبكتريا وهي استجابتها لهذه الصبغة، كما أنها أيضا وسيله لمعرفة شكل خلايا البك تريا Cell وهي استجابتها لهذه الاستجابة فان البكتريا يمكن أن تقسم إلى قسمين قسم سالب لهذه الصيغه وقسم آخر موجب.

البكتريا الموجبة تأخذ خلاياها اللون الارجواني القاتم في حين أم البكتريا السالبة تأخذ خلاياها اللون الأحمر الفاتح.

والمزرعة من البكتريا الموجبة للصبغة والمتقدمة في العمر ربما تحتوى على جزء من الخلايا تكون سالبة للصبغه، ولذلك يجب أن تجرى هذه الصبغه باستعمال مزرعة حديثه عمرها ما بين 18 – 24 ساعة، ولا يحدث العكس فالمزرعة من البكتريا السالبة لجرام لا يمكن أن تعطى جزء موجب للصبغة.

الا أن هراك بعض الأجناس تعطي بعض خلايا موجبة وأخرى سالبه من نفس المزرعة على الرغم من أنها حديثه العمر.

المواد اللازمة للصبغ

طريقه جرام تستلزم استخدام 4 دلائل بالتتابع التالى:

- 1- كريستال فيوليت أو ميثيل فيوليت أو جنسيان فيوليت.
 - 2 محلول مائي من اليود.
 - 3 مذيب مثل الأسيتون ، كحول الايثايل أو أنيلين.
- 4 فوكسين قاعدي Basic fuchsine أو احمر متعادل Neutral red أو سفرانين Safranine.

ميكانيكية الصبغة Mechanism

تتحد صبغات الفيوليت مع الايودين المستعملان في الصبغ لتكون مركب غير ذائب لونه ارجواني قاتم ويتم ذلك في بروتوبلازم وجدار الخلية. هذا المركب يذوب باستخدام المذيب

بدرجه عالية من البكتريا السالبة لجرام في حين أن ذوبانه قليل في حاله البكتريا الموجبة لجرام. وعلى ذلك تظل البكتريا الموجبة لجرام لونها ارجواني قاتم في حين يزال اللون في حاله البكتريا السالبة لجرام (تصبح عديمة اللون) وتتقبل بالتالى الصبغة المستخدمة في المرحلة التالية والأخيرة.

والفرق بين القسمان من البكتريا يتضح من واقع الحقيقة أن البكتريا الموجبة لصبغه جرام لديها طبقه سميكة وكثيفة من الببتيدوجليكان Peptidoglycan في جدر الخلية والذي يجعلها اقل نفاذيه للصبغة (لا تفقد الصبغة المكتسبة) عن تلك المتواجدة في البكتريا السالبة لجرام. وللايودين دور هام في زيادة هذا الفرق فيبدوا انه يرتبط مؤقتا بالببتيدوجليكان ويجعله اقل نفاذيه للصبغة المكتسبة.

تعدیلات Modifications

في الطريقة الاصليه التي وضعت عام 1884, يتم صبغ الفيلم من البكتريا بالجنسيان في الطريقة الاصليه التي وضعت عام 1884, يتم صبغ الفيلم من البكتريا بالجنسيان فيوليت, ويعالج بالايودين Legol's iodine (1 جرام أيوديد، 300 ملل ماء) وتتم عمليه الغسيل لازاله الصبغة باستعمال كحول مطلق وفي النهاية يضاف البيزمارك البني.

هناك نطاق للا ختيار, تركيز وزمن استخدام الدلائل Reagents, ماعدا عمليه ازاله الصبغة Decolourization فيجب أن يثبت وقتها . يجب استخدام الدلائل بالتتابع الصحيح, ويزال كل منها تماما بعد كل خطوة.

Reagents الدلائل

صبغه الفيوليت Violet dve

كريستال فيوليت أو ميثيل فيوليت كريستال فيوليت أو ميثيل فيوليت كحول ايثانول مطلق (100%) ماء مقطر 100 ملل 1 لتر

أذب الصبغة في الكحول، رشح خلال ورق ترشيح، وأضف الراشح إلي الماء. صبغ البكتريا الموجبة لجرام يمكن تقويته باضا فه بيكربونات الصوديوم أو اكسالات الأمونيوم باستعمال المحاليل التالية: المحلول أ: ميثيل فيوليت 10 جرام ماء مقطر 1 لتر

المحلول ب: بيكر بونات الصوديوم 50 جرام ماء مقطر التر

قبل الاستعمال اخلط 30 حجم من المحلول أ مع 8 حجوم من المحلول ب. وأحد عيوب هذا المخلوط أنه يميل إلى الترسيب خلال بضع أيام من تحضيره و على ذلك لا يمكن حفظه.

محلول الايودين Iodine solution

للحصول على الايودين في محلول مائي يجب استعمال أيود يد البوتاسيوم أو أيدروكسيد الصوديوم. عادة يستخدم الأول لتحضير محلول ليجول Lugol's. ولكن فكرفي المحلول القلوى باستعمال أيدروكسيد الصود يوم ليعطى محلول ضعيف وأكثر اقتصادية ومتساو في الفعالية، وفي نفس الوقت يعطى صيغ أقوى بالنسبة للقسم الموجب لصيغة جرام.

Gram's (Lugol's)لتحضير محلول

ابودین 10 جرام بوتاسیوم أیود ید 20 جرام ماء مقطر 1 لتر

أذب البوتاسيوم أيود يد في 250 مللى ماء وبعد ذلك أضف 10 جرام أيودين وبعد ذوبان الايويدن يكمل المحلول إلى 1 لتر بالماء المقطر.

طريقة أخري للتحضير:

أيودين 20 جرام صودا كاوية 1 مول / اللتر (4 % صودا كاوية) 100 ملل ماء مقطر 900 ملل أذب الايودين في محلول الصودا الكاوية وبعد الذوبان أضف الماء المقطر.

إزالة اللون Decolorizerizer

يستعمل في ذلك أحد المحاليل التالية:

1. الأسيتون

هذا هو الأسرع والأكثر تخصصا في عملية إزالة اللون ويستعمل على الفيلم لمدة 2 – 3 ثانية. وسرعته هي إحدى المميزات وذلك في حالة صبغ شريحة واحدة أو عدد قليل من الشرائح، ولكن في حالة عم ل عدد كبير من الشرائح تكون هناك مشكلة ضبط الوقت.

2. الكحول المطلق (Absolute alcohol- ethanol 100) . 2

كحول الايثايل يعمل أكثر بطئا عن الاسيتون ويلزم أن يكون الاستعمال لمدة حوالى دقيقة . وبعد الغسيل المتكرر مع ميل الشريحة قليلا إلى أسفل وصب الكحول على الشريحة ،توضع ورقة بيضاء خلف الشريحة لملاحظة تمام إزالة اللون وهي نقطة نهاية عملية الغسيل . ويجب الحرص من الافراط في عمليي الغسيل لأن ذلك قد يؤدي الى فقد البكتريا الموجبة لجرام الصبغة وتحولهل بالتالى اعطاء نتيجة سلبية مع الصبغة.

3.محلول أسيتون كحول

يستخدم خليط 1 حجم من الأسيتون مع 1 حجم من 95% كحول الايثايل ويحتاج استعمال الخليط للغسيل إلى مدة 10 ثوان.

4. محلول ايودين أسيتون

وجد أن إضافة تركيز منخفض من الأيودين (0.35%) إلى الأسيتون يبطئ من إزالة اللون دون التأثير على الفعالية مع إمكانية زيادة مدة التعرض من 2 ثانية الى 30 ثانية أو أطول وتتم عملية إزالة اللون كالتالي.

أ. محلول Liquor iodi forti

أيودين	10 جرام
يوناسيوم أيود يد	6 جرام
Methylated spirit	90 مال
ماء مقطر	10 ملل

ب. محلول Iodine – Acetone

ملل 35 Liquor iodi fortis أسيتون 965 ملل

يمكن أن تحدث حالات من التهيج Irritating عند استعمال الصبغة لمدة طويلة نتيجة استنشاق الرذاذ الناتج

الصبغة المضادة Counter stain

يمكن استخدام أحد الصبغات التالية:

1 . كربول الفوكسين

يحضر تخفيف 20 - 20 مرة من صبغة زيل نيلسن Ziehl- Nelsen's بالماء. تستعمل لمدة 20 - 20 ثانية لتعطى اللون الأحمر القوى، ولكن قد تكون الصبغة قاتمة جداً لدرجة عدم إمكانية التفرقة ما بين الموجب و السالب لجرام. هذا ومن الأفضل استخدام و احدة من الصبغات التالية الضعيفة.

Basic fuchsine الفوكسين القلوي . 2

يستعمل لمدة 10 – 30 ثانية ويحصر كالتالى:

فوكسين قلوى Basic fuchsine فوكسين قلوى ماء مقطر 1 لتر

Neutral red الأحمر المتعادل. 3

ويستخدم لمدة 2-4 دقائق وينصح به إذا كان المتوقع هو بكتريا سالبة لجرام ويحضر كالتالى:

الأحمر المتعادل (Neutral red) الأحمر المتعادل على الأحمر المتعادل 2 ملل على الماء عقطر 1 لتر 1 لتر 1 التر 1 التر

4. السفرانين

سفرانين 0.5 % في ماء مقطر.

خطوات صبغة جرام

1. نظافة الشريحة والغطاء

وتتم بالنسبة للشريحة باستعمال قطعة قماش قطن نظيفة ويمسك طرف الشريحة بملقط ويتخلص من طبقة الشمع الموجودة عادة بامرارها في لهب بنزن 6-12-12 مرة، بدون التسبب في احدث شروخ في الشريحة، ويسمح لها بأن تبرد. ويتأكد من نظافة الشريحة بوضع نقطة من الماء المعقم عليها فإذا أمكن فردها فان معنى ذلك أن الشريحة نظيفة، أما إذا تجمعت النقطة التي تم فردها مرة أخرى في صورة نقط صغيرة فان الشريحة تكون غير نظيفة و لا يجب استعمالها على هذه الحالة. ويمكن الاحتفاظ بمجموعة نظيفة من الشرائح مغمورة في الكحول في برطمان أو جار Jar محكم الغلق ويتم التخلص من الكحول على الشريحة التي ستستعمل باحراق الكحول في لهب بنزن.

أما بالنسبة لغطاء الشريحة Cover فإن سمكه لا يجب أن يزيد عن 0.1 مم. واستعمال غطاء اكثر سمكا يعيق الفحص باستخدام العدسة الزيتية لان العدسة لن تكون قريبة بالدرجة الكافية لتظهر الصورة واضحة. وينظف الغطاء بقطعة قماش قطن أو ورق ناعم خاص بالتنظيف مع الحرص بعدم الضغط حتى لا يكسر الغطاء. ولا يجب استعمال الغطاء البلاستيكي لانه ربما ينصهر أو يذوب.

2. عمل الفيلم

* يؤ خذ لوب أو اكثر من مزرعة البكتريا المراد اختبارها، باستخدام لوب سبق تعقيمها وتبريدها، ويفرد على الشريحة الباردة على شكل فيلم رقيق.

* تؤخذ الشريحة وتمسك من حافتها بين أصابع اليد وترفع فوق اللهب ليجف الفيلم الذى تم عمله. ولا ينصح باستخدام الملقط حتى يمكن الإحساس بشدة الحرارة إذا كانت مرتفعة حتى لا يحترق الفيلم . ويفضل عمل الفيلم من مزرعة سائلة وإذا اضطر إلى استعمال مزرعة على آجار في عمل الفيلم توضع نقطة من الماء

المقطر المعقم على الشريحة وبواسطة اللوب يؤخذ جزء من النمو ويوزع بحرص في نقطة الماء حتى لا تتفتت الخلايا إذا كانت متصلة في سلاسل.

*يثبت الفيلم بامرار الشريحة في اللهب 3 مرات بسرعة.

*قبل صبغ الشريحة، يجب وضع رقم أو حرف على الشريحة حتى تميز الشرائح عن بعضها ويستخدم في ذلك قلم شمع ويفضل استخدام الشرائح التي بها جزء خشن في الطرف بحيث يمكن الكتابة عليه باستخدام قلم رصاص.

3. الصبغ

يتم صبغ الفيلم من المزرعة والجاف (أعلي اللهب على مسافة 20 – 30 سم) والمثبت على الشريحة بوضع الشريحة والفيلم إلى أعلى على حامل الصبغ أعلى حوض تجميع الصبغات. غط الشريحة بصيغة الميثيل فيوليت أو الكريستال فيوليت أو الكريستال فيوليت أو الجنسيان فيوليت وتترك 3 دقائق وباستخدام ملقط تميل الشريحة للتخلص من الزائد من الصبغة. يتم وضع الأيودين على الفيلم لمدة دقيقتان ويتخلص من الصبغة ويتعسل في تيار هادىء من ماء الصنبور.

4. إزالة الصبغة

تمسك الشريحة بملقط وتميل ويصب الأسيتون أو مخلوط الأسيتون مع الكحول أو الكحول فقط مع مراعاة الزمن والتأكد من إزالة الصبغة كما ذكر مسبقا . يزال أثر المذيب باستخدام الماء مع مراعاة أن يكون تيار الماء معتدل حتى لا يزال الفيلم .

5. الصبغة المضادة Counter stain

تغطى الشريحة بالسفر انين أو الفوكسين القاعدى وذلك لحوالى 30 ثانية. تغسل الشريحة لمدة 5 ثوان

بماء الصنبور تجفف الشريحة بين ورقتي ترشيح ويضغط عليها برفق . تجفف الشريحة فوق اللهب بمسافة 20 –30سم. توضع نقطة من زيت السيدر Cider الشريحة فوق اللهب بمسافة Paraffin oil على الفيلم وتفحص باستخدام العدسة الزيتية . وإذا أردنا حفظ الفيلم يزال الزيت بالزيلول Xylene. كما يراعى تنظيف العدسة الزيتية للميكر وسكوب بعد الاستعمال باستخدام قطعة من الشاش المبلل بالزيلول.

إذا ظهر الفيلم بلون Purple فمعنى ذلك أن الميكروب موجب لصبغة جرام وإذا ظهر بلون أحمر يكون الميكروب سالب لصبغة جرام كما يمكن معرفة شكل الميكروب عند الفحص.

Spores الجراثيم البكتيرية

لبعض أنواع البكتريا القدرة على تكوين جراثيم داخل الخلية . و غلبا البكتريا العصوية هي ذات القدرة على تكوين الجراثيم.

وعادة لا تتكون الا جرثومة واحدة داخل الخلية، وتتكون تحت الظروف الغير مناسبة. وعادة ما تتكون الجراثيم بعد نضج الخلية . وتتكون الجرثومة بتكثف البروتوبلازم في موضع تكون الجرثومة، ثم يحيط ذلك جدار سميك، يليه من الداخل طبقة تسمى القشرة ثم غشاء آخر.

وموضع الجرثومة في الخلية ثابت في النوع الواحد ، ويمكن أن يكون:

- فى وسط لخلية وتسمى جر ثومة وسطية.
 - في الطرف وتسمة جرثومة طرفية.
- قرب الطرف وتسمى جرثومة قرب طرفية.

وشكل الجرثومة قد يكون:

- کری
- بیضی
- اسطواني

وكثيرا ما لا يزيد قطر الجر ثومة عن قطر الخلية، ولكن في بعض الأنواع يزيد ويحدث انتفاخ والخلية تسمى خلية حافظة جرثومية Sporangum ولهذا تكون الخلية في ثلاثة أشكال:

- قاربي عند حدوث الانتفاخ في الوسط.
- مغزلى عندما يكون الانتفاخ في الطرف.
- عصا الطبلة عند حدوث الانتفاخ في الطرف (واحد أو اثنان)

وندما تنضج الجرثومة قد تتفتت الخلية أو تنفجر وتتحلل. تتحرر الجرثومة وتستمر حية لمدة طويلة وهي مقاومة للظروف الغير مناسبة.

اذا أصبحت الظروف المحيطة بالجرثومة مناسبة تنبت الجرثومة بامتصاص الماء، تنتفخ، تقل كثافتها ، ويمتص الجدار في بعض الأنواع، وفي البع ض الآخر يفتح الجدار وتخرج الخلية الخضرية وتترك الجدار.

ويعتبر التجرثم وسيلة لحفظ النوع وليس طريقة للتكاثر كما في الفطر والخميرة. وعند صبغ الخلية المتجرثمة بصبغة جرام، تظهر الجرثومة كبقعة لانعة غير ملونة، وذلك لغلظ جدار الجرثومة والغير منفذ للصبغة. ولصبغ الجراثيم تحتاج الى صبغة خاصة.

الفطر Fungi

الفطريات كائنات تتبع الايوكاريوتس Eukaryotic وهي تنتج خيوط طويلة تسمى هيفا Hyphae، وهي مع بعضها تكون كتلة تسمى ميسيليوم Hyphae، وهي مع بعضها تكون كتلة تسمى ميسيليوم الجدار الخلوى يتكون من الشيتين Chitin. في معظم الفطريات، الهيفات مفصولة بغشاء فاصل Septate وتحتوى حوائط فاصلة والتي تقسم الهيفا إلى خلايا منفصلة تحتوى كل على نواة واحدة . في البعض الآخر من الفطريات ، الهيفات لا تكون مفصولة بجدر وتحتوى على نويات عديدة تسمى Coenocytic hyphae.

الفطر كائنات هتيروتروفية وتشتمل على كلا من الصورتين الماكرو-والميكروسكوبيك Macroscopic و Microscopic. وهى تستعمل المركبات العضوية كمصدر للكربون والطاقة وبالتالى تلعب دور هام فى تدوير المغذيات Nutrient recycling فى البيئة المائية والتربة. بعض الفطريات تكون مصايد تأسر فيها البروتوزوا والنيماتودا. وهى تنمو جيدا تحت الظروف الحامضية (pH 5) والتى قد تتوافر فى الأغذية، الماء، والمخلفات السائلة

معظم الفطريات هوائية على الرغم من أن بعضها (مثل الخميرة) يمكنها النمو تحت الظروف اللاهوائية اختيارا. والفطريات أحد الكائنات الهامة في التربة، وكثير من الأجناس تسبب أمراض للنبات، وبالتالي فهي تسبب تلف المحاصيل الزراعية وعلى العكس من ذلك أجناس محدودة من الفطر تتسبب في أمراض الانسانوتسمي ميكوزس Mycoses. وتواجد جراثيم الفطر في الهواء تسبب أمراض الحساسية للانسان.

وجه آخر للفطريات النافعة فبعضها يستخدم في بعض الصناعات مثل عمليات التخمر وإنتاج المضادات الحيوية مثل البنسلين.

تصنيف الفطر يعتمد أساسا على نوعية تراكيب التكاثر . معظم الفطريات تنتج جراثيم (جراثيم جنسية أو لا جنسية) للتكاثر ، الانتشار ، المقاومة للظروف البيئية الغير مناسبة . الجراثيم اللاجنسية تتكون من الميسي ليوم وتنبت لتعطى فطريات مشابهة للأب. النواة في السلالتين المتزاوجتين تلتحمان لتعطى الزيجوت Diploid مفاردة Haploid بعد الانقسام الميوزي.

. المجاميع الأربعة الأساسية للفطريات

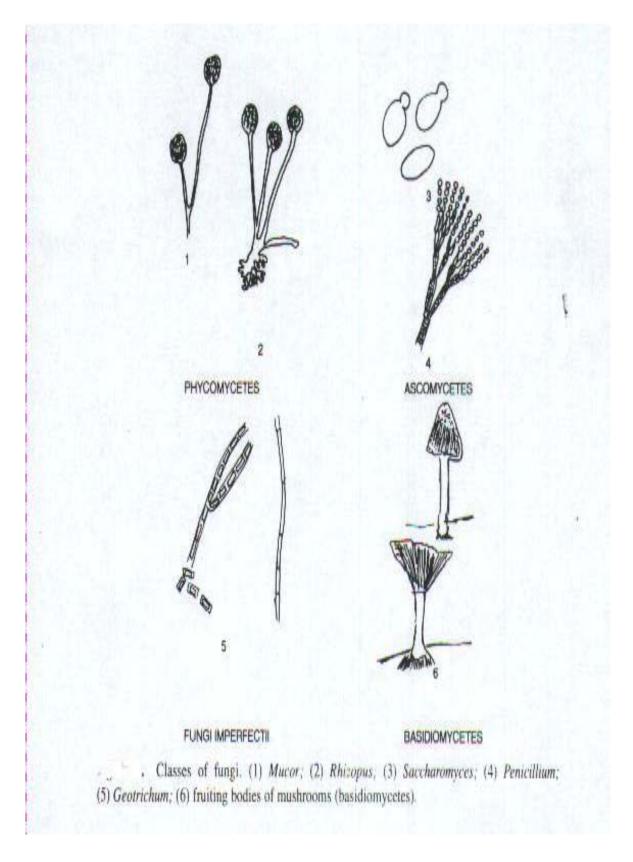
يوضح شكل 7 أشكال المجاميع الرئيسية للفطر وهي:

1. الفيكوميسيتس Phycomycetes

تعرف أنها فطريات الماء وتتواجد على سطح النباتات والحيوانات في البيئة المائية. وهي ذات هيفات غير مقسمة وتتكاثر عن طريق تكوين كيس يسمى سبورانجيم Sporangium، والذي ينفجر لتتحرر الزوسبورز Zoospores، التي تكون كائن جديد . وهناك أيضا فيكوميسيتس أرضية مثل عفن الخبز Rhizopus، والتي تتكاثر لا جنسيا وأيضا جنسيا.

Ascomycetes الأسكوميسيتس

وهي ذات هيفات بها حواجز . تتكاثر بالجراثيم الجنسية Ascospores والتي تتواجد في أكياس أسكية معدد (8 أو أكثر من الجراثيم الأسكية في الكيس)، أو بالجراثيم الجنسية Conidia والتي غالبا ما تكون ملونة . وكمثال نموذجي للأسكوميسيتس Neurospora crassa. معظم الخمائر (مثل Saccharomyces أو خميرة الخباز) تقسم على أنها أسكوميسيتس . وهي تكون خلايا كبيرة نسبيا وتتكاثر لا جنسيا بالتبرعم أو الانشطار، وجنسيا بالازدواج


Conjugation والتجرثم. وبعض من هذه الكائنات مثل الكانديدا البيكانس Candida albicans مرضية للانسان. الخمائر، خاصة جنس سكار وميسيس، مهمة صناعيا وتستعمل في صناعة الخبز، النبيذ والبيرة.

3. باسيدوميسيتس Basidiomycetes

ذات ميسيليا مقسمة. تنتج جراثيم جنسية Basidospores على سطح تركيب يسمى باسيديم Basidium. تتكون 4 باسيدوسبورز على سطح كل بازيديم . باسيدوميسيتس محددة ، الفطر المتلف للخشب ، يلعب دور فعال في تحلل السليولوز واللجنين. فطر عيش الغراب الشائع استعماله كغذاء Agaricus ينتمى إلى مجموعة الباسيدوميسيتس. ولسوء الحظ بعض منها Amanita سام.

4. الفطر الناقص Fungi imperfecti

هيفاته مقسمه ولكن غير معروف أن لها طور جنسى . بعض منها مثل البنسيليوم Penicillium يستعمل تجاريا في إنتاج البنسلين وهو مضاد حيوى هام . هذه الفطريات تسبب أمراض للنبات ومسئولة عن الميكوسيس Mycoses في الحيوان والإنسان (فطر يصيب القدم Athlete's foot).

شكل 7. أقسام الفطر

Algae الطحالب

معظم الطحالب كائنات دقيقة وحيدة الخلية تتواجد طافية وتسمى Ulothix والبعض الآخر . العديد منها وحيد الخلية، ولكن بعضها خيطى مثل Volvox والبعض الآخر يكون مستعمرات مثل Volvox. وعلى الرغم من أن معظمها كائنات حرة، فان البعض يكون علاقة تكاملية Symbiotic association مع الفطر كما في حالة Lichens ، الحيوانات كما في حالة Corals والبروتوزوا والنبات.

الطحالب تلعب دورا كمن تجات أولية Primary producers في البيئات المائية، تشمل بحيرات الأكسدة لمعالجة المخلفات السائلة . معظمها يكون احتياجاته الغذائية عن طريق التمثيل الضوئي. فنجد أن جميع الطحالب تحتوى كلوروفيل A، والبعض الآخر يحتوى على كلوروفيل B, C كما يتواجد في بعضها مثل الزانثوفيل لاخر يحتوى على كلوروفيل تجرى تمثيل ضوئي أكسجيني (تستعمل الضوء كمصدر اللطاقة، الماء كمانح للإلكترونات) وتنمو في البيئات المعدنية Imaral مع الفيتامين كمدعم ، ثاني أكسيد الكربون كمصدر للكربون . تحت الظروف البيئية تمد البكتريا الطحالب بالفيتامينات . بعض الطحالب مثل الظروف البيئية تمد البكتريا الطحالب بالفيتامينات . بعض الطحالب مثل وأحماض عضوية (سكريات وأحماض عضوية) كمصدر للكربون والطاقة . الطحالب تتكاثو جنسيا ولاجنسيا.

تقسيم الطحالب Classification of algae

تقسيم الطحالب يعتمد أساسا على نوعية الكلوروفيل، تركيب جدار الخلية، طبيعة المواد الكربونية المخزنة والتي تنتجها خلايا الطحالب.

.1. شعبة الكلوروفيتا Phylum chlorophyta (الطحالب الخضراع)

الطحالب الخضراء تحتوى على كلوروفيل a,b، لها جدار خلوى سليولوزى، تنتج النشا كمو اد مخزنة.

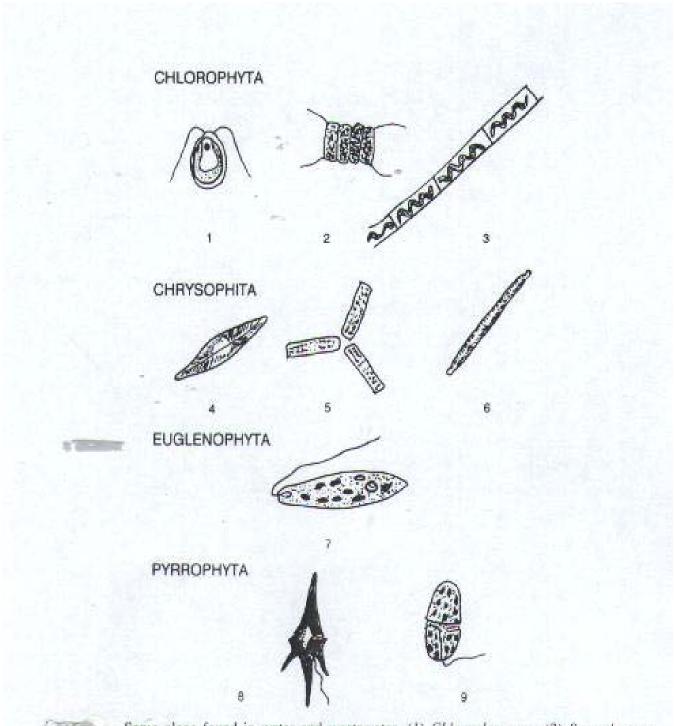
2. شعبة كريسوفيتا (Golden-brown algae) الطحالب الذهبية _ البنية

هذه الشعبة تشمل مجموعة هامة، هي الدياتومات. واسعة الانتشار، فهي تتواجد في a and c كلا من المياه المالحة والعذبة، الرسوبيات، والتربة تحتوى على كلوروفيل c وتحتوى جدر الخلية على سليكا (مسؤولة عن تكون التربة الدياتومية (Diatomaceous earth) وهي تكون مواد مخزنة على صورة ليبيدات.

3 . شعبة يوجلينوفيتا ؛ Phylum euglenophyta

تحتوى على كلوروفيل a and b، ليس لها جدار خلوى، تخزن باراميلون Paramylon، جلوكوز بولمر. واليوجلينا هي مثال نموذجي للشعبة.

4. شعبة بيروفيتا dinoflagellates) Phylum pyrrophyta


تحتوى على كلوروفيل A and c ، المواد المخزنة تتواجد على صورة نشا.

5. شعبة الطحالب الحمراء Phylum Rhodophyta

تتواجد منتشرة في البيئة البحرية. تحتوى على كلوروفيل a and d كما تحتوى على صبغات مثل الفيكواير ثرين Phycoerythrin، تخزن النشا، الجدار الخلوى من السليولوز.

5. شعبة فاوبفيتا Phylum Phaeophyta (الطحالب البنية)

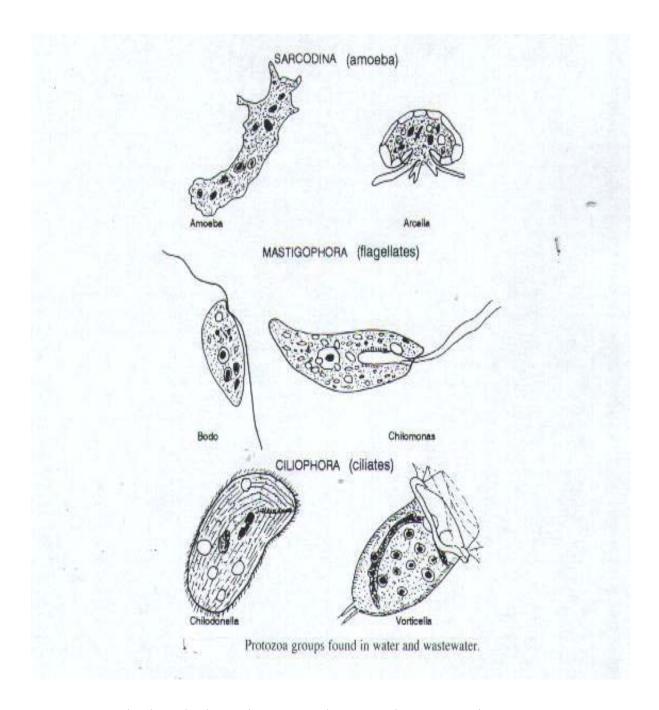
تحتوى على كلوروفيل a and c وصبغة الزانثوفيل وتخزن a and c وصبغة الزانثوفيل وتخزن -B 1,3-glucan)

Some algae found in water and wastewater. (1) Chlamydomonas; (2) Scenedesmus, (3) Spyrogira; (4) Navicula; (5) Tabellaria; (6) Synedra; (7) Euglena; (8) Ceratium; (9) Gynenodynium. Adapted from Benson (1973).

شكل 8. بعض الطحالب التي تتواجد في المياه والمخلفات السائلة

البروتوزوا Protozoa

البروتوزوا كائنات وحيدة الخلية، هامة من ناحية الصحة العامة كما أنها تتواجد في محطات معالجة المياه والمخلفات السائلة . الخلايا محاطة بغ شاء سيتوبلازمي Cytoplasmic membrane والذي يغطى بتركيب حام يسمى بيليكل Pellicle تكون حويصلات Cysts تحت الظروف البيئية الغير من اسبة، و هي مقاومة للجفاف، عدم توافر الغذاء، الحرارة المرتفعة، نقص الأكسجين والمواد الكيميائية والتي تشمل المطهرات في محطات معالجة المياه والصرف الصحى. والبروتوزوا تتواجد في التربة والبيئة المائية وتشمل ال مخلفات السائلة (شكل 8). بعض منها يعيش معيشة طفيلية Parasitic على الحيوانات وتشمل الإنسان. البروتوزوا كائنات هتير وتروفية و هي تستطيع امتصاص الغذاء الذائب، وينتقل عبر الغشاء هتير وتروفية و هي تستطيع امتصاص الغذاء الذائب، وينتقل عبر الغشاء السيتوبلازمي. البروتوزوا الحيوانية كاملا Holozoic قادرة على ابتلاع الجسيمات مثل البكتريا. البروتوزوا التي لها أهداب Cytostomic تتكاثر البروتوزوا الجسيمات نحو ما يشبه الفم والذي يسمى Cytostomic تتكاثر البروتوزوا البراميسيوم Paramecium في بعض الأحناس مثل البراميسيوم Paramecium.


rotozoa classification البروتوزوا

أساس تقسيم البروتوزوا هو الحركة. الأهمية الطبية للبروتوزوا ترجع إلى أنها يمكن أن تنتقل عن طريق الماء والمخلفات السائلة والأغذية والخضروات الملوثة والتى تؤكل طازجة ويوضح شكل 9 أمثلة على أقسام البروتوزوا.

Sarcodina (amoeba) ساركودينا . 1

الساركودينا تتحرك بواسطة أقدام كاذبة تسمى Pseudopods، وتتم الحركة نتيجة تغير في لزوجة السيتوبلازم. العديد من الأميبا تعيش حرة ولكن البعض متطفل (الانتاميبا هستولوليتيكا Entamoeba histolyitca). الأميبا تتغذى بامتصاص الغذاء الذائب أو ابتلاع Phagocytosis الفريسة.

الفور امينيفرا Foraminifera هي ساركودينا، تتواجد في البيئة البحرية، لها أصداف Shells تسمى tests، تتواجد كحفريات متحجرة Fossils في التكوينات الجيولوجية.

شكل 9. مجاميع العووتوزوا المتواجدة في المياه والمخلفات السائلة

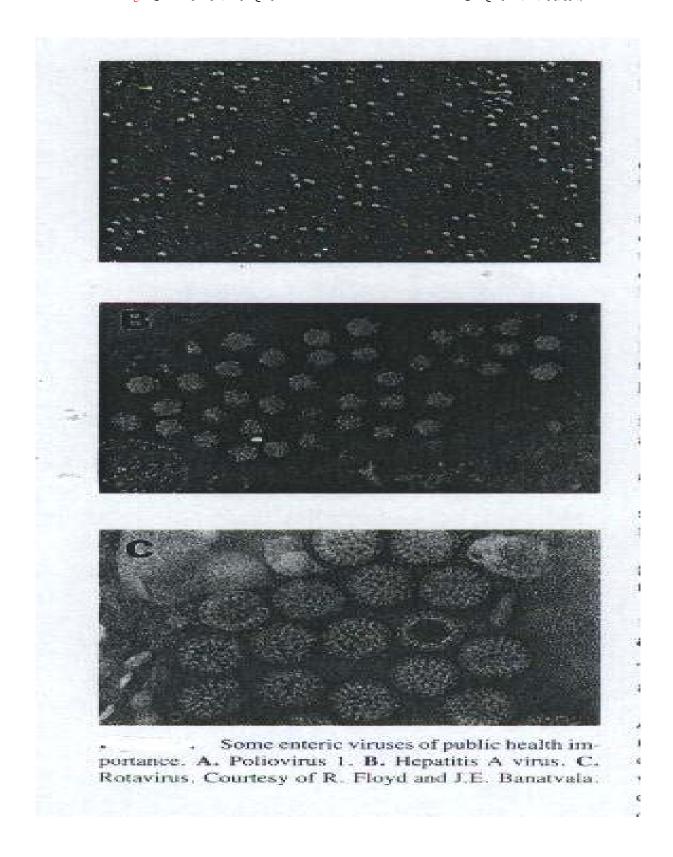
2. ماستيجوفيرا (Mastigophora (flagellates)

تتحرك بواسطة فلاجلا. تستخدم الضوء في تكوين ما تحتاجه من مركبات هي مصدر الطاقة Photosynthetic. مثال عليها الجيار ديا لامبليا Trypanosoma gambiense وهناك فلاجيليت أخرى مثل Trypanosoma gambiense والتي تنتقل إلي الإنسان عن طريق ذبابة التسي تسي Tsetse fly والتي تسبب مرض النوم في إفريقيا.

3. سیلیفورا (Ciliphora (ciliates)

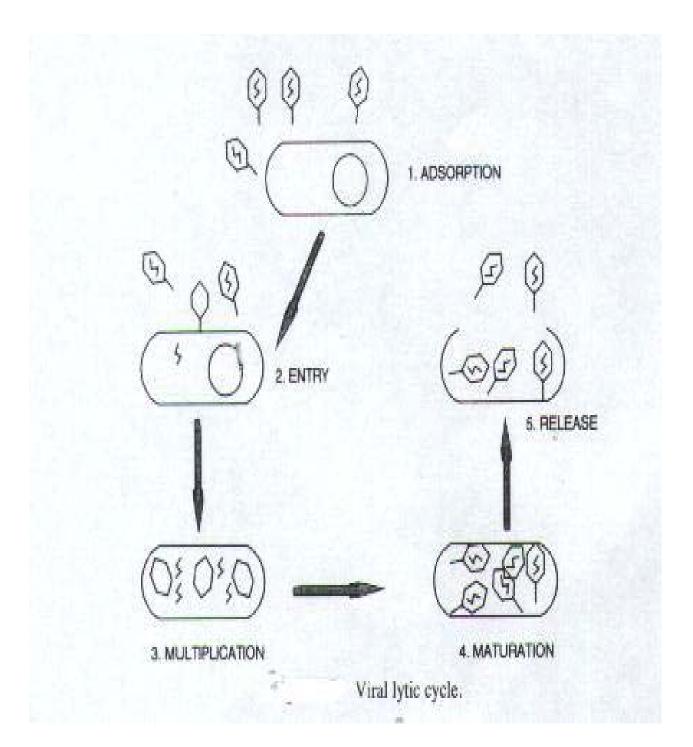
هذه الكائنات تستعمل الأهداب القصيرة للانتقال، ولكنها تساعد أيضا في التغذية . البراميسيوم Paramecium من السيلييت الكبيرة الحجم: البعض متطفل على الحيوان والإنسان، مثلا Balantidium coli يسبب ابتلاع حويصلاتها الإصابة بالدوسنتاريا.

4. سبوروزوا Sporozoa


ليس لها وسيلة للانتقال، وهي طفيلية , تتغذى بامتصاص الغذاء، تنتج جراثيم مرضية. مثال عليها بلازموديم فيفاكس Plasmodium vivax والذي يسبب الملاريا. الطور المعدى، سبوروزويت Sporozoite، يحقن في الإنسان خلال لدغ البعوض.

5. الفيروسات Viruses

الفيروسات لا تتبع أى من الايوكاريوتس أو البروكاريوتس، لا تقوم بوظائف الهدم والبناء Anabolic, Catabolic، تكاثرها يتم داخل خلية العائل الخلايا المصابة قد تكون من الحيوان أو النبات، بكتريا، فطر أو طحالب . الفيروسات جسيمات صغيرة جدا 25 – 350 نانومتر، معظمها يمكن رؤيته بالميكروسكوب الإلكتروني. وشكل 10 يبين بعض أنواع الفيرس التي لها أهمية من الناحية الصحية.


تركيب الفيرس Virus structure

الفيرس يتركب من جزء مركزى Core من الحامض النووى مفرد أو مزدوج الفيرس يتركب من جزء مركزى Core من الحامض النووى مفرد أو مزدوج الجديلة DNA or RNA stranded Double or single بروتينى يسمى كابسيد الكبسيد يتركب من تنظيمات من أعداد مختلفة من وحدات بروتين تعرف باسم كابسوميرز Capsomeres. اتحاد الكابسيد والحامض النووى يسمى نيوكلوكابسيد الانووى يسمى نيوكلوكابسيد الانووى يسمى نيوكلوكابسيد الاسطوانى بتركيب حلزونى (مثل فيرس موزيك الدخان). أو لولبى متناسق، والاسطوانى بتركيب حلزونى (مثل فيرس موزيك الدخان). بعض الفيروسات (مثل الكوليفاج) له تركيب أكثر تعقيدا وبعض منها (مثل الأنفلونزا والهربس) له غلاف يتركب من ليب وبروتينات Lipoproteins (بروتينات دهنية) أو ليبيدات Lipids.

شكل 10فيروسات معوية: بوليو 1 – هيباتيتس A- روتافيرس

تضاعف الفيرس Virus replication استخدم فاج البكتريا كنموذج لتوضيح أطوار تكاثر الفيرس، والتي تتلخص في الآتي (شكل 11):

شكل 11. دورة الفيرس التحليلية

1. الادمصاص Adsorption

لحدوث عدوى لخلايا العائل، يلزم أن يدمص جزئ الفيرس بالخلايا المستقبلة والتى تقع على سطح الخلية. فيروسات الحيوان تدمص إلى سطح مركبات خلية العائل. المستقبلات ربما تكون سكريات عديدة، بروتينات أوليبوبروتين.

Entry الدخول. 2

تشمل هذه الخطوة دخول جزئ الفيرس أو الحامض النووى في خلية العائل البكتيريوفاج يحقن حامضه النووى في خلية العائل بالنسبة لفيروسات الحيوان فان كل الفيرون Viron يتخلل خلية العائل بواسطة الاندوسيتوسيس Endocytosis

Eclipse النفوق. 3

خلال هذه الخطوة يكون جزئ الفيرس غير مغطى Uncoated (الكابسويد قد تمزق) وينطلق الحامض النووى.

4. التضاعف Multiplication

تشمل هذه الخطوة التكاثر الحقيقي للحامض النووي الفيروسي.

Maturation النضح. 5

يصنع الغلاف البروتيني ويتحد مع الحامض النووى ليكون نيكلوكابسيد Nucleocapsid .

6. تحرر أو انطلاق الفيرونات الناضجة Release of mature virons

تحرر الفيرس ينتج عن انفجار الغشاء الخلوى Cell membrane للعاطئ.

الكشف عن الفيرس وعده Virus detection and enumeration

هناك عدة اتجاهات للكشف عن الفيرس و عده:

Animal inoculation حقن الحيوان

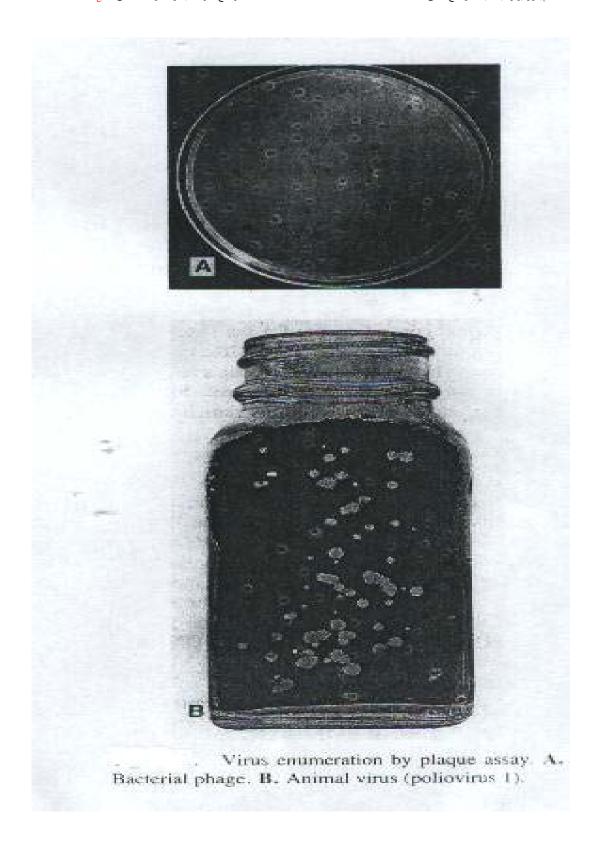
هى الطريقة التقليدية للكشف عن الفيروسات قبل تواجد طريقة مزارع الأنسجة. تتم عدوى فأر حديث الولادة بالفيرس ويلاحظ ظهور أعراض المرض عليه. حقن الحيوان أساسي للكشف عن الانتيروفيرس Enteroviruses مثل الكوكساكى أ Coxcackie A.

مزارع الأنسجة Tissue cultures

تقنن الفيروسات Quantified بقياس تأثيرها على خطوط من خلايا العائل Cell التي تحت الظروف المناسبة من التغذية تنمو وتكو ن طبقة واحدة على السطح الداخلي لزجاجة من الزجاج أو البلاستيك . وهناك نوعان من خطوط خلايا العائل:

- خطوط خلایا أولیة Primary cell lines

خلايا أزيلت مباشرة من أنسجة العائل ويمكن إعادة زراعتها لعدد محدود من المرات.


- خطوط خلایا مستمرة Continuous cell lines

خلايا حيوانية، بعد سلسلة من الاستزراع Subculture، تكتسب صفات جديدة تختلف عن خلية الخط الأصلية، يسمح بإعادة زراعتها إلى ما لانهاية، وهي مشتقة من أنسجة عادية أو سرطانية Cancerous. العديد من الفيروسات Adenoviruses, Reoviruses, and Enteroviruses ويتكشف عنها بمرض الخلية Cytopathic ولكن غيرها مثل, Cytopathic ويتكشف عنها بمرض الخلية ولا يسبب مرض الخلايا. وجود الأخير يلزم تأكيده باختبارات أخرى، تشمل Immunological procedures, monoclonal

antibodies أو مجسات الحامض النووى Nuclic acid probes . ونجد أن فيروسات أخرى مثل Norwalk لا يمكن الكشف عنها بطريقة مزارع الأنسجة.

Plaque assay فحص البقع

يوضع معلق الفيرس على سطح طبقة واحدة من الخلايا Cell monolayer، وبعد المصاص الفيروسات على خلايا العائل، توضع طبقة من الآجار اللين Soft agar المصاص الفيروسات على خلايا العائل، توضع طبقة من الآجار اللين الواحدة. تكاثر أو يصه Plaques على سطح طبقة الخلايا الواحدة. تكاثر الفيرس يؤدى إلى مناطق موضعية تكسر فيها الخلايا وتسمى Plaques. النتائج يعبر عنها بأعداد وحدات تكوين البقع (PFU). وفحص البكتريوفاج أيضا بنفس الطريقة اعتمادا على أسس مماثلة ، فهى تكون بقع وهى مناطق تحلل المعائل البكتيرى (شكل 12).

شكل 12. عد الفيرس بطريقة تكون البقع

نقطة نهاية التخفيف المتتالى Serial dilution end point

يؤخذ جزء من التخفيفات المتتالية لمعلق الفيرس ويحقن في الخلايا المزروعة من الع ائل، بعد التحضين، تسجل نقطة النهاية ذات التأثير الممرض (Cytopathic effect (CPE) وه ي أعلى تخفيف من الفيرس (أقل كمية من الفيرس) قادرة على إظهار CPE في 50% من الخلايا ويشار إليها على أنها الجرعة الممرضة لمزرعة الأنسجة

Tissue culture infectious dose (TCID₅₀).

Most probable number العدد الأكثر احتمالا

يتم معايرة الفيرس Virus titration باستعمال ثلاث تخفيفات من معلق الفيرس، يتم ذلك في أنابيب أو أطباق ميكرو Microplates ذات 96 حفرة well. تسجل الأنابيب أو فتحات الطبق الموجبة ويحسب العدد الأكثر احتمالا من جداول MPN tables.

.الطرق السريعة Rapid detection methods

Immunoelectron microscopy.1.

تحضر الفيروسات مع الأجسام مناعية خاصة Specific antibodies وتختبر بالميكروسكوب الإلكتروني لوجود جسيمات الفيرس متجمعة مع الجسم المناعى . هذه الطريقة مفيدة لاختبار فيووسات النورولك Norwalk.

Immunofluorescence .2

يعامل الجسم المناعى بصبغة مشعة Fluorescent dye ليتحد مع مولد المضاد للفيرس Viral antigen والمركب المتكون يكشف عنه بواسطة فلورسنت ميكروسكوب Fluorescence microscope.

هذه الطريقة تمكن من الكشف عن الروتافير س Rotavirus والذى يظهر على صورة بؤر مشعة في مزارع الأنسجة.

Enzyme-linked immunosorbent assay (ELISA) .3

جسم مضاد معين يثبت على دعامة صلبة Solid support وهو المضاد Antigen-antibody ومولد المضادة Antigen-antibody. Antigen-antibody فيرس يضاف ليكون مركب من مولد المضاد المضاد الأجسام المضادة خاصة. يكشف عن تواجد complex يضاف إلى مولد المضاد الثابت إنزيم لأجسام مضادة خاصة. يكشف عن تواجد الفيرس بتواجد منتج ملون بعد إضافة المادة التي يعمل عليها الإنزيم يمكن تقنيته Quantified باستخدام جهاز Spectrophotometer.

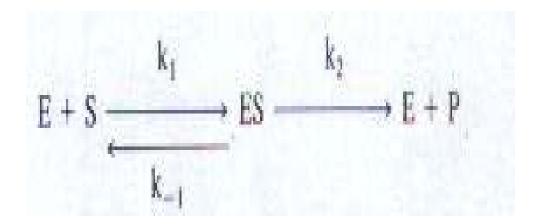
.Radioimmunoassay .4

تعتمد هذه الطريقة على ارتباط مولد المضاد مع جسم مناعى معين ... مولد المضاد يقنن بواسطة وضع علامة Labeling من اليود المشع (${
m I}^{125}$) قياس النشاط الإشعاعي للمركب مولد المضادات - الجسم المضاد . عندما يعالج الفيرس النامى فى خلايا العائل بمولد الجسم المضاد المشعع باليود، فان البؤر Foci المشعة يمكن عدها بعد الملاصقة لفيلم خاص . هذا الاختبار ، يسمى Radioimmunofoci (RIFA) ويستخدم للكشف عن فيرس هيباتيتس Hepatitis A

5. مجسات الأحماض النووية Nucleic acid probes

المجسات الجينية هي أجزاء من الحامض النووي وهي تساعد في تصنيف الكائنات الدقيقة الغير معروفة عن طريق التهجين Hybridizing (يعني الارتباط Binding) للحامض النووي المتماثل Homologous. لتسيل الكشف ، يمكن تشعيع المجسات بالنظائر المشعة Radioactive isotopes مثل الفوسفور المشع P³² أو إنزيمات مثل الفوسفاتيز الولوي، البيروأكسيديز أو بيتا جلاكتوسيديز. استعملت مجسات الحامض النووي للكشف عن الفيروسات (مثل البوليو، الهيباتيتس أ) في عينات بيئية (ماء، رواسب، محاريات). أستعمل مجس Hepatitis A مركزات من المحاريات Shellfish ولسوء الحظ، هذه المجسات غير حساسة فكشفت في مركزات من المحاريات Amplification. ولقد أخذ في الاعتبار تضخم Amplification الحامض

النووى المستهدف للفيرس بواسطة تفاعل البلمرة المتسلسل Polymeric Chain reaction النووى المستهدف الفيرس بواسطة تفاعل البلمرة المتسلسل (PCR)


الباب الثالث

التمثيل الغذائي والنمو في الكائنات الدقيقة Microbial Metabolism and Growth

1. الإنزيمات

الإنزيمات هي جزيئات بروتينية وتخدم كعامل مساعد في التفاعلات البيوكيميائية في الحيوان، النبات والخلية الميكروبية. وهناك استعمالات تجارية للإنزيمات في الصناعات الغذائية (النبيذ، الجبن، البيرة)، المنظفات، الأدوية، الطب والنسيج. وامتد استخدام النشاط الإنزيمي للكائنات الدقيقة إلى معالجة الصرف الصحى وذلك من خلال استخدام سلالات مختارة من الكائنات الدقيقة لتحسين عمليات المعالجة ورفع كفاءة محطات المعالجة والإقلال من زمن المعالجة وبالتالى تزيد قدرة المحطة على المعالجة.

ولا يحدث تغير في تركيب الإنزيم بعد دخوله في التفاعل وبالتالي يمكن استعماله باستمرار. فالإنزيم يخفض من الطاقة التنشيطية اللازمة لأي تفاعل ويزيء من معدل التفاعل الكيماوي الحيوي. والإنزيمات قد تكون داخل الخلايا Intracellular أو يتم إفرازها خارج الخلايا Extracellular وهي بصفة عامة متخصصة للمواد التي تعمل عليها Substrates. تلك المواد Substrates تتحد مع مركز نشاط الإنزيم لتكون مركب (Enzyme-substrate complex (ES) وبالتالي ينتج مركب جديد (P) والإنزيم الذي لم يتغير (E) يكون جاهزا للتفاعل ثانية مع مواد التفاعل.

بعض المجاميع الغير بروتينية Cofactors قد تكون مع الإنزيم وتساهم في التفاعل التحفيزي للإنزيم. هذه تشمل (Nicotinamide, Adenine dinuccleotide, التحفيزي للإنزيم. هذه تشمل (K, Mg, Fe, Co, Cu, Zn, Mn, ومنشطات معدنية مثل (Coenzyme A FAD, FMN,) Coenzyme مساعد (Mo) الزيمات الديهيدروجينيز تحتاج مساعد (NAD, Coenzyme A, Biotin) والتي تقبل الأيدروجين المزال من مواد التفاعل.

قسمت الإنزيمات إلى 6 أقسام:

- 1. أكسيدوريدكتيز Oxidoreductases مسئول عن عمليات الأكسدة والاختزال في الخلية.
- 2. ترانزفيريز Transferase مسئول عن نقل المجاميع الكيماوية من مادة إلى أخرى.
 - 3. **هيدروليز Hydrolases** تحلل الكربو هيدرات، البروتين، الدهون في الجزيئات داخل الخلية .
 - 4. لياسيس Lyases تحفز إضافة أو إزالة مجاميع.
 - 5. أيزوميريز Isomerase تحفز تكوين الشبيه Isomer.
 - 6. ليجيز Ligases تحفز ارتباط جزيئين، باستعمال مصدر طاقة مثل ATP.

هذا وتوجد مواد توقف فعل الإنزيمات Inhibitors.

2. التمثيل الغذائي في الميكروبات Microbial Metabolism

1.2. مقدمة

التمثيل الغذائي هو مجموعة تحولات بيوكيميائيه والتي تشمل هدم Catabolism وابتناء Anabolism. وعمليات الهدم أكسيجينيه وتنطلق نتيجتها طاقة من المركبات العضوية وغير العضوية وعمليات ألا بتناء يستخدم فيها الطاقة ومواد كيميائية وسطية ناتجة عن عمليات الهدم لتركيب مواد جديدة تبقى على الخلايا وتستخدم في النمو.

2. 2. التقسيم الأيضى للكائنات الدقيقة

Metabolic Classification of Microorganisms

العناصر الرئيسية التى تدخل فى تركيب الخلية الميكروبية هى الكربون، الأكسجين، النتروجين، الهيد روجين، الفوسفور، الكبريت . المغذيات الأخرى الضرورية لعمليات البناء الحيوى لمركبات الخلية تشمل كاتيونات (مثل المغنيسيوم، الكالسيوم، الصوديوم، البوتاسيوم) وأنيونات (مثل الكلوريدات، الكبريتات)، العناصر النادرة (

مثل الكوبالت، النحاس، المنجنيز، المولبدنم، الزنك، النيكل، السيلنيوم)، والذي يخدم كمكونات أو عامل مساعد لعديد من الإنزيمات، وعوامل النمو مثل الفيتامينات (مثل الريبوفلافين، الثيامين،النياسين، فيتامين ب 12 ، حامض الفوليك، البيوتين، فيتامين ب6). ايشيرشيا كولاي النموذجية تحتوى تقريبا على 70% ماء، 3% سكريات، 8% أحماض أمينية، أحماض نووية، دهون (ليبيدات)، 22% جسيمات كبيرة غالبا بروتينات، RNA, DNA ، 1% أيونات غير عضوية. الكائنات الدقيقة تحتاج إلى مصدر كربون (ثاني أكسيد الكربون أو كربون عضوي) ومصدر طاقة (ضوء أو طاقة ناشئة عن أكسدة مواد كيمائية عضوية أو غير عضوية). التقسيم الأيضى للكائنات الدقيقة يعتمد على خاصيتين أساسيتين، مصدر الطاقة ومصدر الكربون

Phototrophs .1 . 2 . 2

هى كائنات دقيقة تستعمل الضوء كمصدر للطاقة . وهى تنقسم إلى . Photoheterotrophs ، Photoautotrophs

Photoautotrophs.1.1.2.2

هذه لمجموعة من الكائنات الدقيقة تشمل الطحالب، السيانوبكتريا، وبكتريا Photosynthetic وهي تستعمل Photosynthetic والتي تسمى أيضا فوتوترفيك Photosynthetic. وهي تستعمل ثاني أكسيد الكربون كمصدر للكربون، والماء، الأيدروجين، كبريتيد الأيدروجين كمصدر للإلكترونات. والبكتريا التي تستخدم الضوء Anoxygenic تجرى البناء الضوئي مع نقص الأكسجين محد لتصنيع صبغات البناء الضوئي photosynthetic المحالية. الأكسجين محد لتصنيع صبغات البناء الضوئي pigments الكلوروفيل البكتيري والكاروتينات. بالنسبة للسيانوبكتريا، الطحالب، معطى الإلكترونات هو الماء، بينما في بكتريا البناء الضوئي معطى الإلكترونات هو كبريتيد الأيدروجين (بعض السيانوبكتريا قادرة على استعمال كبريتيد الأيدروجين كمعطى للإلكترونات، ويؤدي إلي تراكم الكبريت خارج الخلايا).

هناك حوالى 60 جنس من البكتريا Phototrophic ، قسمت إلى مجموعتين هما البكتريا الارجوانية Purple bacteria والبكتريا الخضراء. البكتريا الارجوانية تحتوى على كلوروفيل بكتيرى من النوع a (أقصى امتصاص عند 825 – 890 نانومتر) ، كلوروفيل b (أقصى امتصاص عند حوالى 1000 نانومتر)، بينما تحتوى البكتريا الخضراء على كلوروفيل بكتيرى c,d,e وتمتص الضوء عند موجة

طولها بين 705 – 755 نانومتر. هذه البكتريا الفوتوتروفية (,705 – 755 نانومتر. هذه البكتريا الفوتوتروفية (,Chlromatiaceae) تستعمل ثانى أكسيد الكربون كمصدر للطاقة، وتختزل مركبات الكبريت (مثل كبريتيد الأيدروجين، الكبريت) كمانح للإلكترونات.

النباء الضوئى فى غياب الأكسجين Anoxygenic photosynthesis يتم باستعمال كبريتيد الأيدروجين كمصدر اختزال ويلخص كما يلى :

$$12H_2S + 6CO_2$$
 $C_6H_{12}O_6 + 6H_2O + 12S^o$

TABLE 9. Recognized Genera of Anoxygenic Phototrophic Bacteria

Taxonomic group Morphology

Purple bacteria

Purple sulfur bacteria (chromaticeae

and Ectothiorhodospiraceae)

Amoebobac cocci embedded in slime; contain gas vesicles

Chromatium Large or small rods

Lamprocystis Large cocci or ovoids with gas vesicles

Lamprobacter Large ovals with gas vesicles

Thiocapsa Small cocci

Thiocystis Large cocci or ovoids

Thiodictyon Large rods with gas vesicles

Thiospirillum Large spirilla

Thiopedia Small cocci with gas vesicles, cell arranged

in flat sheets

Ectothiorhodospirs Small spirilla; do not store sulfur inside cells

Purple nonsulfur bacteria (Rhodospirillaceae)
Rhodocclus Half circle or circle

Rhodomicrobium Ovoid with stalked budding morphology

Rhodopseudomonas Rods, dividing by budding

Rhodobacter Rods and cocci

Rhodopila Large or small spirilla

Green bacteria

Green sulfur bacteria (Chlorrobiaceae)

Anacalochloris Prosthecate sphere with gas vesicles
Pelodictyon Rods or vibrios, some form three-

Dimentional net; contain gas vesicles

Chlorobium Small rods or vibrios
Prosthecochoris Spheres with prosthecae

Green gliding bacteria (Chloroflexaceae)

Chloroflexus Narrow filaments (multicellular), up to

100 micron long

Chloroherpeton Short filaments (unicellular)

Chloronema Large filaments (multicellular), up to 250

Micron long, contain gas vesicles

Oscillochloris Very large flaments, up to 2500 micron

يتراكم الكبريت في الداخل (كما في حالة البكتريا الخضراء) أو خارج (كما في حالة البكتريا الارجوانية) الخلايا من بكتريا البناء الضوئي Photosynthetic.

Photoheterotrophs or Photoorganotrophs .2.1.2.2

تشمل هذه المجموعة كل الهتيروتروفس الاختيارية التي تستمد الطاقة من الضوء أو من المركبات العضوية والتي تخدم كمصدر ل لكربون ومانحات للإلكترونات. البكتريا الارجوانية اللاكبريتية Purple nonsulfur bacteria، تستخدم المركبات العضوية كمانح للإلكترونات.

2.2.2 كيموتروفس (الحصول على الطاقة كيماويا)

هذه الكائنات تحصل على الطاقة من خلال أكسدة المركبات العضوية والغير عضوية. وهي تنقسم إلى and الكلئنات العضوية والغير عضوية. وهي تنقسم الى heterotrophs.

Litotrophs (Chemoautotrophs). 1.2.2.2

ليتوتروفس تستعمل ثانى أكسيد الكربون كمصدر للكربون (تثبيت الكربون) وتستمد ${\rm Fe^{+2}}$, عن طريق أكسدة المركبات الغير عضوية مثل ${\rm Fe^{+2}}$, عن طريق أكسدة المركبات الغير عضوية مثل ${\rm H_2}$ ${\rm S}$, ${\rm NO_2}$, ${\rm NH_4}$

Nitrifying bacteria بكتريا النترته . 1 . 1 . 2 . 2 . 2

تنتشر في التربة، الماء و المخلفات السائلة و هي تؤكسد الأمونيا إلى نترات NH_4^+ _____Nitrosomonas NO_2^- ____Nitrobacter NO_3^-

Elemental sulfur (S^0 ، الكبريت المعدنى H_2 S ، الكبريت الأيدروجين (أو ثيوسلفات S_2 S_3 ، البيئات الحامضية

1.2.2.2 بكتريا الحديد 3.1.2.2.2

تشمل البكتريا الحامضية Acidophilic مثل ، Acidophilic تشمل البكتريا الحامضية وهي تستمد الطاقة من أكسدة الحديدوز ${\rm Fe}^{2+}$ إلى حديديك ${\rm Fe}^{3+}$ وهي قادرة على أكسدة الكبريت. وبعضها له القدرة على أكسدة الحديدوز الى حديديك عند درجة التعادل مثل

Gallionella, Gallionella, ferruginea, Clonothrix, Genothrix, Liptothrix, pchracea, Sphaerotilus natans

,

Hydrogen bacteria بكتريا الهيدروجين . 4 . 1 . 2 . 2 . 2

مثل Hydrogenomonas وهي تستعمل الهيدروجين كمصدر للطاقة وثاني أكسيد الكربون كمصدر للكربون . تحفز أكسدة الهيدروجين بإنزيم الهيدروجينيز. هذه البكتريا اختيارية ، تنمو أيضا في وجود المركبات العضوية.

1.2.2.2. الهتيروتروفس (organotrophs)

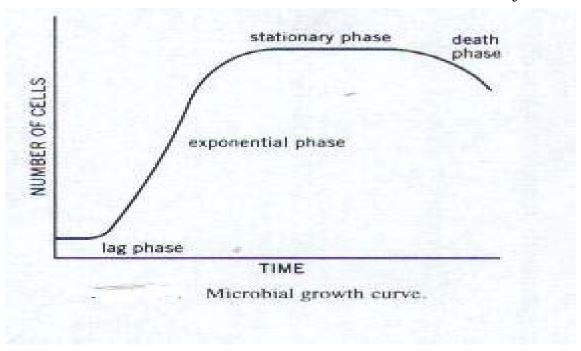
هذه المجموعة عامة التغذية وتشمل بكتريا، فطر، بروتوزوا . والكائنات الدقيقة الهتيروتروفية تستمد الطاقة من أكسدة المواد العضوية كما أنها تستخدم كمصدر للكربون. هذه المجموعة تشمل غالبية البكتريا والفطر والبروتوز وا الموجودة في البيئة.

As summary: **Phototrophs** include: Photoautotrophs and Photohetrotrophs.

Chemotrophs include: Lithotrphs and Heterotrophs.

Lithotrophs include:
Nitrifying bacteria
Sulfur-oxidizing bacteria
Iron bacteria
Hydrogen bacteria

3. حركية النمو الميكروبي Microbial growth kinetics


الكائنات التابعة للبروكريوتيك مثل البكتريا تتكاثر بالانقسام الانشطارى Binary (كل خلية تعطى خليتين). نمو المجتمع الميكروبي محدد بأنه زيادة في الأعداد أو زيادة في الكتلة الميكروبية. الزيادة في أعداد الخلايا الميكروبية أو الكتلة لكل وجدة من الوقت تسمى معدل النمو Growth rate. الزمن اللازم لمجتمع ميكروبي لكي يتضاعف في العدد يسمى مدة الجيل Generation time أو زمن المحتمع التضاعف في العدد يسمى مدة الجيل Doubling time والذي ربما يختلف من دقائق إلى أيام. المجتمع

Batch culture المزارع على دفعات 1.3.

عند حقن بيئة نمو مناسبة بخلايا، فان نمو المجتمع الميكروبي يتبع منحنى النمو والذي يظهر في مراحل (شكل 13).

1.1.3 مرحلة التباطؤ (الطور التمهيدي) Lag phase

خلال هذه المرحلة تقوم الخلايا يضبط نفسها مع الظروف البيئية الجديدة . وتكون الخلايا مشغولة في تصنيع مركبات كيماوية حيوية Biochemical وتكبر في الحجم. مدة هذه المرحلة تعتمد على تاريخ الخلية السابق (العمر، التعرض من قبل إلى إتلاف نتيجة عوامل طبيعية أو كيماوية، بيئة الزراعة) فمثلا، لم تلاحظ مرحلة التباطؤ عن نقل من مزرعة تنمو أسيا Exponentially إلى بيئة مشابهة وتحت نفس ظروف النمو . لوحظت فترة التباطؤ، تقليديا، عند إدخال خلايا تالفة الزراعة.

شكل 13. منحنى النمو للبكتريا

Exponential growth phase (Log phase)

2.1.3 المرحلة اللوغاريتمية

فى هذه المرحلة تزيد أعداد الكائن لو غاريتميا . معل النمو الأسى يختلف حسب نوع الكائن الدقيق وظروف النمو (الحرارة، تركيب البيئة). فتحت الظروف المناسبة، يتضاعف عدد الخلايا البكتيرية (فمثلا يتضاعف عدد ايشيرشيا كولاى كل 15 – 20 دقيقة). النمو يتبع متوالية هندسية Geometric progression $(2^0, 2^1, 2^2, 3^2, 2^2, 3^2)$

$$X_t = X_0 e^{\mu t}$$

 $\mu = \text{Specific growth rate (hr}^{-1}),$

 X_t = Cell biomass or number after time t

 X_0 = Initial number or biomass of cells.

وباستعمال اللوغاريتمات الطبيعية على كلا من الجانبين في المعادلة نحصل على المعادلة التالية:

$$\operatorname{Ln} X_t = \operatorname{Ln} X_0 + \mu t$$

$$\mu \; = \underbrace{ \; Ln \; X_t \text{-} \; Ln \; X_o }_{\text{-}} \label{eq:multiple}$$

إذا كانت n هي عدد الأجيال بعد زمن t، فان تضاعف الزمن t_{d} يكون:

$$t_d = t/n$$

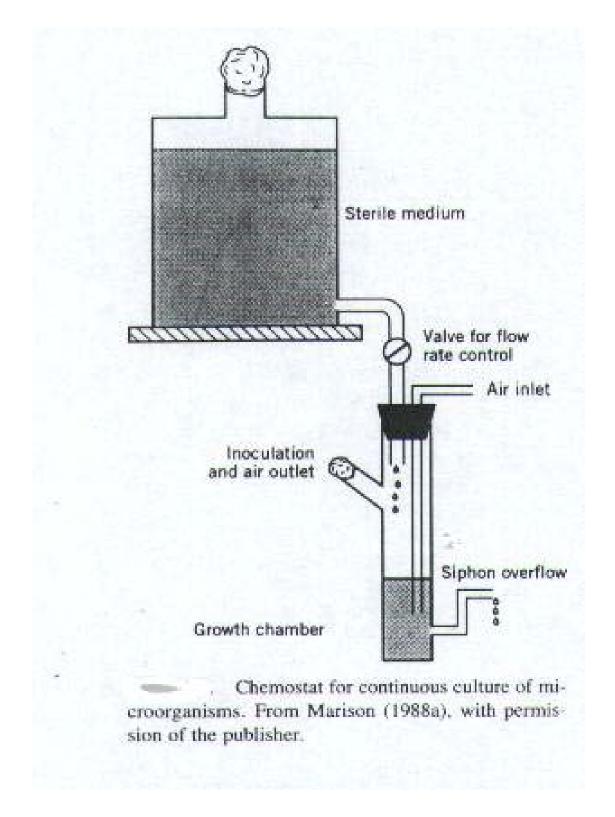
 μ is related to the doubling time t_d by

$$\mu = \underbrace{ \begin{array}{ccc} Ln \ 2 \\ \hline & t_d \end{array} } \begin{array}{ccc} \underbrace{0.693} \\ \hline & t_d \end{array}$$

والخلايا في مرحلة النمو اللوغاريتمي أكثر حساسية للعوامل الكيميائية والطبيعية أكثر من تلك في مرحلة الاستقرار أو الثبات أو السكون Stationary phase.

Stationary phase مرحلة الثبات أو الاستقرار أو السكون. 3.1.3

تصل خلايا المجتمع إلى مرحلة الثبات لأن الكائنات الدقيقة لا تستطيع النمو بلا حدود، أساسيا للنقص فى المغذيات ومستقبلات الإلكترونات وإنتاج وتراكم نواتج التمثيل التى قد تكون سانة للكائن الدقيق . فنواتج التمثيل الثانوية (مثل بعض الإنزيمات، المضادات الحيوية) تنتج خلال مرحلة الثبات.


ليس هناك نمو خالص (نمو الخلية يتوازن بموت الخلايا أو تحللها) للمجتمع خلال طور الثبات.

4.1.3 مرحلة أو طور الموت Death phase

خلال هذه المرحلة، معدل موت الخلايا في المجتمع الميكروبي يكون أعلى من معدل النمو أو التكاثر . موت الخلايا يتحقق من خلال تحلل الخلايا . يتناقص عدد الكائن، على الرغم من بقاء العكارة في المعلق الم يكروبي ثابتة. وربما تتناقص عكارة المزرعة بحدوث تحلل الخلايا Cell lysis.

2.3. المزرعة المستمرة من الكائنات الدقيقة Continuous culture of microorganis

يمكن أن يتحقق بقاء المزرعة من الكائن الدقيق في مرحلة النمو اللوغاريتمية لفترة طويلة بالنمو المستمر للخلايا في مفاعل مخلوط تماما ويحافظ على الحجم. يستخدم لذلك ما يسمى كيموستات Chemostat (شكل14) وهو عبارة عن مفاعل حيوى كامل الخلط وبدون إعادة تدوير.

شكل 14. كيموستات للمزرعة المستمرة من الكائنات الدقيقة

بالإضافة إلى ضبط معدل التدفق Flow rate للمواد المحددة للنمو، العوامل البيئية مثل مستوى الأكسجين، درجة الحرارة، تركيز أيون الأيدروجين pH. تضاف المادة الخاضعة Substrate باستمرار وبمعدل Q إلى المفاعل والحجم Q والمحتوى على تركيز Q من الكائن ألحي. معدل التخفيف Q ، العلاقة التبادلية Reciprocal لزمن البقاء الهيدروليكي Q يظهر في المعادلة :

$$D = \frac{Q}{V} = \frac{1}{t}$$

D= dilution rate (time⁻¹)

V= reactor volume

Q= flow rate of substrate (liter/time)

T= time

فى تفاعل التدفق المستمر Continuous flow النمو الميكروبي يمكن وصفه فى المعادلات التالية:

$$dx/dt = \mu X - D X = X (\mu - D)$$

 μ . يظهر من المعادلة أن معدل الإمداد بالمواد المغذية المحدودة يحكم معدل النمو μ_{max} . وعندما تكون μ_{max} أكبر من μ_{max} . يلاحظ النقص في تركيز الخلايا. توازن الكتلة Mass balance للتركيز μ_{max} بنتج من المعادلة:

$$V\frac{dx}{dt} = \mu XV - QX$$

$$= \frac{\mu_{max}[S]}{K_s + [S]} XV - QX$$

At steady state dx / dt = 0
$$\longrightarrow$$
 $\mu = D = \frac{Q}{V} = \frac{\mu_{max}[S]}{K_s + [S]}$

Y= growth yield $S_1=$ influent substrate concentration. $S_e=$ effluent substrate concentration.

5. قياس عدد الميكروبات الحية على بيئة صلبة

Measurement of the viable numbers of microbes on solid growth media

العدد يقدر باستعمال طريقة الأطباق المصبوبة Poured plates باستعمال 1.. - 1 ملل من معلق الميكروب أو تخفيفه ويخلط مع بيئة الآجار المنصهر في طبق بترى، أو بطريقة الفرد على سطح الآجار Surface or Spread plate في طبق. الناتج بعد التحضين يعبر عنه بوحدة تكوين المستعمرات Colony forming unit في الطبق يكون ما بين 30 – 300.

ويمكن أيضا استعمال المرشحات الغشائية Membrane filter لتقدير عدد الميكروبات في تخفيف من العينة. ترشح العينة من خلال المرشح الغشائي ويوضع المرشح (الفاتر) مباشرة على بيئة آجار مناسبة. تحضن وعدد المستعمرات الناتجة على سطح المرشح يعدل ليعطى العدد في الملليلتر.

6.قياس الوزن الجاف Measurement of dry weight

تمرر العينة خلال مرشح غشائي (قطر الثقوب 2, ميكرون) أو يتم الطرد المركزى للعينة ويجفف عند 105 مئوية، حتى ثبات الوزن. يعبر عن وزن الخلايا بالجرام/لتر. متوسط الوزن الجاف لخلايا البروكريوت يختلف ما بين 10^{-15} - 10^{-15} جرام. بينما الايوكاريوت يتراوح ما بين 10^{-15} - 10^{-7} حرام.

7. قياس العكارة Turbidity measurement

تقدر عكارة معلق الخلايا باستخدام جهاز سبكتروفوتومتر Spectrophotometer ويعبر عنه بوحدات المتصاص. هناك علاقة ما بين الأعداد الكلية للميكروب والعكارة لمعلق البكتريا. وعلى ذلك يجب التوزيع المتماثل بالخلط الجيد أو الطحن قبل قياس الامتصاص للضوء. من منحنى قياسى يمكن ترجمة القراءات إلى أعداد.

8.التقدير البيوكيميائي للخلايا Determination of cells biochemicals

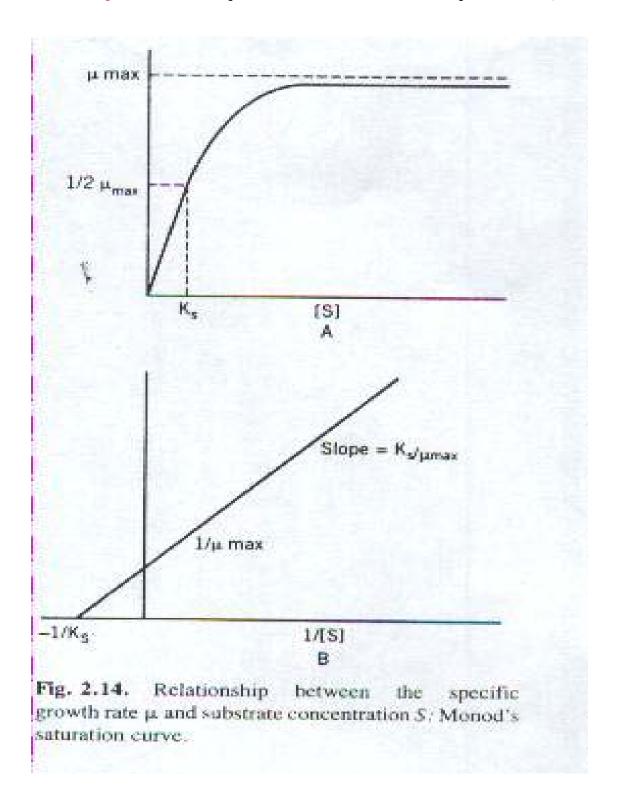
يمكن قياس نمو المزرعة الميكروبية من خلال تقدير جزء معين من الخلية مثل البروتين أو ATP, DNA, RNA.

9. العوامل الطبيعية والكيماوية التي تؤثر على النمو الميكروبي

9. 1. تركيز المادة التي يعمل عليها الإنزيم Substrate concentration

العلاقة بين معدل نمو معين . μ . Specific growth rate μ . وتركيز المادة التي يعمل عليها الإنزيم S تخضع للمعادلة:

$$\mu = \mu_{max} \qquad \frac{[S]}{K_s + [S]}$$


Where

 $\mu_{max} = maximum \ specific \ growth \ rate \ (hr^{-1})$

S = substrate concentration (mg/L)

 K_s = half-saturation constant (mg/L)

Specific الذي عنده معدل النمو المعين Substrate هو تركيز المادة Substrate الذي عنده معدل النمو المعين K_s بيساوي growth rate يساوي growth rate يساوي K_s الكربون وغير ها من العوامل. K_s و K_s تتأثرا بالجرارة ونوعية مصدر الكربون وغير ها من العوامل.

شكل 15. العلاقة بين معدل النمو وتركيز المادة التي يعمل عليها الإنزيم

9.2. الحرارة

الحرارة هي إحدى العوامل الهامة التي تؤثر على النمو الميكروبي وكذلك مدة بقاء الميكروب حي. فالنمو الميكروبي من الممكن أن يتم في مجال واسع من الحرارة ما بين تحت الصفر إلى أكثر من 100 مئوية اعتمادا على الدرجة المثلى للنمو، فالكائنات الدقيقة تقسم إلى ميزوفيلك Mesophilic وسيكروفيلك Psychrophilic ، وثرموفيلك Thermophilic أو ثرموفيليك شديدة.

$$\mu = A e^{-E/RT}$$

A = constant

E = activation energy (K cal/mole)

R = gas constant

T = absolute temperature (K)

الميكروبات المحبة للبرودة Psychrophilic يمكنها أن تنمو على حرارة منخفضة لأن الغشاء الخلوي يحتوى على نسبة عالية من أحماض دهنية مشبعة، والتي تساعد على الاحتفاظ بسي ولة الغشاء، بينما التركيز العالي من الأحماض الدهنية المشبعة يساعد الكائنات ال محبة للحرارة Thermophilic على تحمل الحرارة العالية. النقص في μ عند الحرارة المرتفعة يرجع إلى تجمع أو تجلط الحرارة العالية. البروتينات خاصة الإنزيمات وهذا يؤدى إلى تغيرات في تركيب الأغشبة والذي تؤدى إلى تغير في نفاذية الخلية.

pH . 3 . وكيز أيون الأيدروجين

المعالجة البيولوجية للمخلفات السائلة تتم عادة عند درجة التعادل، فالنمو المثالى للكائنات الدقيقة يتم عند درجة pH 7 ، على الرغم من أن بعضها حامضي حتما

مثل Sulfolobus Thiobacillus وتزدهر عند pH أقل من 2. والفطر يفضل البيئة الحامضية عند pH أو أقل. والسيانوبكتريا تنمو مثاليا عند pH أعلى

من 7. نمو البكتريا بصفة عامة يؤدى إلى انخفاض pH البيئة من خلال نواتج التمثيل الغذائي (الأحماض العضوية وحامض الكبريتيك). وهناك بعض الكائنات الدقيقة ترفع من pH البيئة مثل بكتريا النترته Nitrifiers والطحالب. ويؤثر pH على النشاط الإنزيمي للميكروب. ويؤثر على تأين الكيماويات و على ذلك يلعب دور في انتقال المغذيات والمواد السامة إلى داخل الخلية.

9. 4. مستوى الأكسجين Oxygen level

الكائنات الدقيقة يمكنها النمو في وجود أو غياب الأكسجين . فهي تنقسم إلى هوائية حتما، ولاهوائية اختيارا، ولاهوائية حتما . الكائنات الدقيقة الهوائية تستعمل الأكسجين كمستقبل للإلكترونات. والاهوائية تستخدم مستقبل للإلكترونات آخر مثل الكبريتات، النيترات، أو ثاني أكسيد الكربون . بعض الكائنات شحيحة الاحتياج للأكسجين Microaerophilic وتحتاج مستوى منخفض من الأكسجين للنمو . ومن خلال تمثيلها الغذائي، فان الميكروبات الهوائية ربما تجعل البيئة مناسبة لنمو اللاهوائيات باستهلاك الأدسجين.

Super oxide وبالاختزال، الأكسجين يكون مركبات سامة مثل السوبر أكسي د Hydroxyl radicals. وعلى (O_2^-) ، وفوق أكسيد الأيدروجين $(H_2 \ O_2)$ أو Hydroxyl radicals. وعلى ذلك فان الكائنا ت الدقيقة لديها إنزيمات لكى تخمد نشا طها. مثلا، فوق أكسيد الأيدروجين يتلف بإنزيمات الكتاليز والبيروأكسيديز ، بينما السوبر أكسيد يخمد نشاطه بإنزيم Superoxide dismutase. المعادلات التالية تبين تفاعلات الكتاليز والسوبر أكسيد ديسميوتيز :

$$2O_2$$
 + $2H$ + O_2 Dismutase $O_2 + H_2O_2$

الباب الرابع

ميكروبيولوجيا الصحة العامة Public Health Microbiology

مقدمة

هذا الجزء يلقى الضوء على البعد الصحى لتلوث المياه وما هى الأمراض المتوقع انتشارها فى المتجمع نتيجة تناول مياه ملوثه. وهذا التلوث فقد يكون ناشئ أساسا نتيجة استعمال مصدر للمياه شديد التلوث ونتيجة انتشار أمراض معينة فى المجتمع ووصول فضلاتهم أو فضلات حيوانية لمصدر المياه مع عدم الاهتمام داخل المحطة بخطوات المعالجة من البداية إلى النهاية الأمر الذى يؤدي إلى خروج المياه من محطة المعالجة وهى لا زالت حاملة لمسببات الأمراض وبشرب هذه المياه تنتشر الأمراض بين أفراد المجتمع.

وهناك احتمال آخر وهو تلوث المياه بعد خروجها من المحطة أما من خلال شبكة التوزيع ووجود فرص لدخول مسببات الأمراض إليها نتيجة الخلل في الشبكة لقدمها أو وجود تسرب من الخارج إلى الداخل ومع وجود Cross Connections تكون فرصة دخول الملوثات وخاصة الصرف الصحي إلى الشبكات قائم ومع تلوث الشبكات واستهلاك الكلور المتبقى الحر لاتحاده مع الملوثات التي دخلت الشبكة تكون فرصة وصول مسببات الأمراض إلى مستهلكي هذه المياه قائمة.

ومن المم كن أيضاً أن تنتقل هذه الأمراض نتيجة تلوث المياه بعد وصولها إلى المساكن ومن خلال الخزانات الغير محكمة الغلق وبوصول مخلفات الطيور أو الحيوانات البرية (القطط والكلاب) التي قد تكون حاملة لكثير من الأمراض ومع عدم الاهتمام بنظافة الخزانات بطريقة صحيحة وعلى أساسا علمي سليم تكون فرصة انتقال الأمراض الخطيرة ، قائمة . وبمعرفة هذا البعد من خلال هذا الباب الذي سيتطرق إعطاء فكرة مبسطة عن الأمراض ومسبباتها التي من الممكن أن

تنتقل عن طريق المياه ذات المصدر السطحى أو الجوفى ، سيكون هناك الاهتمام الكافى من المسئولين للتأكد من صلاحية المياه وتحقيق جانب الآمان الصحي فيها. وبالطبع لن نتطرق لطرق الكشف عن هذه الممرضات لأن ذلك خارج نطاق الدورة لكن بالطبع من المهم أن يكون القائم والمسئول عن التحاليل الميكر وبيولوجيه للمياه على علم يطرق الكشف عنها في حالات الطوارئ وإذا اتسع الوقت ربما نتناول الكشف عن بعض منها في المعمل.

الممرضات والطفطيات في المياه Pathogens and parasites in water

1. عناصر علم الأوبئة Elements of Epidemiology

1. 1 بعض التعاريف

علم الأوبئة هو دراسة انتشار الأمراض المعدية في المجتمع أو بين السكان . والأمراض المعدية هي التي يمكنها أن تنتشر من عائل إلى آخر. والمتخصصون في هذا العلم Epidemiologists لهم دور هم في التحكم في هذه الأمراض . تواجد منا العلم Incidence مرض هو عدد الأفراد بالمرض وعده الأفراد بالمرض عند وقت معين . ويكون المرض وباء عندما يكون وجودة عالى بينما يكون Endemic عندما يكون وجودة منخفض Pandemic يشير إلى انتشار المرض عبر القارات.

Infection هي مهاجمة العائل بميكروب معدي . ويشمل دخول (عن طريق الأمعاء والجهاز التنفسي ، الجلد) المرض داخل العائل . والعدوى الغير ظاهرة (عدوى مغطاة أو متخفية) هي عدوي تحت سريريه Subclinical بدون أعراض ظاهرة (بمعنى أن رد فعل العائل غير ظاهر). وعلى الرغم من أنه لا يسبب أعراض، لكن يمنح نفس الدرجة من المناعة التي تعطيها العدوى الظاهرة . فمثلاً معظم الفيروسات المعوية Enteric viruses تسبب أعراض غير ظاهرة . الفرد بالعدوى الغير ظاهرة يسمي حامل صحيح Healthy carrier ومع ذلك ، فإن الحامل للمرضى يمثل مصدر خطير لعدوى الآخرين في المجتمع.

Pathogenicity هي القدرة لعامل ممرض على أحداث مرض وضرر للعائل. الكائنات الدقيقة الممرضة ربما تصيب أو تعدي عوائل حساسة ، مؤديه أحياناً إلى مرض ظاهر ، والذي يؤدي إلى نشوء أعراض سريريه Clinical والتي يمكن ملاحظتها بسهولة . ونشوء مرض يعتمد على عوامل مختلفة ، تشمل الجرعة

الممرضة Infectious dose ، القدرة على أحداث المرض Infectious dose ، العائل ، العوامل البيئية وعلى ذلك فإن بعض الكائنات ، تكون ممرضة انتهازيا Opportunistic pathogens وتسبب مرض للأشخاص مضطربي المناعة فقط.

1. 2. سلسة العدوى Chain of infection

قدرة عامل بيولوجي على أحداث عدوى لشخص حساس تعتمد على عوامل مختلفة ، ستذكر فيما يلي:

1.2.1. نوعي العامل المعدي Types of infectious agent

العديد من الكائنات المعدية ربما تسبب مرض للإنسان . هذه العوامل الممرضة تشمل البكتريا ، الفطر ، البروتوزوا ، الميتازوا (الديدان) والفيروسات . تقييم العوامل الممرضة يعتمد على شراستها Virulence أو مقدرتها على أحداث الهرض في الإنسان والشراسة ترتبط بالجرعة الممرضة من العامل واللازمة لعدوى العائل وأحداث المرض. والقدرة على إحداث المرض تعتمد أيضاً على ثبات العامل المعدي في البيئة . أقل جرعة معدية . (MID) Minimal infective dose (MID) به للسالمونيلا تختلف بشدة حسب نوع الممرض أو الطفيل فمثلاً بالنس به للسالمونيلا Salmonella typhi أو الشير عشياكولاي الممرضة ، فإن آلاف إلى ملايين من الكائنات لازمة لأحداث العدوى ، بينما أقل جرعة معدية للشيج علا يمكن أن تكون منخفضة وتصل إلى 10 خلايا. قليل من حويصلات البروتوزوا أو بويضات الديدان ربما تكون كافية لإحداث عدوى . بالنسبة لبعض الفيروسات ، واحد أو بضع جسيمات كافية لإصابة الأشخاص. فمثلا، 17جسيم معدى من ايكوفيرس 12كافية لإحداث عدوى (جدول . 1).

Table 10. Minimal infective doses for some pathogens and parasites

Organism	Minimal infective dose
Salmonella spp.	$10^4 \text{ to } 10^7$
Shigella spp.	$10^1 \text{ to } 10^2$
Escherichia coli	$10^6 \text{ to } 10^8$
Vibrio cholerae	10^3
Giardia lamblia	10^1 to 102 cysts
Cryptosporidium	10 ¹ cysts
Entamoeba coli	10 ¹ cysts
Ascaris	1-10 eggs
Hepatitis A virus	1-10 PFU

Reservoir of infectious agent مستودع العامل المعدي . 2 . 2 . 1

المستودع قد يكون مصدر حى أو غير حي من العامل المعدى ويسمح للمرض بالبقاء حى والتكاثر. جسم الإنسان هو مخزن أو مستودع للعديد من الممرضات ، والتلامس بين شخص – شخص ضرورى لبقاء دورة المرض. الحيوانات المستأنسة والبرية أيضاً تخدم كمستودع للعديد من الأمراض (مثل السعار Rabies ، البروسيلووزي Brucellosis ، السل Tuberculosis ، الانثراكس Antbrax ، اللبتوسبيرا Leptospirosis التوكسوبلازما (Toxoplasmosis) ، تسمى اللبتوسبيرا كرمكن أن يتقول من الحيوان إلى الإنسان والمستودع الغير حي مثل الماء ، المخلفات السائلة ، الغذاء ، التربة يمكن أيضاً أن تكون حاملة للعوامل الممرضة.

Mode of transmission كيفية الانتقال . 3 . 2 . 1

الانتقال يشمل نقل عامل معدى من المستودع إلى العائل . وهو الحلقة الأكثر أهمية في سلسلة العدوى . الممرضات يمكن أن تنتقل من المستودع إلى الع ائل الحساس بطرق مختلفة:

Person – to – person الطريق الأكثر شيوعاً للانتقال للعوامل المعدية هو من شخص إلى شخص. أفضل مثال للانتقال بالتلامس المباشر هو الأمراض الجنسية ، مثل السيلان Gonorrhea والزهرى Syphilis ، الهيربس Herpes والايدز AIDS . مع الكحة والعطس Sneezing يخرج الرذاذ والذى يحتوى على الممرضات عبر بضع أقدام من العائل (عدوى بالرذاذ). الانتقال بهذه القطرات المعدية أحياناً تؤخذ كمثال للانتقال بالتلامس المباشر.

1. 2. 3. 1. انتقال متولدات المياه Waterborne transmission

انتقال متولدات المياه مثل الكولي را عرف عام 1854 بواسطة جون سنو ، وهو طبيب إنجليزي لاحظ علاقة ما بين وباء الكوليرا واستهلاك المياه من بئر في شارع برود بلندن . طريق متولدات المياه ليس بأهمية طريق التلامس بين شخص - شخص لانتقال الأمراض ذات المنشأ البرازي.

متقشيات أمراض مولدات المياه Outbreaks متقشي Outbreaks وشملت 111.228 خلال الفترة 1971 – 1985 بظهور 502 متقشي Outbreaks وشملت 1985 حالة مرضية وكانت راجعة إلى استعمال مياه غير معالجة أو معالجة غير مناسب. والأمراض المتولدة عن المياه السطحية والجوفية الشائعة هي أمراض معوية غير محددة المسبب ومنها الجيارديا . ومعدل المتقشيات Outbreaks (معبرا عنها بعدد المتقشيات / 1000نظام مياه) ومعدل المرض (معبراً عنه بعدد الحالات / مليون شخص – سنوات) تزاقص بترشيح وتطهير المياه (جدول 11).

Table 11. Effect of water treatment on outbreak and illness rates: 1971-85^a

Type of community water system	Waterborne outbreaks per 1.000 water	Waterborne illness per million person –	
System	systems	years	
Untreated surface water	32.5	370.9	
Disinfected-only surface water	40.5	66.3	
Filtered and disinfected surf-ace	5.0	4.7	
water	5.0	-T. /	

^aFromCraum(1986).

Foodborne transmission الغذاء . 2 . 3 . 2 . 1

الغذاء يعمل كوسيلة انتقال للعديد من الأمراض المعدية والمتسببة عن فيرس ، بكتريا ، بروتوزوا والديدان الطفيلية . تلوث الغذاء ينتج عن العمليات الغير صحية خلال الإنتاج ، أو التجهيز . العديد من الممرضات والطفيليات لوحظت في المواد الغذائية مثل المحاريات Shellfish ، الخضروات ، اللبن ، البيض واللحوم المفرومة . تواجدها ذا مغزى صحى ، خاصة ،بالنسبة للغذاء الذي يؤكل دون طهي الخضروات الملوثة بالمخلفات السائلة أيضاً مسئو لة عن تفشى الأمراض (حمى ، التيفويد ، السالمونيلا ، الإمبيا، الإسكارس ، فيرس هيباتيتس). مخاطر انتقال هذه الأمراض عالي في الدول التي تستخدم المخلفات السائلة المعالجة معالجة سيئة في ري المحاصيل.

المحاريات Shellfish (مثل الصدفيات Oysters ، المخلبيات Shellfish ، الرخويات (بلح البحر) Mussels) هي حوامل لأمراض الإنسان من بكتريا ، فيرس، بروتوزوا ، الديدان وهي ناقلات هامة للأمراض للأسباب الآتية:

1) تعيش في أوساط ملوثة بالمخلفات السائلة.

2) هى متغذيات بالترشيح فهى تركز الممرضات والطفيليات من خلال أخذ كميات كبيرة من المياه داخل أجسامها لاستخلاص الغذاء منها ودفعها مرة أخرى خارج أجسامها ، 3) غالباً تؤكل طازجة أو بدون طهي كافى ولقد قدر أن ثلث المحاربات تؤكل كل عام فى فرنسا بدون طهي كافي . وهناك ضرر صحي آخر مرتبط باستهلاك المحاريات ينتج من قدرة هذه الرخويات Mollusks على تركيز السموم Toxins ، المعادن الثقيلة ، الهيدر وكربونات ، المبيدات والمواد المشعة داخل أجسامها.

Airborne trans mission انتقال متولدات الهواء . 2 . 3 . 2 . 1

بعض الأمراض (مثل حمى Q ، بعض الأمراض الفطرية ، يمكن أن تنتقل بالهواء . هذا الطريق هام في نقل الرذاذ البيولوجي الناشئ من محطات معالجة المخلفات السائلة أو عن الري بالرش باستخدام المخلفات السائلة.

Vector – borne transmission الناقلات متولدات الناقلات . 3 . 3 . 2 . 1

انتقال الأمراض عن طريق ناقلات الأمراض من أكثر ها شيوعاً الأرثروبودس (القمل ، الحشرات) أو المفصليات (مثل ، القوارض ، الكلاب ، القطط). الممرضات ربما لا تتكاثر داخل الارثربودز وبعض الأمراض التي تنتقل بناقلات الأمراض مرض الملاريا (من البلازموديوم) الحمى الصفراء والانسيفاليتس Encephalitis (كلاهما من الأريوفيرس) السعار (مرض فير وسي ينتقل نتيجة عضة من كلب أو قط مصاب بالفيرس).

بعض الممرضات ممكن أن تنتقل بوساطة أشياء غير حية مثل (الملابس ، الأدوات ، لعب الأطفال).

Portal of entry نقط الدخول . 4 . 2 . 1

الكائنات الدقيقة الممرضة يمكن أن تجد طريقها إلى العائل أساساً عن طريق القناة الكائنات الدقيقة الممرضة يمكن أن تجد طريقها إلى القناة التنفسية (مثل الكلبسيلا الهضمية (الفيروسات المعوية والبكتريا)، القناة التنفسية (مثل الليجيونيلا Myxoviruses ، أو الجلد (مثل ايروموناس، كلوستريديم تيتانى Olostridium perfringens ، كلوستريديم برفرنجنس Clostridium perfringens ، كلوستريديم من أن الجلد هو حاجز ضد الممرضات فإن الجروح والشقوق ربما تسهل الاختراق إلى داخل العائل.

Host susceptibility حساسية العائل . 5 . 2 . 1

كلا من نظام المناعة و عوامل غير محددة تلعب دوراً في مقاومة العائل للعوامل المعدية. المناعة لعامل معدى ربما تكون طبيعية أو مكتسبة Acquired. المناعة الطبيعية تحدد وراثيا وتختلف حسب الجنس ، العمر (الصغار ، وكبار السن أكثر حساسية للعدوى) الحالة الهرمونية ، والصحة العقلية والطبيعية للعائل والأشخاص ذوى الصحة الغير جيدة وكبار السن أكثر حساسية للعدوى عن الأشخاص البالغين الأصحاء . المناعة المكتسبة تنشأ نتيجة تعرض العائل لعامل معدى . والمناعة المكتسبة يمكن أن تكون كامنة (مثل اكتساب الجنين الأجسام

المناعية للأم) أو فعالة (مثل الإنتاج الفعال للأجسام المناعية خلال التلامس مع عامل معدى).

العوامل الغير مخصصة

تشمل موانع فسيولوجية عند نقط الدخول (مثل درجة pH غير مناسبة ، أملاح الصفراء ، إنتاج إنزيمات هاضمة وكيماويات أخرى لها تأثير مضاد للميكروبات ، التنافس Competition مع الكائنات الطبيعية في القولون) وتحطيم المهاجمين بواسطة مبتلعات الأجسام الغريبة Phagocytosis.

2. الممرضات والطفيليات الموجودة في المخلفات السائلة الآدمية والممكن وجودها في المياه

العديد من الكائنات الدقيقة الممرضة والطفيليات تتواجد عادة في المخلفات السائلة وفي ناتج المعالجة من محطات معالجة المخلفات السائلة. ولما كان احتمال وصول تلك الهخلفات إلى المصادر المائية كما ذكر في الباب الأول قائم وذلك من خلال صرف المخلفات بطريقة أو بأخرى لذلك سوف نستعرض هذه العوامل المعدية والمرضية وكذلك الأمراض التي تسببها.

Bacterial pathogens البكتريا الممرضة . 1 . 2

المواد البرازية تحتوى حتى 10 12 من خلايا البكتريا / جرام . والمحتوى البكتيري للمواد البرازية تمثل حوالى 9% بالوزن الرطب. وبكتريا المخلفات السائلة صنفت ووجد أنها تنتمي إلى المجاميع التالية:

- , Aeromonas مثل الايرووناس (مثل الايرووناس). Escherichia, klebsiella, Enterobacter, Vibrio, Plesiomonas Shigella,
- Alcaligenes ، Pseudomonas البكتريا الموجبة لجرام والهوائية (مثل Acinetobacter ، Flavobacterium).
- (Bacillus Spore forming البكتريا الموجبة لجرام والتي تكون جراثيم Spore Sp
- ، Rhodococcus, Arthrobacter) بكتريا موجبة لجرام ولا تكون جراثيم. (Corynebacterium).

تصنيف أو تجميع لأهم البكتريا التي ربما تكون مرضية للإنسان والتي من الممكن أن تنتقل مباشرة أو غير مباشرة عن طريق المياه يظهر في جدول 12.

هذه الهمر ضات تسبب عدوى معوية مثل حمى التيفويد ، الكوليرا ، الشيج علا.

 Table 12.
 Major Waterborne Bacterial Diseases

Bacterial agent	Major disease	Major reservoir	Principal site affected
Salmonella typhi	Typhoid fever	Human feces	Gastrointestinal tract
Salmonella paratyphi	Paratyphoid fever	Human feces	Gastrointestinal tract
Shigella	Bacillary dysentery	Human feces	Lower intestine
Vibrio choleae	Cholera	Human feces	Gastrointestinal tract
Enterpathogenic E. coil	Gastroenteritis	Human feces	Gastrointestinal tract
Yersinia enterocolitica	Gastroenteritis	Human/animal feces	Gastrointestinal tract
Campylobacter jejuni	Gastroenteritis	Human/animal feces	Gastrointestinal tract
Legionella pneumophila	Acute respiratory illness (legionnaire's disease)	Thermally enriched waters	Lungs
Mycobacterium tuberculosis	Tuberculosis	Human respiratory exudates	Lungs
Leptospira	Leptospirosis (Weil's disease)	Animal feces and urine	Generalized
Opportunistic bacteria	Variable	Natural waters	Mainly gastroint-estinal tract

Salmonella السالمونيلا 1.1.2

السالمونيلا تتبع عائلة الأنتيروباكتيريس عود Enterobacteriaceae والشائعة والانتشار في البيئة وتشمل أكثر من Serotypes 2000 ، وهو الممرض الشائع أو السائد في المخلفات السائلة وهي تسبب حمى التيفويد والباراتيفويد والتهاب الأمعاء . السائلة في المخلفات السائلة تتراوح ما بين البضع وتصل إلى 8000كائن / 100 ملل. وقدر أن 0.1% من السكان يكون لديهم السالمونيلا في وقت ما. وفي الولايات المتحدة السالمونيلووزس (المرض الذي تسببه السالمونيلا) يرجع إلى تلوث الغذاء ولكن انتقاله بواسطة مياه الشرب لا زال قيد الاهتمام . Salmonella typhi هي المسبب لحمى التيفويد وهو مرض مميت والذي أصبح تحت التحكم كنتيجة لنشوء وتطوير خطوات معالجة المياه (الكلوره ، الترشيح) هذا الميكروب الممرض ينتج اندوتوكسين والذي يسبب الحمى ، تعنيه وإسهال وربما الموت إذا لم يتم العلاج

المناسب بالمضادات الحيوية . والأجناس المسئولة عن تلوث الغذاء هي S.typhimurium , S.paratryphi هذه الأجناس يمكن أن تنمو في الغذاء الملوث وتسبب التسمم الغذائي.

أجناس مثل S.enteritidis · S.typhimurium تسبب التهاب معوى ، والذى يكون مصحوبا بالإسهال والمغص في البطن.

2 . 1 . 2 الشيج يلا Shigella

الشيجي هي العامل المسبب للدوسنتاريا ألبا سيليه ، و هو مرض مصحوب بإسهال مصحوب بالدم ناتج عن التهاب و تقرح الغشاء الميكوزي المبطن للأمعاء . و هناك 4 أجناس مرضيه من الشيج يلا: S.boydii · S.dysenteriae · S.Flexneri والذي S.sonnei . هذه الممرضات تنتقل بالتلامس المباشر مع شخص مريض والذي يخرج حتى 10 و/ جرام من البراز والجرعة الممرضة للشيج يلا منخفضة نوعا ما ويمكن أن تكون 10 ميكروبات. و على الرغم من أن التلامس شخصي — شخص هو الطريق الأساسي في الانتقال لهذا الميكروب ، فإن الانتقال عن طريق الغذاء والماء قد سجل أيضاً. مثلاً، وجد أن المياه الجوفية مسئولة عن تفشى الشيج يلا في فلوريدا والذي شمل 1.200 شخص. والشيج يلا تقادم الظروف البيئية أقل من بكتريا القولون البرازية . هذا الميكروب المرضى من الصعب زراعته، و على ذلك لا توجد بيانات كمية عن تواجده وإز الته من الماء و المخلفات السائلة بالمعالجة في المحطات.

Vibrio cholerae فبريو كوليرا 3.1.2

هى بكتريا سالبة لجرام عصوية منحنية تنتقل بدرجة كبيرة عن طريق الماء, تفرز إنتيروتوكسين والذى يسبب إسهال معتدل، قيئ، وفقد سريع فى سوائل الجسم والذى قد يؤدى إلى الوفاة خلال وقت قصير. والمرض على الرغم من عدم انتشاره فى الولايات المتحدة وأوربا إلا أنه مرض مستوطن فى مناطق كثيرة خلال آسيا. هذا الميكروب يتواجد فى المخلفات السائلة بمستوى 10 إلى 410 كائن / 100 ملل من المخلفات السائلة خلال فترات انتشار الوباء. انفجارات وبائية من الكوليرا والتيفويد سجلت فى بيرو وشيلى وكانت مصاحبة لاستهلاك خضروات ملوثة بمخلفات الصرف الصحى. هذه البكتريا تتواجد طبيعيا فى البيئة و محملة على المواد الصلبة،

وتشم ل Zoo Plankton مثل Zoo Plankton و مثل Volvox وهذه البكتريا المصاحبة للعوالق Plankton ربما تتواجد على حالة لا يمكن زراعتها nonculturable ويمكن ملاحظتها تحت الميكروسكوب باستخدام طريقة fluorescent - mono - clonal - antibody.

4.1.2 إيشريريشيا كولاي E.coli

عديد من السلالات من ايشيريشيا كولاى ، كثير منها غير ضار ، تتواجد في الأمعاء الدقيقة للإنسان والحيوانات ذات الدم الدافئ . هناك درجات متعددة من سلالات ايشيريشيا كولاى، والتي تحمل عوامل الحدة Virulence factors وتسبب الإسهال . وهناك سلالا ت من ايشيريشيا كولاى تنتج سموم الإسهال . وهناك سلالا ت من ايشيريشيا كولاى تنتج سموم دولات enteropathogenic (EPEC) معرض معويا وnterohemorrhagic (ETEC) كما أن منها وETEC) والمهاجمة للأمعاء كما أن منها وEnteropathogenic E.coli .enteroinvasive والمهاجمة للأمعاء السهال مائي مصحوب بتعنيه، وتقلصات في البطن، قيئ . حوالي 2-8% من ايشيريشيا كولاى الموجودة في الماء تتبع قسم Enteropathogenic والتي تسبب السهال المسافر Enteropathogenic الغذاء والماء مهمان في نقل هذا الممرض. والجرعة الممرضة عالية نوعا ما وهي في حدود 10 الى 10 كائن. ولقد عزلت بعض السلالات الممرضة من مياه الشرب في فيلادلفيا واسكتلندا عام عدد كبير من السكان (243 حالة إسهال ، 4 وفيات) وكان المسبب في الحالة الأخيرة خلل في شبكة توزيع مياه الشرب .

Yersinia يرسينيا . 5 . 1 . 2

Y. enterocolitica مسئولة عن حالات حادة من التهاب المعدة والأمعاء مع مهاجمة الجزء الأخير من الأمعاء الدقيقة (اللفائفی). البجع هو الحيوان الذي يعمل كمستودع ولكن غير ها من الحيوانات البرية والمستأنسة يمكن أن تكون هي الأخرى مستودع لهذا الميكروب. ولقد لوحظ تواجد الميكروب في اللبن في الو لايات المتحدة. دور الماء غير مؤكد ولكن هناك حالات اشتبه أن الماء هو المسئول عن نقل الميكروب. هذا الميكروب المحب للبرودة يزدهر عند الحرارة المنخفضة (54)م)

ولقد عزل في الشهور الباردة ولكن كان ارتباطه بأدلة التلوث منخفض . هذا الميكروب عزل من المخلفات السائلة، مياه الأنهار، مياه الشرب.

Campylobacter (e.g.C. fetus and C.jejuni) کامبیلو باکتر . 6 . 1 . 2

هذا الميكروب المرضى معروف انه يصيب الإنسان والحيوانات المستأنسة. وهو يسبب التهاب معوى حاد (حمى ، تعنيه ، ألام في البط ن ، إسهال ، قيئ) وينتقل إلى الإنسان بالغذاء الملوث أساسا من الدواجن، المياه الملوثة. ولقد حدثت حالات كثيرة من التفشي Outbreaks من الالتهاب المعوى في الولايات المتحدة وغيرها. مياه الشرب سواء من المحطات أو من نهيرات الجبال اتهمت أنها مصدر العدوى. ولقد عزل الميكروب من مياه الشرب، المياه السطحية، المخلفات السائلة ولكن لم يعزل من الحمأة المهضومة Digested sludge. وعزله من المياه السطحية كان بدرجة كبيرة وقت سقوط المطر وكانت 55% من العينات موجبة بينما 39% من العينات موجبة بينما و39% من العينات موجبة بينما و18% من العينات موجبة المناه السحية البرازيه. المكتبري الكلي – بكتريا القولون الكلية والبرازيه وأيضا البكتريا السبحية البرازيه.

2. 1. 1. ليبتو سبيرا Leptospira

لبتوسبيرا هي سبيروشيت صغيره وتجد طريقها إلى العائل خلال حك الجلد أو من خلال الاغشيه المخاطية. والميكروب يصل إلى الدم وبالتالي يصيب الكلي والجهاز العصبي ويمكن أن ينتقل المرض من الحيوان (القوارض)، الحيوانات فبمستأنسه، والبرية، إلى الإنسان المخالط لها، بالاستحمام بمياه ملوثة بمخلفات الحيوان. هذا المرض الذي من الممكن أن ينتقل من الحيوان إلى الإنسان ربما يصل إلى العاملين في الصرف الصحى. وهذا الميكروب لم يحظى بالاهتمام الكبير لأنه لا يبقى حيا مدة طوبلة في المخلفات السائلة.

8.1.2 الليجيونيلا Legionella pneumophila

هذه البكتريا تسبب مرض لجيوناريس ، ووصف لأول مرة عام 1976 في خلال فلادلفيا ببنسلفانيا هذا المرض نوع من الالتهاب الرئوى الحاد ولكن نسبة الوفيات فيه مرتفعه وربما يشمل التهاب الأمعاء ومجرى البول والجهاز العصبي. وقد يسبب

ما يسمى حمى بونتياك Pontiac fever وهى صورة أخرى للإصابة بالليجيونيلا. وفيها يشعر المصاب بحمى، صداع، آلام فى العضلات، ولكن ربما يتم شفاؤه بللعلاج. وهذا الميكروب ينتقل أساسا عن طريق الرزاز. وهذا الرزاز قد يكون ناشئ عن برج تبريد، أو أبخرة التكثيف، أجهزة الترطيب ورأس الدش فى الحمام ومصدر الليبجيونيلا بالنسبة لأبراج التبريد هو المياه المسحوبة من المياه السطحية أو مياه الشرب المستخدمة لتعويض الفاقد فى الرطوبة خلال دورة التبريد.

عزلت Ligionella pneumophila serogroup I

من عينات مياه للشرب، ولكن لم يحدث تفشى للمرض نتيجة استهلاك المياه في الشرب ويمكن أن ينشأ المرض عن وجود الليجيونيلا في شبكة توزيع المياه في المستشفيات. ولقد لوحظ انتشار المرض عقب حدوث انخفاض في الضغط في شبكة التوزيع والذي ربما يتسبب في انفصال الليجيونيلا المصاحبة للفيلم الحيوى الموجود على جدار مواسير الشبكة من الداخل. ولذا انخفضت حالات الإصابة عقب إجراء عملية معالجة بالكلور عالى التركيز Hyperchlorination بحيث أن المتبقي الحرمن الكلور أكبر من 2 مجم/اللتر.

هذه البكتريا يبدوا أنها شائعة وعزلت من المخلفات السائلة، التربة، البيئة المائية الطبيعية وتشمل المياه الاستوائية. ووجودها في المخلفات السائلة ارتبط في فرصة واحدة على الأقل بزيادة مستويات الأجسام المضادة بين العاملين في الري باستخدام المخلفات السائلة.

وفى البيئة الطبيعية هذا الميكروب يمكن أن يزدهر بارتباطه ببكتريا أخرى، والطحالب الخضراء والزرقاء المخضرة، الاميبا وهذا يزيد من مقاومته للمطهرات ومنها الكلور، انخفاض pH والحرارة العالية. وفى موقع حدث فيه تفشى للمرض، وجد أن البروتوزوا قادرة على الإبقاء على نمو الليجيونيلا والتي عزلت من برج بتويد للمياه. لوحظ تكاثر هذه البائتيا في مزرعة مع البروتوزوا. بعض البكتريا لها القدرة على تدعيم نمو وتكاثر الليجيونيلا باستعمال بيئة يغيب عنها السرستئين. وعلى العكس، 16% - 32% من البكتريا الهتيروتورفيه التي تم عزلها من مياه شرب معالجة بالكلور وجد أنها قادرة على القضاء على أجناس الليجونيلا.

2.1.9 البكتريا الانتهازية المرضية

هذه المجموعة تشمل البكتريا الهتيروتروفيه سالبة لجرام وتتبع الأجناس التالية: Pseudomonas, Aeromonas, Klebsiella, Flavobacteriun, Enterobacter, Citrobacter, Serratia, Acinetobacter, Proteus, and Providencia.

قطاعات معينة من الجمهور يكونوا في خطر من الإصابة بالبكتريا الانتهازية مثل الأطفال حديثي الولادة وكبار السن والمرضى. هذه الميكروبات ربما تتواجد بأعداد كبيرة في مياه الشرب بالمستشفيات وتكون ملتصقة بمواسير شبكة التوزيع ، والبعض منها ينمو في مياه الشرب النهائية. ومن البكتريا الانتهازية الأخرى Non-tubercular mycobacteria والتي تسبب التهاب رئوى وأمراض أخرى. ولقد وجد أن مياه الشرب، خاصة مياه المستشفيات يمكنها أن تدعم نمو هذه البائتريا.

2.2. البكتريا المقاومة للمضادات الحيوية

المرضى الذين يلتقون علاج بالمضادات الحيوية يحملون أعداد كبيرة من البكتريا المقاومة للمضادات الحيوية في الأمعاء . وهذه البكتريا تخرج بأعداد كبيرة مع البراز وغالبا ما تصل إلى المخلفات السائلة . والجينات المسئو لة عن المقاومة للمضادات الحيوية غالبًا تتواجد على البلازميد (R.factors) وتحت الظروف المناسبة، يمكن أن تنتقل إلى بكتريا أخرى من خلال الارتباط، والذي يحتاج إلى تلامس خليتين. وإذا كانت البكتريا المستقبلة مرضية، فإنه يكون لها أهمية من ناحية الصحة العامة لأنها تكتسب خاصية المقاومة للمضادات الحيوية . والكائنات الدقيقة المقاومة للأدوية تسبب أمراض وتزيد نسبة الوفيات وتواجد الأمراض.

والمقاومة للأدوية يمكن أن تزيد من تكاليف العلاج نتيجة حقن المريض بالمضادات والذي أصيب بالمرض نتيجة التعرض لميكروب ممرض من البيئة . واستواتيجية الحد من الخطر الموضوعة وللحد من هذه البكتريا هو ترشيد والإقلال من استعمال المضادات الحيوية سواء في الإنسان أو الحيوان . والبكتريا المقاومة للمضادات لوحظت في البيئة المائية والساحلية، خاصة تلك الملوثة بالمخلفات من المستشفيات.

انتقال الجينات ما بين الهائنات الدقيقة معروف أنه يتواجد في البيئات الطبيعية وحتى في النظم المهندسة مثل محطات معالجة المخلفات السائلة . ولقد استخدم الباحثون حجرة البقاء Survival chamber لكي يتحققوا من انتقال البكتريا في المخلفات السائلة الآدمية . وكان متوسط تكرار الانتقال في المخلفات السائلة يختلف ما بين 4.9×10^{-2} , 7.5×10^{-2} . النسبة العالية لتكرارية الانتقال السائلة يختلف ما بين 4.9×10^{-2} , 1.5×10^{-2} . النسبة العالية لتكرارية الانتقال السائلة يختلف ما بين 1.5×10^{-2} وتحت طروف المعمل، تحرك أو انتقال البلاز ميد من بكتريا مهندسة وراثيا إلى سلالات بيئية لوحظ تحت طروف من الحرارة المنخفضة والتغذية المنخفضة في مياه الشرب.

تواجد الكشافات أو الأدلة والبكتريا الممرضة (مثل السالمونيلا) المقاومة للعديد من المضادات الحيوية في محطات معالجة المياه Multiple antibiotic resistant (MAR) والمخلفات السائلة كشف عن أهميته الكبيرة . ففي المخلفات السائلة الغير معالجة كانت نسبة بكتيريا القولون المقاومة للعديد من المضادات الحيوية تختلف ما بين 1 – 5% من بكتريا القولون الكلية. ولقد ظهر أن المعالجة بالكلور تقوم بانتخاب البكتريا المقاومة للمضادات الحيوية فتزيد نسبتها وذلك في حالة المخلفات السائلة. ويبدو أن البكتريا الحاملة لعامل المقاومة (R) تزيد عقب معالجة المياه والمخلفات السائلة. فمثلا في إحدى الدراسات كانت نسبة البكتريا مقارنة للعديد من المضادات بنسبة البكتريا مقارنة للعديد من المضادات بنسبة 8.78 % من الهكتريا الموجودة في شبكة التوزيع.

بالمثل في محطة معالجة مياه في أورجون، كانت نسبة البكتريا عديدة المقاومة للمضادات الحيوية من البكتريا في المياه الخام (مياه النهر) 15.8% وارتفعت إلى 57.1% في المياه المعالجة. ولقد وجد أن هناك علاقة ما بين المقاومة للمضادا ت الحيوية والمقاومة للمعادن الثقيلة (مثل النحاس والرصاص والزنك) وهذه الظاهرة لوحظت في كلا من مياه الشرب والمخلفات السائلة.

Viral pathogens الفيروسات المرضية . 3 . 2

المياه والمخلفات السائلة ربما تصبح ملوثة بحوالى 140 نوع من الفيروسات المعوية Enteric viruses هذه الفيروسات تدخل جسم الإنسان عن طريق الفم Orally، وتتكاثر في الأمعاء وتخرج بأعداد كبيرة مع براز الشخص المصاب.

ويظهر (جدول 13) قائمة بالفير وسات المعوية الممرضة للإنسان التي تتواجد في البيئة المائية والعديد من هذه الفير وسات المعوية تسبب إصابة غير ظاهرة والتي من الصعب تداركها. وهي مسئولة عن قاعدة عريضة من الأمراض والتي تختلف من حكة الجلد ، حمي، عدوى تنفسية، والتهاب الملتحمة في العين Conjunctivity ، التهاب معوى والشلل. وتواجد الفير وسات في المخلفات السائلة يعكس تواجدها في المجتمع.

Table 13. Some Human Enteric Viruses

Virus group	Serotypes	Some diseases caused
A. Enteroviruses		
Poliovirus	3	Paralysis, aseptic meningitis.
Coxackievirus		
A	23	Herpangia, aseptic meningitis, respiratory
		illness, paralysis, fever.
В	6	Pleurodynia, aseptic meningitis, pericar-
		ditis, myocarditis, congenital heart
		disease, anomalies. Nephritis, fever.
Echovirus	34	Respiratory infection, Aseptic meningitis,
		diarrhea. pericarditis. myocarditis, fever
		and rash.
Enreroviruses (68-71)	4	Meningitis, respiratory illness.
Hepatitis A virus (HAV)		Infectious hepatitis.
B. Reoviruses	3	Respiratory disease.
C. Rotaviruses	4	Gastroenteritis.
D. Adenoviruses	41	Respiratory disease, acute conjunctivitis,
		gastroenteritis
E. Norwalk agent	1	Gastroenteritis
(Calicivirus)		
F. Astroviruses	5	Gastroenteritis

Adapted from Bitton (1980), Jehi-Pietri (1992), and Schwartzbrod (1991).

الفيروسات المعوية تتواجد بأعداد منخفضة نوعا ما في المياه والمخلفات السائلة . وعلى ذلك فإن العينات البيئية يجب أن تركز منها حجوم كبيرة (10 – 1000لتر) وذلك حتى يمكن اكتشاف وجود الممرضات. ولفصل أو عزل الفيروسات قد يعتمد على ادمصاص الفيروسات على مرشح ذا ثقوب دقيقة Mircroporous filters من تراكيب مختلفة (نيتروسليولوز، ألياف زجاجية، سليولوز عليه شحنات، ألياف ابوكسى زجاجية، سليلولوز + ألياف زجاجية).

هذه الخطوة تكون متبوعة بعملية تخليص Elution للفيروسات المدمصة علي سطح الفلتر. ويمكن تركيز العينة أكثر باستخدام المرشحات الغشائية Membrane سطح الفلتر. ويمكن تركيز العينة أكثر باستخدام المرشحات الغشائية Organic flocculation. وهذا المركز يحلل أو يختبر Assayed بمزارع نسيج الحيوان Animal tissue cultures أو المسحات المناعية أو الوراثية Immunological or genetic probes. والجدول التالى (جدول 14) يظهر جمع أو تصنيف الطرق المتاحة لتركيز الفيروسات من المياه والمخلفات السائلة.

من وجهة النظر الوبائية تنتقل الفيروسات المعدية أساسا بالتلامس بين شخص وآخر. إلا أنه ربما تنتقل أيضا بالمياه أما مباشرة (الشرب، السباحة، الرذاذ) أو غير مباشرة من خلال الغذاء الملوث (مثلا المحاريات Shellfish، الخضروات). انتقال الفيروسات المعوية المتولدة عن المياه يتضح في شكل 16.

 $Table 14 \; . \; \; Methods \; Used \; for \; Concentrating \; Viruses \; from \; Water^a$

	Initial		
Method	volume	Applications	Remarks
	of water		
Filter adsorption – Elution	Large	All but the most	Only system shown useful for
Negatively charged filters		Turbid water	concentrating viruses from large
			volumes of tap-water, sewage,
			seawater, and other natural waters;
			cationic salt concentration and pH
			must be adjusted before processing.
Positively charged filters	Large	Tapwater,	No preconditioning of water
		Sewage seawater	necessary at neutral or acidic pH
			level.
Adsorption to metal salt	Small	Tapwater,	Have been useful as
precipitate. aluminum		Sewage	reconcentration methods.
hydroxide, ferric hydroxide			
Charged filter aid	Small	Tapwater,	40-L volumes tested, low cost;
		Sewage	used as a sandwich between
			prefilters.
Polyelectrolyte PE60	Large	Tapwater, lake	Because of its unstable nature and
		wa-ter.	lot to lot variation in efficient for
			concentrating viruses, method has
			not been used in recent years.

Table 15 (Continued)

Method	Initial volume of water	Applications	Remarks
Bentonite	Small	Tap water, sewage	
Iron oxide	Small	Tap water, sewage	
Talcum powder	Large	Tap water, sewage	Can be used to process up to100-L
			volumes as a sandwich between filter
			paper support
Gauze pad	Large		First method developed for detection
			of viruses in water, but not
			quantitative or very reproducible
Glass powder	Large	Tapwater, sewage	Columns containing glass powder
			have been made that are capable of
			processing 400-L volumes
Organic flocculation	Small	Reconcentration	Widely used method, method for
			reconcentrating viruses from primary
			filter eluates
Protamine sulfate	Small	Sewage	Very efficient method for
			concentrating reoviruses and
			adenoviruses from small volumes of
			sewage
Polymer two-phase	Small	Sewage	Processing is slow; method has been
			used to reconcentrate viruses from
			primary eluates
Hydroextraction	Small	Sewage	Often used as a method for
			reconcentrating viruses from primary
			eluates
Ultrafiltration			
Soluble filter	Small	Clean waters	Clogs rapidly even with low turbidity
Flat membranes	Small	Clean waters	Clogs rapidly even with low turbidity
Hollow fiber or	Large	Tap water, lake water	Up to 100 L may be processed, but
capillary			water must often be prefiltered
Reverse osmosis	Small	Clean water	Also concentrates cytotoxic
			compounds that adversely affect
			assay methods

Adapted from Gerba (1987)

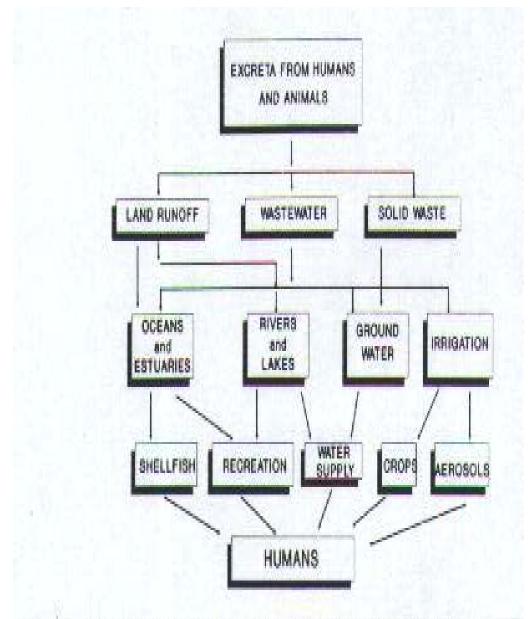


Fig. 46. Waterborne transmission of enteric viruses. From Gerba et al. (1975a).

ی

أقل جرعة ممرضة (MID) Minimal infective dose (MID) وعلى حساسية العائل، والتي تشتمل على عوامل خاصة بالعائل (مثل المناعة المتخصصة Specific والتي تشتمل على عوامل خاصة بالعائل (مثل المستوى الاجتماعي والاقتصادي immunity، الجنس، العمر، وعوامل بيئية (مثل المستوى الاجتماعي والاقتصادي socioeconomic levels وعلى الرغم من أن أقل جرعة ممرضة من الفير وسات نقطة خلاف أو جدول، فإنها بصفة عامة منخفضة نوعا ما مقارنة بالبكتريا الممرضة. وفي تجارب

علي أشخاص متطوعين ظهر منها أن أق ل جرعة ممرضة هي 17 وحدة تكوين البقع (PFU) Plaque-forming units (PFU) بالنسبة لفيروس الأيكو virus 12. والدراسات الوبائية ظهر منها أن الفيروسات مسئولة عن 4.7 - 4.7 من الوبائيات المائية (الوبائيات المتولدة عن المياه). وثبت أيضا أن المياه والغذاء مسئولين عن انتقال، الأمراض الفيروسية مثل التهاب الكب الوبائي والالتهاب المعوى.

Hepatitis فيروس 1.3.2

الهيباتيتس يتسبب أساسًا عن الفيروسات التالية:

1.1.3.2 الهيباتيتس المعدى Infectious hepatitis

يتسبب عن فيرس Hepatitis A وفترة الحضانة قصيرة (16-2 أسبوع) وينتقل نانومتر وهو يتبع عائلة Picornaviridae وفترة الحضانة قصيرة (16-2 أسبوع) وينتقل عن طريق البراز إلى الفم Fecal-oral وعلى الرغم من قدرته على النمو على مزارع الأنسجة الحيوانية أو الآدمية، لأنه من الصعب أن يكتشف فإنه دائما ليس له تأثير Cytopathic والوسائل الأخرى للكشف عن HAV تشمل المسحات الجينية Genetic والطرق المناعية probes

Serum hepatitis هيباتيتيس السيرم 2.1.3.2

ويسببه فيرس (DNA Hepatitis B(HBV) الفيرس 42 نانومتر، وله مدة حضانة طويلة بعض الشيء (4 - 12 أسبوع). هذا الفيروس ينتقل بالتلامس مع دم مصاب أو الاتصال الجنسي. نسبة الوفاة 4 - 12 وهي أعلى من النسبة في حالة 4 - 12 (أقل من 4 - 12).

Non-A, Non-B Virus Hepatitis . 3 . 1 . 3 . 2

ويتسبب عن فيروس: فلا في في س 50-60 نانومتر وله صفات مش ابهة للفيروس A.

Chronic delta hepatitis

2 . 1 . 3 . 2 فيرس دلتا هيباتيتس المزمن

ويتسبب عن فيرس RNA 28-35 نانومتر ولم يوصف بعد بالكامل. وهو يشبه من الناحية الوبائية والسريرية Clinical لفيرس B.

1.3.2 فيرس HAV A فيرس

يسبب تلف الكبد مع التهاب وموت موضعى Necrosis. فترة الحضانة يمكن أن تمتد إلى 6 أسابيع وأحد الخصائص الهامة بالنسبة للأعراض هو اليرقان Jaundice.

هيباتيتس A ينتقل عن طريق البراز – الفم أما من شخص إلى شخص بالتلامس المباشر أو بالميا ه أو الغذاء . هذا المرض ينتشر خلال العالم وانتشار الأجسام المضادة لفيروس HAV عالية بين المجموعة منخفضة المستوى الاقتصادي والاجتماعي وتزداد مع العمر بالنسبة للشخص المصاب. الانتقال بالتلامس المباشر وجد في الحضانات (خاصة بين الأطفال الذين يلبسون الحفاضات) ومؤسسات الأمراض العقلية، السجون ومعسكرات الجيش. الانتقال عن طريق المياه للهيباتيتس المعدى Infections hepatitis لوحظ خلال العالم.

ولقد قدر أن 4% من حالات الهيباتيتس الملاحظة ما بين عام 1975، 1979 في الولايات المتحدة كانت ناتجة عن المياه. وكانت ناتجة عن استهلاك مياه غير معالجة جيدًا، وعلى ذلك، فإن السباحة لم تقترن بالإصابة بالفيروس (HAV) ويبدو أن انتقال هذا الفيروس بالغذاء أهم من انتقاله بالماء. ولقد ظهر أن استهلاك المحاربات التي تنمو في مخلفات سائلة ملوثة مسئولة عن حالات عديدة من الهيباتيتس وتفشى الالتهاب المعوى.

2.3.2 فيرس الالتهاب المعوي Viral Gastroenteritis

هو أكثر الأمراض الناشئة من المياه تكرارا، ويتسبب عن بروتوزوا طفيلية وعن بكتريا وفيروسات مرضية (مثل روتافيرس Rotavirus، نورولك Norwalk).

Rotaviruses روتافيرس , 1,2,3,2

تنتمي إلى عائلة Reoviridae وهي جسيمات 70 نانومتر تحتوي على -Rouble Double في RNA ذو جديلتين) محاط بكبسولة مزدوجة الجدار -RNA في stranded RNA وهو المسئول الأكبر عن حالات الالتهاب المعوى في الأطفال shelled Capsid وهو المسئول الأكبر عن حالات الالتهاب المعوى في الأطفال في التحت سن سنتان). هذا المرض يساهم أو يشترك بدرجة كبيرة في وفاة الأطفال في الدول النامية ومسئول عن وفاة ملايين من الأطفال كل عام في أفريقيا، آسيا، أمريكا اللاتينية . وهو مسئول أيضا عن حالات التفشي Outbreak بين البالغين (كبار السن) وهو المسئول الأعظم عن إسهال المسافر Traveler diarrhea ويمكن ملاحظة الفيرس بكثافة 10 10 جسيم في براز المريض .

والفيرس ينتشر أساسا عن طريق البراز — الفم ولكن قد ينتقل أيضا عن طريق التنفس. ولقد وجدت حالات كثيرة من التفشى كان سببها المخلفات السائلة.

واكتشاف الفيرس في المخلفات السائلة والعينات البيئية يمكن أن يتم بالميكر وسكوب الإلكتروني، (Enzyme-linked immunosorbenassay (ELISA) أو مزارع الإلكتروني، (الكشف عليه في مزارع الخلايا يشمل الكشف عن البقع الأنسجة (كلى القرد). والكشف عليه في مزارع الخلايا يشمل الكشف عن البقع (Immunofluorescence ، Cytopathic effect (CPE)، Plaque assay جدول 15 يبين حالات التفشي لهذا الفيرس في بعض دول العالم.

Norwalk-type agent فيرس نوروك . 2 . 2 . 3 . 2

هذا الفيرس صغير 27 نانومتر اكتشف عام 1968 في نوروك بولاية أوهايو ومن الممكن أن يتسبب عن المياه أو الغذاء ويسبب إسهال وقيئ ويبدو أنه يهاجم الأمعاء

الدقيقة. وحيث أن هذا الفيروس لا يمكن أن يتكاثر في مزارع الأنسجة، فإن القليل معروف عن تركيبه ومحتواه من الأحماض النووية . ووسيلة اكتشافه في العينات السريرية Clinical samples هي طريقة Radio immunoassay وهي ليست حساسة بدرجة كافية للعينات البيئية . ونشوء المسحات الجينية Gene probes لاكتشاف هذا الفيرس تنتظر تقدير أحماضه النووية. وهذا الفيرس يلعب دورًا رئيسيًا في حالات التفشي للالتهاب المعوى Waterborne gastroenteritis

ويلعب هذا الفيرس أيضًا دورًا في إسهال المسافر Traveler's diarrhea وحوالي 40% من حالات الالتهاب المعوى الغير بكتيرية ترتبط بهذا الفيرس.

TABLE 15. Rotavirus Waterborne Outbreaks^a

Year	Location	Number ill	Remarks
1977	Sweden	3.172	Small town water supply contaminated with sewage effluent
1980	Brazil	~900	Contamination of private school's water
1980	Norfolk	-	Contamination of community water
	Island		system
1981	Russia	173	Source contaminated by children
1981	Colorado	1.500	Reservoir contaminated by children
1982	Israel	2.000	Floodwater contamination of wells
1981-	East	11.600	Contaminated water supply
1982	Germany		
1982-	China	13.311	Well water contaminated by sewage at
1983			a resort
1991	Arizona	900	

a. Adapted from Gerba et al. (1985) and Williams and Akin (1986).

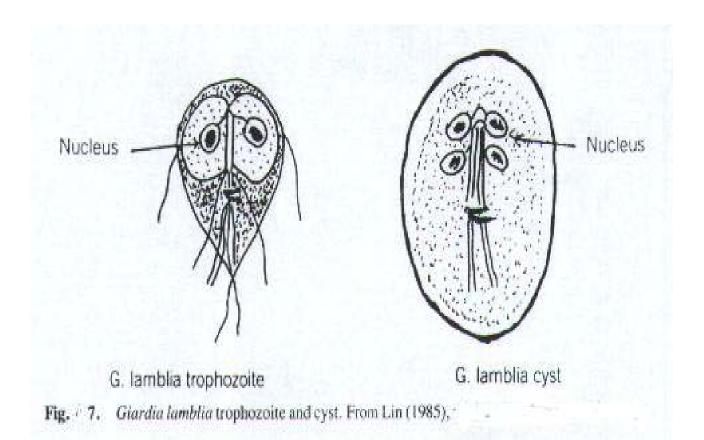
2. 4 البروتوزوا الطفيلية Protozoan Parasites

معظم البروتوزوا الطفيلية تنتج حويصلات لديها القدرة على أن تعيش وتبقى خارج العائل تحت الظروف البيئية المعاكسة. والتكيس Encystment يحكم بعوامل مثل نقص الغذاء، تراكم المواد السامة الناتجة عن التمثيل الغذائي، والاستجابة المناعية للعائل Host immuneresponse . تحت الظروف المناسبة، يتحرر التروفوزيت للعائل Trophozoite الجديد من الحوصلة Cyst وهذه العملية تسمى Excystment وأهم البرتوزوا الممرضة المتولدة عن المياه والتي تؤثر على الإنسان هي (جدول 16):

TABLE 16. Major Waterborne Diseases Caused by Protozoa^a

Disease					
Organism	(site affected)	Major reservoir			
Giardia lamblia	Giardiasis	Human and animal feces			
	(GI tract)				
Entamoeba	Amoebic Human feces				
histolytica	meningoencephalitis				
	(GI tract)				
Acanthamoeba	Amoebic	Soil and water			
castellani	meningoencephalitis				
	(central nervous system)				
Naeleria gruberi	Amoebic	Soil and water			
	meningoencephalitis				
	(central nervous system)				
Balantidium coli	Dysentery / intestinal ulcers	Human feces			
	(GI tract)				
Cryptosporidium	Profuse and watery diarrhea	Human and animal feces			
	:				
	weight loss: nausea: low				
	grade				
	fever (GI tract)				

Adapted from Sobsey and Olson (1983).

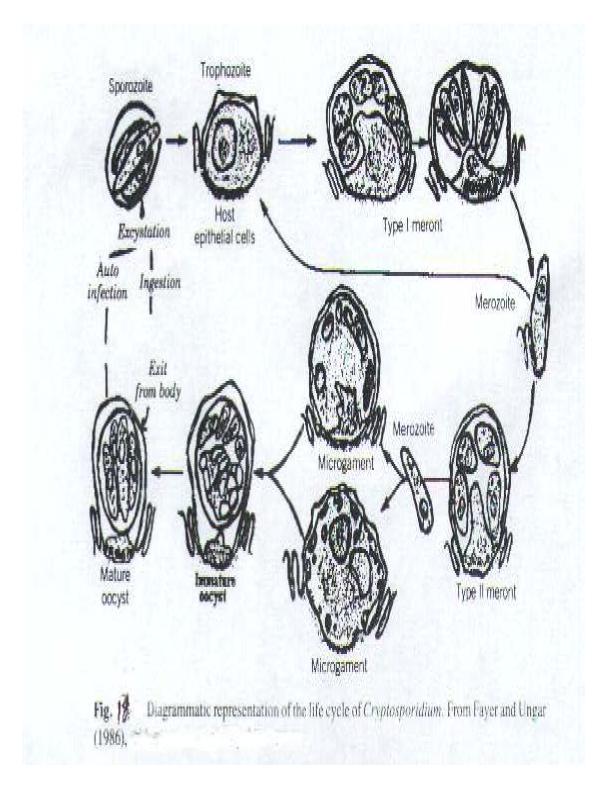

2. 4.2 الجيارديا لإمبليا 1. 4

هذه البروتوزوا الطفيلية ذات فلاجلا، التروفوزيت كمثرى الشكل، 9-12 ميكرون طولا والحويصلة البيضية 8-12 ميكرون طولا، وعرضها 7-10 ميكرون (شكل 17).

الشخص المصاب ربما يخرج $1-5 \times 10^6$ حويصلة / جرام من البراز المخلفات السائلة الآدمية هي مصدر رئيسي للجيارديا والحيوانات البرية والمستأنسة تعمل

كمستودع عام لحويصلات الحيارديا. هذا الطفيل مستوطن Endemic في المناطق الجبلية بالولايات المتحدة ويصيب كلا من الإنسان والحيوانات البرية والمستأنسة (الكلب – القط – القندس Beavers – فأر المسك Muskrats). العدوى تتسبب عن ابتلاع الحويصلات المتواجدة في الماء . وفي الإنسان، الإصابة ربما تستمر من شهور إلى سنوات . الجرعة الممرضة للجرذان المغولية أكثر من 100 حويصلة ولكن في الإنسان أقل من 10 حويصلة . ومرورها خلال المعدة يبدو أنه يسهل خروج التروفوزيت، والتي تهاجم الخلايا المبطنة للجزء العلوى من الأمعاء الدقيقة وتتكاثر بالانشطار Binary fission . وربما تغطى الغشاء المبطن لجدار الأمعاء وتتداخل مع امتصاص الدهون وغيرها من المواد الغذائية. وهي تتحوصل بمرورها خلال الأمعاء ووصولها إلى الأمعاء الغليظة.

شكل 17. جيارديا لامبليا (تروفوزويت - سيست)


الجيار ديا لها مدة حضانة 1 Incubation period البيع. تسبب إسهال، آلام في البطن، تعنية، تعب، نقص في الوزن، ولكن الجيار ديا نادرًا ما تكون مميتة وعلى الرغم من أن طريقة الا نتقال المعتادة هي من شخص — شخص، فإن الجيار ديا ذكرت على أنها أهم العوامل الممرضة في الأمراض المتفشية المتولدة عن المياه. وخلال الفترة من 1971-1985 ذكر أنه في الولايات المتحدة كانت أكثر من 50% من حالات التقشي كان مسببها استعمال مياه سطحية.

وفى عام 1974 فى روما، نيويورك أصيب 5000 شخص وهم حوالى 10% من السكان بالجيار ديا نتيجة وجودها فى المياه.

2.4.2 الكربتوسبوريديم Cryptosporidium

طفيل الكربتوسبوريديم أول وصف له كان مع نهاية القرن الثامن عشر . عرف أنه يصيب أجناس حيوانية (الحملان، العجول، الدجاج، الرومي، الفأر، الخنزير، الكلاب، القطط) ولكن إصابة الإنسان ذكرت فقط عام 1970. Cryptosporidium parvum هو الجنس الرئيسي المسئول عن إصابة الإنسان والحيوان.

الطور المعدى لهذه البروتوزوا هو الأوأوسست (5-7 ميكرون)، والذى يقاوم الظروف البيئية. وبعد الابتلاع بالعائل المناسب، فإن الأوأوسست يجتاز التحوصل وتنطق الأسبور وزيت الممرضة والتى تطفل على الطبق ة المبطنة Epithelial لأمعاء العائل. دورة الحياة للكربتوسبوريديم تظهر في الشكل 18.

شكل 18. دورة حياة الكربتوسبوريديم

ولقد ذكر البعض أن أقل جرعة ممرضة من الكربتوسبوريديم للإنسان ربما تكون أقل من أو تساوي 1000 أو أوسست ، ولكن في الحيوانات الأخرى فان الجرعة تكون 1- 10 أو أوسست . الطفيل يسبب إسهال مائي ويكون مصحوبا بفقد في الوزن وفي بعض الأحيان تعنينه ، قيئ ودرجة منخفضة من الحمى – مدة الأعراض تعتقد على الحالة المناعية للمريض . الإسهال عادة يستمر 1-10 أيام عند المريض ذا المناعة الكافية بالغرض Immunocompetent ولكن قد تستمر لفترة أطول (المناعة الكافية بالغرض المناعة الكنيم المناعة الكنين تعاطون العلاج الكيماوي) . اختبار ألاف العينات من البراز في الولايات المتحدة ، كرنها ، أوروبا اظهر ان انتشار الهربتوسبوريديم يتراوح بين 1-10

الانتقال بطريق شخص الى شخص ، المياه ، الغذاء ، الانتقال من الحيوان إلى تحصم الإنسان zoonotic، كلها تشترك في انتقال الكربقوسبوريديم. الانتقال من شخص إلى شخص هو الطريق الشائع، خاصة في مراكز الرعاية اليومية paycare ودوستان المن الحيوان إلى الإنسان في حالة الكربتوسيوريديم أكبر من حالة الجيارديا. ولقد حدثت حالة تفشى في ولاية جورجيا أصيب فيها حوالي 13.000 وكانت متسببة عن استهلاك مياه شرب معالجة في محطة مياه بها مرشح رملي سريع. واتضح إهمال عملية الغسيل العكسي للمرشح. ولقد عزلت الكريتوسبوريديم من 95% من عينات براز المرضى ومن عينات مياه معالجة في حين لم تتواجد أية أدلة (شواهد) للتلوث في المياه . واتضح عدم إزالة الممرض أو حتى تثبيطه أدلة (شواهد) للتلوث في المياه . واتضح عدم الرملي أو المعالجة بالكلور على الرغم من أنه اتضح أن المعالجة بالجير لتيسير المياه يساعد في إيقاف نشاط الكربتوسبوريديم .

استخدمت طريقة التركيز لاستعادة Recovery هذا الطفيل ولكنها لا زالت في مرحلة التطوير. والطريقة المستخدمة تشمل احتجاز الأوأوسست على مرشح بولى كربونات أو شمعة من البولى بروبلين. وبعد ذلك تزال من على الفلتر باستخدام محلول منظف، ولوحظت الأوأوسست في المحلول المركز باستعمال Polyclonal أو حديثا Monoclonal antibodies مع Monoclonal antibodies و الكشف بواسطة Polymer chain reaction والكشف بواسطة Recovery بطريقة التركيز هذه منخفضة وبالرغم من ذلك، فإن كفاءة الاستعادة الاستعادة الاستعادة التركيز هذه منخفضة

(أقل من 10% في حالة مياه النهر، 59% لمياه الصنبور). وقدرت حيوية الأوأوسست Invito excystation ،عدوي الفأر، أو الص بغ بوساطة صبغة فلوروجينيك مثل Propidium ، 4, 6- diamino-2-phenylindole DAPI ، أو iodide

هذه الطريقة تسمح بالكشف عن هذا الطفيل في المخلفات السائلة والمياه السطحية ومياه الشرب. الأوأوسست في المخلفات السائلة الغير معالجة تتواجد بأعداد ما بين 850 / 13700 اللتر وفي ناتج المعالجة يختلف ما بين 4 إلى 3960 سيست/ اللتر. وبعمل مسح لمصادر مياه الشرب في الولايات المتحدة وجد أن 55% من العينات موجبة للأوأوسست وكان المتوسط 37/100 لتر وفي دارسة أخرى علي المياه السطحية وجد أن الأوأوسست تتواجد في 87% من العينات. كما أنها تواجدت في عينة واحدة من مياه الشرب.

Entamoeba histolytica انتاميبا هستولويتكا 3.4.2

انتاميبا هستوليتكا E. histolytica تكون حويصلات معدية 10-15 ميكرون في القطر والتي تخرج لمدة طويلة نسبيًا من حامل المرض، وهي عالية المقاومة في المياه والمخلفات السائلة وبالتالي من الممكن أن تبتلع بواسطة عا ئل جديد . مستوى الحويصلات في المخلفات السائلة الخام يمكن أن يكون عالي ويصل إلى 5000 حويصلة/اللتر.

هذه البرتوزوا المتطفلة تنتقل إلى الإنسان أساسا من المياه والغذاء الملوث وهي تسبب أميباياسس Amebiasis، أو دوسنتاريا أميهية. الأعراض تختلف ما بين إسهال وقد يحل محله إمساك إلى إسهال حاد. وقد تسبب تقرح Ulceration في الغشاء المخاطى للأمعاء، وينتج عنه إسهال ومغص Cramps وهي تسبب حالات وفاه في الدول النامية وتأتي الإصابة غالبا من استهلاك مياه شرب ملوثة في المناطق الاستوائية و شبه الاستوائية.

Naegleria نيجليريا 4.4.2

نيجليريا هي بروتوزوا تعيش حرة والتي تم عزلها من المخلفات السائلة ، المياه السطحية ، حمامات السباحة ، التربة ، مصادر مياه الشرب نيجليريا فوليري Naegleria fowleri Maegleria fowleri المماغ الأميبي Naegleria وهو غالبا meningoencephalitis شوهد لأول مرة في استراليا عام 1965. وهو غالبا مميت ، بعد 4-5 أيام من دخول الطفيل في الجسم. الطفيل يدخل الجسم خلال الغشاء المخاطي للتجويف الأنفي ويهاجر إلى الجهاز العصبي المركزي . والمرض يكون مصاحبا للسباحة والغطس في البحيرات الدافئة في الولايات الجنوبية من الولايات المتحدة (فلوريدا ، جنوب كارولينا ، جورجيا ، تكساس وفرجينيا) واتجاه آخر إن النيجليريا ربما تحمل الليجيونيلا وغيرها من الكائنات الدقيقة الممرضة . وهناك طرق سريع للتصنيف (مثل سيتو مترى ، API ZYN system والذي يعتمد على الكشف عن الإنزيمات) ويمكن أن تفرق ما بين API ZYN system وأجناس النيجليريا الأخرى .

5.2 الديدان المتطفلة Helminthes Parasites

على الرغم من أن الديدان الطفيلية لم تدرس عامة بواسطة الميكروبيولوجين ، فان وجودها في المخلفات السائلة يكون مع البكتريا ، الفيرس المرضى . والبروتوزوا الطفيلية لم تحظي بلاهتمام من ناحية صحة الإنسان . البويضة هي الطور المعدي للديدان المتطفلة وهي تخرج مع البراز وتنتشر خلال المخلفات السائلة ، التربة أو الغذاء . البويضة مقاومة جداً للضغوط البيئية وكذلك للمعالجة بالكلور في محطات معالجة المخلفات السائلة وأهم الطفيليات تظهر في الجدول 17.

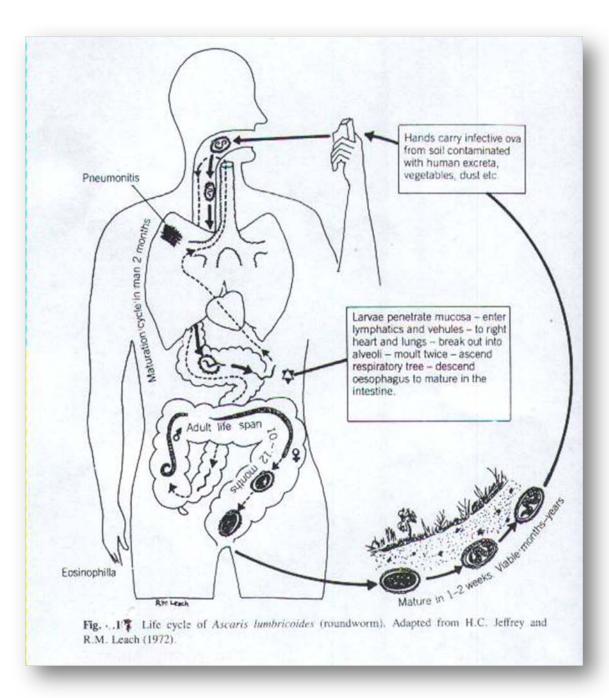
Taenia spp. التينيا 1.5.2

الدورة الشريطية (ديدان اللحم) Taenia slium ، Taenia saginata (ديدان اللحم) الخنزير) نادرة الآن في الولايات المتحدة. هذه الطفيليات تنشأ في عامل وسيط لكي تصل الي طور الديدان Larval stage وتسمي Cysticercuss وفي النهاية ربما تصل الي

Table 17. Major Parasitic Helminths

Organism	Disease (main site affected)		
Nematodes (roundworms)			
Ascaris lumbricoides	Ascariasis – intestinal obstruction in children (small intestine)		
Trichuris trichiura	Whipworm – (trichuriasis) (interstine)		
Hookworms			
Necator americanus	Hookworn disease (Gl tract)		
Ancylostoma duodenale	Hookworn disease (Gl tract)		
Cestodes (tapeworms)			
Taonia agginata	Beef tapeworm – abdominal discomfort, hunger pains,		
Taenia saginata	chronic indigestion (Gl tract)		
Taenia solium	Γaenia solium Pork tapeworm (Gl tract)		
Termatodes (flukes)			
Schistosoma mansoni	Schistomiasis (complication in liver [cirrhosis], bladder		
Schistosoma mansom	and large intestine)		

الإنسان ، والذى يعمل كعائل نهائى . الماشية تبتلع البويضات المعدية وهى ترعى وتعمل كعائل وسيط فى حالة Taenia saginata ويهاجم طور Cysticerci العضلات ، العين ، المخ . هذه الطفيليات تسبب اضطرابات معوية ، مغص وآلام فى البطن ، فقد الوزن.


Ascaris lumbricoides الإسكارس 2.5.2

دورة الحياة لهذه الديدان (شكل 18) تشمل الطور الذي خلاله تهاجر الديدان خلال الرئتين وتسبب التهاب رئوى . هذا المرض يمكن أن يأتى نتيجة ابتلاع بضع بويضات معدية . والأشخاص المصابين يخرجون كميات كبيرة من البويضات ، وكل أنثى من ديدان الإسكارس يمكن أن تنتج حوالى 200.000 بويضة في اليوم . البويضات تتواجد بكثافة عالية في محطات معالجة المخلفات السائلة . وعلى الرغم

من أنها تزال بنسبة عالية بالمعالجة بالحمأة المنشطة Activated sludge فهى مقاومة نوعا ما لفعل الكلور.

Toxocara canis توکسکارا کانیس 3.5.2

هذا الطفيل يصيب الأطفال أساسا مع عادة تناول الطعام الغير نظيف وبالإضافة إلى انه يسبب اضطرابات معوية فان الدودة البالغة لهذا الطفيل يمكن أن تهاجر إلى العين وتسبب تلف حاد في عدسة العين Ocular ، وتؤدي إلى فقد البصر. شكل 19. دورة حياة الإسكارس

الباب الخامس

التحكم في ميكروبات مياه الشرب من خلال المعالجة Controlling the drinking Water by treatment

1. مقدمة

الخلو من المواد المعلقة ، الرائحة ، الطعم الغير مقبول أهتم بها من قديم الزمن على أنها خواص هامة يجب أن عيقتع بها مصدر مياه الشرب الآمن و علي الرغم من أن الاهتمام اليوم بنوعه المياه اصبح اكثر تعقيداً فان الخفض في الخواص الغير مقبولة عيموق تكرارا من خلال خفض المواد الدقيقة في مصدر المياه والمواد المتواجدة في المياه ، تختلف في الشكل ،الحجم ، التركيب الكيميائي. وهي تدخل إلى البيئة المائية علي صورة جزيئات دقيقة ، وتشمل المواد البرازية، في كل منها يحمل بكتريا ، فيرس ، طحالب أو لا فقاريات دقيقة في تجمعات أو كائنات دقيقة منفردة .

الانهار على وجه الخصوص ميالة إلى تذبذبات واسعة فى المواد المعلقة كنتيجة للفيضان والذى يحمل تلوث شديد ويكون مصوبا بسرعة انسياب عالية والتي تؤدى إلى زيادة المواد المعلقة من رواسب القاع وعلى ذلك فان المآخذ يجب تنظيفها دوريا لإزالة الترسبات الشديدة والمواد العالقة التى تعترض مرور المياه الخام إلى محطة المعالجة.

مستودع المياه الخام والمياه المخزنة نوعيتها عادة أقل حساسية لهذه الأحداث ولكنها أكثر تعرضا لمخاطر ازدهار الطحالب Algal blooms وانقلاب المياه إذا كان هناك فترات من التطبق Stratification في الربيع والخريف وكنتيجة ، فإن نوعية المياه السطحية الخام تختلف بشدة ، وتحدث أيضا تغيرات في صورة الكائنات الدقيقة والعوامل الممرضة الموجود مع الوقت عدم الثبات هذا في نوعية المياه ، يمل ي علينا مقدرا من المعالجة لتعديل النوعية الميكروبية لكل المياه

دائمة تقربيا

السطحية . وإذا كانت المياه الجوفية محمية من التلوث السطحي بحواجز من التربة عيد المياه تكون متماثلة ومنتظمة وتكون المشاكل الميكر وبية اقل ما يمكن .

2. تخزين المياه الخام Raw water storage

علي الرغم من أن تخزين المياه الخام لا يجري في محطات المياه بجمهورية مصر العربية ولكن ذكر أنة يحسن نوعية المياه الخام لذلك سنتحدث عن هذا البند. ان تخزين المياه في حالة ساكنة سيسمح بعملية الترسيب للعديد من الجسيمات المتولدة في المياه طالما أنها منحت الوقت الكافي ولكن في العديد من نوعيات المياه ؟فان الترسيب الطبيعي بالكامل لا يمكن تحقيقه لان مواد غروية عديدة تبقى معلقة بصفة

Diameter of particle	Type of material	Time required to		
(mm)		settle ^a		
10	Gravel	0.3s		
1	Coarse sand	3s		
0.1	Fine sand	38s		
0.01	Silt	33 min		
0.001	Bacteria	55h		
0.0001	Colloidal particles	230 d		
0.00001	Colloidal particles	6.3 years		

Table 18. Settling Rate for Waterborne Particles

a. Calculations based on time required for particles with a specific gravity of 2.65 to settle 0.3 m.

عمليا، المياه تترك لبضع أيام وذلك لمحدودية المكان للتخزين وحتي مع الوقت المحدود في التخزين، فان هناك إزالة معنوية للجسيمات الثقيلة، ويصاحبها بعض الانخفاض في الكثافة البكتيرية. الانخفاض في بكتيريا القولون بتخزين المياه الخام (اقل من يوم إلى يومين) يشتمل علي ترسيب وأيضا عمليات تطهير ذاتية Self (اقل من يوم إلى يومين) يشتمل علي ترسيب وأيضا عمليات تطهير ذاتية purification. بعض من بكتيريا القولون يموت بالتخزين ويصل إلى 13-97% في محطات المعالجة التي تحصل على المياه من نهر او هايو بالولايات المتحدة الأمريكية. السالمونيلا Salmonella typhi الموجودة في المياه المخزنة والتي

مصدر ها طيور النورس الجاثمة حدث انخفاض في أعدادها بمقدار 90% بعد أسبو عين من التخزين وعلي ذلك فانه خلال الفترة من 1-2 يوم التي عادة ما تخزن عليها المياه لعمليات المعالجة ، فان معظم الفيروسات المصاحبة للفضلات البرازية ستبقي معلقه مع الجسيمات الدقيقة والتي لها تأثير كبير على نوعية مياه الشرب كيماويا وميكروبيا (جدول 18).

Aeration التهوية. 3

تستعمل التهوية غالبا كمعالجة للمياه الجوفية والتي تحتاج إلى تحسين في الخواص الطبيعية والكيماوية قبلي الاستعمال كمصدر لمياه الشرب. في الماضي كانت هذه الاهتمامات خاصة بإزالة الحديد، الطعم والرائحة الناتجة عن كبريتيد الايدروجين، أو بإزالة المواد التي تتداخل مع عملية تيسير المياه أو التطهير. وحديثا امتد الاهتمام ليشمل الحاجة إلي خفض الملوثات العضوية المتطايرة والتي تعتبر النذير بإنتاج التراى هالوميثان عند استعمال المطهر لتحقيق الأمان من التلوث الميكروبي.

المعالجة بالتهوية لإزالة المواد العضوية المتطايرة يمكن أن تتم ببساطة عن طريق رش المياه في حوض موجود في محطة المعالجة . ولسوء الحظ عند استعمال هذه الطريقة ، يكون هناك مخاطر من التلوث من الهواء بحبيبات الأتربة ومن مخلفات الطيور التي تتواجد بجوار المياه . فمثلا ، بكتريا القولون وجدت في ناتج عملية التهوية برش المياه المياه المعاه مرشحه . ويمكن الإقلال من عملية التلوث عملية التهوية والتي هي أساسا مياه مرشحه . ويمكن الإقلال من عملية التلوث باستخدام برج للتهوية ويكون زهوي جيدا لتبادل الغازات في السطح البيئي للماء بالمهواء . وهذا يشمل الحد من وجود الضوء وذلك للحد من نمو الطحالب . برج التهوية ربما يستخدم سقوط أو أنهار المياه ، فيلم متجدد من المياه علي شرائح خشبية التصميم ، تنساب المياه إلى اسفل علي سطوح متعددة في برج مملوء بمواد من السير اميك أو البلاستيك . استخدام ناشر الهواء متعددة في برج مملوء بمواد من السير اميك أو البلاستيك . استخدام ناشر الهواء Spiraling water turbulence عن طريق حقن هواء مضغوط الي المياه واحد من العمياه مقال من جانب واحد من العمود . هذا الرج أو الإهتزاز عند نسبة معينة من الهواء الي

الماء تجرى لمحاولة الحصول على أقصى إزالة للمواد العضوية المتطايرة من الماء.

بعض من التصهيمات ، خاصة تلك التى تستعمل شرائح الخشب كسطوح ملامسه ربما توجد بيئة لتكاثر الكائنات الدقيقة وتكون طبقة لزجة Slime والمشكلة تتعقد بالحقيقة أن السلالات البيئية من الكلبسيلا Klebsiella وجد أنها شائعة فى مخزن الخشب الأحمر والذى يستعمل كشرائح في برج التهوية . وهناك خشب أحمر جديد يحتوى على سيكليتول Cyclitols ، والتى هى مصدر ممتاز للمغذيات البكتيرية . وبالإضافة إلى ذلك فان الثقوب الموجودة في الخشب الأحمر تكون مواقع ممتازة للاستعمار بأنواع متعددة من البكتريا الهتيروتروفيه ومنها الكلبسيلا . المواد المالئة سواء على صورة سيراميك أو بلاستيك (تستمل أيضا في أبراج التهوية) ستكون هي الأخرى مواقع لتصيد المغذيات (المواد العضوية والأملاح) وتوفر مواقع للاستعمار الميكروبي . ولان حرارة المياه الجوفية متماثلة نوعا ما على مدار السنة ، فإن النمو الميكروبي على السطوح المتعد دة للمواد المالئة لن يكون هناك زيادة موسمية عندما تكون العملية مستمرة الاستعمال. وعلى ذلك فان التدهور في النوعية الميكروبية ربما تلاحظ فى الخارج من برج التهوية (جدول 19) والذى يستعمل على أساس متقطع.

وخلال فترة عدم التشغيل ، وزيادة حرارة الجو ربما تشجع استعادة النمو للكائنات المستعمرة في المياه المحتجزة . وعلى ذلك فان دخول النظام للعمل مرة أخرى ، بانسياب المياه خلال العمود سوف يؤدى إلي أن الميكروبات التي نمت داخله تخرج مع المياه الخارجة . ونظم التهوية التي لديها مشاكل مثل تغيير ضغط المياه أو الهواء ربما يخلق أيضا نبضات في المياه والتي تؤدى الى خروج نموات ميكروبية علي فترات غير منتظمة . كل هذه المواقف تسبب اختلاف معنوي في النوعية الميكر وبية للمياه الناتجة مقارنة بالمياه الجوفية المستخدمة كمصدر.

Table 19. Seasonal Microbial Quality of Groundwater Treated by Aeration

Date of sample	Water temperature (°C)		Heterotrophic bacter- ia ^a (CFU) per ml		Total coliform (CFU per 100 ml)	
	Raw	Aerated	Raw	Aerated	Raw	Aerated
October,1981	11.5	11.6	40	84	<1	<1
November	11.5	11.5	390	880	<1	<1
December 2,	11.5	11.6	128	2.200	<1	<1
December 8,	11.9	12.0	27	200	<1	<1
December 15,	11.3	11.3	42	1.150	1 ^b	1 ^b
January 5, 82	9.1	8.8	74	700	<1	<1
January 20	9.9	10.8	115	14.800	<1	<1
May	9.2	9.7	128	168	<1	1°
July	11.3	12.3	119	1.800	<1	<10 ^d
December	11.4	11.4	10	178	<1	<1
January11, 83	11.3	11.3	9	34	<1	<1
January 25	11.3	11.4	53	120	-	-
February 9	11.3	11.3	186	190	-	-
February 23	11.2	11.2	1.300	316	<1	<1
February 25	11.4	11.4	53	120	1 ^e	<1
March 29	6.0	6.0	57	108	<1	<1

a R.2A medium (27 C for 7 days)

b Enterobacter agglomerans in influent and aerated effluent.

d.Klebsiella pneumonia, K. oxytoca, C.freundii, and E.coli.

c. Citribacter freundii.

4. التحكم في العسر Hardness control

العسر في مصدر المياه يتسبب عن معادن ذائبة مبدئيا مركبات الكالسيوم والماغرنهيوم (كربونات ،كلوريدات وكبريتات) هذه الحالة تتواجد في المياه الجوفية، علي أنها قد تكون مشكلة كبيرة في مصادر المياه السطحية. وبدون معالجة فعالة، ربما ينشا عن العسر تكون قشور Scale في مواسير المياه وسخانات المياه ويشكو المستهلك من الاستهلاك الزائد للصابون وقصر عمر سخان المياه. وعادة تشتمل المعالجة علي عملية معالجة بجير الصودا، علي الرغم من استعمال المبادلات الكاتبونية.

عملية جير الصودا تحتاج الي ضبط pH بحيث يكون اعلي من 10 لتحقيق أقصي خفض في العسر . وتوجد فائدة عرضية من ضبط pH وهي الخفض الملحوظ في الكاعئات الدقيقة إما عن طريق الإزالة من خلال التصيد بالكربونات الغير ذائبة الناتجة أو التثبيط inactivation عند هذه الدرجة من pH (10) . ولقد لوحظ إزالة 99% من الفيروسات عند استعمال الجير ويكون pH حوالي 11.0 وفي عملية استصلاح المياه Reclamation فان الترويق بالجير عند 11.3 وفي الي إزالة 5 لوغاريتم من بكتريا القولون البرازية و 98 – 9,99% انخفاض في الفيروسات . وبصرف النظر عن تلك الفوائد الثانوية فان عملية الجير الصودا واستعمال القيم المعالجة من pH لا يمكن اعتبارها بديلا عن عملية التطهير في معالجة المياه ، لان الان خفاض الكبير في البكتريا (6 لوغاريتم) والفيرس (4 لوغاريتم) يجب أن يتحقق كناحية أمان للصحة العامة.

5 . المعالجة التقليدية Conventional treatment

المعالجة التقليدية تحدد هنا أنها تتركب من تركيبة من العمليات (التجلط الترسيب الترشيح والتطهير) للإمداد بمياه أمنه. كل من هذه العمليات يساهم في خفض الكائنات المختلفة التي لها أهمية من ناحية الصحة العامة والتي من الممكن أن تتواجد في المياه الخام، وبالتالي يحدث تعديل في توزيع وتواجد الكائنات الميكروبية في مياه الشرب.

Coagulation التجلط .1.5

تجلط مصدر المياه هي عملية معالجة مبدئية تستعمل للإسراع من تكتل Agglomeration الجسيمات الدقيقة المكونة العكارة. المادة الشائعة كمجلط في المياه تشمل كبريتات الألمونيوم (الشبة Alum) الشبة ألومينات الصوديوم، أملاح الحديد بك (كبريتات وكلوريد الحديديك) كبريتات الحديدوز والبولي الكتروليتات Polyelectrolytes والتي ربما تستعمل كمجلط مبدئي أو كمرشح مساعد Filter aids لإزالة الجسيمات الغروية . وباستعمال الجرعة المناسبة والخلط الفعال للمزج الجوهري والسريع للمادة الكيماوية المجلطة مع كل المياه الخام، الجسيمات المتلبدة Floc تتكون، وتتسبب في أن الكائنات، الجسيمات من البراز، المواد الغروية تلتصق مع بعضها وبالتالي تنمو إلى جسيمات اكبر والتي ترسب بسرعة أو تحجز في الترشيح التالي.

وعمليات التجلط – التلبد Flocculation مثالية لإزالة الغرويات الطاردة للماء Hydrophobic (الطمي والجسيمات الغير عضوية المختلفة) لان هذه المواد هي المكون الأساسي العكارة في الماء . جعل عملية المعالجة مثالية لإزالة الغرويات المحبة للماء (المواد العضوية وتشمل جزيئات المواد البرازية) لن يؤدى فقط إلى إزالة افضل للفيرس والبكتريا ، ولكن سيؤدى أيضا إلى إزالة المواد العضوية الذائبة والتي ربما يكون لها تأثير سام معنوى (جدول 20).

في دراسة Pilot plant بمحطة تجارب للتجلط والترسيب أجريت على نهر أو هايو بالو لايات المتحدة أظهرت أن معلق من فيرس الكوكساكي وبكتريا القولون ، أضيف قبل التجلط باستخدام 25 مجم / اللتر من الشبه أو كلوريد الحديديك ، قد انخفضوا في المياه المرونة إلى اقل من 1% من العدد الأصلي المضاف . ولاثبات أن هذا التأثير مقترن بالتجلط ظهر في تجارب متوازية والتي فيها أضيفت الكائنات الدقيقة بعد إدخال الشبة بخمس دقائق أو اكثر ، والتي ظهر منها انه لا يوجد انخفاض في أعداد الكائنات المضافة وبالتالي يمكن الوصول إلى استنتاج أن تكون مركب المعدن والكائن يلزم أن يكون خلال ثواني عقب إضافة المجلط للماء.

Table 20. Settling Rate by Coagulant for Waterborne Particles

Test	Initial	Al(so)dosag	Final	Final	Percent surviving	
series	turbidity	e(mg/1)	pН	turbidit	Coxsackie	Colifrom
			units	y(J.U.)	virus	Bacteria
1	60-100	15	7.1-7.4	5-10	4.3	36.2
2	16-240	25	6.7-7.3	1-5	1.4	0.2
3	160-240	25:25a	7.3-7.8	0.1	0.1	0.01

a. Two-state coagulation and sedimentation: second-stage coagulant -FeCl₃.

وفى تطبيق عملي ، الخلط التام لتحقيق إزالة مثلى للكائن الدقيق ربما لم يصل إلى الدرجة التي وصل اليها فى الدراسات التى أجريت على نماذج نضف صناعية . فكانت إزالة بكتريا القولون الكلية تتراوح ما بين 42 - 88% وبالنسبة للكائنات الأكبر مثل الجيار ديا يتوقع أن تزيد عن 99% . واعتماداً على هذه الملاحظات ، ربما يجب أن يحل محل قياس العكارة بعدد الجس يمات للوصول إلى الحد الأمثل لإزالة الفيرس والبكتريا فى عمليات التجلط – التخثر أو التابد.

Filtration . 2 . 5

توشيح مصدر الإمداد بالمياه آجري في الأصل لتحسين الخواص الجمالية لمياه الشرب وعقب تفشى الكلوليرا عام 1892 لوحظ أن حالات المرض حددت في هامبورج (مصدر لايتم ترشيحه) في حين أن مدينة مجاروة وهى التونا مصدر تتم عملية الترشيح) لم يتأثر هذه الحادثة أظهرت الدور الفعال لعملية الترشيح الرملي . المرشحات البطيئة استخدمت في عمليات الإمداد بالمياه في اسكتلندا من عام 1804 .

Slow sand filters المرشحات الرملية البطيئة . 1.2.5

الترشيح الرملي البطيء يشمل مرور المياه من المصدر الخام خلال بيئة ترشيح تكون من لميق من الرمل بعمق 0.6 - 1 متر معدل مرور المياه عادة ما بين 0.6 مليون جالون / اليوم / acre من مساحة الترشيح الكثير من فعالية هذه العملية يعتمد لبضع ملليمترات من الرمل والفاتر ينظف بالكشط بحرص للرمل المسدود على السطح للإقلال من العقد من نشاط التعليم الحيوي.

أظهرت الدراسات التي أجريت على المرشحات الرملية البطيئة أن الانخفاض في البكتريا ربما يتراوح ما بين 98 – 99% بالنسبة للوحدات التي تعمل جيدا . الكثير من ظروف التشغيل (دق حبيبات الرمل) عمق الرمل ومعدلات الحمل المنخفض لتحسين النوعية الميكروبين للنتائج) تم تحديدها وفي الدراسات الحديثة على الحواجز الميكروبين اتضح أن 99.9% أو كثر من البكتريا الهتيروتروفيه وتشمل ايشيريشها كولاى يمكن إزالتها وعند معدل انسياب flow rate مقداره 0.12 متر / الساعة بالنسبة لمصدر منخفض العكارة ويحتوى على 100 من بكتريا القولون الكلية / 100 ملل ، وجد انخفاض في أعداد بكتريا القولون بنسبة اكبر من 99% وذلك في تجربة على مجال نصف صناعي Pilot plant بكتريا القولون والجسيمات بهجم 7-12 مبكرون الانخفاض فيها كان ضئيل خلال 48 ساعة الأولى من التشغيل وعلى ذلك فان تاريخ الترشيح خلال تلك الفترة يجب إهماله إذا كانت حويصلات الجيارديا ذات اهتمام .

ولقد ذكر باحث أن إزالة بكتريا القولون البرازية والكلية كانت 41 ، 88% فقط وعلى الترتيب خلال الجو البارد ودرجة الحرارة المنخفضة تبطؤ من نشوء الطبقة البيولوجية اللزجة الجيلاتينه على سطح الرمل (Schmutzdecke) والتى ه ى المفتاح للإزالة الفعالة للكائنات الدقيقة المختلفة في المرشحات الرملية البطيئة عامل آخر يلعب دورة هو معدل الانسياب Flow rate ، فمعدل الترشيح البطيء يمسك بفعاله ميكر وبات أكثر ولهذا السبب ، إزالة فيرس البهليو Poliovirus أيضا تختلف

وذكر أنها تتراوح بين 22 إلى 99.99% والنسبة المنخفضة للإزالة لو خلت في الغالب بالنسبة للمرشحات التي لم تتكون فيها الطبقة اللزجة بدرجة مناسبة. ولقد نصت الأبحاث المدنية أن المرشح الرملي البطيء الذي يعمل جيداً سيزيل حويصلات الجيارديا ولله الكفاءة التي أزيلت بها حويصلات الجيارديا من خلال المرشح الرملي البطيء ترتبط بفعاله أو كفاءة العملية على إزالة العكارة وإزالة العكارة ربما تخدم كدليل لإظهار كفاءة عملية الترشيح وقدرتها على إزالة العكارة ربما تخدم كدليل لإظهار كفاءة عملية الإمداد وجدانها تتوافق على التغير الحويصلات زيادة تواجد الحويصلات في مياه الإمداد وجدانها تتوافق على التغير الحاد في عكارة المياه المنتجة نهائياً والناتجة عن مياه سطحية ولها تاريخ مسبق عكارة الجيارديا ضروري لتأكيد غياب الحويصلات في مياه الشرب.

Rapid Sand Filters المرشحات الرملية السريعة . 2 . 2 . 5

يشتمل الترشيح الرملي السريع على انسياب المياه إلى أسفل Down flow خلال 5-0.30 مرمل خشن (حجم الحبيبات 0.30-0.50 مرمل خشن (حجم الحبيبات)وبيئة الترشيح الطبقية تسمح للماء انثر اسيت كقاعدة 0.4 مرة قدر معدل المرشح الرملي البطيء وبناء على ذلك بالمرور بمعدل 0.4-0.5 مرة قدر معدل المرشح الرملي البطيء وبناء على ذلك فبون معالجة المياه في خطوتي التجلط والترشيح فإن إز الة الكائنات في المرشح ربما تكون غريبة جداً فمثلاً ، نسبة إز الة بكتريا القولون الكلية في مرشح الرمل السريع تتراوح ما بين 0.5-0.5 في جميع فصول السنة ، وتتأثر بعكارة المياه الخام ، كثافة البكتريا ، واز دهار الطحالب.

وفى أسوء المواقف ، فإن الترشيح السريع للمياه المضاف لها فيرس البوليو Poliovirus خلال الرمل مع الأنثر اسيت يزيل 1 – 50% من الفيرس بدون استخدام خطوة التجلط . أما إذا أجريت عملية التجلط ، والترسيب ، والمرور فى مرشح فإن إزالة الفيرس ز ادت 99% واستخدام خطوة التجلط جيداً قبل التشريح الرملي السريع أدى إلى 95% إزالة لحويصلات الجيار ديا ، 99.99% إزالة للانتاميب هستوليتيكا . هذه الملاحظات أكدت أن المرشح الرملي السريع التقليدي غير فعال فى إنتاج إزالة حقيقية فى الكائنات الدقيقة وحتى لو تمت عملي ة ترويق بدون تجلط سابق . وعلى ذلك ، المعالجة المبدئية بالتجلط والتلبيد

Flocculation يجب اعتبارها مكونات أساسية في عملية معالجة واحدة شاملة المرشح الرملي السريع.

Diatomaceous Earth Filters مرشحات التراب الدياتومي . 3 . 2 . 5

الترشيح خلال التربة الدياتومية تستعمل أحيانا في محطات المعالجة الصغيرة عندما يكون المصدر منخفض العكارة والنوعية البكتر عيلوجية جيدة ، لأن هذه المعالجة منخفضة في تكاليف التشغيل وفي التطبيق ، عجينه رقيقه القوام Slurry من التراب الدياتومي ترسب على جدار المرشح Filter septum في طبقة 6.16 – 0.32سم سمك . وبدخول المياه للمعالجة ، تضاف كمية إضافية من التراب الدياتومي لتكوين قشرة تشريح مسامية . وقوف الانسياب خلال الفلتر سي تسريب في سقوط قشرة الترشيح Filter cake من الغشاء الفاصل ويتصدع حاجز المعالجة ، وبالتالي يلزم إجراء غسيل عكسي للتراب الدياتومي ويعاد طلائه عندما تحدث مشاكل في الانسياب. و لأن المواد الدياتومية التجارية مختلفة في النفاذية ، فليس هناك عجب أن تختلف نتائج إز الة بكتريا القولون باختلاف نوعية المادة المستخدمة في الفلتر.

البيئة الأكثر نفاذيه والمستخدمة في الفلتر تخفض كثافة بكتريا القول ون بنسبة تزيد عن 99.8%. وحجم الحبيبات للمواد التجارية المختلفة من التراب الدياتومي يترواح ما بين 9.5 - 0.0ميكرون. ولأن الحجم الكبير من حبيبات التربة الدياتومية فعال بدرجة أقل تجاه إزالة الفيروسات، فإنه ينصح باستعمال فلتر مغطى بالتربة الدياتومية أن إزالة الفيروسات معنوية بدرجة أفضل في الترشيح باستخدام التربة الدياتومية عندما يكون pH لمصدر المياه لم ينخفض من 9.5 إلى 9.5. الفلتر الدياتومي وجد أنه باستمرار يزيل أكثر من 9.5% من حويصلات الجيارديا ولكي يكون الترشيح بالتربة الدياتومية فعال وحاجز للميكروبات وليعطى الدرجة المثلى من الإزالة فإنه بالتربة الدياتومية فعال وحاجز للميكروبات وليعطى الدرجة المثلى من الإزالة فإنه يلزم استعمال الطبق الرقيقة الترشيحية كمساعد، الانتظام في التغذية، والترشيح المستمر بمعدل 9.0 - 0.7 جالون / دقيقة / قدم مربع 9.00 - 0.7 الدقيقة / المستمر بمعدل 9.00 - 0.7 والفلتر.

ملحوظة:

بعض محطات معالجة مياه الشرب في الخارج أدخلت الكربون المنشط ضمن خطوات المعالجة لإزالة الطعم ، الرائحة ، المركبات الثانوية الناتجة عن خطوه

التطهير ولكن يجب الاحتراس في استعماله لإمكانية حدوث أضرار على نوعية المياه من الناحية الم يكروبيولوجية وليس هناك متسع من الوقت للحديث عن هذا الموضوع ولكن يجب أن يؤخذ ذلك في الاعتبار.

بالإضافة إلى أنه لا يجب أن ننسى خطوة الت طهير كحاجز نهائي ضد التاوث الميكووبي ولكن أيضاً ليس هناك متسع من الوقت للحديث عن أفضلية المواد المطهرة من حيث تأثيرها على النوعيات المختلفة من الكائنات الدقيقة والآثار الجانبية الناشئة عن استعمالها.

Refrences

- Geldreich, E.E. 1978. Bacterial populations and indicator concepts in feces, sewage, stormwater and solid wastes. Pp. 51-97 in Indicators of Viruses in Water and Food, G. Berg (ed.). Ann Arbor Science, Ann Arbor, MI.
- Grabow, W.O.K. and Nupen, E.M. 1972. The load of infectious microorganisms in the waste water of two South African hospitals. Water Research 6:1557-1563.
- Herman, D. 1972. Experiences with coliform and enteric organisms isolated from industrial wastes. Pp. 26-40 in U.S. Environmental Protection Agency Seminar: The Significance of Fecal Coliforms in Industrial Wastes, Denver Field Investigations Center, U.S. Environmental Protection Agency, Denver, CO.
- Geldreich, E.E., Best, L.C., Kenner, B.A., and Donsel, D.J.
 1968. The bacteriological aspects of stormwater pollution.
 Journal Water Pollution Control 40, Part 1, 1861 1872
- Blannon, J.C. and Peterson, M.I. 1974. Survival of fecal coliforms and fecal streptococci in a sanitary landfill. U.S. Environmental Protection Agency. News of Environmental Research in Cincinnati, April 12, 1974.

- Donnelly, J.A. and Scarpino, P.V. 1984. Isolation, characterization, and identification of microorganisms from laboratory and full-scale landfills. Project Summary, EPA-600/S2-84-119, Cincinnati, Ohio.
- Crawn, G.F., Ed. 1986. Waterborne Diseases in the United States. CRC Press, Boca Raton, FL., pp. 295.
- Sobsey, M.D., and B. Olson. 1983. Microbial agents of waterborne disease, in: Assessment of Microbiology and Turbidity Standards for Drinking Water, P.S. Berger and Y. Argaman, Eds. EPA Report # EPA 570-9-83-001.
- Bitton, G. 1980. Introduction to Environmental Virology. Wiley, New York, 326 pp.
- Schwartzbrod, L., Ed. 1991. Virologie des Milieux Hydriques. TEC & DOC Lavoisier, Paris, 304 pp.
- Gerba, C. P. 1987. Phage as indicators of fecal pollution. Pp. 197-209. in: Phage Ecology, S.M. Goyal, C.P. Gerba and G. Bitton, Eds., Wiley Interscience, New York.
- Gerba, C.P., C. Wallis, and J.L. Melnick. 1975a> Viruses in Water: The problem, some solutions. Environ. Sci. Technol. 9: 1122-1126.
- Jehi-Pietri, C. 1992. Detection des virus enteriques dans le milieu hydrique: Cas du virus de l'hepatite dans

l'environnement marin et les coquillages. Doctoral dissertation, Universite de Nancy 1, Nancy, France.

- Gerba, C.P., S.N. Singh, and J.B. Rose. 1985. Waterborne gastroenter-itis and viral hepatitis. CRC Crit. Rev. Environm. Control 15: 213-236.
- Williams, F.P., and E.W. Akin. 1986. Waterborne viral gastroenteritis. J. Am. Water Works Assoc. 78: 34-39.
- Lin. S.D. 1985. Giardia lamblia and water supply. J. Am. Water Works Assoc. 77:40-47.
- Fayer,R., and B.L.P.Ungar. 1986. Cryptosporidium spp. and crypto-sporidiosis. Microbiol. Rev. 50:458-483.
- Jeffery, H.C., and R.M. Leach. 1972. Atlas of Medical Helminthology and Protozoology. Churchill Livingstone, Edinburgh.

ANNEX 1

What is Pure Water?

What is Pure Water?

We know that all life is dependent on water and that water exists in nature in many forms- clouds, rain, snow, ice, and fog; however, strictly speaking, chemically pure water does not exist for any appreciable length of time in nature. Even while falling as rain, water picks up small amounts of gases, ions, dust, and particulate matter from the atmosphere. Then, as it flows over or through the surface layers of the earth, it dissolves and carries with it some of almost everything it touches, including that which is dumped into it by man.

These added substances may be arbitrarily classified as biological, chemical (both inorganic and organic), physical, and radiological impurities. They include industrial and commercial solvents, metal and acid salts, sediments, pesticides, herbicides, plant nutrients, radioactive materials, road salts, decaying animal and vegetable matter, and living microorganisms, such as algae, bacteria, and viruses. These impurities may give water a bad taste, color, odor, or cloudy appearance (turbidity), and cause hardness, corrosiveness, staining, or frothing. They may damage growing plants and transmit disease. Many of these impurities are removed or rendered harmless, however, in municipal drinking water treatment plants.

Pure water means different things to different people. Homeowners are primarily concerned with domestic water problems related to color, odor, taste, and safety to family health, as well as the cost of soap, detergents, "softening," or other treatments required for improving the water quality. Chemists and engineers working for industry are concerned with the purity of water as it relates to scale deposition and pipe corrosion.

2

Regulatory agencies are concerned with setting standards to protect public health. Farmers are interested in the effects of irrigation waters on the chemical, physical, and osmotic properties of soils, particularly as they influence crop production; hence, they are concerned with the water's total mineral content, proportion of sodium, or content of ions "toxic" to plant growth.

One means of establishing and assuring the purity and safety of water is to set a standard for various contaminants. A standard is a definite rule, principle, or measurement which is established by governmental authority. The fact that it has been established by authority makes a standard rigid, official, and legal; but this fact does not necessarily mean that the standard is fair or based on sound scientific knowledge. Where human health data or other scientific data are sparse, standards have sometimes been established on an interim basis until better information becomes available.

The Safe Drinking Water Act sets minimum standards to be met by all public water systems. New Jersey and most other states have established their own drinking water regulations using federal regulations as a basis. State regulations may be more stringent than the federal regulations.

Health Effects of Drinking Water Contaminants

Chemicals in drinking water which are toxic may cause either acute or chronic health effects. An acute effect usually follows a large dose of a chemical and occurs almost immediately. Examples of acute health effects are nausea, lung irritation, skin rash, vomiting, dizziness, and, in the extreme, death.

The levels of chemicals in drinking water, however, are seldom high

enough to cause acute health effects. They are more likely to cause chronic health effects, effects that occur after exposure to small amounts of a chemical over a long period. Examples of chronic health effects include cancer, birth defects, organ damage, disorders of the nervous system, and damage to the immune system.

Evidence relating chronic human health effects to specific drinking water contaminants is very limited. In the absence of exact scientific information, scientists predict the likely adverse effects of chemicals in drinking water using laboratory animal studies and, when available, human data from clinical reports and epidemiological studies.

USEPA classifies compounds for carcinogenicity potential according to the "weight of evidence" approach as stated in the Agency's Guidelines for Carcinogen Risk Assessment.

These Guidelines specify five carcinogenicity classifications:

Group A:

Human carcinogen (sufficient evidence from epidemiological studies).

Group B:

Probable human carcinogen

Group B1:

At least limited evidence of carcinogenicity in humans.

Group B2:

Usually a combination of sufficient evidence in animals' and inadequate data in humans.

Group C:

Possible human carcinogen (limited evidence of carcinogenicity in the absence of human data).

Group D:

Not classifiable (inadequate human and animal evidence of carcinogenicity).

Group E - Evidence of no carcinogenicity for humans (no evidence of carcinogenicity in at least two adequate animal tests in different species or in both epidemiological and animal studies).

The possible health effects of a contaminant in drinking water differ widely, depending on whether a person consumes the water over a long period, briefly, or intermittently. Thus, MCLs and monitoring requirements for systems serving permanent populations (Public Community Water Systems and No transient No community Water Systems) may be more stringent than those regulations for systems serving transient or intermittent users (Public Noncommunist Water Systems).

Maximum contaminant levels are based, directly or indirectly, on an assumed drinking water rate of two liters per person per day. MCLs for organic and inorganic contaminants (except nitrate) are based on the potential health effects of long-term exposure, and they provide substantial protection to virtually all consumers. The uncertainty in this process is due in part to the variations in the knowledge of and the nature of the health risks of the various contaminants.

5

ANNEX 2

Pollution and Man Health

Water Pollution and Man's Health

Hugh C. C. Maduka, B.Sc (Hons), M.Sc (Ibadan), Ph.D (Jos)

Department Of Biochemistry

College Of Medical Sciences

University Of Maiduguri

Borno State Nigeria

Citation:

Hugh C. C. Maduka: Water Pollution And Man's Health. The Internet Journal of Gastroenterology. 2006. Volume 4 Number 1.

Table of Contents

Abstract

Introduction

The Origin Of Pollution

Classes Of Pollution

<u>Immediate Consequences</u>

Theoretical Rationalization And Concepts Of Water Pollution And Man's Health

Panacea

Role Of Microbial Enzymes In The Degradation Of Pollutants

Microtonal Polysubstrate Oxygenase:

Consequences Of Water Pollution On The Ecosystem

References

Abstract

Industrialization and technological development processes have led to the introduction of hazardous chemicals into the environment — water, air and land. These have increased the number and level of dangerous chemicals such as environmental pollutants (heavy metals), agrochemicals (herbicides, pesticides, halogenated polycyclic hydrocarbons), sewage wastes, food additives and other allied contaminants, thereby, exposing man and animals health wise. The dangers and health hazards caused by the above pollutants can be reduced by the use of microbial degrading enzymes and natural plant products proved to have cytoprotective properties against the free radicals generated by the harmful pollutants.

This presentation has highlighted the above with particular emphasis on water pollution and man's health and opined by way of recommendation that proper and efficient environmental policies which will emphasize on proper disposal of industrial and sewage wastes can serve as additional panacea to the problems created by water pollution to man's health.

Introduction

Pollution is the introduction by man into the environment of substances or energy liable to cause hazards to human health, harm to the living resources and ecological systems, damage to structures or amenity or interference with legitimate uses of the environment. Pollution had always been misused for contamination which can be defined as the presence of elevated concentrations of a substance in the air, water, soil or any other such thing not necessarily resulting in a deleterious effect. Water pollution, therefore, is the direct or indirect human introduction of substances into the water environment such as to harm living resources, affect human health by various cytotoxic and infilterative disorders and impair water environment quality

■ The Origin Of Pollution

The word pollution is difficult and notorious to define. The Latin word pollere – to soil or defile provides little help and pollere could also mean contamination of any feature of the environment (Glenn and Toole, 1997). Industrialization and technological advancement/development processes have led to the introduction of hazardous chemicals into the environment (water, air, sea, lake, atmosphere land/soil). These chemicals include the following: environmental pollutants, heavy metals, agrochemicals, herbicides, pesticides, halogenated polycyclic hydrocarbons, food additives and other allied contaminants and sewage wastes.

Any definition of pollution should take the following important points into account:

- 1. Pollution is not merely the addition of a substance to the water environment, but its addition at rate faster than the environment can accommodate it. There are natural levels of chemicals such as arsenic and mercury in the environment but only if Ithese levels exceed critical values can they be considered pollutants.
- 2. Pollutants are not only chemicals. Forms of energy like heat, sound, and &- particles, ? particles, ? rays and X rays may also be pollutants.
- 3. To be a pollutant, a material has to be potentially harmful to life some harmful effects must be recognized (e.g. irritants).

The impact of pollution on the environment: Pollution x affluence x technological development (Meadows et. a.l. 1992). The combined effect of population, affluence and technology are the factors responsible for

pollution and other types of environmental degradation. Pollution arose as a result of technological development.

The first major oil pollution incident in UK was in 1967. 120,000 tonnes of crude oil was washed upon many cornish beaches. The effect was that sea birds could not fly because oil coated their feathers. The result was hampering of insulatory properties, death and hypothermia. Sea weed couldn't photosynthesise. Gills of fish were covered, no feeding and no respiration. This also caused termination of most of the fish.

Over 60,000 chemicals are in common use while up to 500 new ones are introduced to the commercial market annually. Similarly, the production and use of energy, production and use of industrial chemicals and increased agricultural practices have had a deleterious effects on water affecting man's health generally and specifically.

Classes Of Pollution

Pollution can be classified based on transport media as air, water and soil.

Air Pollution

This can be defined as any gaseous or particular matter in the air that is not normal constituent of the air or is not normally present in such a high concentration. Air pollution is one of the most difficult to control because it poses international and national threat. The pollution in air can be caused by burning fossil fuels e.g. oil, natural gas and coal as well as those released everyday by vehicle exhaust such as Carbon monoxide, oxides of nitrogen and hydrocarbons such as ethane and methane (CO, NO₂, NO₃, C₂H₄, C₂H₆, respectively).

11

Two other types of pollution have been classified. The first is characterized by SO₂ and smoke from incomplete combustion of coal and by conditions of fog and cool temperatures. This is termed the reducing type of pollution because of its chemical nature. The second is characterized by hydrocarbons, oxides of nitrogen and phytochemical oxidants and because of the meteorological inversion layer; it is described as an oxidizing type of pollution or photochemical air pollution.

Land Soil Pollution

Land pollution does with the terrestrial environment which extends from the top of the growing vegetation to the capillary fringe of groundwater which is the primary home of most living things on earth. Land pollution is the introduction of harmful chemicals into the environment to grow and increase food supply, to protect man and his crops from pests and diseases and dispose off wastes. Unintended entry also occurs through transport accidents, inaccurate or inappropriate application procedure and leaking sewage facilities. Because the chemicals and other living things share the environment, this can lead to significant exposure to the chemicals and therefore, resulting in detrimental health impact. The rains carry non – degradable pollutants and wastes into groundwater, nearby streams and the soils too.

The wastes in the landfill can also decompose under heat and pressure of the soil above releasing harmful gases like methane (CH₄).

• Water Pollution

Water pollution becomes most obvious when it involves poisoning of drinking water or causes the death of a large number of fish or other aquatic population. This could be caused by sewage. Disposal of sewage wastes into a large volume of water could reduce the biological oxygen demand to such a great level that the entire oxygen may be removed. This would cause the death of all aerobic species – fish.

Some toxic chemicals released into the rivers and seas such as Pb, Cu, Zn, Hg, CN will cause the death of fish, algae and lesions in human beings even at very low concentrations. These are related to occupational hazards and

constitute elements of environmental pollution especially with respect to pollution by heavy metals. Such incidents had been reported in the past. For example, the Minimata and Niigata epidemics in Japan in 1950s and 1960s respectively. The Minimata epidemic was a case of mercury poisoning caused by consumption of fish from the Minimata Bay of Japan which was heavily contaminated by mercury compounds discharged by a nearby plastic industry. This epidemic occurred during 1953 – 60 and was the 1 st serious outbreak of Hg poisoning.

It was characterized by severe damage to the nervous system leading to ataxia, paraesthesia (abnormal pricking sensations), loss of vision and hearing and ultimately death. The primary pollutant was inorganic Hg, but an organic derivative, methyl mercury was found in the fish. This was converted by methylation through the microorganism in the water, fish gut, mud or all. Organomercury compounds being lipid soluble have very high affinity for cellular lipids and therefore accumulate in lipids of nervous tissues (Okoye 1992). This was a typical case of metabolic activation giving rise to a toxic metabolite

Three forms of mercury pollute the environment:

- 1. Metallic mercury this is excreted in urine mainly in the inorganic form.
- 2. Inorganic mercurous or mercuric ions Hg forms very stable complexes with the free SH (thiol) groups of proteins and consequently inhibits enzymes with SH at their reactive sites irreversibly.
- 3. Organo mercury (Hg is part of an organic compound) and remains in organic form in the tissues e.g. hair. The rate of removal of mercury from the blood is very slow. Hg is removed by prolonged treatment of

patients with an appropriate mercury ion chelator like N – acetylpenicillamine.

The second case of Hg poisoning was the epidemic of consumption of fish from polluted Kalu River in the Thana district of Bombay, India. The major symptom was paralysis.

Another major epidemic of water pollution was the Itai – itai disease which affected a Japanese population that consumed fish and other foods harvested from coastal waters into which cadmium – containing industrial effluent was being discharged. The disease was characterized by brittleness of bones, muscular weakness and loss of appetite.

Pb poisoning is another serious source of environmental pollution which causes water pollution. Pb poisoning is characterized by CNS damage, anaemia and deposition of Pb in bones and teeth.

The major sources of this pollutant are paint manufacturing industries/factories, lead smelting works; petrol engines discharged inorganic Pb salts, metallic Pb and organic Pb respectively. Pb (C_2H_4)₄ – is used as an anti knock in petrol engines and is a pollutant. The anaemia caused by Pb is due to inhibition of haem biosynthesis. Inorganic Pb inhibits aminolaevulinic acid dehydratase and ferrochetalase (haem synthetase) which catalyses the formation of the pyrrole porphobilinogen and incorporation of Fe ²⁺ into protoporphyrin IX respectively. Pb forms very stable complexes with – SH groups of enzymes. The above is by no means exhaustive. In 1996, there were cases of chromium and cadmium pollution in sediments of Suzhou Creek while cases of metal poisoning were earlier recorded in USA and Britain between 1974 – 1975. The susceptibility of any individual within a group of people equally exposed to a metal toxin varies with age, sex and social habits, such as smoking and alcohol usage.

Organic pollutants contain hydrogen, carbon and oxygen e.g. petroleum products (gasoline, oil, pesticides) solvents, cleansing agents, polychlorinated biphenyls (once used in electrical transformers), human and animal wastes. These also constitute serious sources of water pollution. Some of these pollutants are found to cause cancer and other health effects in humans. They are toxic to fresh water and salt water organisms. Hazardous wastes are potential dangers due to their nature or quantities. They have the characteristics of toxicity, flammability, corrosivity with a high tendency to remain/persist in the body e.g. phenols, arsenic, mercury, lead and a host of others.

■ Immediate Consequences

- 1. Crops grown on soils polluted by industrial chemicals accumulate varying concentrations of these chemicals. In the course of absorbing water and nutrients from the soil, plants take up the chemicals. The agrochemicals cannot be degraded because they lack the enzymic machinery to degrade and excrete them. They are deposited in tissues and cellular structures including those of edible parts that are not active in metabolism (Okoye 1992).
- 2. Aquatic foods harvested from coastal waters, rivers and waterways into which industrial effluents have been deposited contain high levels of these harmful chemicals which induce cytotoxicity in cells.
- 3. Meat and dairy products from livestock grazing on polluted pastures, drinking polluted water e.g. Hg, Cd, Pb, radioactive materials, complex organic compounds e.g. polycyclic aromatic hydrocarbons and halogenated aromatic compounds. The human body cannot handle these pollutants.

The industrial solvents/chemicals may contain nutrient substances – Mo, Cu, Fe and Zn at very high concentrations.

Some of these associated toxic effects include the following:

Excessive iron is associated with damage to the inner lining of the gastrointestinal tract while the toxic effects of zinc include heartburn and serious circulatory and gastrointestinal disorders.

Theoretical Rationalization And Concepts Of Water Pollution And Man's Health

One is at a loss considering the enormity of hazards caused by water pollutants and their toxicological consequences on man's health. Xenobiotic oxidants are discharged into water with the result that oxidative stress is imposed on aquatic organisms (fish, crab, prawn etc). Free radicals are generated such as those of organomercury, Pb, Cd and the other heavy metals resulting in the peroxidative deterioration of membrane lipids.

Lipids yielding breakdown products like hydroperoxides, peroxyl radicals, endo-peroxides, carbonyls and aldehydes, malonaldehyde, mahendialdehyde and other TBA – reactive species, low molecular weight hydrocarbon gases (ethane and pentane) which are all toxic to cells.

Oncogenesis/Carcinogenesis could develop. Cytotoxic enzyme markers such as gamma glutamyl transferase, alkaline phosphatase, acid phosphatase, serum amino transferases, all show-elevated activities.

Physiological Parameters – PCV, HB, RBC status are compromised while WBC proliferates with attendant increased lymphocyte maturation. Histopathological Lesions – fatty degenerations, necrosis, cirrhosis, destruction of blood vessels and connective tissues occur.

All these are as a result of the free radicals generated from consumption of water pollutants which cause lipid peroxidation of the membranes. If the source of pollution in the water is microbial, the following diseases may ensure:

- 1. Dysentery
- 2. Diarrhoea
- 3. Cholera

- 4. Typhoid Fever
- 5. Mycosis/mytoxicosis/Aflatoxicosis—caused by aflatoxins $B_1,\,B_2,\,M_1,\,M_2$

Plamatoxins B₀, GO, acetogenins and polyketydes all produced by the ubiquitous fungi, Aspergillus flavus. These have their biochemical effects and are potent oral hepatocarcinogens.

Microbial Pollutants of Water and Symptoms of Ingested Microbial Pollutants

Microbial pollutants such as those ellaborated by algal species like cyanobacteria are major pollutants of fresh and salt waters globally right from Europe,North and South america,Asia and Africaespecially the West coast of Africa including countries like Ghana and Nigeria. The toxic cyanotoxins produced have been characterised from many cyanobacteria such as

microcystis,anaebena,plankthothrix,oscillatoria,radiocystis and cylindrospermopsis(Sivonen and Jones 1999 ,Senogles-Derham et.al,2003,Vierra et.al,2003).Because of the cyclic nature of these cyanotoxins especially microcystins which are cycli peptides,they are chemically stable and water solluble,thus accounting for their persistence and exposure in the environment.The cyanotoxins can not penetrate easily through the biomembranes and their toxicity is restricted to the liver as their target organ.

The hepatotoxic cyanotoxins produced by cyanobacteria are microcystins, oscillatoria and nodulatoria with diverse inhibitory effects on plants, protozoa, crustaceans and even mammals. Ingested microcystins present with extensive hepatic hemorrage and necrosis, increased liver weight

and marked activities of aminitransferases in the plasma as well as lactate dehydrogenase(Runnegar and Falconer 1982,Falconer and Runnerger 1987). Microcystin--YM ingestion causes perilobular necrosis while microcystin--LR causes initial centrilobular necrosis(Falconner,1993); this probably points to the localisation of the enzymes responsible for the reported metabolic transformations.

As mentioned earlier, the liver is the main organ intoxicated by this group of cyanotoxins but there had been other reports of damages of tissues such as abomasum, small and large intestines, as well as the kidney in experimental animal models like sheep, mice and rats. Other reported toxic effects of ingested hepatocyanogins included depletion of hepatic glutathione with little changes in respiration, protein synthesis, DNA synthesis and cell membrane intergrity, depletion of glycogen and dose-response activation of glycogen phosphorylase (Runneger and Falconer 1982, Falconer and Runneger 1987).

Earlier diagnosis of patients infected by cyanogin ingestion showed major sympthoms of malaise, anorexia, vomiting, headache, initial constipation followed by bloody diarrhoea and varying levels of dehydration (Byth, 1980). The urine sample analysed showed loss of electrolytes with glucose, ketone bodies and proteins being identified. The gastrointestinal tracts, kidneys and livers of treated mice were also observed to present with wide spread tissue damages (Hawkins et al, 1985). The microcystin toxicity is mediated through irreversible inhibition of the 1&2A catalytic sub-units of protein phosphatases.

Apart from the hepatotoxins,neurotoxic alkaloids are produced by neurotoxic cyanobacteria such as anaebena sp,cylindrospermopsis-raciborskii and planktothrix agardhii.some of theneurotoxins classified are anatoxina,saxitoxin and cylindrospermopsin. They represent a broad group of heterocyclic nitrogenous compounds with at least, one C-N bond, usually of low molecular weight (Sivonen and Jones, 1999).

Anatoxin is an inhibitor of anticholiesterase while saxitoxin, a paralytic shellfish poison is a gastrointestinal disease causing agent as well as a sodium ion blocker. The dinoflagellate-induced intoxication of seafoods as well as ciguatera-induced paralytic and diarrhetic effects in fish and shellfish had been documented.

Fatal intoxications of consumptionofwater infected by microcystins as well the cases of gastroenteritis after the appearance of cyanobacteria in drinking water sources in North and South America have not been fully controlled. The only control measure so far is the introduction of stratification in water reservoirs (Addico, 2004).

ANNEX 3

Salmonella

Salmonella food poisoning

<u>Salmonella</u> food poisoning is a bacterial food poisoning caused by the Salmonella bacterium. It results in the swelling of the lining of the stomach and intestines (gastroenteritis). While domestic and wild animals, including poultry, pigs, cattle and pets such as turtles, iguanas, chicks, dogs and cats can transmit this illness, most people become infected by ingesting foods contaminated with significant amounts of Salmonella.

Improperly handled or undercooked poultry and eggs are the foods which most frequently cause <u>Salmonella</u> food poisoning. Chickens are a major carrier of Salmonella bacteria, which accounts for its prominence in poultry products. However, identifying foods which may be contaminated with Salmonella is particularly difficult because infected chickens typically show no signs or symptoms. Since infected chickens have no identifying characteristics, these chickens go on to lay eggs or to be used as meat.

Anyone may contract Salmonella food poisoning, but the disease is most serious in infants, the elderly, and individuals with weakened immune systems. In these individuals, the infection may spread from the intestines to the blood stream, and then to other body sites, causing death unless the person is treated promptly with antibiotics. In addition, people who have had part or all of their stomach or their spleens removed, or who have sickle cell anemia, cirrhosis of the liver, leukemia, lymphoma, malaria, louse-borne relapsing fever, or Acquired Immunodeficiency Syndrome (AIDS) are particularly susceptible to Salmonella food poisoning.

Causes & symptoms

Salmonella food poisoning can occur when someone drinks unpasteurized milk or eats undercooked chicken or eggs, or salad dressings or desserts which contain raw eggs. Even if Salmonella-containing foods such as chicken are thoroughly cooked, any food can become contaminated during preparation if conditions and equipment for food preparation are unsanitary

In accordance with the Americans with Disabilities Act, this material is available in alternative formats upon request. Please contact your University of Minnesota Extension office or the Distribution Center at (800) 876-8636. University of Minnesota Extension is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, color, creed, religion, national origin, sex, age, marital status, disability, public assistance status, veteran status, or sexual orientation.

ANNEX 4

Other Pathogens

Bacterial Food-Borne Illnesses

William Schafer

Introduction

Food-borne illnesses are those diseases which are transmitted by food. These illnesses often occur when disease producing bacteria, yeast and molds or their toxins are present in the food when eaten. Poisonous chemicals, parasites orviruses may also be causes. The food may serve a number of different purposes in the transmission of the illness. It may merely serve to transfer the microorganism or chemicals. It may also provide nutrients for microbial growth or protect the organisms from destructive agents such as heat or chlorine. Food-borne illnesses have been a concern for many years and there are several publications available for the general public and food professionals on this topic. A reference list of these is included in this publication.

Recent recalls of milk products containing Listeria, illnesses from eating raw seafood and recent salmonellosis outbreaks have renewed interest about the microbiological hazards in the American food supply. Of particular interest are hazards related to "new" bacteria. This publication is an update for consumers, educators and food professionals. It includes information on 1) Incidence and Economic Effects, 2) Major Bacterial Food-Borne Illnesses, 3) General Recommendations for Prevention and 4) References.

Incidence and Economic Effects

Recent estimates suggest that "about 99 million acute cases of vomiting and/or diarrhea occur in the U.S. per year as a result of intestinal infectious disease" (5). The same U.S. Food and Drug Administration authors estimate that one-third of the illnesses or 33 million cases were attributed to food-borne disease with associated costs of \$7.67 billion for medical care and lost productivity.

Classification of Illnesses by Cause

Illness causing organisms of greatest concern are Salmonella, Campylobacter, Yersinla and Escherichia coli. These bacteria are responsible for an estimated 8 to 10 million cases per year and \$2 billion in direct medical costs and lost productivity.

In addition to the immediate medical implications of these organisms, current medical literature suggests that certain chronic diseases, such as those of the joints, may be triggered by or follow the occurrence of food-borne illnesses (5).

Major Bacterial Food-Borne Illnesses

The first chart below explains the three actual causes of symptoms associated with bacterial food-borne illnesses. The second chart classifies these illnesses according to these causes. (2)

Causes of Symptoms		
Toxin Ingestion	Infection	Infection Followed by Toxin
Ingestion of toxin previously	Bacteria invade or infect the	Production
produced by the bacteria.	intestinal membrane(s) or lining	Bacteria multiply in the intestine
	where they multiply and may	and produce an entertoxin which
	move to other organs through the	causes the gastrointes-tinal
	blood stream.	disturbance.

Classification of linesses by Cause					
Toxin Ingestion	Infection	Infection Followed by Toxin			
a) Staphylococcal poisoning	a) Salmonellosis	Production			
b) Botulism	b) Shigellosis	a) Clostridium perfringens			
c) Bacillus cereus gastroenteritis	c) Vibrio parahaemolyticus	gastroenteritis			
	gastroenteritis	b) Cholera			
	d) Vibrio vulnificus septicemia	c) Enterotoxigenic Escherichia			
	e) Yersiniosis	coli gastroenteritis			
	f) Campylobacter enteritis				
	g) Listeriosis				

These illnesses are listed by these classifications in Table 1. This table details symptoms, illness

characteristics, examples of foods involved and prevention. Treatment of the illnesses is not given, however. This should be obtained from a family physician or other health care professional. It should be noted that not all people who eat contaminated food will become ill and not all who become ill will have the same symptoms. The intensity of the symptoms and the seriousness of the illness may vary with concentration of organisms or toxins, quantity of food consumed and susceptibility of the individual to the disease. Infants, the elderly and people with altered immune systems due to medication or disease may be more susceptible to these diseases.

TABLE 1 BACTERIAL FOOD-BORNE ILLNESSES

I. TOXIN INGESTION (Caused by ingestion of toxin formed by bacteria)

ILLNESS

Staphylococcal poisoning (staph)

FOODS INVOLVED

Custards, egg salad, potato salad, chicken salad, macaroni salad, ham, salami, cheese.

SYMPTOMS

Vomiting, diarrhea, prostration, abdominal cramps. Generally mild and often attributed to other causes.

CHARACTERISTICS

Transmitted by food handlers who carry the bacteria and by eating food containing the toxin.

Onset: Usually within 3 to 8 hours

Duration: 1 to 2 days;

PREVENTION

Growth of bacteria that produce toxin is inhibited by keeping hot foods above 140° F and cold foods at or below 40° F.

ILLNESS

Botulism

FOODS INVOLVED

Canned low-acid foods, smoked fish, perishable vacuum-packed foods.

SYMPTOMS

Double vision, inability to swallow, speech difficulty, progressive respiratory paralysis. Fatality rate is high, in the United States about 65 percent.

CHARACTERISTICS

Transmitted by eating food containing the toxin. Bacteria responsible for producing the toxin requires a low oxygen (or vacuum) environment.

Onset: Usually within 12 to 36

hours or longer

Duration: 3 to 6 days

PREVENTION

Bacterial spores in food are destroyed by high temperatures obtained only in pressure canning. The toxin is destroyed by boiling for 10 to 20 minutes; time

ILLNESS

Bacillus cereus

gastroenteritis

FOODS INVOLVED

Vegetables, salads, meat dishes, casseroles, puddings, sauces, soups, rice, and macaroni and cheese.

SYMPTOMS

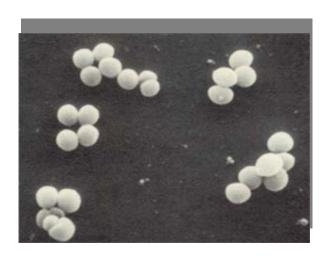
Diarrhea or vomiting

CHARACTERISTICS

Transmitted by eating food containing the toxin. Diarrheal form

Onset: 6 to 16 hours

Duration: Less than 24 hours


Vomiting form

Onset: 1/2 to 6 hours

Duration: Less than 24 hours

PREVENTION

Cool foods rapidly and refrigerate promptly at 40° F or below. Do not store starchy foods at room temperature prior to reheating and serving.

A scanning electron micrograph of Staphylococcus aureus, the bacteria that produces staphylococcal poisoning (staph). The diameter of the bacteria is 1 micrometer (um) or 1/25,000 inch. Courtesy of EA. Zottola, University of Minnesota.

required depends on kind of food. Proper refrigeration (below 40° F) of perishable vacuum-packed foods is essential.

II. INFECTIONS (Caused when pathogenic bacteria invade and multiply in intestinal tract)

ILLNESS

Salmonellosis

FOODS INVOLVED

Poultry, red meats, eggs, dried foods, dairy products.

SYMPTOMS

Severe headache followed by vomiting, diarrhea, abdominal cramps, and fever. Infants, elderly, and persons with low resistance are most susceptible. Severe infections cause high fever and may even cause death.

CHARACTERISTICS

Transmitted by eating contaminated and undercooked food, or by contact with infected persons or carriers of the infection. Also transmitted by insects, rodents, and pets.

Onset: Usually within 12 to 36

hours

Duration: 2 to 7 days

ILLNESS

Shigellosis

FOODS INVOLVED

Salads (potato, tuna, shrimp, macaroni, chicken), and cut, diced or chopped and mixed foods.

SYMPTOMS

Diarrhea, abdominal pain and fever. Vomiting, chills and headache may also occur. Feces may contain blood, mucus or pus.

CHARACTERISTICS

Transmitted by food handlers (symptomless carriers or persons recovering from the disease). Food is contaminated by hand manipulation or mixing.

Onset: 1 to 7 days

Duration: 12 hours to 3 weeks (5-6 days

average)

PREVENTION

Maintain high standard of personal

ILLNESS

Vibrio parahaemolyticus gastroenteritis

FOODS INVOLVED

Raw fish, clams, oysters, raw crab, crab salad, lobster and shrimp.

SYMPTOMS

Severe abdominal cramps, diarrhea, nausea, vomiting, headache, chills and prostration.

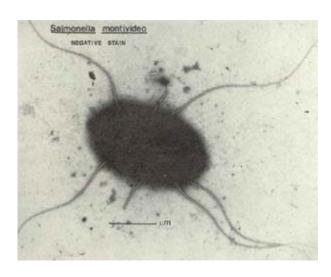
CHARACTERISTICS

Transmitted by ingestion offish and shell fish which were contaminated in their aquatic environment or crosscontamination of cooked foods with raw products.

Onset: 2 to 48 hours

Duration: 2 hours to 10 days (2-3 days

av.)


PREVENTION

Cook seafood thoroughly, eliminate cross- contamination and properly

PREVENTION

Destroy by heating the food to 140° F and holding for 10 minutes or to higher temperatures for less time; for instance, 155° F, for a few seconds. Refrigeration at 40° F inhibits the increase of Salmonellae, but they remain alive in foods in the refrigerator or freezer, and even in dried foods.

hygiene, wash hands after using the toilet; refrigerate cooked seafood. do not work with food when ill.

A transmission electron micrograph of Salmonella montivideo, one of the salmonella bacteria that causes salmonellosis. The magnification of the micrograph is 1 micrometer (um) = 1/25,000 inch. Courtesy of E.A. Zottola, University of Minnesota.

BACTERIAL FOOD-BORNE ILLNESSES

II. INFECTIONS (continued)

ILLNESS

Vibrio vulnificus septicemia (blood infection) FOODS INVOLVED

Raw or undercooked seafood, particularly oysters and clams.

SYMPTOMS

Malaise followed by chills, fever and prostration. Vomiting and diarrhea are uncommon, but sometimes occur after chills and fever.

CHARACTERISTICS

V. vulnificus is widespread in the estuarine waters of most U.S. coastal states. The organism penetrates the intestinal tract and

ILLNESS

Yersiniosis

FOODS INVOLVED

Dairy products, raw or rare meats, seafood, fresh vegetables.

SYMPTOMS

Abdominal pain, fever and diarrhea. Vomiting and skin rashes may also occur.

CHARACTERISTICS

Yersinia enterocolitica are found in the intestinal tracts and feces of animals, raw foods of animal origin, non-chlorinated water supplies and wells, lakes, streams and rivers. Transmission may be by animal to food/water to human

ILLNESS

Campylobacter enteritis FOODS INVOLVED

Raw meat and poultry.

SYMPTOMS

Vary widely but may include abdominal pain and cramping, diarrhea, fever and prostration. Blood may appear in feces after 1 -3 days of diarrhea. Other symptoms that may occur are headache, malaise, muscle pain, dizziness and delirium.

CHARACTERISTICS

Campylobacter jejuni is found in great numbers in the intestinal tracts of healthy cattle, sheep,

produces a primary septicemia. The infection is rare in healthy people, usually being associated with liver disease, malignancy, and renal disease. However, it has been reported to cause death in 40-60% of the infected patients.

Onset: 16-48 hours **PREVENTION**

Cook seafood thoroughly, eliminate cross-contamination and properly refrigerate cooked seafood.

ILLNESS

Listeriosis FOODS INVOLVED

Milk, cole slaw (from manure contaminated cabbage) and Mexican-style cheese.

SYMPTOMS

In a healthy person, influenza-like symptoms and fever may occur. Infection in pregnant women may result in infection of fetus and interrupted pregnancy. Persons debilitated by alcoholism diabetes, cardiovascular disease, and immunocompromised individuals are at the most risk. Meningitis or meningoencephalitis (inflammation of the brain and surrounding membranes) are common manifestations of the disease in adults.

CHARACTERISTICS

Listeria monocytogenes is found in soil, decaying vegetation and the intestines of domestic and wild animals, stream water, mud, sewage and silage. Consumption of contaminated food is one mode; others or exact means are unknown.

PREVENTION

or human to human. Yersinia can grow at refrigerated temperatures but are killed at 140° F. Not all strains cause the illness.

Onset: 24 to 36 hours Duration: 3 to 7 days (Appears most often in children and teenagers.)

PREVENTION

Cook foods thoroughly; avoid contamination during processing and preparation.

swine and poultry. Fecal material may contaminate the animal carcasses with the bacteria during slaughtering or other food (milk, eggs) with which it comes in contact.

PREVENTION

Avoid contamination during handling and processing; cook properly and refrigerate.

Avoid raw meats, unpasteurized milk and foods made with contaminated ingredients.

BACTERIAL FOOD-BORNE ILLNESSES

III. INFECTION FOLLOWED BY TOXIN PRODUCTION (Bacteria invade and multiply in intestinal tract and produce an enterotoxin which causes the gastrointestinal disturbance)

ILLNESS

Clostridium perfringens gastroenteritis

FOODS INVOLVED

Stews, soups, or gravies made from poultry or red meat.

SYMPTOMS

Nausea without vomiting, diarrhea, acute inflammation of stomach and intestines.

CHARACTERISTICS

Transmitted by eating food contaminated with abnormally large numbers of the bacteria

Onset: Usually within 8 to 20 hours Duration: May persist for 24 hours

PREVENTION

To prevent growth of surviving bacteria in cooked meats, gravies, and meat casseroles that are to be eaten later, cool foods rapidly and refrigerate promptly at 40° F or below, or hold them above 140° F.

ILLNESS

Cholera

FOODS INVOLVED

Water, raw and undercooked fish and shellfish from polluted water, contaminated food.

SYMPTOMS

Vomiting (without nausea) and painless watery diarrhea. Rapid dehydration may result in circulatory collapse.

CHARACTERISTICS

Humans carry Vibrio cholerae which may survive in the environment and contaminate water and food.

Onset: 1 -5 days

PREVENTION

Avoid consuming fish and shellfish from polluted water; ensure sanitary sewage disposal and safe water supplies; wash hands after using the toilet and before handling food.

ILLNESS

Enterotoxigenic Escherichia coli gastroenteritis

FOODS INVOLVED

Contaminated foods not subsequently heat processed.

SYMPTOMS

Mild to severe diarrhea with severe dehydration and shock. No fever.

CHARACTERISTICS

Transmission is by fecal contamination of foods. Due to presence in animal and human intestines, feces may contaminate soil, water, animal carcasses used for food and shellfish from waters with sewage.

Onset: 8 to 44 hours

Duration: Diarrhea usually stops after 30 hours

PREVENTION 1

Avoid consuming fish and shellfish from polluted water; ensure sanitary sewage disposal and safe water supplies; wash hands after using the toilet and before

handling food.

If a Food-Borne Illness Does Occur

- 1. Contact your family physician if symptoms are severe, persist, or high risk individuals are involved. High risk individuals are the elderly, infants, or people with altered immune systems due to medication or disease.
- 2. If the illness was due to prepared food purchased or eaten away from home, report the incident to the local public health department and to the Minnesota

Department of Health, 717 S.E. Delaware St., P.O. Box 9441, Minneapolis, MN 55440 (612)-623-5275. Indicate the foods consumed, where purchased, time of onset of symptoms after consumption, and type of symptoms.

3. If possible, retain and refrigerate samples of questionable food and feces for possible microbiological analysis. In doing so, take care that household members do not come in contact with these samples.

General Recommendations for Prevention

Individuals who process, prepare, store or serve food should attempt to 1) limit and prevent contamination, 2) inhibit multiplication of bacteria and 3) destroy bacteria. Following are ways in which to accomplish these goals applied to food prepared in the home, prepared food purchased out and eaten at home, and prepared food eaten in restaurants

Food Prepared in the Home

Assuming there are no serious illnesses in the home, prevention may be accomplished if you:

- 1. Avoid prolonged exposure of frozen and refrigerated foods to warm/hot temperatures, such as during trans portation from supermarket to home.
- 2. Practice good personal hygiene. Wash hands frequently, especially after using the bathroom, handling raw foods, or touching the nose, mouth or hair.
- 3. Cook foods thoroughly.

- 4. Hold hot foods above 140° F.
- 5. Cool foods rapidly in shallow containers.
- 6. Reheat leftovers to 165° F.
- 7. Boil home-processed, low-acid canned foods for 10 to 15 minutes before serving.
- 8. Avoid holding cooked foods between 40° F and 140° F for longer than two hours.
- 9. Refrigerate foods at 40° F or below.
- 10.Prevent cross-contamination by keeping raw and cooked foods separate and by using different equipment with each.
- 11. Keep equipment and utensils clean and properly stored.

Prepared Food Purchased Out and Eaten at Home

- 1. Purchase food from reputable, established businesses.
- 2. Observe general food sanitation practices of personnel and cleanliness of facility. These often reflect potential for food-borne illness
- 3. Be certain hot foods are purchased hot and cold foods are purchased cold.*
- 4. Hold hot foods above 140° F at home.

- 5. Hold cold foods at 40° F or below at home.
- 6. Avoid holding prepared food between 40° and 140° F for longer than two hours, especially when bringing them home.
- 7. Prevent cross-contamination by keeping raw and prepared foods separate and using different equipment with each.

Prepared Food Eaten in Restaurants

- 1. Eat in reputable establishments.
- 2. Observe general food sanitation practices of personnel and cleanliness of facility.
- 3. If cold foods are served warm, ask for a replacement.
- 4. If hot foods are served cold or warm, ask food to be simmered thoroughly, ask to make another selection, or do not consume food in question.*
- 5. Avoiding holding leftovers taken from the restaurant between 40° F and 140° F for longer than two hours.
- 6. Refrigerate leftovers at 40° F or below.
- 7. Before eating leftover hot foods, reheat to 165° F.

*The Minnesota Department of Health requires holding hot foods above 150°F in restaurants and other food service establishments. This further ensures that bacteria will not multiply during the holding period.

References

- 1. Anderson, K. A. and L. Nierman. 1986. Eating Right is Basic 2, Michigan State University Cooperative Extension Service and Extension Service, United States, Department of Agriculture, Washington, D.C.
- 2. Gravani, R. B. 1986."Bacterial Foodbome Diseases," Professional Perspectives, Division of Nutritional Sciences, Cornell University, Ithaca, NY.
- 3. Hackney, C. R. and A. Dicharry. 1988. "Seafood-borne Bacterial Pathogens of Marine Origin," Food Technology 42(3): 104.
- 4. Institute of Food Technologists. 1988. Bacteria Associated with Foodborne Diseases. A scientific status summary by the expert panel on Food Safety and Nutrition. Chicago, IL.
- 5. Kvenberg, J. E. and D. L. Archer. 1987. "Economic Impact of Colonization Control on Foodborne Disease," Food Technology 41 (7):77.
- 6. Packard, V. 1981."Food-borne Disease," AG-FS-1072, Minnesota Extension Service, University of Minnesota, St. Paul, MN.
- 7. United States Department of Agriculture, Food Safety and Inspection Service. 1984."The Safe Food Book, Your Kitchen Guide," Home and Garden Bulletin, Number 241.
- 8. Zottola, E. A. 1981 ."Staphylococcus Food Poisoning," AG-BU-0483, Minnesota Extension Service, University of Minnesota, St. Paul, MN.
- 9. Zottola, E. A. 1980."Salmonellosis," AG-BU-0477, Minnesota Extension Service, University of Minnesota, St. Paul, MN.
- 10. Zottola, E. A. 1979. "Clostridium perfringens Food Poisoning," AG-BU-0487, Minnesota Extension Service, University of Minnesota, St. Paul, MN.

11. Zottola, E. A. 1976."Botulism," AG-BU-0490, Minnesota Extension Service, University of Minnesota, St. Paul, MN.

William Schaferis an extension food technologist with the Minnesota Extension Service and an assistant professor in the Department of Food Science and Nutrition, University of Minnesota.

Septic System Density and Infectious Diarrhea in a Defined Population of Children

Mark A. Borchardt, Po-Huang Chyou, Edna O. DeVries, and Edward A. Belongia

¹Marshfield Medical Research Foundation and ²Department of Pediatrics, Marshfield Clinic, Marshfield, Wisconsin, USA

- <u>Introduction</u>
- Methods
- Results
- Discussion

ANNEX 5

Gram Staining

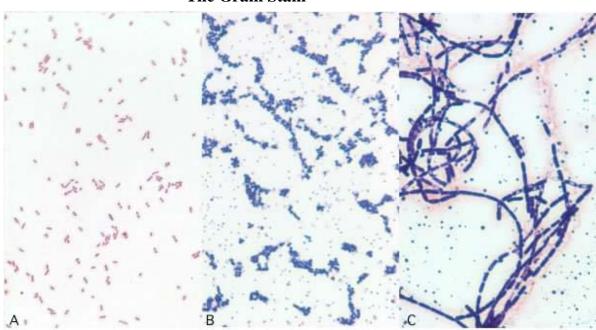
Gram Stain

The Gram stain, performed properly, differentiates nearly all bacteria into two major groups. For example, one group, the gram-positive bacteria, include the causative agents of the diseases diphtheria, anthrax, tetanus, scarlet fever, and certain forms of pneumonia and tonsillitis. A second group, the gram-negative bacteria, includes organisms which cause typhoid fever, dysentery, gonorrhea and whooping cough. In Bacteria the reaction to Gram stain reagents is explained by different cell wall structures. Grampositive microbes have a much thicker cell wall, while that found in Gramnegative microbes is thinner. Microbes from the Archaea domain contain different cell wall structures than that seen in microbes commonly found in the lab (Bacteria domain). However, they will still have a species specific Gram stain reaction, even though the underlying macromolecular structures are different.

The Gram stain is one of the most useful differential stains in bacteriology, including diagnostic medical bacteriology. The differential staining effect correlates to differences in the cell wall structure of microorganisms (at least Bacteria, but not Archaea as mentioned above). In order to obtain reliable results it is important to take the following precautions:

• The cultures to be stained should be young - incubated in broth or on a solid medium until growth is just visible (no more than 12 to 18 hours old if possible). Old cultures of some gram-positive bacteria will appear Gram negative. This is especially true for endospore-forming bacteria, such as species from the genus Bacillus. In this class, many of the cultures will have grown for more than 2 days. For most

bacteria this is not a problem, but be aware that some cultures staining characteristics may change!


When feasible, the cultures to be stained should be grown on a sugar-free medium. Many organisms produce substantial amounts of capsular or slime material in the presence of certain carbohydrates.
 This may interfere with decolorization, and certain Gram-negative organisms such as Klebsiella may appear as a mixture of pink and purple cells.

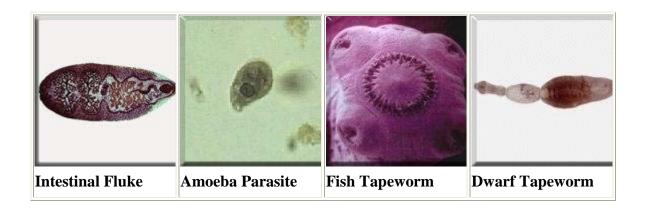
Gram stain procedure

Below is a procedure that works well in the teaching laboratories.

- 1. Cover the slide with crystal violet stain and wait one minute.
- 2. After one minute wash the stain off (gently!) with a minimum amount of tap water. Drain off most of the water and proceed to the next step. It may help to hold the slide vertically and touch a bottom corner to paper toweling or blotting paper.
- 3. Cover the slide with iodine solution for one minute. The iodine acts as a mordant (fixer) and will form a complex with the crystal violet, fixing it into the cell.
- 4. Rinse briefly with tap water.
- 5. Tilt the slide lengthwise over the sink and apply the alcohol-acetone decolorizing solution (dropwise) such that the solution washes over the entire slide from one end to the other. All smears on the slide are to be treated thoroughly and equally in this procedure. Process the sample in this manner for about 2-5 seconds and immediately rinse with tap water. This procedure will decolorize cells with a Gram

- negative type of cell wall but not those with a gram-positive type of cell wall, as a general rule. Drain off most of the water and proceed.
- 6. As the decolorized gram-negative cells need to be stained in order to be visible, cover the slide with the safranin counterstain for 30 seconds to one minute.
- 7. Rinse briefly and blot the slide dry. Record each culture as Gram positive (purple cells) or Gram negative (pink cells).

The Gram Stain


A photomicrograph of gram-positive and gram-negative bacteria. Note that Gram reaction is dependent upon cell wall structure. A) E. coli a common gram-negative rod found in the colon. B) Staphylococcus epidermidis a gram-positive cocci found on the skin. C) Bacillus cereus a gram-positive rod found in the soil.

ANNEX 6

Parasites

The Silent Killers

The Secret World of Parasites

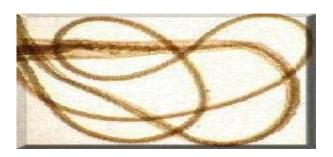
"What you will probably never hear from your family doctor"

Researchers estimate that parasites are found in more than 80% of the people in the world. It is thought that 92% of Americans host one or more forms of parasites. Parasites can range from tiny amoebas, visible only under a microscope, to tapeworms 3 feet to 30 feet in length. There was a case in which a 19 pound worm was taken out from an obese woman. She not only had to eat for herself but for this worm as well. In addition to the digestive tract, they can inhabit in muscle tissue, the bloodstream, the brain the heart and other vital organs!!

Parasites infest people in many ways:

THREADWORM LARVAE, enter skin from the soil and pass through the bloodstream to the lungs, sometimes causing pneumonia. They travel through air passages to the pharynx where they are swallowed and grow to adulthood in the small intestine.

TRICHINA WORM LARVAE found in undercooked pork, migrate from the intestines to other parts of the body through the blood and lymphatic systems, eventually lodging in muscles, especially chest muscles and the diaphragm. When the larvae of the pork tapeworm enters the vain, it can cause seizures and epilepsy. Blood flukes and eggs enter the body through infected drinking water.


FLUKES can live in the bladder, intestines, liver, lungs, portal venus system, rectum and spleen, laying eggs in a host for up to 20 years.

Pinworm

PINWORMS EGGS can be transferred to the mouth by fingers, clothing and bedding. Certain amoebas and most parasites are thought to be transferred to the host body through the food we eat and the water we drink.

TAPEWORMS there is one type of fish tapeworm that used to be prevalent in the Great Lakes region. In some people, this may produce a condition closely resembling pernicious anemia. This is because the worm absorbs vitamin B 12 from the body. If the head is not expelled the whole worm will grow back!!! The fish tapeworm can produce more than 1,000,000 eggs a day in humans!!!

Whipworm

WHIPWORM makes a soup out of colon tissue -- then sucks it up.

Whipworms, another type of roundworm that can be present in humans, eat the tissue in your colon. Most of these worms live in the cecum but heavy infestation can be found throughout the entire colon. These worms are shaped like a whip. The top two-thirds is thin, the bottom third is thicker. The whipworm feeds itself by thrusting its thin end into the colon wall, and then injects a digestive fluid which converts this colon tissue into liquid which the worm sucks up. They make a soup of the tissue, in effect.

Roundworm

ROUNDWORMS looks like a common earth worm. The female worm may be as thick as a lead pencil, and both sexes are creamy-white in color. Some of the largest roundworms are 6 to 12 inches long. The mature female roundworm can produce an estimated 200,000 eggs daily. According to

Markell and Voge in Medical Parasitology, "the amount of roundworms in a single individual may reach staggering levels." They estimate an infected person may have hundreds, and even thousands or more roundworms.

One unknown side effect of drugs is that they can drive a parasite from one organ to another. This shows a potential danger of drugs that hardly any doctors are aware of. Imagine if a person takes a drug to eliminate one problem and this drug indirectly drives a parasite from its natural resting place into another organ--such as the liver. Then the person later comes down with severe liver problems, and no one will ever know what caused the problem in the first place. Perhaps there must be dozens of similar examples which could apply to other organs as well.

Hookworm

HOOKWORMS inject an anti-coagulant into the blood to insure it will get a good supply. It has an innate intelligence like all creatures in nature. It often penetrates the wall of the small intestine until it reaches a small blood vessel. Once it finds this vessel, it will inject and anti-coagulant into the blood to prevent the blood from clotting. In this way, the hookworm is insured of a good supply of blood. The hookworm uses the hemoglobin in the blood to get oxygen to breath.

[Reference: Alternative Medicine- The Definitive Guide compiled by The Burton Goldberg Group]

Parasites Are Dangerous

Parasites are like unwanted guests who eat your food, leave trash on the floor, and throw the day-to-day functions on your household completely out of kilter. Although some parasites may not cause apparent symptoms, others are sources of justifiable concern because they:

- 1) Steal nutrients intended for your body.
- 2) Damage your tissues and / or infuse your system with toxic byproducts.
- 3) Unbalance your system by forcing it to continuously compensate for their presence.

Some parasites are life-threatening--killing or handicapping many people every year--while others are a perpetual drain on the nutrients needed to drive and maintain the normal functions of your biosystems.

Purge Drives them Out

Over the millennia, parasites have learned to invade and live in the human body because it provides them a constant flow of nutrients. Having developed specialized defensive mechanisms to protect themselves from the body's efforts to recognize and kill them, these parasites thrive in a bountiful, living environment to which they are well acclimated.

Unfortunately, this is not a two-sided proposition. Parasites thrive in your body, but your body does not thrive hosting most parasites. The all-natural ingredients of NEWAYS' Purge help your body create an environment hostile to these opportunistic parasites, but nourishing to the naturally occurring flora and biosystems that help your body function properly.

Three Aspects of Parasites Purging

Your body really needs three things to occur in an effective program of parasite elimination:

1- The Parasites must be neutralized or weakened so they will release their

hold in your body's structures.

2- The dead or weakened parasites and their toxins must be flushed from your system.

The newly liberated systems should be supplemented with reinforcing

3- nutrients to help your body strengthen them and help prevent reinfestation.

<u>Purge</u>, <u>Feelin' Good</u> and <u>Maximol Solutions</u> are a powerful triad of natural products that work interactively to help achieve each of these goals.

Common Symptoms of Parasites in Humans

Constipation: Some worms, because of their shape and large size, can physically obstruct certain organs. Heavy worm infections can block the common bile duct and the intestinal tract, making elimination infrequent and difficult.

Diarrhea: Certain parasites, primarily protozoa, produce a prostaglandin (hormone-like substances found in various human tissues) which creates a sodium and chloride loss that leads to frequent watery stools. The diarrhea process in parasite infection is thus a function of the parasite, not the body's attempt to rid itself of an infectious organism.

Gas and Bloating: Some parasites live in the upper small intestine where the inflammation they produce causes both gas and bloating. The situation can be magnified when harder-to-digest foods such as beans and raw fruits and vegetables are eaten. Persistent abdominal distention is a frequent sign of hidden invaders. These gastrointestinal symptoms can persist intermittently for many months or years if the parasites sites are not eliminated from the body.

Irritable Bowel Syndrome: Parasites can irritate, inflame and coat the intestinal cell wall, leading to a variety of gastrointestinal symptoms and cause inadequate absorption of vital nutrients, particularly fatty substances which are absolutely essential for the proper inner working of our bodies. This malabsorption leads to bulky stools and steatorrhea (excess fat in feces).

Joint and Muscle Aches and Pains: Parasites are known to migrate to encyst (becomes enclosed in a sac) in joint fluids and worms can encyst in

muscles. Once this happens, pain becomes evident and is often assumed to be caused by arthritis. Joint and muscle pains and inflammation are also the result of tissue damage caused by some parasite or the body's ongoing immune response to their presence.

Anemia: Some varieties of intestinal worms attach themselves to the mucosal lining of the intestines and then rob vital nutrients from the human host. If they are present in large enough numbers, they can create enough blood loss to cause a type of iron deficiency or pernicious anemia.

Allergies: Parasites can irritate and sometimes perforate the intestinal lining, increasing bowel permeability to large undigested molecules. This can activate the body's immune response to produce increase levels of eosinophils, one type of the body's fighter cells. The eosinophils can inflame body tissue, resulting in an allergic reaction. Like allergy, parasites also trigger an increase in the production of immunoglobulin E (lgE).

Skin Conditions: Intestinal worms can cause hives, rashes, weeping eczema, and other allergic-type skin reactions. Cutaneous ulcers, swellings and sores, itchy dermatitis and a number of types of lesions can all result from protozoa parasite invasion.

Granulomas: Granulomas are tumor-like masses that encase destroyed large or parasitic eggs. They develop most often in the colon or rectal walls but can also be found in the lungs, liver, peritoneum, and uterus.

Nervousness: Parasites metabolic wastes and toxic substances can serve as irritants to the central nervous system. Restlessness and anxiety are often the result of a systemic parasite infestation. Perhaps that's why after completing a parasite cleansing program, many people swear that their persistently grouchy mates or relatives have become a lot more pleasant and patient. :The most famous tapeworm of recent years belonged to "the legendary opera singer Maria Callas. She had a serious weight and skin problem. When

the tapeworm was detected and removed, her weight dropped, her skin improved and her temperament mellowed", writes Gittleman.

Sleep Disturbances: Multiple awakening during the night, particularly between 2 and 3 a.m. are possibly caused by the body's attempts to eliminate toxic wastes via the liver. According to the traditional Chinese medicine these hours are governed by the liver. Sleep disturbances are also caused by nocturnal exists of certain parasites through the anus, creating intense discomfort and itching.

Tooth Grinding/Clenching: Bruxism - abnormal grinding, clenching, and gnashing of the teeth has been observed in cases of parasitic infection. These symptoms are most noticeable among sleeping children. Bruxism may be a nervous response to the internal foreign irritant.

Chronic Fatigue: Chronic fatigue symptoms include tiredness, flu-like complaints, apathy, depression, impaired concentration and memory problems. The physical, mental and emotional symptoms can be caused by parasites which facilitate malnutrition resulting in improper absorption of proteins, carbohydrates, fats and especially vitamins A and B-12

Immune System Dysfunction: Parasites depress immune system functioning by decreasing the secretion of immunoglobulin A (lgA). Their presence continuously stimulates the system response and over time can exhaust this vital defense system, leaving the body open to bacterial and viral infections.

Excess Weight, Acne, Cancer and Others: The following conditions may also be tell-tale signs of a parasitic invasion: weight gain, excessive hunger, weight loss, asthma, bad taste in the mouth and bad breath, diabetes, epilepsy, acne, migraines and as incredible as this may sound, even the biggest killers: heart disease and cancer.

Some of the experts are quite cautious about this subject, and will only acknowledge a "possible" link between the parasites and these diseases. Other doctors, like the much-quoted Dr. Hulda Clark, her ground-breaking book "The Cure for all Cancers" claims that most cancers are caused by the "fasciolopsis buskii" parasites and that every single one of her patients with cancer had parasites. Once Dr. Clark eliminated their parasites, incredibly, the tumors also disappeared.

Although the doctor's point of view was based on hundreds of well-documented case histories, her skillfully argued view can be considered by some to be controversial. Yet some of us at this point may wonder why all the world's doctors are presumably trying to find a cure for cancer and heart disease if the answer is so simple? The politics of disease treatment is a hotly debated subject and is a topic of many future articles, however, it's worthwhile to think for a minute about the tens of thousands of dollars that each heart surgery or chemotherapy costs, as opposed to say an herbal alternative that would only cost a couple of hundred dollars. Where is the incentive for the medical profession and the hospitals to promote such and inexpensive option? Where would they profit more? If tomorrow we found a cure for one of the leading diseases, then a huge part of our economy would collapse and millions of health care workers would lose their jobs. Food for thought isn't it?

A Colon Therapist Speaks

"People Who Are The Sickest, They Have The Most Parasites!"

Q. Can worms affect peoples' health?

A. The people that are the sickest, those are the ones I get the most out of. Like the lady with shingles. She was about 70. She had terrible shingles - a very bad skin condition - all over her face. Her whole face on one side, and her eye and hair were all weeping water. We got an hour and a half of solid worms out of the colonic tube. And I filled her only once. It was SOLID worms! About seven different kinds, all intermingled. Every worm you could think of came through that colon tube. No pulp, no water, just worms for an hour and a half --if just flowed through. SOLID! After the worms were all out, the shingles went away. Completely.

For ten years I had horrible liver pain. It was caused by liver flukes

Q. Did you ever have worms yourself?

A. Are you kidding? Everyone has worms. I have had liver flukes that were 12 inches long.

Q. And you saw them?

A. Yes! They were horrible! They were twisted around each other 4-5 at a time. I had pain in my liver for over ten years. I ended up in the hospital twice all doubled up with pain. They said it was a muscle spasm. After the liver flukes came out, I haven't had any pain since. I even got the eggs of the

flukes out. I showed them to another therapist who de-worms people, but I didn't tell her they were mine. She said, "Those aren't worms from the colon, those are worms from the liver. Those are liver flukes." I showed them to another expert who also confirmed that they were liver flukes. "These are huge." He said.

Q. How many people have liver flukes?

A. I don't know exactly...but the number is large, and they don't even know they have them.

<u>Tapeworms</u> are scavengers, they eat your food before you do.

Q. I can see the waste of taking vitamins and minerals without deworming first.

A. The worms will eat them. They eat the nutrients first.

Q. Tell me about the Tapeworm.

A. It can weigh up to seven pounds! It eats so much of your food, your nutrients, it makes you anemic. They make people so sick...I can't tell you. The head usually lives in your stomach, waiting for your food. They're vicious; they eat a lot; they're scavengers. Even when you sleep, they're eating. Every other person has a tapeworm. You can quote me on that...every other person.

Q. What a horrible thought. They just sit there waiting for your food!

A. It's true. They wait for you to eat. Your dinner is their dinner.

Q. That's amazing. You go out to a good restaurant, eat and expensive meal, and the tapeworm get first crack at it.

A. That's right. That's why people are so anemic. My friend in New York had a big one...it was attached to the intestinal wall right by the ileocecal valve. She said she could feel this worm wiggle. After she killed it, she reeked because it was rotting inside of her. She smelled awful.

Q. Why couldn't she get it out?

A. Because it wasn't rotting enough. It had to fall apart first. Her breath smelled like something rotting. The dying tapeworm was permeating and odor through the tissues of her body.

Q. So if a person has a lot of worms, they will have an odor?

A. Absolutely. Many of my patients come in smelling terrible. That's how one of my patients knew she had a tapeworm. A 50-inch worm came out. They are flat and about an eighth of an inch thick. All the segments are joined together like a chain and they keep growing one segment after another. Just one little segment remaining in the body can grow a new tapeworm. Just one little segment can grow a monster. That's all it takes. They live in your stomach, not the colon, usually right near the cecum where it dumps into the small intestine, where they can get all your food before it gets absorbed in the intestine.

Q. You've actually seen a 50 inch tapeworm come out?

A. Oh, sure. And once I saw a 36 inch segment that lay in the colon tube and wouldn't break off. It just lay there with everything else washing around it. Finally, it broke off. Another man got a tapeworm out of his stool - he saw it in his toilet. But he never got the head out, so it keeps re-growing. Three times a woman in New York had tapeworms come out. It is like a head with an octopus...a head with feelers. She got segment of 50 inches, 36 inches, 20 inches and more. Everyday she would get more tapeworm out.

Beef is loaded with tapeworms.

Q. Where do most people get the tapeworm from?

A. We get it from beef. I recently went to dinner with some friends and I told them about the dangers of eating rare beef. I told them about the tapeworm problem, but they ordered rare beef anyway. They said they couldn't eat it any other way.

Q. Didn't they believe you?

A. They didn't believe that good meat has tapeworms in it. What they didn't understand is that just one little spore in the meat can hatch in your stomach and grow a tapeworm. It can be deadly. It's the price people have to pay for eating their steaks rare, or medium rare.

Q. Tell me more.

A. I once had a woman with a large tapeworm. I could feel it by placing my hand on her stomach. If I disturbed it by rubbing her stomach, I could feel it unwind, stretch out and start moving through the intestine and curl up in another place. It was huge! Enormous! And she was a little person - only 115 pounds. Worms can cause blockage in your colon.

Q. How do worms cause health problem?

A.. You already know that they eat your nutrients. But their filthy excretions are very toxic and can cause many health problems by spreading throughout your body. Every organ can be affected.

Q. You say worms and parasites live in the layers of the colon?

A. That's right. When a person is constipated, it's because of layer upon layer of impacted fecal matter in the colon. This is where the parasites live. Different parasites live in different layers of this fecal matter. That's why I see so many different parasites and worms as I clean a persons' colon.

Q. You've mentioned that you see a lot of worms.

A. Yes, one girl lost two gallons of them. She was tiny to begin with and was constipated - she could never get a nice, steady flow. It was the worms that prevented her from having bowel movement.

Q. Do people lose weight when they pass these worms?

A. Certainly! If you pass a seven pound tapeworm, you've just lost seven pounds. If you pass several quarts of worms and parasites, you're now many pounds lighter. People also lose inches from their waist, too, because these filthy critters take up a lot of space. If you're constipated, and have a lot of impacted fecal matter, this also takes up space. Many people with large tummies are really not fat--they just have a lot of backed-up fecal matter bulging out. This compounds the problem, because the colon muscles cannot contract if there is too much weight in it.

Q. Have you ever seen a patient who didn't have worms?

A. Never! In nine years of doing colonics, I have never seen a person who didn't have worms. Every single patient had worms.

Be Careful of pork products.

Q. How safe is it to eat pork today?

A. A doctor in Chicago put a piece of raw pork tissue under a microscope. It was loaded with living worms. Everything was moving, and all the samples were the same. Then he cut the pork, and charred in on the grill. He made it into charcoal and then put some of that under the microscope. The parasites were still moving.

Q. Would that apply to most pork today?

A. Well, if charcoal pork still had living parasites, this would mean that it's impossible for a normal person to kill the parasites in the pork. Why take chances?

Q. Have you ever seen hookworms in a client?

A. Oh yes. They were all alike. They were about six inches long, gray in color and came to a point at each end.

Q. What is the most prevalent worm you see in people?

A. Those long, white ones. The granddads are black. They are as thick as fountain pens and usually ten inches long. Some tumors-like masses may really be pockets of parasites.

Q. I've heard that there can be parasites in the heart.

A. Absolutely! You can have worms in every organ...the eyes, the brain, the liver, the spleen, the pancreas...the heart is no exception. Many people have fatty tumors in the legs. They may feel like hardened material, but these can be pockets of parasites. They are encased in calcified material.

Q. What other areas of the body have worms?

- A. Worms are everywhere. Worms in the pancreas causes diabetes.
- Q. You mean if worms migrate to the pancreas, you get diabetes?
- A. If you get too many of them there, yes. Guess what causes appendicitis? Worms! Often when an inflamed appendix is removed, it is full of worms. They are what caused the rupture. You can have worms in the tonsils. They can be in the gall bladder or any other organ in your body.

Q. Worms are terrible. They go wherever you go.

A. You're right. And when you die, they eat you up.

Q. Can you get worms and parasites in the muscles?

A. You bet. What do you think trichinosis is? Parasites in the muscles. Remember the woman earlier who had worms crawling out of her skin? They were from her muscles. She was in her garden and the warmth of the sun drove them out.

Q. Is anyone worm free?

A. No. Someone told me that 98% of the people have worms...I say 100% have worms of one type or another. People with pets have different worms than people without pets...people on farms have different worms than people in the cities. But we all have worms!

Note: Colonics come very handy. Everyone should go through a colonic cleansing, done by a professional. Just remember one thing; Colonics do not kill the worms or parasites, it just helps you to unload them faster. Purge will do the killing!

United States Office of Water September 2000 Environmental Protection Agency 4304

GIARDIA: DRINKING WATER FACT SHEET

What is Giardia?

Giardia (je-ar'de-ah) are protozoanparasites which occur in a trophozoite and an oval-shaped cyst form. Cysts excreted in the feces of an infected host move passively through the environment. If cysts areingested, infection may be transmitted to another vertebrate host. The trophozoite causes infection. Excystation to the trophozoite form is initiated in the stomach and completed in the small intestine. The trophozoites divide, attach to the small intestine, and then detach for unknown reasons. During the encystment process, they become rounded and elaborate a cyst wall that protects the cyst as it is excreted and carried through water and other media.

Numerous species of Giardia havebeen found in a variety of mammals, birds, reptiles, amphibians, and fishes. Giardia hasalso been detected in beaver, muskrats, wading birds, voles, mice, shrews, gerbils, rats, deer, native marsupials, Australian brush tail possums, ringed seals, and llamas. There is no general agreement on the criteria to define species; host specificity, body size and shape, internal structures, and biochemical, molecular, and genetic techniques have all been used. Scientists and physicians describe the specie(s) responsible for human infections as G. lamblia, G. duodenalis, or G.intestinalis.

Where has Giardia been found?

The wide occurrence of cysts in humans and animals suggests that soil can

Be contaminated with Giardia through fecal deposition and sewage disposal practices.

Municipal waste waters likely always contain Giardia cysts. Giardia is distributed worldwide in lakes, ponds, rivers, and streams. It is even found in high quality water sources with no municipal wastewater discharges. All surface waters probably contain Giardia, and whether cysts are detected depends largely on the methods used to collect and analyze watersamples.

In North America, higher levels in water are often reported in the late summer, fall and early winter. Generally, there is no correlation of cyst levels in water with coliform bacteria. When Giardia cysts are detected in environmental samples, information about viability, infectivity, or species is not usually available.

Reported Giardia levels have ranged from 10,000 to 100,000 cysts/L in untreated sewage, 10 to 100 cysts/L in treated sewage, and 10 or few cysts/L in surface water sources and tap water. Cysts have also been detected in cisterns and in wells contaminated by surface water or sewage. Levels are generally higher in water sources influenced by agriculture (e.g., cattle or dairy farming) or municipal and residential wastewaterdischarges. Contamination levels may fluctuate due to storms, agricultural practices, and the operation of wastewater facilities. Giardia has been detected on stainless steel and Formica® surfaces in day care centers. Limited information is available on the levels of cysts in foods; improvements areneeded in both sampling and analytical methods. There are no published reports on the occurrence of Giardia in air.

How long can Giardia cysts survive in the environment?

The survival of Giardia cysts in the environment is significantly affected by

temperature; survivability decreases as the temperature increases. A small fraction of cysts can withstand a single freeze-thaw cycle. Cysts can survive for 2 to 3 months in water temperatures of less than 10/C, and at 21/C, cysts have remained viable for almost onemonth. Cysts are killed in 10 minutes at a water temperature of 54/C. Raising the water temperature to boiling immediately kills cysts.

How infective are Giardia cysts?

Giardia cysts are highly infective. As few as ten human-source Giardia cysts produced infection in a clinical study of male volunteers. The incubation period (time interval between ingestion and the first appearance of symptoms) can range from 3 to 25 days.

Can Giardia be transmitted between animal species?

Giardia from some animals exhibit anapparent high degree of host specificity, but other isolates may infect more than one host. The role of animals in causing human infection is not clear, but evidence suggests that the beaver and possibly the muskrat is a source of infection for humans.

How prevalent is Giardia infection in humans?

Giardiasis is the most commonly reported intestinal protozoan infection worldwide; an estimated 200 million people are infected each year. In the United States, G. lamblia is the most frequently identified parasite in stool specimens submitted for parasitological evaluation. Giardia infection tends to be more common in children than adults. Depending on the geographical area, studies have found from 1-68% of children to be infected. In many

developing countries, most children under five years of age have been infected at least once. In two studies in the United States, 7% of children aged 1 to 3 years and 11% of infants and toddlers tested for admission to day-care centers were found to be infected.

How prevalent is Giardia infection in domestic and wild animals?

Giardia is a common protozoan parasite of farm animals, especially calves and lambs. Dogs are frequently found infected; cats less frequently. In different areas of the United States, 7-16% of beavers were found to be infected; 95% of muskrats were found to be infected.

What are the health effects of Giardia infection?

Giardia infection may be acquired without producing any symptoms, and this is often the case for children. In symptomatic patients, acute diarrhea is the predominate feature. In some instances, diarrhea may be transient and mild, passing without notice; in others diarrhea can be chronic. Other symptoms may include abdominal cramps, bloating, flatulence, steatorrhea (daily losses of fat in feces greater than 7 grams), weight loss, and occasionally vomiting. Stools may be pale, greasy, and malodorous. Weight loss may be significant. In some patients, symptoms last for only 3 or 4 days, while in others symptoms can last for months or years. Rarely does Giardia infection cause death, but each year 4,600 persons with giardiasis are estimated to be hospitalized in the United States.

Hospitalized cases are primarily children under five years of age, and dehydration is the most frequent co-diagnosis. A potentially serious consequence is nutritional insufficiency which may result in impaired growth and development of infants and children. Other reported associations with giardiasis in children include malabsorption of iron, allergic reactions, inflamation of the synovial membranes of major joints, and nonprogressive retinal changes; these all require additional study.

Is treatment available for giardiasis?

As with all diarrheas, fluid replacement is important. Anti-giardial agents can be important in the management of individual cases but may not prevent reinfection of children in day-care centers or areas where exposures are frequent. Drugs have different effectiveness in their ability to clear Giardia, and side-effects should be considered, especially for pregnant women.

Who is at risk?

Giardia is frequently spread directly from person to person, especially among young children in day-care centers, nurseries, or institutions and among persons living in areas with poor sanitation and hygiene. Although 7-54% of children attending daycare centers in the United States may be infected, infections are primarily without symptoms and do not result in adverse growth effects. An estimated 5-20% of household contacts and 9-35% of care-center staff also may be infected. Studies have not found that pets are an importance source of infection. Several small foodborne outbreaks have been associated with ice and foods contaminated by food service workers, but restaurant-associated transmission of Giardia does not appear to be a significant problem. High attack rates have been reported in travelers to endemic areas. Giardiasis can also be transmitted by some sexual activities, particularly among male homosexuals who practice oral-anal sex.

Giardia can be an important cause of endemic and epidemic waterborne illness. In the United States, increased risks have been found in populations where surface water sources are not filtered, persons who use shallow well water systems, persons who drink contaminated water while picnicking, camping, and hiking, and persons who accidently ingest water during swimming and other water recreational activities. Poorly maintained wading and swimming pools and heavily used swimming areas at lakes and ponds

pose an increased risk, especially if they are used by diaper-age toddlers or other persons prone to fecal accidents.

What causes waterborne outbreaks?

Since 1971, Giardia has been the most commonly identified pathogen in waterborne outbreaks reported in the United States. More than 130 waterborne outbreaks have been reported in 27 states; both residents and travelers have been affected. Outbreak statistics emphasize the need for filtration of surface water, optimization of the filtration process, frequent monitoring of treatment effectiveness, and better protection and treatment for ground water.

How effective is water treatment?

When operated under appropriate conditions, commonly used filtration technologies can effectively remove Giardia cysts from water. The highest removal by granular filters is achieved when coagulation is optimized. Care must be exercised when selecting membranes; those that can remove Giardia cysts may not be effective for other protozoa, like Cryptosporidium, that are smaller in size. Commonly used water disinfectants can effectively inactivate Giardia cysts depending on the disinfectant concentration and contact time. Cysts are relatively more resistant to disinfectants than bacteria and viruses, and high doses and lengthy contact times may be needed. This may result in high levels of disinfection byproducts which are regulated by the EPA.

What is being done to reduce waterborne risks?

EPA's Surface Water Treatment Rule (SWTR) requires that public water systems filter, except in rare circumstances, and disinfect surface water and groundwater that is directly impacted by surface water; 99.9% of Giardia must be removed or killed.

How important is waterborne transmission of giardiasis?

A risk assessment has estimated that in the United States as many as 250 infections per 10,000 people may occur each year from exposures to Giardia in drinking water. Although the limitations of this risk assessment are recognized, this estimate suggests that more stringent water treatment requirements may be needed. The EPA is currently collecting occurrence information about Giardia in water systems throughout the country. When this information becomes available, waterborne risks can be estimated again using this and other newly developed risk assessment models.

Whom should I contact if I suspect an outbreak is occurring?

If you or members of your family are diagnosed with giardiasis and suspect that your neighbors, fellow travelers, or children's friends may also be infected, you should discuss this with your physician or a public health worker in your local or state health department. Most health departments require that physicians and laboratories report giardiasis cases to them. Health department epidemiologists investigate disease clusters and increased reports of disease to determine if they are caused by contaminated water or

food or other sources. Health departments may ask the Centers for Disease Control and Prevention (CDC) in Atlanta to assist in an outbreak investigation. The EPA can assist the CDC in the investigation of suspected waterborne outbreaks.

Whom should I contact if I am concerned about my drinking water?

If you suspect your water system is contaminated, you should contact your water utility and ask about the effectiveness of their treatment. State agencies can also provide information about public water systems and their water quality. In some states, the health

department will have regulatory jurisdiction; in others, a department of environmental quality or natural resources will have this responsibility. Your health department or county agriculture extension office can provide assistance and advice about the contamination and water treatment of nonpublic or individual water systems. Home and personal water treatment systems should be carefully selected. If your home water supply is subject to contamination with Giardia, you should select a system that can remove or kill 99.9% of Giardia and Cryptosporidium and 99.99% of waterborne enteric viruses and bacteria. Independent testing groups, like NSF International, evaluate the effectiveness of water treatment devices. Heating water to at least 70o C for 10 minutes or boiling water for one minute at sea level (three minutes at high altitudes) is also acceptable.

ANNEX 7

Water Treatment Optimization

BASIC REQUIREMENTS FOR OPTIMISATION

- 1.1 Introduction
- 1.2 Personnel
- 1.3 Management structure
- 1.4 Plant maintenance
- 1.5 Housekeeping

1.1 Introduction

Optimising water treatment plant operation is a concept applying to all plants because some operational improvements can always be made, whether in plants equipped with sophisticated instruments to monitor and control the operation, or in those with no laboratory or appropriate equipment; and whether in plants with highly trained and competent operators, or in those with operators who have little formal training but know from experience how to carry out their routine work.

Orientation for optimisation of plant operation must therefore cover a very broad spectrum of treatment plants and the people who operate them. Generalisations are difficult because each plant and situation will require a particular combination of measures to obtain optimum performance. In the industrialised world with well-equipped laboratories and well-trained personnel much of what follows may not apply, but in many less developed countries most or all of the suggested measures can bring significant improvements.

Producing best quality finished water and working at maximum capacity begins with the decision of water department managers to improve plant operation and provide the necessary resources. This implies a profound enquiry into the best treatment for the specific raw water; the application of new knowledge probably not available to the original designer; the use of the treatment plant operational history as contained in plant records; daily operator attention and monitoring of the important indicators of optimum treatment; and a renewed dedication of the operators to understand the fundamentals of water treatment, applying them in daily work.

Improved treatment plant operation does not just happen in response to decisions of policy: it is the action of many people throughout the water department that makes it happen.

1.2 Personnel

Optimising the performance of existing water treatment plants must be done mainly by plant operators - the design and construction have long been finished, and any errors or mistakes are now cast in steel and concrete. At this point, the problems which may have been built into the plant cannot easily be corrected and for all practical purposes will not be. Plant performance is therefore in the hands of those who operate it, from managers of the water department through to the operators and general workers in the plant itself.

1.2.1 Top management

In most cases where serious efforts to optimise performance are urgently needed, the water treatment plant would probably not have all the required equipment, supplies and qualified personnel. Meeting these needs will require the authorisation and support of top management including the head of the water department, the engineers in charge of water treatment and those empowered to allocate funds and personnel.

Major improvement will be possible if the water department is willing and able to provide engineering design assistance and financial support, resulting in a plant that produces two to three times more water of much better quality, and at a much lower unit cost.

1.2.2 Senior technical staff

Those most deeply involved with plant improvement are the operators themselves, but in most plants (both large and small and especially in the developing world) these operators are rarely qualified for laboratory work, or in the use of equipment such as jar-test stirrers, turbidimeters and pH meters, or qualified to make use of information from the laboratory to improve performance. It is essential therefore to have a technically trained person to be directly responsible, to lead work and to train the operators in these aspects of effective plant operation.

The best solution would be an engineer with relevant training who would understand more fully the physics and chemistry of treatment operations, follow manufacturers' instructions for equipment operation and maintenance, and use published material on plant operation and improvement. It is valuable to have an engineer as team leader, because engineering input will be essential for design and installation of some improvement measures.

The engineer should be assisted by one or more treatment plant operators who will thus acquire practical experience in making and maintaining improvements to the plant. Operators with capacity for learning and with an interest in self-improvement should be selected. If the treatment plant has an operating laboratory, the laboratory technician should also be directly involved in optimisation work, and should be aware of requirements for ongoing maintenance.

Optimisation is a continuing process and so the involvement of operators should be as broad as possible and should certainly include the long-term

supervisor. In most smaller treatment plants (less than about 2.5 l s⁻¹ or 200 m³ per day) a qualified technical person (engineer, chemist or highly skilled operator) will probably not be available and will have to come from some other sector of the water department. Whatever the situation, broad involvement encourages use of the acquired information, monitoring of plant performance, and thus a sustained improvement process.

1.2.3 Plant operators

For treatment plant operators to carry out their work properly they must:
\square Be trained in the fundamentals of water treatment plant operation.
☐ Be trained in the operation of their specific plant.
☐ Understand raw water characteristics at their plant and the quality standards to be met.
☐ Know their own specific job, know what they are supposed to do at all times and know what information is to be collected or calculated and recorded.
☐ Receive proper supervision and provide it to their subordinates.
Unfortunately, in most water treatment plants throughout both developing and industrialised regions, these requirements are not all met.

Few designers have any experience of water treatment plant operation and fewer operators have any input into the conceptual or final design of the plant for which they will eventually be responsible. If they had, many problems could be eliminated or at least greatly alleviated, but this is rarely the case and probably will not be for some time to come. Operators, therefore, must do the best with the physical structure for which they are responsible.

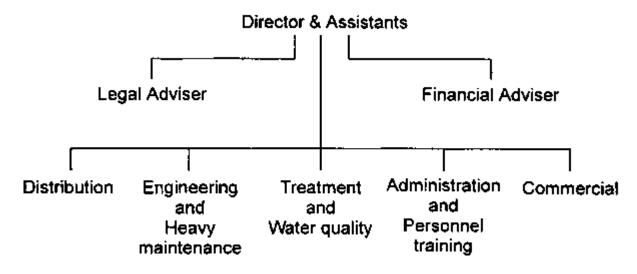
Competent, well-informed and motivated plant operators can do many things on their own to improve the performance of existing plants. These actions are, for the most part, directly related to operation but can also include simple structural or hydraulic changes. Such activities include:
☐ Control of the level of the intake structure from which raw water is drawn.
☐ Measurement of raw water flow into the plant.
☐ Control of the concentration of the coagulant solution in the solution tanks.
☐ Control of the coagulant dilution and dosage.
☐Construction of an effective diffuser.
☐ Location of a diffuser at the point of best application of the coagulant.
☐ Improving the shape and location of baffles in a hydraulic flocculation
basin.
☐ Improving the energy input of mechanical flocculation basins.
$\hfill\square$ Removal, cleaning and replacement of filter sand and support gravel.
☐ Building a new support gravel layer using inverse gradation.
☐ Repairing the filter bottom where it may be damaged.
☐ Verification of filter and backwash rates.
☐ Control of thedosage of chlorine and of lime.

☐ pH correction after the application of chlorine.
☐ Preventative maintenance programmes for plant equipment and structures
With technical assistance from the water department engineers and some modest financial support, competent operators can also expect to be able to do the following:
☐ Modify or relocate intake structures for flexible draw-off of high quality raw water.
☐ Design and construct a weir or flume to measure intake of raw water accurately.
☐ Construct and install a diffuser and piping to apply dilute coagulant at a weir or flume.
☐ Redesign and modify a flow-dividing manifold, if needed to distribute between basins.
☐ Provide proper energy input to flocculation basins by appropriate design.
☐ Design and buildcompartments for flocculation basins which use mechanical mixing, or modified baffling for those basins which use hydraulic mixing.
☐ Design and build auxiliary flocculation units if they are needed.
☐ Design and build a perforated baffle for the entranceinto the settling basin.
☐ Design and install a more efficient system of settled water removal.
☐ Verify the head loss through the filter and calculate the maximum filter rate.

\square Modify filter bottom and outlet piping for a filtration rate of 400450 m^3
m ⁻² per day.
☐ Remove rate of-flow controllers and design and install a perforated disk
into the filter outlet, to control maximum filter rate for adapting the unit to
declining rate control.

It is clear from these lists that operators (on their own, or preferably with both technical and financial assistance from the water department) can make very many important operational improvements. These measures can improve treated water quality, reduce treatment costs and, in most situations, increase the production capacity of the plant.

1.3 Management structure


Optimisation of plant performance is the result of effective plant operation and maintenance which depend on good management throughout the water department, starting at the top and influencing everything that the department does.

Many water departments are organised more or less as shown in Figure 1.1. Under the treatment division is the treatment plant but, depending on the city, there may be more than one plant. A treatment plant of 200-3001 s⁻¹, operating around the clock, should have a staff of one chief operator, one assistant chief operator, three to four operators, one or two electromechanics, four to five general workers, one laboratory technician and one administrative clerk.

The chief operator is responsible for overall plant operation, maintenance and supervision of all work. Under the chief operator there may be an assistant who substitutes for other operators in the case of illness or vacation and who is responsible for supplies of chemicals and materials, day-to-day maintenance of equipment and plant upkeep. During each shift of 8-12

hours, a designated operator is responsible for treating water at correct dosages, controlling plant flow to satisfy demand and taking note of any problems requiring the chief operator's attention. In smaller plants, the electromechanic is available during the day to work on any problem requiring specific expertise. Pumps, motors and equipment are always in need of overhaul and repair. Therefore the electromechanic does routine maintenance jobs, minor piping and hydraulic and structural work around the plant. Serious situations (including repairs which call for additional expertise) require help from the engineering division. During each shift there are one or more general workers available and during the day there can be more to do yard work and assist the electromechanics. Depending on the size of the plant, there is also a laboratory technician to do routine laboratory monitoring and testing. The clerk is responsible for producing reports, keeping inventory and other administration such as timekeeping and personnel reports.

Figure 1.1 Typical structure and functions within a medium-sized water utility

These are the people upon whom the optimisation of treatment plant performance directly depends. Their training and motivation is a major factor towards the success of the improvement process. For complete and thorough optimisation the personnel need concerned support from top management, proper equipment, and assistance from the engineering division. A new plant can thus emerge within the structure of the old one, producing much more water of an excellent quality.

1.4 Plant maintenance

The importance of plant maintenance is obvious, yet maintenance is so poor in many cases that continued emphasis is required. The subject is large and covering it in depth is beyond the scope of this book. Thus plant maintenance is treated only in general terms, with some specific reference to pumps and motors.

Maintenance includes the use and care of plant structures and equipment, in a way that will extend their useful life and will avoid breakdowns and emergencies. General rules can be stated which cover the broad maintenance picture:

of equipment. All equipment comes with instructions. Sometimes manuals

are in a foreign language and must be translated well so that important details are not lost or misinterpreted. There is a tendency always to find fault with equipment. Sometimes there may be a genuine fault, but more problems are due to misunderstanding or failing to follow instructions.

are due to misunderstanding or failing to follow instructions.
☐ Establish and follow an inspection and lubrication routine for each piece of equipment. Schedules and procedures should follow manufacturers' recommendations. To monitor implementation, these might be documented in maintenance records discussed below.
□ Keep records of maintenance and repair for each piece of equipment. Such records, properly filed, are important for the long-term efficiency of the plant. They show which items of equipment are easy or difficult and expensive to operate and maintain, guiding further purchase or rejection. A possible example (pump record) is shown in Table 1.1.
☐ Establish a plan for maintenance of the plant structures. Routines of cleaning, painting, and repair pay dividends in long and useful service. Most of water treatment is carried out in corrosive conditions and protective coatings need to be periodically repaired. The failure to repair concrete surfaces can cause exposure of reinforcing steel with eventual structural weakening and loss. Good preventative maintenance avoids expensive waste.
☐ Use photographs where possible. Whenever the need to record a specific condition is important, a photograph can be extremely useful as an exact record of the condition at a given time.
☐ Maintain a well-equipped workshop with a competent electromechanic, having a reasonable stock of pipes, electrical wire and essential repair parts. Pumps, motors and similar pieces of equipment are always wearing out, therefore a good workshop and competent mechanic are essential in maintaining the plant in good condition. Tools are sometimes lost or

"borrowed" and so an investment in maintaining a reasonable stock should be made. Many people in the plant use tools and a system to account for them is advisable. An example of a suitable scheme is one where everyone who uses tools has a set of chips that are lodged in exchange for tools and retrieved when the tools are returned to the store.

Table 1.1 Example of a pump maintenance and repair record, illustrating typical entries

Pump:	High Service Pump No. 1				
Pump	(manufacturer, model, serial number, power rating, maximum flow rate,				
data:	etc.)				
Date	Maintenance and repair	Ву	Remarks		
Date		whon	whom	Kemarks	
Every day	Inspect and observe operation	JD			
25-01-98	Installed new packing rings	JD			
10-02-98	Checked and greased	JD			
20-02-98	Installed new impeller	JD	Old impeller badly		
20-02-96			worn		
28-02-98	Noticed hearing unusual noise	JD	Reported to Chief		
10-03-98	Noise continues, so reported to Chief	JD			
11-03-98	Electromechanic inspected pump and	JD	Repair work		
11-03-90	motor	JD	scheduled		

1.5 Housekeeping

Housekeeping in the water treatment plant means cleanliness, orderliness and organisation. This means that the yard should not be cluttered with abandoned equipment and materials; the laboratory, warehouse and shops should be well organised and have an air of purpose about them; and electrical and hydraulic repairs should be done cleanly and securely by the appropriate personnel.

The appearance of the treatment plant, inside and outside, and the areas surrounding it give a good first indication of what may be expected.

Conscientious operation is suggested by a clean and orderly plant and grounds, whilst a dirty and disorderly plant raises concern over its efficient operation and the final water quality.

ASSESSING PLANT PERFORMANCE AND IDENTIFYING DEFECTS

- 2.1 Observing plant operation
- 2.2 Raw water intake
- 2.3 Raw water metering
- 2.4 Coagulant handling
- 2.5 Flocculation systems
- 2.6 Settling basins
- 2.7 Filters
- 2.8 Disinfection
- 2.9 Stabilisation
- 2.10 Checklist for plant review

2.1 Observing plant operation

The best way to observe plant operation is to follow the same route the water takes. Start with the raw water intake and go through the plant to the treated water reservoir. Firstly observe the operation of each unit, noting obvious problems, and begin to study the possible solutions. The next step is routine sampling to assess performance of each unit. Together with bench scale testing and pilot filter testing, an overall picture will emerge from which comprehensive improvement plans can be developed.

A study of the design of the plant is essential before making critical observations. Some plant problems are directly related to design, and there are several possible reasons for this:

Flows, volumes, surface loadings and velocities should be checked carefully when studying the plans and specifications. Table 2.1 provides an example of such information from a plant investigation. Another important aspect of design is the ease of operation. Very few designers have operated a treatment plant and most are therefore quite unfamiliar with operation issues.

After studying the plans carefully an observer should be fully aware of the general layout and unit design performance, as well as problems that exist or are possible in the future. All treatment plants can be improved (some more than others) to produce more water of higher quality. Study and analysis of each plant can yield substantial dividends to the water agency.

 Table 2.1 Unit loadings - information from a plant investigation

Grit chambers ¹		Presettling basins ²			Flocculation basins ³			Fi	Final settling basins ⁴			Filters ⁵		
Plan	Detent ion time (min)		Loadings						Loadings			Loadings		
flow (m³ s-¹)		Plant flow (m³ s-¹)	(m³ m⁻²/day)	(cm/ min)	Detentio n time (min)	Plant flow (m ³ s ⁻¹⁾	Detention time (min)	Plant flow (m ³ s ⁻¹⁾	(m ³ m ⁻ 2/day)	(cm/mi n)	Plant flow (m ³ s ⁻¹)	(m ³ m ⁻ 2/day)	(cm/ min)	
4	10.6	4	38.7	2.7	130	4	30	4	27.2	1.9	4	120	1.4	
5	8.5	5	48.4	3.4	104	5	24	5	34.0	2.4	5	150	1.7	
6	7.0	6	58.0	4.0	87	6	20	6	40.7	2.9	6	180	2.1	
7	6.0	7	67.7	4.7	74	7	17	7	47.5	3.3	7	210	2.4	
8	5.3	8	77.4	5.4	65	8	15	8	54.3	3.8	8	240	2.8	

```
^{1} Volume = 2,535 m^{3}
```

2.2 Raw water intake

Considerable effort should be made to decide the best intake location, because it will provide a benefit for the life of the water treatment plant. The intake structure should be located as close as possible to the plant, but more importantly at the point in the river or reservoir where the best quality raw water (lowest turbidity and pollution) may be found.

The quality of raw water may vary greatly with depth below the surface in still waters or large rivers. In addition, the depth at which the best raw water is found will often vary during the year. It is therefore of utmost importance that the intake structure has the flexibility of drawing raw water from various depths, from just below the surface down to a point near the bottom. If the structure does not offer flexibility or is in the wrong location, consideration can be given to changes (depending on the severity of the resulting problems) (see Chapter 7).

2.3 Raw water metering

It is important that operators know the rate of raw water intake at all times, because chemical dosing is directly related to raw water flow. Unfortunately, most plants in less developed countries, and many elsewhere, have unsatisfactory measurement of raw water flow. Measuring devices that need continued maintenance or which fail easily through corrosion or wear should be avoided.

Operators tend to rely on the number and capacity of raw water pumps operating to give them the flow of water through the water treatment plant.

 $^{^{2}}$ Area = 8,934 m 2 ; volume = 31,269 m 3

 $^{^{3}}$ Volume = 7,200 m 3

 $^{^{4}}$ Area = 12,723 m 2

 $^{^{5}}$ 16 filters, total area = 2,880 m 2

Wear of pump impellers and surface deterioration in the transmission line means that flow will vary over time. Nevertheless, this approach can still be a useful method if pumps are calibrated at least annually, using one of the flocculation and settling basins as a place to determine the actual volume of raw water entering the plant. For example, if the raw water pumping station has three pumps, and a standby pump, all of equal size, a settling and flocculation basin should first be drained to a known level, e.g. 2 m below the outlet elevation. The first raw water pump should then be started and pumping should be continued until the basin level has risen to the outlet level. The pumping rate is then calculated from refilled depth, basin area and pumping time. This exercise should be repeated using each pump and pumpcombination in operation. This simple calibration test will give plant operators good information (typically as 1 s⁻¹ or m³ per minute) for all pumping combinations with which to control proper coagulant dosages.

If a flow meter has been installed in the pipeline, calibration testing remains important and should be done each year, because meters shift out of adjustment and are not always correct.

2.4 Coagulant handling

The methods of handling chemicals in treatment plants vary widely from highly mechanised continuous systems to completely hand and batch methods. Any system can be satisfactory if designed and operated properly. What is important is that a correct dose be applied to the raw water as effectively as possible. This means certain information must be known accurately, namely:

☐ The dose required.
☐ The amount of coagulant per unit of volume in each batch.
☐ The amount of dilution water.
☐ That the dosing equipment applies the desired dose all the time

2.4.1 Primary coagulant selection

The most effective coagulant or coagulant and polymer combination can be determined with considerable precision and economy in the laboratory. Bench scale jar testing (see Chapter 5) should be used to determine the best coagulant, combination and sequence, and the most effective and economical dosing. Unfortunately, most plants do not carry out this simple but worthwhile procedure. Relatively few water treatment plants test the chemicals and dosages routinely and continuously to search for more effective and economical processes.

2.4.2 Preparation for use

Almost all plants in less developed countries and many plants in industrialised regions use dry, solid aluminium sulphate as their primary coagulant. Usually the solid alum is put into solution in batches, preparing one or more batches whilst another batch is being applied to the raw water. This method of preparation is unreliable and unsatisfactory in most plants, because the amounts of dry alum and water are not carefully determined for each batch, which in turn is because operators do not realise the importance of maintaining an exact alum concentration. The volume of the batch tank may never have been determined exactly, or the control marks may have been lost. Most batches may be within 10 per cent of the target but much better accuracy (e.g. 1 per cent) is easily obtainable, thus efforts to control amounts of water and alum, so that concentrations are more exact, are worthwhile.

The volume of the batch tanks and the amount of dry coagulant being dissolved should be known accurately. Tank volume is easily measured and dry aluminium sulphate is most often added from sacks on which the weight is clearly, and usually accurately, marked. It is essential, however, that the

operator clearly understands the importance of having an exact amount of water mixed with a certain number of sacks of coagulant to give a specific concentration. This principle of understanding as a foundation for good practice applies throughout the operations of the water treatment process.

To save space in batch tanks, alum solution prepared from solids is often too concentrated, usually in the 20-25 per cent solution range. The batch system is better designed to give a 10 per cent solution of alum (which is most economical) and makes it easier to dissolve the dry solids.

2.4.3 Application of coagulant to raw water

The most widely encountered deficiency in water treatment is in the manner of application of the coagulant to the raw water. Dilution of the coagulant down to a low concentration is very seldom done in any water treatment plant, simply because operators and plant engineers do not appreciate its importance and value. The tendency in many plants is to apply alum solution as it comes from the batch tanks. In those plants using solid alum cake this usually means a solution of about 20 per cent, and in plants supplied with liquid alum, it means almost a 50 per cent solution. In consequence it is common to observe a small, thin stream of alum solution falling into one comer of a mixing basin or onto the surface of a channel. This results in uneven dosing - a small amount of raw water receives far too much alum, while most of the raw water receives too little.

Coagulant should be applied at a concentration of around 0.5 per cent, and certainly less than 1 per cent. This provides a maximum volume of coagulant solution while maintaining a high enough concentration to avoid polymerisation and reaction with the dilution water. Plant performance observations will note insufficient dilution of the coagulant (see Chapter 7 for recommended coagulant feed systems).

Checking the system is relatively simple. Concentration of coagulant in the batch and the amount of coagulant solution being applied can be easily determined. Then, given the flow rate of raw water, the applied dose can be calculated. If the required dose is known it can be easily verified. Bench scale jar tests would indicate the proper dose but are seldom done.

The problems most commonly found in chemical feed systems are:

Coagulant dose is not changed in response to changes of raw water flow.

Constant head system not operating properly- the applied dose varies with the level of coagulant solution in the feed tanks.

Chemical feed pumps out of adjustment or completely worn and performing erratically.

The consequences are that expensive coagulant is wasted, floc formation is much less than is desired, and a large proportion of the colloids pass through the filters into the treated water.

The full importance of complete and instantaneous dispersion of all the coagulant with all the raw water has been recognised quite recently. It is very difficult to attain, due simply to physical constraints, but a close approach can be made. The requirements are application at a point of high turbulence, where the velocity gradient is at least 1,000 s⁻¹; and dilution of the coagulant to not more than 0.5 per cent (or 5 g of solid alum per litre of water).

Rapid mixing or coagulant dispersion is very seldom attempted in the most efficient and effective way. The initial reaction of the raw water with the coagulant is extremely rapid (and is over in a fraction of a second) and therefore it is most important that all the raw water and coagulant are mixed in less than 1 second or before the initial reaction is completed.

All or most of the colloids must be exposed to a portion of the coagulant, to accomplish the destabilisation so that a floc will be formed. Positively charged metal ions (most often Al³⁺) neutralise the negatively charged colloids and effective coagulation and agglomeration for floc formation can then occur. There are many mixing systems by which satisfactory results may be obtained. Hydraulic methods as described in Chapter 7 are recommended for less developed countries.

2.5 Flocculation systems

2.5.1 Manifold hydraulics

The transport of dosed raw water to flocculation basins is usually through an open concrete channel. Two main difficulties that can arise at this stage are ensuring an equal distribution among the flocculation basins, and avoiding excessive head loss along the route.

Manifold hydraulics must be applied wherever a pipe or channel discharges water to several points (distributing manifold), or collects it from several points (collecting manifold). In water treatment plants, distributing manifolds are often encountered in taking dosed water from the initial mixing point to a series of parallel flocculation basins; in distribution of water from flocculation basins to a series of settling basins; and in the filter backwash system, where water may be distributed to a series of transverse pipes or channels from a common header. All of these instances require application of manifold hydraulics to attain proportional (usually equal) distribution among all the points of discharge.

Distribution of water from a transport channel to a number of basins perpendicular to the channel might seem simple, and may be so when all hydraulic factors are understood and taken into account during plant design. Unfortunately for operation of most existing water treatment plants, the

effective application of manifold hydraulics has been neglected in their design.

Head loss in the transport system from the rapid mix unit to the flocculation basins occurs at 90° turns where velocities are high, or at the weirs that some designs incorporate to distribute the water. Chapter 7 illustrates ways to save head loss in design and to alleviate it in existing plants. This may be important if plant production is to be increased, because head loss increases at a parabolic rate with respect to velocity and can become a major impediment.

Examples of collecting manifolds in a water treatment plant include settling basin launder systems, and stages at which a series of parallel basins discharge into a common channel. These manifolds rarely function as they should, because of improper design. When four to six basins receive water from a single channel, it is common to find that one or two basins are getting 40-50 per cent more water than others. Clearly this is bad for treatment. Overloaded basins cannot function properly and will send high turbidity water on to the filters, causing filter maintenance problems and serious impairment of treated water quality. The trouble lies in the distributing manifold and in the filter backwash system. Poor distribution of wash water from headers to take-off piping causes uneven washing and soon leads to problems in the filter bed.

2.5.2 Flocculation

The fundamental defect in most flocculation systems is that they have been designed without good information on optimum velocity gradients, flocculation time, optimum energy input or taper of energy input during flocculation. All of this is basic information on how water reacts in the flocculation basins and which bench scale jar testing can provide. Over-

flocculation and under-flocculation often occur in the same basin, whether hydraulic or mechanical mixing is used.

Basins for mechanical flocculation must be divided into compartments to control the process. Short-circuiting and dead space are prevalent in basins with just one or two compartments, as most commonly found in older treatment plants. At least four compartments are needed to provide a reasonable evenness of flocculation. Direct effects of the mixing system have to be appreciated also, for example vertical rotary paddles create a higher velocity gradient at their faster-moving outer ends than near the axis of rotation.

In hydraulic systems, the velocity gradient around the ends of baffles is high while between bends it is very low. As floc particles collide and build during the process, this high and low energy input can be very detrimental and prevent optimum or even good floc formation. This results in poor settling, higher floc loads on the filters, and treated water of lesser quality.

Tapered input of energy in the flocculation process is needed to build large, settleable floc, yet few plants are designed to control tapered energy input properly. This is accomplished easily in hydraulic systems if the baffles are spaced correctly and the designer is aware of the velocity gradient to apply along the flocculation route. In mechanical mixing systems, several compartments are required with a separate agitator in each. Different energy inputs are applied in successive compartments, high at the beginning of flocculation and low at the end.

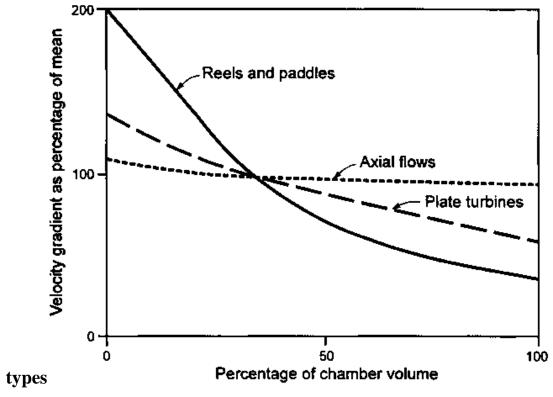
2.5.3 Horizontal flow systems

In observing a horizontal flow flocculation system, several factors should be examined:

☐ Appearance of the floc at the outlet
\square The number and design of compartments.
□ Means of applying agitation.
\square Flexibility of the agitation equipment to increase and decrease agitation.
☐ Time in the flocculation unit.
□ Short circuiting.
☐ Application of a polymer, where used.

Flocculated water, as it approaches the basin outlet, should have a thick floc churning around in clouds, which are of characteristic appearance. Between the heavy floc clouds there should be cracks, which are openings between floc clouds, where the water is very clear. These may be 2-5 cm wide, perhaps several metres long, and vary continuously with new cracks appearing, closing, opening, and changing position. The floc particles themselves will vary widely in size (some being very small and some large) but a floc size of 2-3 mm should dominate.

Compartmentalisation, as shown in Chapter 7, is simply a means of making the water follow a route designed to reduce short-circuiting, aiming to maintain flocculation time close to the optimum. It should be clear in bench testing that when the flocculation time is too short, poor floc is formed which does not settle well. By contrast, when floc stays in the basin for too long it has a tendency to break up, which also hinders settling. Hydraulic, baffled flocculation systems are compartmentalised effectively by design and so there is no possibility of short-circuiting (see Figures 8.9, 8.11 and 8.12 in Chapter 8).


Once the charge on colloidal turbidity particles has been neutralised by the metallic coagulant, the particles no longer repel each other and stick together as growing floc particles. In a completely quiescent environment, contact occurs less often than if there is some agitation. Bench tests show that too much agitation shears the floc and it does not grow, but too little agitation

does not provide enough opportunity for gentle contact between floc particles. There is therefore an optimum and bench testing can indicate the best floc-building environment. As floc grows, it can more readily be broken up and so the energy input must diminish along the flocculation system, i.e. agitation must be most gentle at the end of the system when the floc is largest and most easily fragmented. This applies both to the external provision of energy in mechanical mixing and to the design of baffle series in hydraulic mixing systems.

The agitation system has to maintain proper energy input across flocculation basins. Some kinds of equipment provide more even input, for better flocculation, than others (Figure 2.1). Axial flow propellers avoid the velocity-gradient variation of rotary paddles and agitate the entire basin quite evenly. Some hydraulic systems also transfer energy unevenly. At the ends of each baffle, where the water takes a 180° turn, the velocity gradient is higher than towards the midpoints of the baffles. The hydraulic system, therefore, must be an almost continuous system of turns and bends in order to be effective (see Figure 8.11 in Chapter 8).

Agitation equipment must be flexible to provide the tapered input discussed above, and to allow seasonal adjustment for changes in raw water temperature and chemical composition. Cold water requires less agitation because the floc is weaker and can break up more easily. Hydraulic systems should be designed for tapered input of energy, but are less readily made flexible.

Figure 2.1 Assumed spatial distribution of velocity gradient for various impeller

Flocculation time, short-circuiting and compartmentalisation are interrelated. Well-designed compartmentalisation keeps water in the system for close to the optimum time determined by bench tests and improves evenness of flocculation. In hydraulic systems there is no short-circuiting, but the time in the system is directly related to flow.

In some plants, heavy non-ionic polymers are used to accelerate settling. These may be used only at certain times of the year, such as in cold weather or when seasonal runoff causes problems. Other plants have continuous difficulties related to coloured water, and where it is essential to apply the polymer after the floc has formed. Bench scale testing can find the best time of application, which is often about 5 minutes after flocculation begins (see Figure 5.8 in Chapter 5).

2.6 Settling basins

After flocculation, the floc-laden water must be transported very carefully to settling basins, to avoid breaking up the floc. It might be expected that once in the basin, the floc would settle readily and relatively clear water would exit the basin; but this is not usually the case because many things happen to reduce the efficiency of settling basins.

Unless the entrance to the settling basin is well designed, energy from flocculation mixing can carry over to form currents and short-circuiting. It is very common to find settling basins in which a large proportion of the water goes through in half or less of the design time; also there may be dead space in which the remainder stays for much longer than desired. Both of these defects reduce effectiveness of the settling basin, with poor clarification and too much floc going to the filters, where problems then follow with a poorer quality of the filtered water.

Temperature differences between the water in the basin and the water entering, cause currents and short-circuiting, again with poor settling efficiency and too much floc carried over to filters. If incoming water is much colder or warmer it short-circuits along the bottom or top of the basin. Sudden increases in turbidity also increase the specific weight of the flocculated water, causing it to short-circuit along the bottom of the basin.

Proper design of the entrance to the settling basin can greatly alleviate these problems and avoid some altogether. An entrance baffle (Figures 8.17 and 8.18 in Chapter 8) distributes flocculated water equally across the basin and gets it started in "plug flow" configuration, i.e. all water will travel along the basin at approximately the same velocity. Once water has entered the settling basin and distributed equally across the section, it has to be removed in the

proper way. Just letting settled water drop over the outlet end of the basin is not the best method.

The settled water removal system plays an important role in obtaining water of the lowest possible turbidity for subsequent filtration. Exit velocity should be reduced to a minimum, and this requires a take-off system with the longest possible weirs or launders. The outlet weir is often only as long as the basin width, which is by no means the longest design. The result is that the velocity of the water is high, and the naturally upsweeping current carries with it a lot of floc from the basin. If the outlet weir can be doubled in length as in Figure 8.22, then water velocity over the weir can be halved; and if weir length can be tripled, quadrupled or even increased ten-fold, the overflow velocity will be correspondingly lessened. This is very desirable.

Based on sampling from hundreds of rectangular settling basins, the least turbid water is always from the middle to the third quarter of the length of the basin (see Figure 5.23 in Chapter 5). This is true in treatment plants the world over with all standards of operation, and thus weirs or launders of the settled water take-off system should extend through the final third of the basin length. Such a system reduces exit velocities and upsweeping effects, alleviates temperature and density currents, and takes water of the lowest turbidity for filtration. This results in longer filter runs, lower filtered water turbidity, and a less frequent need for filter maintenance.

A perforated outlet baffle is an effective and economical way to achieve the removal of the lowest turbidity raw water from the basin. The headloss designed into the baffle causes the water to exit across the end of the basin, thereby eliminating upflow currents (see Figures 8.17 and 8.18 in Chapter 8).

2.6.1 Sludge deposition patterns

The sludge pattern in settling basins provides a useful indicator of the effectiveness of mixing and flocculation, although this only applies to those basins without continuous sludge removal (i.e. those which must be drained and have sludge removed, usually two or three times a year). The profile of the sludge leaves a distinct mark on the basin wall, indicating very clearly the settling pattern. Figure 8.4 in Chapter 8 shows the ideal condition and also the pattern typical of poor flocculation.

2.7 Filters

Almost all filters used outside the industrialised nations use a single medium. This is sand of depths from 25-30 cm up to 60-70 cm, of which effective grain size varies from 0.5-0.6 mm up to 0.8-0.9 or even 1.0 mm. Although dual media filters of sand and coal are becoming more common, they are mainly used at water treatment plants in industrialised countries.

In observing and analysing filter performance, the first and most important characteristic is filtered water quality, and although turbidity has some limitations it is still the best measure of clarification for most treatment plants. With good design and operation, treatment plants should be able to produce a consistent supply of filtered water of less than 0.5 NTU. When the turbidity of filtered water is frequently more than 1.0 NTU, problems that need attention are likely.

Raw waters vary in treatability, but those producing light, weak floc need special attention in both process and hydraulic design. Preliminary bench-scale tests can identify this problem so that measures can be taken early to solve it. These measures could include use of polymers, iron as coagulant instead of alum, longer flocculation time with lower velocity gradients, lower loadings in settling basins, or special attention to velocities and

turbulence. Such measures in combination can make a significant difference to the floc load that reaches the filter.

Problems relating to treatability should really be identified and analysed in the predesign phase, because the physical and process design can then incorporate whatever measures are required in response. Because few treatment plants, especially in less developed countries, are designed from bench scale, pilot scale, and plant testing, these problems are recognised only after operation begins. As a result, solutions are obviously more difficult, complex and expensive. Careful predesign investigations are most vital for water providers in regions with the least resources available for plant modification, but the reality is almost always that in such cases predesign studies are seen as a luxury rather than a necessity.

The first place to look for causes of poor-quality filtered water is not the filter itself but in pretreatment prior to filtration. If relatively high-turbidity settled water has been applied to the filter for a long period it may be subject to clogging, formation of mud balls, and possible breakthroughs in the filter beds - all of which impair filtered water quality. Causes may be found in initial dispersion and dilution of coagulant, in the flocculation and in settling.

Improvements to pretreatment are necessary before attending to the filter itself because there is no point in replacing filter sand if operation will continue with poorly pretreated water, because the filter will again deteriorate quickly. One large plant in south-east Asia has needed to change and rebuild filters constantly for 25 years. Their raw water is difficult to treat, the plant has poor initial mixing and no flocculation, and the settling basin inlet and outlet need improvement. Under such conditions, the filters will never do a good job and will always be under repair.

Although pretreatment is often the root of filter problems, there are several issues which relate to the filter itself. Properly designed filter systems are discussed in Chapter 7, and some general problems are described below.

The sand in the filter is most commonly supported by a gravel bed, below which an underdrain system removes filtered water. The same system is used for the backwash, and this underlies many filter problems - especially upset beds, breakthroughs in the beds, and poor distribution of backwash water resulting in uneven filterwash. Unsatisfactory distribution of backwash water over the filter is found in most older plants and many new ones. That part of the bed that is underwashed eventually becomes clogged and that part which is overwashed may receive backwash water at very high velocities causing an upset of the bed. Sometimes uneven backwashing occurs because of elevation differences between washwater drain troughs. The design of an effective, properly functioning backwash system requires good knowledge and application of manifold hydraulics.

Many water treatment plants (especially the older ones) were designed with an insufficient backwash rate. The bed is not expanded enough to allow a good shearing, high-velocity wash which will remove the embedded floc particles. Many systems do not provide sufficient water to give a full wash for more than 5-6 minutes, although a longer wash is sometimes necessary.

Plants may have been designed with only shallow filter boxes, saving a small amount of concrete. This produces low water depth over the filter bed and subjects the filter to negative pressures early in the filter cycle, with a small head loss. Gullets and troughs are often flooded during backwash, because they were not designed with enough capacity or grade to carry away washwater. The upper end of the drainage system floods and poor cleaning is obtained. This also occurs if part of the filter receives excessive amounts of water in uneven washing.

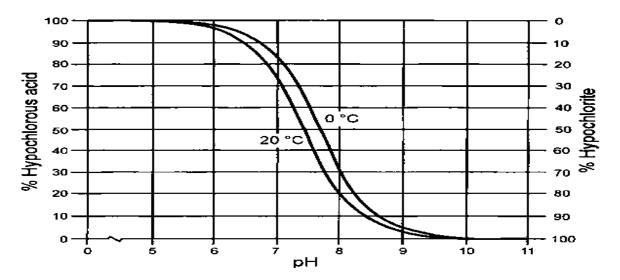
Air entrainment in the backwash water disrupts filter bottoms and media. If the level of the backwash header is above the level of the washwater troughs, air may collect in the header between backwash cycles. This condition occurs most often when backwash is provided by direct pumping. Air entrainment may also occur if vortices form in the elevated washwater tank as water is drained down. This problem is most pronounced in shallow tanks (see Figure 4.6 in Chapter 4).

2.8 Disinfection

Almost all treatment plants throughout the world disinfect filtered water with chlorine, although there are some, mainly in Europe, which use ozone. It is not unusual to observe one or more of the following conditions in the plant related to application of chlorine:

□ Very Iow chlorine dose.
☐ Short contact time.
☐ Applying chlorine after lime has been added for stabilisation.
☐ Poorly or non-operating chlorination equipment.

To safeguard the health of consumers, the disinfection process must be complete. A low dose is effective with long contact; but contact time is more commonly short and the dosage must be high. Whatever the situation, the dose must be large enough so that the reaction will carry through to a free chlorine residual (i.e. enough to oxidise all the oxidisable material and still provide a remainder through the water distribution. Any lesser dose of chlorine will provide very precarious disinfection or none at all. In some waters where there is little or no pollution this is not critical but with highly polluted raw water, poor disinfection can be very dangerous for human health.


Chlorination equipment is produced almost exclusively in the industrialised countries. The water departments of less developed countries must import

equipment and thus it is not unusual to find poorly operating chlorination equipment. Immediate reasons include poor maintenance, lack of spare parts, shortage of foreign exchange to buy the equipment and repair parts, and occasionally failure to appreciate the importance of disinfection.

Chlorination equipment must be maintained in good condition to avoid the

Chlorination equipment must be maintained in good condition to avoid the danger of a serious chlorine leak. Manufacturers' operating instructions are the best source of information regarding operation and maintenance of the equipment, and should be followed scrupulously. If the application of chlorine is erratic, the safety of the finished water is often uncertain. It is common to find the rate of chlorine withdrawal higher than the environmental temperature permits.

Figure 2.2 Effect of pH and temperature on the formation of hypochlorous acid for disinfection

The effectiveness of the chlorine as a sterilising agent is related to water pH. At 20 °C, the most useful oxidising and disinfecting agent (HOCl) is about 75 per cent formed at pH 7.0 but only 25 per cent formed at pH 8.0 (Figure 2.2). It is therefore essential that chlorine is applied before the pH of filtered water (normally pH 7.0 or lower) is adjusted upwards for distribution. The effectiveness of chlorine as a disinfecting agent is significantly reduced above pH 7.2-7.3, mostly wasted at pH 8, and at pH 9 or above almost no disinfection occurs.

The clear well (see Figure 8.3 in Chapter 8) should be designed so that the chlorinated water will remain in the basin for at least 30 minutes and preferably longer. This is done by baffling the tank so that the water will not short-circuit and discharge too quickly into the distribution system.

2.9 Stabilisation

Stabilisation of the treated water is very important, because water which is either corrosive or depositing can do great harm when discharged to the distribution system. Many water plants are operated without full regard for the importance of stabilisation, and the distribution system may be damaged before this problem is recognised and corrected.

2.10 Checklist for plant review

Box 2.1 Checklist for review of plans and plant performance
Raw water intake
☑ Correct location
Flexibility to draw water from various levels if appropriate to source
Raw water metering
Accurate determination of flow (weir, flume or meter)
Periodic calibration
Channels of raw water
Calculate the maximum volume under the existing gradient
Chemical handling
Storage capacity for each chemical such as coagulant, lime, chlorine, etc.
Dosing capacity of each chemical (including the method, capacity and limit)
Initial mixing of coagulant and raw water
Describe the method used, including sketches where appropriate
Application of lime for coagulation - for pH adjustment
Describe the method used
At what point in the treatment process is lime applied
Flocculation system

Stabilisation

Describe the flocculation system used Theoretical time of flocculation ✓ Volume of the system Type of system (hydraulic or mechanical) **Settling system** ✓ Number of basins and their surface areas ✓ Surface loading **☑**Dimensions of unit Describe the entrance and exit Exit weir overflow rate Settled water turbidity. Filter system Number of filters and surface area of each ☑Depth and particle size of the filter media **✓**Support for media Filter bottom Rates of filtration and backwash **✓**Clean-up rate Filtered water turbidity Describe filter and wash piping **☑**Dimensions of drains Disinfection Chlorinator size, location **✓** Minimum and maximum rates **✓** Safety precautions

- ✓ Application point
- ✓ Amount applied (and flexibility)
- **☑**pH of stabilized water

IMPROVING PLANTS AND THEIR OPERATION

- 4.1 Plant records
- 4.2 Raw water intake and flow
- 4.3 Rehabilitation of the chemical building
- 4.4 Pretreatment units
- 4.5 Filter rehabilitation
- 4.6 Filter operation
- 4.7 Stabilisation

4.1 Plant records

Good plant records can be extremely valuable for any plans to improve plant performance, or for design of upgraded units treating the same raw water. However, critical studies for such work most commonly find that records of plant performance are incomplete, inadequate or even, for practical purposes, non-existent. If records are kept, their value for monitoring the operation of the plant is often disregarded and they are archived without analysis.

To improve plant performance one of the first factors to examine is the raw water and its characteristics, and the more information that is available the better the improvements will be. The ideal situation for older plants would be reliable data gathered over at least twenty years, including a large number

of maxima and minima for important indicators such as turbidity, colour, pH, temperature, alkalinity, iron and manganese. Depending on drainage area characteristics, other indicators may be important, such as phosphate, chloride, sulphate, nitrate, pesticides, heavy metals, or various contaminants from industry.

For most treatment plants, even in industrialised countries, there would be neither time nor capability in personnel or laboratory facilities to do more than the analyses that bear directly on the treatment process. In this book, therefore, the discussion is limited to the analyses that a basic laboratory for a small water treatment plant could realistically achieve. The information that should be collected and recorded is shown in Box 4.1, including data needed for specific analyses described in this and other chapters.

4.2 Raw water intake and flow

Recommendations on raw water treatment are available for performance improvement. Chapters 5,6 and 7 describe this work which starts with intake structures and raw water metering. Location and design of the intake are important for obtaining raw water of best quality.

Operations personnel cannot easily modify the intake but it is usually possible, in reservoirs at least, to take water from a variety of depths. Sampling in the reservoir can indicate the depth where algal density is lowest, turbidity and other pollutants. If the intake is defective in design or location, the water department should be informed and if analysis of the problem shows serious defects, improvements beyond the resources of plant operators can be considered.

Box 4.1 Basic information which should be recorded at a water treatment plant
General reference
□ Date
☐ Rainfall every 24 hours
☐ Air temperature at 12.00h each day
Raw water
☐ Temperature at 06.00h, 12.00h, 18.00h and 24.00h
☐ Turbidity and pH each shift under stable conditions or every 2 hours if changing
Settled water (each basin)
☐ Turbidity and pH every 2 hours
☐ Residual chlorine during each shift
Filtered water (each filter)
☐ Turbidity every 2 hours
☐ Record hours of filter operation, as stipulated below
Finished water (each clearwell)
☐ Turbidity and pH during each shift
Chemical dosages
☐ Coagulant and polymer doses every 2 hours
☐ Lime and chlorine doses each shift
Chemical consumption
☐ Coagulant, lime and chlorine during every shift
Filter operation (each filter)
☐ Hour of backwash (time of day)
☐ Total time out of service (minutes)
☐ Hours of operation (hours)
☐ Duration of backwash (minutes)
☐ Backwash rate if available (m³ m⁻² per min)
☐ Final head loss in filter before wash (m)
Raw water quality
☐ River level (daily)
☐ Reservoir Level (daily)
□ Intake levels
Flow rates
\square Raw water into the plant (m ³ per day)
☐ Treated water out of the plant (m³ per day)
Chemical analysis: each shift when water is changing, or weekly when water is stable
☐ Alkalinity, hardness (carbonate, non-carbonate, total)
☐ Iron, manganese
☐ Others which may be important depending on the situation

4.2.1 Laboratory testing of raw water

Assuming that preliminary preparations have been made, the best place to start is by testing raw water to determine optimum process parameters. Chapter 5 discusses this procedure in detail, and it is recommended that the team leader and the operators should study Chapter 5 carefully before starting the testing work. Those not trained in handling laboratory equipment and materials will need some practice, for example in using pipettes and making dilutions. Nevertheless, with an experienced team leader, sufficient accuracy in jar testing can be gained reasonably quickly. Repeated tests of some variables are very important, and therefore those operators who work routinely at the treatment plant need to master such tasks.

The time required for experienced personnel to carry out complete bench scale jar testing on the raw water might be up to 10 working days. To be realistic, an inexperienced group should initially allow three to four times as long to obtain good data, in which they have confidence. The bench scale jar testing programme should seek to determine the following:

☐ The most effective coagulant and optimum dosage for conditions at time of testing.
☐ The optimum sequence of chemical dosing if applicable.
☐ Whether sludge recycling would be advantageous.
☐ Effective polymers and the dosages required.
☐ Optimum flocculation time, energy input (in terms of velocity gradient) and tapering of energy input through the flocculation process.
$\hfill \Box$ Settling velocity distribution curves for the test trials, and the optimum for the plant.

4.3 Rehabilitation of the chemical building

Storage and housekeeping often cause problems in chemical buildings. In most treatment plants several activities share that building such as the chief operator's office, operators' bathing and changing facilities, the laboratory, shops and general storage. If housekeeping is good there are advantages in having all activities grouped together, such as the chief is able to observe and supervise closely plant operation, capacity for interchange and communication among all personnel is good, and overall administration is simplified. With poorer housekeeping however, this situation becomes very difficult, such that plant operation is disrupted and any tendency for inefficiency or laxness spreads throughout the plant.

In general, the most difficult chemical for effective handling is lime, which is corrosive, dusty and spreads easily throughout the building if not carefully handled and confined. Lime handling and preparation should be separated and isolated as much as possible to avoid contamination of other operations. Isolation can be helped by using a separate closed area or by canvas curtain walls, or by any method appropriate for local conditions which will keep lime dust away from other activities. Lime transport by closed compressed air systems is rarely used in smaller treatment plants, and is custom-designed for each installation.

Aluminium sulphate (the most usual coagulant) is not very dusty because it is normally supplied in bags of caked solid. Some plants are supplied with alum in liquid form, which is discharged directly from trucks into storage tanks. The latter method avoids any dust.

It is rare to find an old treatment plant in which handling and application of chemicals are done well and accurately, because operators often do not appreciate the importance of applying a correct dose of fully diluted coagulant, or of ensuring complete and quick dispersion. Accuracy of the

process begins with dilution in the preparation tanks (day tanks), followed by feed and dilution of coagulant and finally knowledge of raw water flow to calculate coagulant amounts. Preparation tanks have to be measured so that true volumes are known. A calibration rod should be installed in each tank clearly indicating the amount of water for a specific amount of dry chemical (perhaps a certain number of bags) to provide a solution which is about 10 per cent alum or lime. If the amount of insolubles is high, for example more than 6-8 per cent, concentrated solutions leave too much Al³⁺ in the sediment which, over a period of time, can be expensive. Smaller tanks are needed for more concentrated solutions, but the difference in construction is of minor value unless space is a particular problem.

Another important preference is that the chemicals should be fed by gravity, which eliminates pumps with their associated maintenance and operation problems. The building must be high enough to give the required difference in elevation, and where the land is sloping the building can be sited uphill.

An example is shown below of calculations in chemical preparation, relating to plant flow and the required dosage:

A maximum dose of 25 mg l⁻¹ is required with a maximum flow of 100 l s⁻¹.

The preparation tank is to hold 24 hours' supply of 10 per cent alum solution.

Daily flow of water = 86,400 s per day \times $100 \, 1 \, s^{-1} = 8,640,000$ litres per day.

Amount of alum = 8,640,000 litres per day \times 25 mg l⁻¹ = 216 kg per day.

Volume = 216 kg per day \times 10 l kg⁻¹ (10 per cent) = 2,160 litres (i.e. 2.16 m³)

The required tank size could be $2.0 \times 1.0 \times 1.40 \text{ m} = 2.80 \text{ m}^3$ with 0.30 m freeboard (see Chapter 7 for details, including piping and feeding).

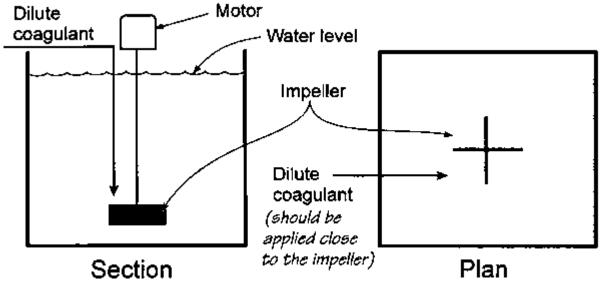
In practice, it is important to make the tank a size that will accommodate a specific number of sacks of dry chemical. For example, if dry alum is shipped in sacks of 40 kg, the above tank could be enlarged a little to take 240 kg of dry alum or six sacks. If the sacks are 45 kg each, five sacks would provide almost the calculated amount of 220 kg. The calibration rod can then be marked with the appropriate water level for the required number of sacks or bags of chemical.

When the exact concentration of coagulant in the preparation tank is controlled, the rate of addition of raw water can also be determined and controlled. Continuing the example above (100 1 s⁻¹ raw water, dosed at 25 mg l⁻¹) the amount of 10 per cent alum required is 2,160 litres per day. Thus the constant head feeder is adjusted to provide a flow of 1,500 ml per min.

The prepared solution is 10 per cent, but to be most efficient the alum should be applied at 0.5 per cent. Consequently, dilution water of 19 times the volume must first be added to flow from the preparation tank. For example, the alum feed of 1,500 ml per min would require dilution with 28.5 litres per min before addition to the raw water.

Figures 8.9 and 8.10 in Chapter 8 illustrate typical details of preparation tanks, constant head feeders, dilution control system and diffusers for coagulant application.

4.4 Pretreatment units


4.4.1 Coagulant preparation and dispersion

Maintenance of stocks of coagulant, lime and other chemicals in preparation tanks is quite simple once a routine has been established and it then only requires occasional monitoring.

Applying and diluting the coagulant or lime depends on feed equipment or chemical flow control and on the amount of raw water requiring a specified dosage. Amounts of raw water, applied chemical and dilution water must be monitored more closely and the design of the system should allow easy sampling of the chemical flow. Measurements of stock solution and dilution water flow rates can be made simply by collecting the flow for a standard time. The flow of raw water should be measurable from the weir, flume or venturi readings, and the correct dosage should have been found by jar testing.

Mixing and feeding lime involves dealing with a substance that creates dust and easily pollutes the areas where it is made up. Consequently, lime storage and handling should be isolated as much as possible from other operations. Due to its tendency to react readily with dilution water, new suspensions of Ca(OH)₂ should be prepared daily. To keep the lime in suspension, it must flow at a relatively high velocity and the conduits must be designed for easy cleaning.

Figure 4.1 A mixing basin with mechanical agitation

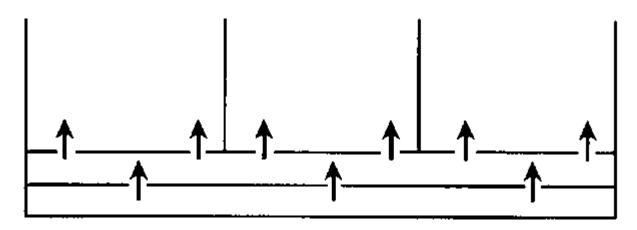
4.4.2 Coagulant application

Diffusers used to apply coagulant at weirs or flumes are illustrated in Figures 8.7-8.9 in Chapter 8. Construction of a diffuser along with piping

and valves is well within the capability of plant operators. In plants without a laboratory, correct dosage has to be judged from observations of floc formation and the appearance of the settled water. If mixing is mechanical, dilute coagulant must be applied as near as possible to the point of maximum agitation, close to the impeller (e.g. Figure 4.1).

4.4.3 Dividing the water among basins

In smaller plants, such as the two examples introduced in Chapters 5, 8 and 9, coagulant-dosed water would go directly to one basin; otherwise, as in the third example, water has to be divided equally among the various flocculation basins. To achieve this most simply, the exit ports from the distributing channel should be of equal size and the velocity in the channel should be constant along its length. A review of the plans and measurement of channel ports will indicate whether their dimensions are correct. If the distributing channel is in good repair, effective velocity can be calculated closely enough from flow and cross-sectional area. The channel may be tapered by design to maintain velocity with a reducing flow. Alternatively, a good solution is to calculate flow between exit ports and add filling to reduce the depth of the channel (e.g. Figure 4.2).


4.4.4 Flocculation

Operation of flocculation systems requires nothing more than to follow directions designed and constructed into the plant. Success is determined mainly by decisions in plant design. The design of the flocculation system should ideally be based on the results of jar testing. If this is not possible, experience has shown that a flocculation time of 25-30 minutes is often appropriate. It is important always to provide a properly tapered input of energy. The first half of the flocculation mixing cycle can be quite vigorous but the remainder should use relatively gentle mixing as the sizes of the floc

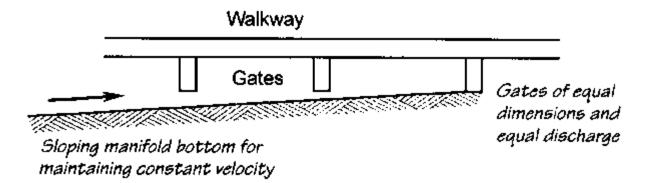

particles increase. Examples in Chapters 8 and 9 discuss designs for both hydraulic and mechanical flocculation systems in detail.

Figure 4.2 General layout of a dividing flow manifold

Plan

Section

The main problem in hydraulic mixing is the long baffle walls, where flow is quiescent and little mixing occurs; the only mixing occurs at the bends. Baffle walls can be filled with perpendicular struts or fins to cause agitation as the water flows between bends, as shown in the examples that use hydraulic mixing in Chapter 8. Hydraulic flocculation systems may also accumulate sludge, especially if the actual flow is less than assumed in plant design. The lower velocities encourage settling of heavy, fully formed floc particles at the end of the unit.

Mechanical flocculation requires good maintenance of motors and agitation equipment. The rotary speed of the agitators must be close to that of the design, and should provide tapered energy input by running at decreasing speeds through the course of flocculation. Problems with mechanical flocculation are usually in the compartmentalisation of the system. If the water is left to take its own route it will usually short-circuit. It is not unusual to find as much as half of the water having only 5-10 minutes flocculation time. A predesigned route should be constructed with baffles and walls, so that all of the water stays in the system a full 25-30 minutes. Chapter 7 shows that quite simple changes can be sufficient to obtain much better results in mechanical flocculation basins.

If bench-scale testing equipment is not available to find the optimum velocity gradient along the flocculation path, a safe assumption would be 30-70 s⁻¹ during the first half of the cycle and around 20 s⁻¹ for the remainder. The operators, with a minimum of help from the engineering department, can make the adjustments in flocculation to improve performance significantly.

4.4.5 Settling basins

Almost all rectangular settling basins experience hydraulic problems at their entrance from the flocculation system and with the process of removing settled water from the basin. The first aim is to bring water into the basin at equal velocity across its section, so that all water starts flowing down the basin at the same velocity (in plug or piston flow). Chapter 8 discusses, with examples, the calculation of dimensions for a perforated entrance baffle that introduces a head loss in the flow. Water will always take the route which incurs the lowest head loss. Because all the ports have equal head loss, the water will enter evenly across the basin. Plans and observation of the basin will show whether or not a baffle is needed. Water exiting the flocculation basin should not flow directly on the perforated baffle; therefore a blind

baffle is placed in the line of flow to absorb and reduce the energy and to distribute the flow.

The perforated baffle can be designed and installed regardless of bench-scale jar testing work. In plants having the equipment for jar tests the velocity gradient in the baffle should follow that of the last portion of the flocculation system. If no jar testing has been done, experience suggests that a maximum velocity gradient of 30-35 s⁻¹ can be used for water above 10 °C. Alternatively a limit of 20-25 s⁻¹ can be used for colder water.

Generalisations are less reliable for basin loading than for velocity gradients and their tapering. Specific bench-scale testing is needed to determine the optimum settling velocity, otherwise it is prudent to use a settling velocity or surface loading which is conservative. Loading at 2.8 cm per min (about 40 m³ m⁻² per day) may be sustainable, and it is possible that the loading could be more. However, without testing there is no sure guide.

It is valuable to have good loading information, because flow through the flocculation system is often the limiting factor in plant improvements. Increasing flow rate reduces flocculation time in an existing unit, perhaps until it is ineffective. If there is severe short-circuiting the actual flocculation time may be quite short. Correction of such a defect will improve flocculation time so that loading can be increased without detriment to floc formation.

The most common type of settled water removal from the basin is a simple weir across the end of the basin. The volume of water per unit length is very high over this relatively short weir design, causing an upflowing current which carries a great deal of floc which could otherwise have settled. Furthermore, the least turbid water, which is usually in the middle of the basin, remains there, with the result that the best quality settled water is not withdrawn.

Figure 4.3 Design options in the system for removal of settled water

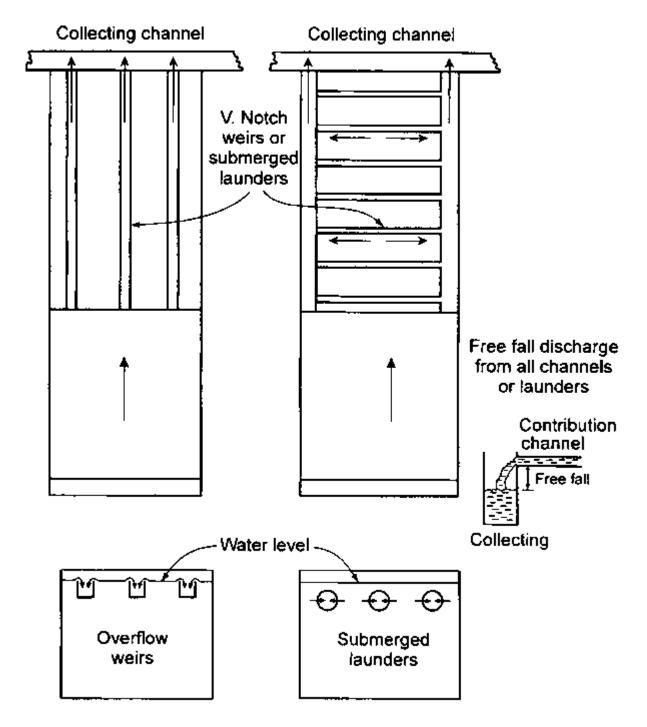


Figure 4.3 shows the most efficient ways of removing the settled water from the basin. The key to success is a long length of weirs or launders, unflooded

at their discharge points. With this design overflow rates are very low, the upflowing currents are trivial and the best quality settled water is removed.

Financial and technical assistance will be required for the design and installation of the perforated baffle and settled water removal system. Head losses must be taken into account in the design of both the perforated baffle and submerged launders. Long weirs for removal of the settled water are simpler in design but more difficult to construct and install. The resulting improvement in settled water quality will be well worth the cost and effort.

Settling basins need further attention if the system involves sludge accumulation, where every 3-6 months the basins are each taken out of service for sludge removal. Basins are usually cleaned with hoses and high pressure jets, maybe using adjacent basins as a source of water. Portable pumps and siphons can be employed to bring in wash water, but some plants have high pressure lines installed along the basins, and these are to be used specifically for cleaning. Even in basins with continuous sludge removal equipment it is still important to drain the basin about once a year, for inspection and maintenance of the cleaning equipment. Basins that use hydraulic sludge removal should also be cleaned periodically, because some sludge always remains in the basins and should be washed out. When basins without continuous sludge removal are drained, the sludge profile line will show clearly on the basin wall. This mark can be used to assess proper operation and it should be similar to that shown in Figure 8.4, Chapter 8.

4.5 Filter rehabilitation

Where coagulant dispersion in raw water is defective, followed by marginal flocculation and inefficient settling, water of high turbidity (perhaps 20-25 NTU) enters the filtration system. This turbidity load is too much for the filter to handle for any extended period. With a high loading of particulate matter filters begin to deteriorate, become clogged, and produce poor-quality

filtered water. At most plants with filtration problems, the filter itself is blamed. Although that may sometimes be the case, filters cannot perform well under excessive turbidity loads and the problem is often with prior units that are ineffective. The first step to improve filter performance is to ensure that treatment prior to filtration is of a high standard and only then should the filtration system be assessed in detail.

For plants more than 10 years old, filter rates are usually around 110-120 m³ m⁻² per day and backwash rates are typically less than 0.3-0.4 m per min. The low filtering rate does no harm except that the potential capacity is not fully used, but the low backwash rate will not clean the filter properly. Each wash leaves a little floc behind and the cumulative effect is a dirty, badly clogged filter. This process can be accelerated by settled water of higher turbidity.

Most older plants also have unsatisfactory distribution of wash water across the filter area, with some parts overwashed while others are underwashed. In addition to inefficient washing itself, the support gravel may be disturbed by uneven washing. Another common problem relates to the backwash water drain system. Very often the channels are too small or do not provide sufficient flow velocity to carry the wash water, which is held back and causes underwashing of that part of the filter close to the outlet.

If a filter has been overloaded with highly turbid water for long periods it will be full of mud balls, the surface will have cracked and sand will have pulled away from the walls. At this stage, the only recourse is to clean the filter thoroughly, removing and washing the sand and support gravel to examine the bottom and, if necessary, to remake the entire filter.

Improvement of filter performance can be a major operation, requiring a careful plan for overall plant improvements, management support and close collaboration of personnel. The best approach to filter rehabilitation is to

take them out of service one-by-one for complete renovation. This can be a lengthy process but many older plants will have gone for years without overhaul, and a careful filter-by-filter programme need not cause great operational problems. Normally, with only one filter out of use, the others should be able to take the overload for a short time. While carrying out this work, operators gain proficiency with the renovation of each filter. The first filter is a learning experience and will take the longest to renovate. Depending on filter size, experience of personnel and the improvements required, it may take one to two months to complete work on the first filter, then half as long on the remainder with the benefit of experience.

There are sufficient points of caution in filter renovation that a detailed description of the main stages is justified here, based on experience gained with a variety of situations.

Detailed planning is a prerequisite for effective filter rehabilitation, because so many components are involved - scaffolding, passageways, wheelbarrows, hand tools, clear areas, sand-washing equipment and replacement piping, fittings, bottoms, etc. All of these should be prepared and in place before any actual filter work begins. Replacement sand and support gravel should have been screened, classified, and piled, protected from the weather. Plans of the filter design should provide details of the filter piping structure and, if changes are planned, the pipe sizes and fittings can be partially assembled ready for installation. If no changes in filtering capacity are planned, the work is greatly simplified.

Special care is necessary in placing support gravel and the sand and coal media in the filter box. First and foremost, the gravel should be as round as possible and in particular all flat stones must be removed. The appropriate levels for the layers of support gravel should be carefully marked on the filter walls. After marking, allow water to enter, to verify the consistency of

levels on all sides of the filter box. When the levels have been marked all around the box, begin with placement of the bottom gravel layer.

With the first layer placed, lay a wide board on top of the gravel at one side of the filter box and from this point on, always work from such boards. Never allow personnel to step directly onto the gravel layer because this creates holes in the support layer that can cause serious problems later. When each gravel layer is complete, allow water in to the depth marked on the wall and use this to make sure the layer is level, raking to avoid high or low areas.

Once satisfied that each gravel layer is correct, begin installing the next. Never dump or drop gravel into the bed but lower it in buckets of a size that can be handled easily. This continues until all gravel layers have been placed and levels confirmed with water.

Next add the washed, cleaned, graded and dried sand, with the level also marked on the filter walls. Observing the same precautions, sand is carefully layered over the support gravel. With this reverse gradation, spaces among the top gravel layers become filled with sand. Cover the top of the gravel with about 10 cm of sand and rake carefully so that spaces will be filled. Once the sand layer has been completed to the level marked, it can be verified with water.

With the sand in place, backwash the filter at about 50 per cent flow by opening the backwash valve slowly until the backwash flows at the desired rate. This will help to clean any dirt that may have entered and will distribute sand better in the top gravel layers. After several minutes at this wash rate, increase slowly again until the sand is at 30-40 per cent expansion and continue at this rate for at least 10 minutes, after which the backwash water should be very clear. Slowly close the backwash valve, then open the filter valve and drain the filter down to a point below the sand level. Verify the

sand level. The level will probably be a little low because more sand will have entered gravel spaces. If necessary, more sand may be added to reach the proper level. Repeat the backwashing as before.

When the sand level remains firm, add the coal (if this is being used), carefully levelling it in 10-15 cm layers to the required level. Verify the level with water entering slowly from the backwash. The coal should be about 3 cm above the required level, because some of the fines will be washed out and the coal compressed. Start the backwash again at about 50 per cent and then, after about 10 minutes, increase the wash rate to 75 per cent and continue until the filter is very clean. Finally, increase slowly to full backwash and check carefully for loss of coal. The fines should wash out but not the larger particles.

All dual media filters have an auxiliary air or water wash, which should be tested after all media are in place. Auxiliary washing is discussed fully later in this chapter and general approaches are summarised below.

Air washing operates with the water level in the filter at the level of the drain trough or gullet. With the water at this level, the drain valve open and all other valves closed, start the air slowly and continue for 4-5 minutes. Air should bubble up through the media and agitate the sand and coal vigorously, such that the water will become very turbid when the filter is dirty. Close the air valve slowly and start the regular backwash. The few minutes of air wash will have given the bed a vigorous scour and the water will complete this task.

For beds fitted with sweeps, the water level in the filter should be lowered to just below the level of the sweep. Start by opening the high pressure line. The sweeps will begin to rotate and gain speed rapidly. As this is happening, begin the backwash. The sweeps will be covered quickly and will rotate

more slowly within the expanded bed. Sweeps should be allowed to operate until about the last minute of the backwash.

The static water wash system is also started with the water just below the top level of the jets. Once the system is operating, the backwash also begins. As with sweeps, the static water wash system operates throughout the backwash until the last minute of wash. First the auxiliary system is closed, then immediately afterwards the backwash is stopped.

In all these three systems the integrity of the air or water pressures and quantities should have been tested during construction and all jets checked for proper function. Sometimes the auxiliary wash is with a high pressure jet from a hand-held and controlled hose at the top level of the filter box.

4.6 Filter operation

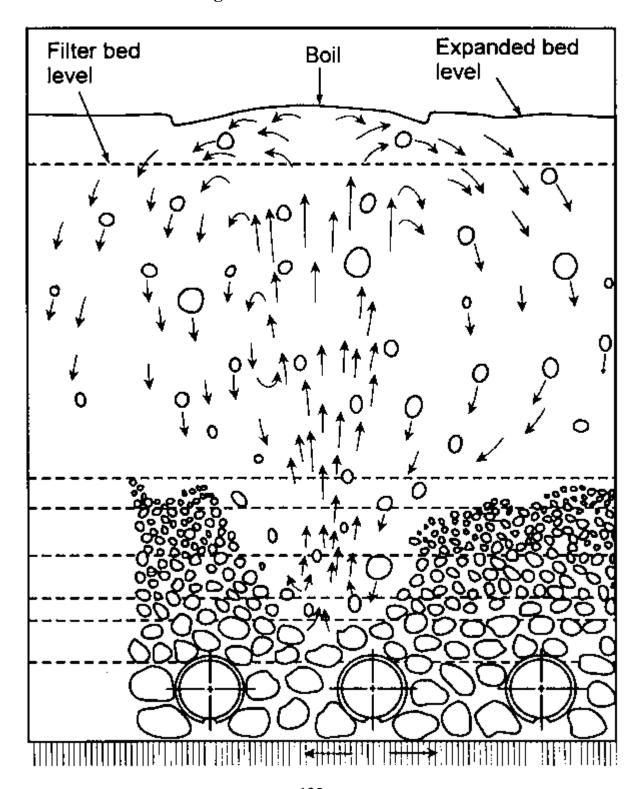
When the initial coagulant dispersion, flocculation and settling has been brought up to the optimum the settled water will be of low enough turbidity that the filter can perform well. Once this pretreatment is in good order, filters can be rehabilitated to the extent necessary to put them in good operating condition - the turbidity of filtered water should be always less than 1.0 NTU. Maintenance of pretreatment standards is necessary to maintain the filter in good condition, but some procedures and points of caution apply to the filters themselves.

Operators should observe the bed during backwash cycles, noting areas in which water boils up at a higher velocity than elsewhere (Figure 4.4), which is usually evidence of a broken nozzle or a break in the filter bottom. These boils often dislocate support gravel, making a hole, which gathers sand. Eventually the filter begins to lose sand through the broken filter bottom. This problem usually becomes worse with increasing sand loss from the bed.

Good quality filter sand is expensive because of the work involved in preparing it to the correct specification. Thus losing sand through broken filter bottoms is wasteful and uneconomical. The clear well should be inspected carefully and frequently and if sand is found the problem filters should be identified and repaired. Damage to the underdrain and filter support gravel usually occurs in three ways, which are discussed below.

Section Plan Water enters under the baffle Baffle Supports Discharge

Figure 4.4 Anti-vortex baffle installed in washwater tank


Most often, air slugs become trapped in the backwash water and burst in the underdrain system, causing high localised pressures and velocities. The result may be broken nozzles or pipe or concrete, which encourage movement of gravel and subsequent loss of sand. There are two common sources of slugs of air in the backwash water. If the washwater line is above the level of the water in the filter, there is a good chance that air will collect

in the line between washes. The only simple remedy is to maintain pressure on this line constantly. If this is not possible then the level of the wash water line must be lowered so that it is always under pressure from water in the filter. Secondly, when the washwater tank is drawn down to a certain level a vortex forms, entraining air which goes to the filter. The solution here is merely to install anti-vortex baffles above the point of discharge (Figure 4.4).

A second cause of underdrain damage is from high-velocity backwash water. If this enters the underdrain system suddenly and violently, its high energy must be dissipated by the receiving structure (pipe or wall) which may fail if it is not sufficiently resistant. Therefore, backwash water valves should be opened very slowly and also closed slowly, to reduce the chance of sudden destructive surges.

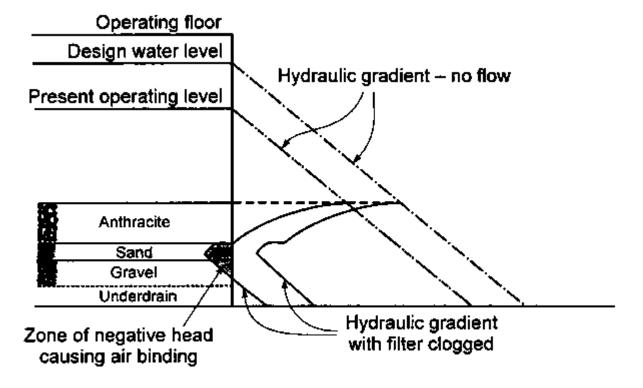

Underdrain damage can also be caused by operation of the filter to a point of excessive head loss and thus a high negative head or vacuum in the filter bottoms, leading eventually to a collapse of some of the underdrain structure. This problem is obviously alleviated by washing the filter before head loss is too high, but in many filtration systems the operator has no indication of this.

Figure 4.5 Filter disruption and short-circuiting, with bed displacement and a surface boil during backwash

It is quite simple to install piezometer tubes on the filters so that operators can readily monitor the head loss. Figure 4.5 shows the anatomy of filter disruption, and Figure 4.6 shows the hydraulics involved in air binding which brings this problem.

Figure 4.6 Diagram to show the cause of air binding within filter media

Experience illustrates clearly the advantages of auxiliary air or water wash: either system will maintain the filter in much better condition than just water backwashing alone. There are four ways that auxiliary washing can be accomplished. Auxiliary air agitation must be designed into the filter system and the filter bottom must also be designed to provide for air entry and movement through the filter bottom and support. Auxiliary water wash can be applied through rotary sweeps which are installed over the filter and which operate 5-8 cm above the surface. With the filter expanded, sweeps rotate within the expanded sand (or coal in the case of dual media). As an alternative to sweeps, water washing may be achieved from a stationary grid with jet nozzles attached at intervals. This system is installed at two levels in

dual media beds: the top grid is set 5-8 cm above the unexpanded surface, and the lower grid lies about 5 cm above the sand-coal interface.

The fourth method is to apply a hand-held high pressure jet throughout the wash cycle. Many older plants were designed without auxiliary air or water wash and have always operated that way. It is often beyond the means of water departments to install automated auxiliary systems in existing plants, but hand-held jets can be used at little extra cost. Throughout the backwash while the bed is fluidised, a high-pressure jet can be directed into the bed, so that the bed area is covered several times and walls are also washed down. This provides a great deal of extra agitation and therefore additional cleaning power. With proper conditions (high pressure available, applied through a good hose and nozzle designed to provide a high-velocity jet stream) filter beds can be maintained in excellent condition. This practice should be adopted in all plants designed without auxiliary washing. If water pressure is too low, a small pump can be installed specifically to increase pressure during the wash. When coal is used over sand in dual media filters the auxiliary wash is essential and can be done by this system, but it is not automatic and operators must make the effort to do the work during every wash. The general backwash procedure should be as follows:

☐ Close the settled water inlet valve or gate.
☐ Continue filtering until the water is 2030 cm above the backwash troughs or gullet.
☐ Open the drain and the water will quickly reach the level of the troughs and gutter.
☐ Continue to filter until the water level is 15-20 cm above the unexpanded bed.
☐ Close the filter water valve.

☐ Start the auxiliary air or water wash and continue for 35 minutes.
☐ Open the backwash valve slowly until it is fully open.
☐ Close the auxiliary air system. With water jets, continue for 5-6 minutes during full backwash, and then shut off the auxiliary wash water valve.
☐ Continue the backwash until wash water is clear. Within 68 minutes the backwash water should have a turbidity of 5-10 NTU.
☐ Close the backwash valve slowly.
☐ Return the filter to service by opening the settled water inlet valve and filter valve.

The second step is often not followed and instead the drain valve is immediately opened after closing the inlet, which wastes a great deal of water on each wash. The filter box drains quickly and the filter returns to full service with less delay, but in most plants a reduction of filter rate for the last 30-60 minutes of the run is outweighed by the economy of water. Exceptions would include plants where raw water is abundant and reaches the plant by gravity with no expensive pumping involved and where filters are washed very infrequently, for example every 80-96 hours of operation. If filters are washed every 24-30 hours and pumping is involved, allowing filtration to continue until the level is relatively close to that of the trough and gullet is economically advantageous.

Depending on the level of the backwash overflow drain troughs and gullet, and on the backwash rate, there is always the possibility of media being washed out of the filter. To check that the backwash rate is not excessive, drain troughs and gullet should be carefully inspected for sand or coal after the wash and before putting the filter back into service.

4.7 Stabilisation

One important treatment function poorly understood by operators everywhere is the need for production and distribution of stabilised water. The distributed water should be neither corrosive (aggressive), reacting with metals to damage the system or domestic plumbing, nor depositing, leaving a calcium deposit to clog the system. Water in granitic areas and other resistant geology is soft with a naturally low pH and attacks metals with which it comes in contact. The surface and ground waters in such areas, including most of Africa, South America and large parts of Asia, may tend to be aggressive and must be stabilised before distribution.

The usual way to stabilise soft water for distribution is to add lime, thus raising the pH, hardness and alkalinity. Some lime deposits are found naturally in almost every country. The addition of coagulants such as Al₂(SO₄)₃, FeCl₃ or Fe₂(SO₄)₃ reduces pH during treatment and chlorine further reduces the pH if applied as a gas, hence treated water is usually aggressive. Lime or another alkali is therefore added to correct pH and stabilise the water.

The Langelier Index provides a simple means of determining whether or not the water is close to stability. This test requires some equipment and chemical analysis. It is necessary to measure the total dissolved solids (TDS), pH, calcium concentration and alkalinity for the calculation of stability as follows:

Langelier Index (LI) = pH of the water leaving the plant - pH_s where pH_s is the "pH of saturation" which is calculated by:

 pH_s = temperature factor + TDS factor - alkalinity factor - calcium factor

Temperature, total dissolved solids, alkalinity and calcium factors are given in Table 4.1, noting that alkalinity and calcium factors use the same

conversion from concentration. If LI is less than zero these aggressive waters tend to dissolve CaCO₃, whilst LI greater than zero indicates depositing waters from which CaCO₃ tends to precipitate.

Measurements for a typical sample of treated soft water might be pH 7.0, TDS 90 mg 1⁻¹ (factor 9.76, interpolating from the values in Table 4.1), alkalinity 40 mg 1⁻¹ as CaCO₃ (factor 1.60), calcium 60 mg 1⁻¹ as CaCO₃ (factor 1.78) and temperature 20 °C (factor 2.10). For this situation, pH of saturation and Langelier Index would be given by:

$$pH_s = 2.10 + 9.76 - 1.60 - 1.78 = 8.48$$

Langelier Index = $7.00 - 8.48 = -1.48$

This value of the Langelier Index suggests a highly aggressive treated water. Consequently, calcium and alkalinity must be raised, usually by the addition of lime. Each increase of 1 mg l⁻¹ as CaCO₃ requires 0.74 mg of lime; thus if 25 mg l⁻¹ of lime is added, the calcium or alkalinity will be increased by 34 mg l⁻¹ as CaCO₃. The resulting calcium value would be 94 mg l⁻¹ as CaCO₃ (factor 1.97) and the alkalinity would be 74 mg l⁻¹ as CaCO₃ (factor 1.87), giving a revised pH of saturation as:

$$pH_s = 2.10 + 9.76 - 1.97 - 1.87 = 8.02$$

Table 4.1 Temperature, total dissolved solids, calcium and alkalinity factors for the Langelier Index

Temperature		Total dissolved solids		Calcium or alkalinity	
°C	Factor	mg l ⁻¹	Factor	mg l ⁻¹	Factor
				CaCO ₃	
0	2.60	0	9.70	10	1.00
4	2.50	100	9.77	15	1.18
8	2.40	200	9.83	20	1.30
12	2.30	400	9.86	25	1.40
16	2.20	800	9.89	30	1.48
20	2.10	1,000	9.90	35	1.54
26	2.00			40	1.60
30	1.90			45	1.65
				50	1.70
				60	1.78
				70	1.85
				80	1.90
				90	1.95
				100	2.00
				110	2.04
				120	2.08
				130	2.11
				140	2.15
				180	2.26

After adding 25 mg l⁻¹ of lime, the actual pH will also have changed to around 8.00, and the revised Langelier Index would be:

Langelier Index = 8.00 - 8.02 = -0.02

This result is almost neutral and the water should be neither aggressive nor depositing. It should be emphasised that the Langelier Index is an approximation, but will provide a sufficiently reliable guide for protection of the distribution system and consumer interests.

One of the best direct methods of monitoring stability of the water in the distribution system is by small steel plates placed in the pipelines. The plates are carefully weighed and placed in a fitting where they are held securely. Then, after about three months, the plates are removed and reweighed. They will weigh less if aggressive water has dissolved the steel and will weigh more if deposition has occurred. If the water has remained stable there should have been no change.

ANNEX 8

Water Quality Problems & Solutions

WATER QUALITY PROBLEMS AND SOLUTIONS

Bacteria				
Measurement	Colonies per 100 milliliters. Acceptable maximum concentration is zero bacteria. Total coliform measures all types of coliform bacteria. Fecal coliform are a particular type that comes from human or animal wastes, and may indicate that other harmful pathogens may also be present			
Sources	Defective well casing or seal, contamination from waste storage or septic system, or animals in the well.			
Health Effects	Infectious diseases (dysentery, typhoid, and hepatitis) and gastrointestinal illness. If total coliform is detected, boil 10 minutes before any use. If fecal coliform is detected, do not use at all.			
Remedy	Disinfect well using chlorine (bleach) solution. Determine source of contamination, inspect casing and seals, check well for anything that has crawled in and died. Install a properly sealed well cap.			
Nitrogen Con	npounds			
Measurement	Nitrogen in milligrams per liter (mg/L). Normal background levels of nitrate or nitrite are less than 1 mg/L. Acceptable maximum concentrations are 10 mg/L for nitrate and 1 mg/L for nitrite.			
Sources	Breakdown of organic matter (septic systems, manure, etc.) or fertilizers.			
Health Effects	High nitrate concentrations are poisonous to infants and young animals.			
Remedy	Locate and remove nitrogen source. Nitrogen removal systems are commercially available, but expensive to buy and operate. Use bottled water for drinking and infant formula.			
Acidity				
Measurement	pH units. pH 7 is neutral, less than 7 is acid and greater than 7 is basic. Normal background levels of pH are in the range of 6 to 7. Safe limits are between 6.5 and 8.5.			
Sources	The pH of water is dependent upon the local geology.			
Health Effects	In general well water pH is not a health concern. Acidic water will corrode pipes and basic (alkaline) water may form scale deposits.			

Remedy	Water can be treated to adjust pH.			
Hardness				
Measurement	Calcium carbonate equivalents in milligrams per liter (mg/L). Soft water has a hardness of less than 75 mg/L. Hard water has a hardness greater than 150 mg/L. Moderately hard water is between these two values.			
Sources	Presence of calcium and magnesium in the water (lime-rich).			
Health Effects	Hardness affects taste and sudsing ability, but not health. Hard water will form scale (lime deposits).			
Remedy	Hard water can be treated with a softener (ion-exchange) to remove hardness elements and replace them with sodium or potassium.			
Iron and Mai	nganese			
Measurement	Concentrations in milligrams per liter (mg/L). Acceptable maximum concentrations are 0.3 mg/L for iron and 0.05 mg/L for manganese.			
Sources	These two elements are common in soil and rock. Local geology affects concentrations in water.			
Health Effect	Excess concentrations can cause blood or liver problems. These two elements may precipitate out and stain plumbing fixtures with orange to black stains. Laundry may get reddish stains, especially if chlorine bleach is used.			
Remedy	Special filters can remove iron and manganese.			
Salt (Sodium	and Chloride)			
Measurement	Concentrations in milligrams per liter (mg/L). Acceptable maximum concentrations are 20 mg/L for sodium (salt-restricted diet) and 250 mg/L for chloride.			
Sources	Salt can get into groundwater from sand/salt piles, road salting, seawater intrusion near the coast, and less commonly from trapped seawater aquifers.			
Health Effects	Salt can cause cardiovascular problems in people on low-salt diets. Salt can affect taste and cause corrosion of pipes.			
Remedy	Special reverse osmosis filters can remove salt, but these are expensive. Locating a new source of water is the best solution whenever practical.			
Radon and G	ross Alpha			
Measurement	Concentrations in picocuries per liter (pCi/L). A curie is a measure of radioactivity. Acceptable maximum concentrations are 20,000 pCi/L for radon and 15 pCi/L for "gross alpha" radiation.			

Sources	Radioactive elements occur naturally and concentrations vary from place to place. Higher concentrations are associated with some types of granite and high-grade metamorphic rock.			
Health Effects	When water is used, such as a shower, radon gas from the water enters the air. Airborne radon and gross alpha particles pose a health risk because of elevated cancer risk.			
Remedy	Contact a licensed radon contractor to help solve your radon problem. Special treatment equipment can remove radon and gross alpha particles. Alternative water supply sources may be the best long-term solution.			
Arsenic				
Measurement	Concentrations in milligrams per liter (mg/L). Acceptable maximum concentration is 0.010 mg/L.			
Sources	This element, though relatively uncommon in soil and rock, is commonly found in trace amounts in Maine groundwater. Arsenic was formerly used as a pesticide in orchards and on field crops.			
Health Effects	Chronic exposure to low concentrations of arsenic has been linked to bladder cancer.			
Remedy	Special filters can remove arsenic along with iron and manganese. If arsenic levels are above 50 mg/L, the well should also be tested for radon.			
Trace Metals				
Measurement	Concentrations in milligrams per liter (mg/L). Acceptable maximum concentrations are: Aluminum 0.2 mg/L Silver 0.01 mg/L Lead 0.015 mg/L Barium 2.0 mg/L Chromium 0.1 mg/L Mercury 0.002 mg/L Copper 1.3 mg/L Zinc 5.0 mg/L Uranium 0.030 mg/L			
Sources	Trace metals are distributed widely in bedrock at very low concentrations. However, such concentrations can increase as a result of 1) natural geological minerals; 2) pollution from human activities; and 3) leaching from piping and solder.			
Health Effects	Toxic effects can result if levels exceed the maximum concentration level, but the presence of these metals at low concentrations does not currently represent a significant health threat in Maine.			

Remedy	Treatment, if any is available, will vary by metal and concentrations.
Petroleum hy	drocarbons (gasoline, diesel, and fuel oil)
Measurement	Concentrations in micrograms per liter ($\mu g/L$). Acceptable maximum concentrations are 50 $\mu g/L$ for gasoline; diesel oil, and fuel oil; and 35 $\mu g/L$ for MtBE (another hydrocarbon).
Sources	Spills from fueling power equipment or leaking fuel storage tanks. MtBE is a gasoline additive that is very mobile in groundwater, unlike other petroleum hydrocarbons.
Health Effects	Gasoline, diesel, and fuel oil can cause kidney or nervous system damage. Also, these mixtures contain known or suspected cancer-causing compounds. MtBE is a taste and odor nuisance at concentrations below the maximum acceptable limit.
Remedy	Treatment involves using activated carbon filters for low concentrations. High concentrations require more advanced treatment (and assistance from the Maine Department of Environmental

ANNEX 9

Glossary

DEFINITIONS OF MICROBIOLOGICAL TERMS, GLOSSARY

These terms are given in alphabetic order to allow the reader to more easily find the terms of interest later.

Acidotrophic bacteria, bacteria which are able to flourish in very acidic (pH <3.5) conditions. Many are aerobic and function over relatively narrow pH ranges.

Adaptability, the ability of microorganisms either as individual strains, or as a consortium of strains, to adapt to function in some way within a given environment. Often there is a lag (induction) time before this activity commences.

Aerobic microorganisms, microbes which can function using oxygen in their respiratory activities.

Aggressivity, the state in which an organism is active in its environment and able to compete with other strains for space, nutrients, water and gases.

Anaerobic microorganisms, microbes which are able to function in the presence of oxygen. For many of these organisms, they are able to function using oxygen when available (facultative anaerobes) while other strains cannot function in the presence of oxygen which is toxic to them (strictly anaerobic). There are a very few strict anaerobes which are not sensitive to the toxic effects of oxygen. These are known as aerotolerant

.

Archaebacteria, are a group of bacteria which evolved very early on the in the evolution of the planet. These bacteria are now found populating some of the extreme environments (eg, highly saline, sulfur-rich, methane generating and high temperatures).

Attachment, the act of a bacteria or a biocolloid becoming fixed to a surface. Growth may then follow leading to the formation of biofilms.

Bacteriophage, a virus which infects bacteria and multiplies within the cells. Usually a bacteriophage can only infect a limited range of bacterial strains. BARTTM, a patented biological activity reaction test biodetection system which can be customised to determine the aggressivity and composition of selected consortia of microorganisms.

BCHTTM, a patented blended chemical heat treatment system which can be applied to rehabilitate biofouled water wells and systems by a tri-phasic technology.

Bioaccumulator, a biological entity which is able to accumulate (either actively for degradation, or passively) chemicals within the surface coatings of EPS or within the cells themselves.

Bioamplifier, an organisms which is able to catalyze a particular physical and/or chemical event causing the event to occur at an accelerated rate. Biocides, specific chemicals or compounds which have a deleterious impact on the targeted organism.

Biocolloid, a buoyant particle which is composed mostly of water bound together by EPS and populated by some microorganisms. Sizes may range from 6 to 100 microns or more in diameter. These suspended particles are also found to be able to act as bioaccumulators.

Biodegradation, the act of degrading a molecule to one or more smaller molecules by biochemical mechanisms (eg, enzyme action).

Biodetector, an instrument, device or mechanism by which the presence of biological activity can be determined.

Biofilm, an slime-like matrix composed of EPS within which a consortium of microorganisms flourish. These biofilms may either grow over surfaces, or occupy voids in a porous medium.

Biofouling, any deleterious event in which a definable biological activity causes a deterioration in and engineered or natural process or system. Deleterious effects range from clogging, corrosion, and plugging to gas production and bioaccumulation.

Bioincumbancy, the fraction of the volume within a biocolloid or biofilm occupied by viable cells.

Biomass, the mass of a living entity which may be expressed as either the wet or dry weight. Biomass may furthermore be given as the total mass including all associated mass; or as the viable mass which would include just the viable cells. In biofilms, the total mass would relate to the total weight of the "slime" as such while the viable mass would include just the mass directly associable with the living cells.

Biosensor, a device or methodology which utilises the shift in a targeted signal (commonly electro-magnetic) to quantify a biological activity or presence.

Biozone, a localized site where a specific form of microbial consortium can be located.

Clogging, the generation of a mass which interferes with physical

functioning (eg, hydraulic conductivity) of a porous medium (eg, gravel pack, sand filter). Clogging can be formed through the maturation of biofilms fouling the media and may become complex in structure.

Clogging Risk Index (CRI), a factorial presentation of the likelihood of a significant clogging occurring within a defined system.

Coliform bacteria, the presence of these bacteria is generally regarded as being indicative of an increased hygiene-risk because of the potential for faecal contamination. The coliform bacteria are abundant in the faeces of warm blooded animals and Escherichia coli is particularly common in the human species. Generally, the coliform bacteria do not survive long in natural waters and so form a good indicator organisms for recent (significant) pollution of raw or partially treated sewage.

Colony Forming Units (cfu), when microorganisms do grow on agar media they commonly form visible distinguishable structures composed mainly of cellular material which are called colonies. Each of these colonies is considered to have formed from a single colony forming unit which may be a single cell or a clump of cells. By appropriate mathematical relationships of the dilution of the sample and the area of the agar inoculated, it is possible to predict a population as either cfu/ml (for liquids), cfu/g (for solids) or cfu/cm2 (for surfaces).

Corrosion, the process of erosive deterioration in the physical form and engineered characteristics of a structure. These processes frequently involve electrolytic and/or corrosive chemical (eg, acids) effects which are sometimes mediated by microbial activities. It has been observed that corrosive pitting can form directly under biofilms.

Culture, (verb) the act of successfully growing a unique strain or a

consortium of microorganisms; (noun) a viable collection of a single strain of microorganisms which has been selectively grown.

Denitrification, the process of reducing nitrate via nitrite to nitrogen gas by bacterial action. There are four stages in this process. In water which has become polluted with sources of organic nitrogen (eg, sewage or septic waste) and then been subjected to aerobic (oxidative) nitrification, nitrates are a major product. If conditions now become anaerobic, these accumulating nitrates are reduced by denitrification.

Disinfection, the act of destroying by chemical and/or physical means microorganisms that are causing an undesirable infestation at a site. It does not mean that all microorganisms are killed, it means that there is a selective action.

Encrustation, a relatively solid plate-like or crystalline structure coating a surface. It appears to be chemical in nature due to the hardness of the structure. Often brittle (when dry) or plastic (when wet), the organic content is usually relatively small.

EPS or extracellular polymeric substances, many microorganisms do produce an "overcoat" of polymers outside of the cell. These polymers bind water and various chemicals to form protective and storage functions.

Eutrophic conditions, these occur when there is an abundance of nutrients and the microorganisms are able to grow to form a large biomass. A rapidly clogging well due to IRB growth could be considered as being eutrophic.

Fringe Effects, the zone wherein the treatment is marginalized and therefore has a lesser of different impact.

Gallionella, is a well known iron related bacterium which is easily recognized by the long often twisted ribbon-like tail they produce. This tail often will break off and be carried with the water flow.

gRAM Stain, is a standard staining procedure which is frequently used as one of the first stages in the identification of bacteria into gRAM negative and gRAM positive types.

Halotrophs, microorganisms able to survive and grow in brine solutions. Some of these organisms cannot even survive when the salt concentration is less than 12%.

Heterotrophic microorganisms, those microbes which obtain their energy from the breaking down of organic material. Some of these microbes are very specialised (eg, cellulose degraders) while other can utilize a variety of organic compounds.

Hydrolysis, the act degrading complex molecules (eg, polymers) into smaller molecules through the addition of H_2O .

Incubation, the act of growing an organism under conditions that will encourage rapid growth (compared to natural conditions).

Induction period, the period of adaptation that an organism has to pass through before it is able to flourish in a favorable habitat.

Infiltration, the act of a material or organism passaging into a porous medium.

In situ, at site.

Invasiveness, the ability of an organism to enter into an environment and function at some level from survival to growth.

In vitro, under controlled (laboratory) conditions.

Iron oxidising bacteria, those bacteria able to oxidise iron by any means from a reduced form of iron (ferrous form) to an oxidised (ferris) state.

Iron reducing bacteria, those bacteria which are able to reduce iron by any means from an oxidised form (ferric) to a reduced (ferrous) state.

Iron related bacteria (IRB), all of those bacteria which are able to accumulate iron in another form beyond that for basic metabolic functioning. These accumulated iron compounds generally collect within the slime (EPS) around the cells and gradually harden (crystallise) over time.

Limiting nutrient, a major nutrient which is in short supply and restricts the growth of a biomass. Limitations could also be created by the limiting nutrient distorting the ratios of nutritional elements outside of range that would support growth.

Macrofouling, an intense and/or widespread form of biofouling.

Magnetotactic bacteria, are a group of bacteria which actually possess "biocompasses" (called magnetosomes). These bacteria are able to orient themselves within electromagnetic fields.

Marginal clogging, where there is less than a 20% loss in production capacity but a water well shows symptoms of being clogged, then this phenomenon is considered marginal but discernable.

Mechanical disruption, the use of physical methods (such as freezing, ultrasonics, pressure pulses, radical thermal gradients) to disrupt a biofouling event.

Membrane filtration (MF), the use of a non-absorbent porous membrane to trap particles (including bacteria) which allow the water to filter through. It is a technique used to enumerate low numbers of bacteria in water by concentration the cells on the filters surface where they may be grown to form visible countable colonies. Pore sizes commonly employed are of 0.22 and 0.45 microns diameter.

Mesotroph, an organism which will grow over a temperature range somewhere between 15 and 15°C.

Microbial growth potential (MGP), the theoretical growth which may be expected to occur within a defined environment utilising the available nutrients.

Microcosm, a habitat within which there is little diversity in the organisms present or the environmental factors. Often applied to laboratory simulations of "real world" situations (eg, well microcosm used to simulate clogging processes in wells).

MPN most probable number, some microbiological techniques to determine populations use a statistical projection of the population as the most probable number and do not specifically count the individual cells as such.

Negative staining, sometimes bacteria are easy to stain due to the fuzzy EPS around the cell. One alternative is to stain the background so that the cell (and its EPS slimes) can be more easily viewed microscopically.

Nitrification, this biological conversion of ammonium to nitrate occurs under oxidative (aerobic) conditions and is a major part of the nitrogen cycle.

Nitrogen fixation, the act of a biological system fixing nitrogen usually as ammonium (as the intermediary). Some microorganisms under stress through an inadequate nitrogen resource for growth can fixate nitrogen.

Nosocomial, term used for microorganisms which are normal inhabitants of a natural environment but can, under certain circumstances, cause infections in warm blooded animals including man.

Occlusion, the reduction of hydraulic conductivity (flow) through a porous medium as a result of the growth of a clogging structure which is now occupying a significant void volume.

Oligotrophic conditions, these occur where there are few nutrients in the system and the microorganisms are not able to grow to form a significant biomass.

Particulates, suspended material in water, may be inorganic and/or organic in nature. May contain living microorganisms and be colloidal in structure (biocolloid).

Pasteurization, the process of applying heat to a sufficient extent to retard or destroy a recognized nuisance microbial population. Usually involves the application of heat to a minimum of 40°C above the ambient temperature for the system.

Planktonic, references microorganisms able to grow while suspended independently in water.

Plugging, see clogging.

Preventative Maintenance (PM), a management strategy to allow the ongoing monitoring of a system or process to ensure that there is a reactive scenario in place to control an form of recognized deterioration.

Pseudomonad bacteria, are gRAM negative aerobic bacteria which frequently dominate in waters polluted with specific organics. Some strains are nosocomial pathogens.

Recalcitrant, a chemical which does not degrade, is stable and does persist within the environment.

Rehabilitation, the returning of a well or other system to its original specified state by the application of suitable treatments.

Reinfection, the act of an infestation becoming reestablished within a system or process.

Sessile, organisms that are attached to a surface either directly or indirectly. Shock treatment, the application of a higher than normal dose in order to maximize the effectiveness of the treatment being applied.

Slime, a surface growth on, or originating from, a surface which may be jelly-like if form. Such slimes are usually infested with various microorganisms and can act as sites for the bioaccumulation of various chemicals.

Slime Forming Bacteria (SLYM), bacteria which do produce slimes (from EPS) but do not necessarily accumulate iron within these slimes.

Sloughing, the act of a slime, for whatever reasons, breaking up and releasing particles (from the slime) to the water passing over the slime.

Spread plate, name given to the microbiological procedure for enumerating microorganisms through their ability to form colonies on selected agar media when dispersed ("spread") over the agar surface and incubated.

Sulfate Reducing Bacteria (SRB), anaerobic bacteria which able to reduce sulfate to hydrogen sulfide. This event may initiate electrolytic corrosion and/or rotten egg taste and odors in water.

Thermal Death Point, the lowest temperature that is required to destroy a specific strain or consortium of microorganisms in ten minutes.

Thermotroph, an organism which is able to grow at temperatures in excess of 45°C.

Total Nitrogen, the total amount of nitrogenous compounds determined to be in the water exclusive of nitrogen (N_2) itself. Major fractions include nitrate - N, nitrite - N, ammonium - N and Kjeldahl nitrogen.

Total Organic Carbon, the total amount of organic carbon in the sample. May include soluble and particulate forms which may, or may not be, recalcitrant.

Total Phosphorus, the total amount of phosphorus detected in the sample. May be four forms: soluble inorganic phosphorus, SIP; soluble organic phosphorus, SOP; particulate inorganic phosphorus, PIP; and particulate organic phosphorus, POP.

Tubercles, these are raised encrustations often incorporating rusty flakes. They commonly grow on surfaces and form the sites for enhanced electrolytic corrosion. Biofilms are often generated within the tubercle.

Tyndallization, the act of repeating a treatment sequentially in order to destroy the survivors of the previous treatment as they grow and become more vulnerable to treatment process. Commonly the treatments are performed three time with a sufficient interval in between to allow the survivors to grow.

Ultramicrobacteria (UMB), very small electrically neutral microorganisms which are in a state of suspended animation. They are able to survive in this form for very long periods of time and recover when they are exposed to a favorable environment.

Viable units, a form of measuring the number of microorganisms in terms of their viable (detectable) units which may consist of one or more cells. Wolfe's medium, a specialized medium widely used for the selective growth of Gallionella.

WR medium, a modified Winogradsky's medium used to determine the presence and numbers of iron related bacteria.

SHORT NOTES - GENERAL

* Sporozoa ,the following protozoa are classified as Sporozoa:

Isospora, Cryptosporidium, Sarcocystis, Toxoplasma, Plasmodium, Babesia and Microsporidium. Pneumosystis is also conventionally included in this group.

*Microsporidea

not Microsporidia as a group. Microsporidea are oval obligate-intracellular eukaryotic parasites.

Five genera of Microsporidea have been reported in humans: Nosema, Encephalitozoon, Pleistophora, Microsporidium and Entrerocytozoon. The first three genera appear to cause human disease only rarely.

*Euocaryotes (lack of mitochondria and have ribosomes that resemble those of bacteria).

*The polar tubule used to penetrate intact cells and inject infective agent (sporoplasm).

خطة التدريس للدورة التدريبية فى مجال ميكروبيولوجيا مياه الشرب ميكروبيولوجيا المياه السطحية والجوفيه

مقدمة إلى الشركة القابضة لمياه الشرب و الصرف الصحى Holding Company for Water and Wastewater Training Unit

إعداد البرنامج التدريبي للمعامل المركزيه

Prof. Dr. Helmy Tawfik El-Zanfaly National Research Center

Central Laboratories Training Program
Water Microbiology

GTZ

مايو 2008

المحتويات

أولا: نظرة عامة على البرنامج التدريبي ميكروبيولوجيا الهياه (ميكروبيولوجيا المياه السطحية والجوفية)

- 1. الهدف العام للدورة التدريبية
 - 2. المجموعة المستهدفة
 - 3. عدد المتدربين
 - 4. منهجية التدريب
 - 5. مساعدات التدريب
 - 6. قائمة الدورات التدريبية
- 7. مكان التدريب و طريقة الجلوس بجلسات التدريب

ثانيا: خطة التدريس بالدورة التدريبية ميكروبيولوجيا المياه

دورة (ميكروبيولوجيا المياه السطحية و الجوفية)

- 1. أهداف الدورة
- 2. موضوعات الدورة
 - مدة الدورة
- 4. البرنامج الزمنى للدورة

أولا: نظرة عامة على البرنامج التدريبي ميكروبيولوجيا المياه (ميكروبيولوجيا المياه السطحية، والجوفية)

1. الهدف العام للدورة التدريبية

التعرف على مصادر التلوث الميكروبية بالنسبة ل مصادر المياه المستخدمة في إنتاج مياه الشرب سواء كانت هذه المصادر مياه سطحية أو جوفية هو الوسيلة نحو اتخاذ التدابير التي تحمى مصادر المياه من التلوث الميكروبي من جانب ومن جانب آخر يكون اختيار المصدر الذي سيستخدم في إنتاج مياه الشرب بعيدا بقدر الإمكان عن تلك المصادر الملوثة أو المحتمل أن يصل إليها التلوث . ذلك إيمانا بأن اختيار المصدر الجيد هو المفتاح لإنتاج مياه الشرب الجيدة.

ومن المهم بالنسبة للمشتغل بميكروبيولوجيا المياه أن يكون على علم بأقسام الكائنات الدقيقة المختلفة، من بكتريا، فيرس، بروتوزوا، فطر ، وطحالب والتى من الممكن أن تتواجد في المياه السطحية والجوفية من حيث خصائصها العامة.

ومن الضرورى معرفة بعض الأسس بالنسبة للكائنات الدقيقة مثل عمليات التمثيل الغذائى والتنفس لأنها من أسس تقسيم الكائنات الدقيقة كذلك نمو الكائنات الدقيقة والعوامل المؤثرة على النمو لأنها تلغي دورا رئيسيا في نمو الكائنات سواء في الطبيعة أو المعمل. وتمتد الضرورة إلى التعرف على الجزء المرضى منها ممثلا في أقسام الكائنات الدقيقة بأقسامها المختلفة والسابق ذكرها وأساس الاهتمام بالتحليل الميكروبيولوجي للمياه هو التأكد من صلاحية الهياه من الناحية الصحية وهذا يتمشى مع تحقيق الهدف العام لمعالجة مياه الشرب وكذلك الهدف الخاص من عملية التطهير وهو القضاء التام على مسببات الأمراض وبالتالي ضمان وصول مياه الشرب إلى المستهلك دون مخاطر صحية. وبمعرفة مخاطر عدم مطابقة المياه المنتجة للمواصفات والمخاطر المصاحبة لذلك يتحقق زيادة الاهتمام بالمعالجة وكذلك الاختبارات التي تجرى بالمعمل لتأكيد الصلاحية.

وكما أشرنا أن من خلال المعالجة بخطواتها المختلفة من المفروض أن يتم إزالة والقضاء على مسببات الأمراض، لذلك فمن المهم أن يكون القائمون بالعمل، في محطا ت المعالجة بوجه عام والعاملون في معامل التحليل الميكر وبيولوجي بوجه خاص، على علم بالدور الذي تلعبه كل مرحلة من مراحل المعالجة على الصورة الميكر وبيولوجية للمياه المستخدمة لإنتاج مياه الشرب. وبمعرفة ذلك يمكن تقييم أداء محطة المعالجة من خلال التأكد من أن كل مرحلة من المراحل المعالجة تقوم بالدور المفروض أن تؤديه واذا كان هناك قصور في أي مرحلة من المراحل يكون هناك تحرك من المسئولين عن التشغيل لضبط أداء خطوات المعالجة. هذا ولم نتطرق إلى جزئية هامة من المعالجة وهي مرحلة التطهير وهي آخر حاجز أمام مسببات الأمراض والذي من خلاله يتم تأكيد سلامة المياه لضيق الوقت. ولكن لا يغيب عن الذهن أن التأكد من أداء كل مرحلة من مراحل معالجة المياه هو الطريق إلى الإقلال من الحمل الملقي على الخطوة الأخيرة من خطوات المعالجة وهي التطهير وبالتالي نقل الجرعة اللازمة من المطهر مع تحقيق إنتاج مياه للشرب على درجة عالية وبالأمان وبالتالي يتحقق الهدف العام وهو إنتاج كوب ماء نظيف لكل مواطن.

2. المجموعة المستهدفة

• الميكروبيولوجيين العاملين بالمعامل المركزية لشركات المياه التابعة للشركة القابضة لمياه الشرب والصرف الصحى.

3. عدد المتدربين

يبلغ عدد المتدربين المقدر لحضور دورة ميكروبيولوجيا المياه (التحكم في الجودة – أجهزة المعمل – العينات) ما بين 20 - 22 متدرب من المعامل المركزية مجزئين على مجموعتان.

4. منهجية التدريب

تعتمد منهجية التدريب بالدورة على عدة اسس يكون الهدف الرئيسى منها توصيل المعلومة بسهولة و يسر للمتدرب و كذلك ضمان المشاركة الفعالة من المتدربين أثناء جلسات التدريب والتأكد من الفهم الك امل لمحتويات و موضوعات الدورة و التدريب العملى والشخصى على الموضوعات التى ستتناولها الدورة.

هذا ويمكن تلخيص المنهجية المتبعة فيما يلي:

- المحاضرات: التى يلقيها المدرب ذا الخبرة بهدف توصيل أحدث المعلومات على صورة نظرية و عملية والتأكد من التطبيق العملى بطريقة صحيحة و على أساس من الفهم مما يمكنه من تلاشى الأخطاء التى من الممكن أن تلعب دورا فى صحة النتائج التى يتحصل عليها والتى تهتم بجودة مياه الشرب.
 - الشرائح Power point: التى تعرض أثناء الشرح لإبراز النقاط الرئيسية لكل موضوع فى تسلسل منطقى و لضمان وتثبيت المعلومة لدى المتدرب.
- المناقشات المفتوحة: ويديرها المدرب أو المحاضر وتتيح تلك المناقشات الفرصة لتبادل الآراء وتوجبه الأسئلة و الحصول على معلومات جديدة كما إنه يتم من خلاله انقل المعارف و الخبرة العملية والنظرية من المدرب إلى المتدربين واصلاح لمفاهيم الغير صحيحة أو غير حديثة لدى المتدربين.
 - دراسة الحالات الواقعية: وهى تفيد فى عرض المشاكل العملية التى يواجهها المتدربون أو التى سوف يواجهونها فى عملهم و أساليب التغلب عليها بالاسلوب العلمى الصحيح.

- التدريب العملى: والذى سيتاح بصورة فردية لكل متدرب باستخدام الطرق القياسية الحديثة لضمان الفهم التام والتطبيق الصحيح من المتدرب للمعلومات والطرق العملية التي تم تدريسها.
- المراجع العلمية و الكودات و المواصفات: يتم إعطاء المتدرب المراجع العلمية التي أعتمد عليها والتي يمكن الرجوع إليها لزيادة التعمق في المجال وكذلك الإشارة ومناقشة الكود الخاص بتشغيل محطات معالجة مياه الشرب والمواصفات الحديثة الحاكمة والمعمول بها في مصر وعلى المستوى الدولي في مجال مياه الشرب.
 - •فى نهاية الدورة يتم تقييم الحا ضرين من خلال اختبار تحريرى فى مواد الدورة.

5. مساعدات التدريب

- جهاز عرض الشرائح (Power Point Projector)
 - سبورة بيضاء أو سبورة ورقية
 - شاشات عرض.

6. قائمة الدورات التدريبية

سيهتم عمل عدد 4 دورات في مجال ميكروبيولوجيا المياه ويتم إعادة كل دورة مرتان. وعنوانين الدورات كالتالي:

- دورة التحكم في الجودة أجهزة المعمل العينات.
 - دورة ميكروبيولوجيا المياه السطحية والجوفية.
- دورة أسس التحليلات الميكروبيولوجية وتقدير البنود الأساسية.
- دورة الطرق والبنود الخاصة في التحليل والمواصفات القياسية لمياه الشرب.

7. مكان التدريب و طريقة الجلوس بجلسات التدريب

يجلس المتدربون وفى مواجهتهم المحاضر فى المنتصف وعلى يمينه جهاز الكمبيوتر لعرض الشرائح Power Point وشاشة العرض وعلى يساره السبورة البيضاء أو السبورة الورقية ويكون وضع كل من شاشة العرض والسبورة بحيث يسمح بسهولة الرؤية لجميع المتدربين.

وتقدر المساحة المطلوبة لقاعة التدريب بما لا يقل عن 5×7 مترا لتستوعب المتدربين والمدرب لتسمح بسهولة حركة المدرب وإمكانية وصولة لأماكن جلوس المتدربين. ويلزم أن تتوفر بالقاعة الإضاءة اللازمة والتهوية الكافية والأجهزة الصوتية المناسبة.

كما يلزم توفير معمل يتسع لعدد 10-12 متدرب (يمكن عمل 5-6 مجموعة من شخصين على الأكثر) والمعمل يكون مجهز بالامكانيات من أجهزة وأدوات، أما البيئات والكيماويات وبعض المستلزمات فسيقوم بتوفيرها هيئة gtz. تتم دورتان بتكرارها في المعمل المركزي بمحطة الفسطاط بالقاهرة ودورتان بمكررها بالمعمل المركزي بشركة مياه البحيرة بدمنهور.

ثانيا: خطة التدريس بالدورة التدريبية

أ. دورة التحكم في الجودة _ أجهزة المعمل _ العينات.

محاضر:أ.د. حلمي توفيق الزنفلي

تدريبات عملية: مساعد من هيئة العاملين بالمعمل الذى تتم فيه الدورة وذلك بالتناوب.

1. أهداف الدورة

- التعرف على مصادر وكيفية وصول الملوثات الميكروبية الى المياه السطحية والجوفية.
- الملوثات الميكروبية (بكتريا- فطر طحالب بروتوزوا فيرس) خصائصها .
 - البعد الصحى لهعض الأمثله لكلا من الأقسام الخمسة المشار اليها.
- الهعد الصحى لخطوات المعالجة (تخزين معالجة مبدئية التجلط والترسيب الترشيح)

2. موضوعات الدورة

- المقدمة وشرح الهدف من الدورة.
- مقدمة عن المياه و الصحة العامة.
- مصادر التلوث وكيفية وصول الملوثات الميكروبية الى المياه السطحية والجوفية.
- أسس ميكروبيولوجية (تغذية البكتريا- تنفس البكتريا- تكاثر البكتريا- حركة البكتريا- صبغ البكتريا) والعوامل التي تحكم تكاثر البكتريا.
- ميكروبيولوجيا الصحة العامة (الوبائيات سلسلة العدوى العوامل الممرضة مصادر العدوى وسائل انتقال العدوى مداخل الميكروب الى الجسم حساسية العائل).

- الممرضات (بكتريا فطر طحالب بروتوزوا فيرس).
 - مصير الميكروبات خلال مراحل معالجة مياه الشرب.

3. مدة الدورة

تستغرق الدورة مدة خمسة أيام متواصلة و يبدأ العمل يوميا من الساعة الثامنة والنصف صباحا حتى الساعة الخامسة و النصف بعد الظهر، أى مدة تسع ساعات (بواقع خم سة ساعات نظرى وثلاث ساعات عملى) يوميا يتخلله اساعة لتناول المشروبات والغداء

برنامج تدريب العاملين بالشركات التابعة للشركة القابضة لمياه الشرب و الصرف الصحى - المعامل المركزية خطة التدريس للدورة التدريبية في مجال ميكروبيولوجيا مياه الشرب (ميكروبيولوجيا المياه السطحية ،الجوفية ومعالجة المياه)

أ.4 البرنامج الزمنى للدورة

			رتامج الرمنى للدورة	<i>,</i> , , ,
المحتوى	الموضوع	التوقيت	الجلسة	اليوم
إستقبال و تسجيل المشاركين في الدورة		9.0 – 8,30	التسجيل	
 مقدمة عامة توزيع استمارات التعارف أهداف الدورة النتيجة المرجوة 	المقدمة والهدف	10.00 - 8.30	جلسة الإفتتاح	
 منشأ تلوث مصادر المياه محتوى الصرف الصحى الخام والمعالج من الميكروبات محتوى الصرف الصناعي الخام من الميكروبات محتوى الصرف الصناعي المعالج من الميكروبات مياه الأمطار ومحتواها الميكروبي مدى بقاء الميكروبات حية في المياه السطحية دفن المخلفات في التربة وأثره على المياه الجوفية الميكروبات المتواجدة مع نواتج الرشح من المدافن الصحية مدى بقاء الميكروبات في المياه الجوفية مدى بقاء الميكروبات في المياه الجوفية 	تلوث مصادر المياه السطحية والجوفية	1.30–10	الجلسة الأولى	اليوم الأول

 تحضير البيئات اللازمة للتعرف على الكائنات الدقيقة المتواجدة فى المياه وخصائصها بدءا بالمياه الخام مع التركيز على أثر الخزين). جمع العينات اللازمة وحفظها. 	التجهيز المعملى اللازم لليوم التالى (عملى)	5.30 – 2.30	الجلسة الثانية	
 مناقشة ما تم فى اليوم الأول البروتستا (الايوكاريوتس والبروكاريوتس والفروق بينها) البكتريا (الحجم والشكل والتركيب الحركة التغذية – التنفس التكاثر – صبغ البكتريا التجرثم) 	نظرة عامة على المجاميع الميكروبية الممكن تواجدها في المياه واهميتها الصحية	11.30 - 8,30	الجلسة الثالثة	
 تعاریف هامة بالصحة العامة والعدوی سلسلة العدوی 	استكمال المجاميع الميكروبية	1.30 – 11.30	الجلسة الرابعة	اليوم الثاني
 العد الكلى للبكتريا باستخدام البيئات المختلفة _ تركيز عينات من المياه الخام وناتج خطوات المعالجة والهوبة للتعرف على ما بها من كائنات حية (بكتريا _ فطر _ بروتوزوا _ طحالب) 	التعامل مع العينات السابقة (عملى)	5.30 – 2.30	الجلسة الخامسة	
 مناقشة عامة لما تم فى اليوم الثانى ايشيرشيا كولاى المرضية السالمونيلا الشيجيلا 	البكتريا الممرضة	11.30 - 8,30	الجلسة السادسة	
 الكوليرا اللجيونيلا 	استكمال موضوع ميكروبيولوجيا المياه والصحة العامة (البكتريا)	1.30 – 11.30	الجلسة السابعة	اليوم الثالث
 عد مستعمرات البكتريا على البيئات المختلفة المعدة فى اليوم السابق مع العزل فى بيئات سائلة وتتبع منحنى النمو مع زمن التحضين شكل المستعمرات _ شكل الخلايا _ صبغ البكتريا 	التعرف على الخصائص الأولية للبكتريا	4.30 – 2.30	الجلسة الثامنة	

 مناقشة ما تم في اليوم الثالث الفطريات أقسام الطحالب السيانوبكتريا 	استكمال موضوع ميكروبيولوجيا المياه والصحة العامة (الفطر- الطحالب)	11.00 - 9	الجلسة التاسعة	
 الأميبا الديدان الاسطوانية الدودة الشريطية الكربتوسبوريديم الجيارديا 	استكمال موضوع ميكروبيولوجيا المياه والصحة العامة (البروتوزوا – الفيرس)	2.00 – 11.30	الجلسة العاشرة	اليوم الرابع
 استخدام البيئة الصلبة والسائلة في التعرف على حركة البائتريا قراءة نتائج عملى اليوم السابق 	اختبار حركة البكتريا - نتائج اليوم السابق	5.30- 2.30	الجلسة الحادية عشر	
 مناقشة ما تم الى اليوم الرابع تخزين المياه الخام التهوية التحكم فى العسر 	التحكم في ميكروبيولوجيا مياه الشرب من خلال المعالجة	11.30 - 8,30	الجلسة الثانية عشر	
 التجلط والترسيب الترشيح 	استكمال الموضوع السابق	1.30 – 11.30	الجلسة الثالثة عشر	اليوم الخامس
 قراءة نتائج اليوم السابق - مناقشة واستعراض نتائج أثر عمليات المعالجة المختلفة ممثلة بالعد الكلى للبكتريا إمتحان تحريرى لمدة ساعة بقييم الدورة ختام الدورة 	استعراض نتائج التدريب العملى لليوم السابق إمتحان تقييم المتدرب	5.30 – 2.30	الجلسة الرابعة عشر	

WATER MICROBIOLOGY Module 2

Surface and groundwater Microbiology

Prof. Dr. Helmy El-Zanfaly National Research Center

Seite

<u>Table 1.</u> Typical concentrations of enteric pathogens and

index organisms in raw and treated domestic wastewater

- ■Microorganism Raw sewage Secondary effluent
- Pathogens (numbers/litre)
- Parasites

Seite 2

1

50 - 500

- Giardia sp. 5 000 50 000
- Viruses
- Enteroviruses 10 100 1 10
- Norwalk like viruses 10 1 000 1 100
- Rotavirus 10 100 1 10
- Bacteria
- Salmonella spp. 100 10 000 10 10 000

a : a

Index parameters

- Coliforms 107 109 106 108
- Thermotolerant coliforms / E.coli 106 108 105 107
- Enterococci 106 107 104 106
- Clostridium perfringens 105 106 104 105
- F-RNA phages 106 107 105 106

■ Bacteroides phages 104 – 105

103 -

104

■ Source: Rolland et al., 1983; Payment et al., 1986:

Tartera et al., 1988, 1989; Funderburg and

■ Sorber, 1985; WRc, 1991; Havelaar et al., 1986, 1993;

Koenraad et al., 1994; Schijven and Rijs, 2000.

01.05.2010

Soito 5

■ <u>Table 2.</u> Disappearance rates and reduction times

for selected microorganismsin surface water

Microorganism Disappearance rate (per day)

Time for 50% reduction of concentration (days)

Pathogens

Parasites

Cryptosporidium sp. 00057 - 0.046

15 - 150

Giardia sp. 0.023 - 0.23

3 - 30

Viruses

Enteroviruses 0.01 - 0.2	3 - 70
Enteroviruses 0.01 - 0.2	3 - 70

Bacteria

Vibrio cholerae

01.05.2010 Seite 7

Index parameters

- E.coli 0.23 0.46 1.5 3
- Coliforms 0.77 0.9
- Enterococci 0.17 0.77 0.9 4
- F-RNA phages 0.01 0.08 29 230

Somatic coliphages 0.6 - 6

2 - 20

Clostridium perfringens 0.0023 - 0.011

60 -> 300

- *Vibrio cholerae is environmentally competent and in unfavourable environmental conditions is thought to survive for long periods in water in a nonculturable state (Colwell and Grimes, 2000).
- Source: DeReignier et al., 1989; Geldreich, 1996; Olson, 1996;
 Medema et al., 1997; Schijven and Hassanisadeh 2000.

01.05.2010

Seite 9

- Example disappearance rates of enteric microorganisms in natural groundwater
- Microorganism Disappearance rate (per day)
- Viruses

Hepatitis A virus

0.10 - 0.33

■ Poliovirus 1

0.013 - 0.77

Coxsackievirus	0.19
■ Rotavirus SA	11 0.36
Coliphage T7	0.15
■ Coliphage f2	0.39 - 1.42
■ MS2	0.063 - 0.75
■ Bacteria	
■ Escherichia coli	0.063 - 0.36
■ Faecal streptococci	0.03 - 0.24

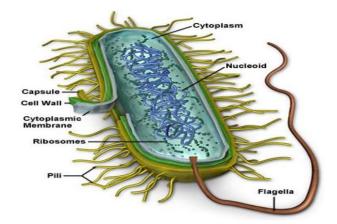
Soita 11

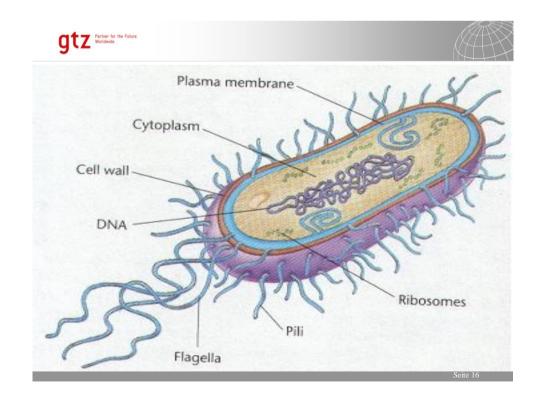
- Salmonella typhimurium 0.13 0.22
- Clostridium bifermentans spores 0.00
- Sources: Matthess et al., 1988; Nasser et al., 1992; Blanc and Nasser, 1996; Schijven and
- Hassanisadeh, 2000.

...that was drink 8 glasses of WATER every day!

@ 3fatchicks.com Diet eCords

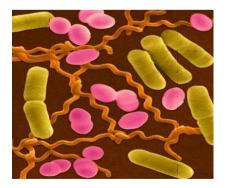
Seite 13


BACTERIA



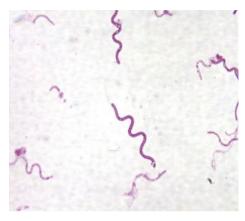
تركيب الخطية

- There are 4 Phyla of bacteria
- Eubacteria ("True" bacteria)
- Cyanobacteria aka. Blue-green bacteria contain chlorophyll a, & phycocyanin (bluish pigment) - These are photosynthetic bacteria.
- Archaebacteria primitive bacteria, frequently found in harsh environments (eg. Hot springs, animal gut, thick mud, high salt concentrations)
- Prochlorobacteria contain both chlorophyll a & b. Similar to chloroplasts found in eukaryotic cells.


Caita 17

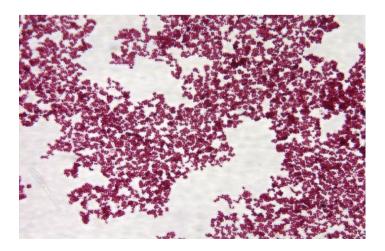
اشكال البكتيريا

- Spherical
- Rod
- Spiral
- Vibrio



Bacilli (rod shaped Bacteria) Bacteria)

Spirilli (spiral shaped



Seite 19

gtz Partner for the Future. Worldwide.

Cocci (spherical shaped Bacteria)

No colonies on the plate

Serratia marcescens is a bacterial species that is known for its bright red pigment

Caire 21

Escherichia coli (E. coli) is a bacterial species that produces translucent colonies

Bacillus cereus is a bacterial species that produces large, opaque colonies

- How Bacteria obtain energy:
- Two major categories:
- Autotrophs Make their own energy 2 types
- Phototrophic autotrophs Get energy from sunlight
- Chemotrophic autotrophs Get energy from inorganic molecules (eg. Sulfides)

Seite 23

- Heterotrophs Energy obtained from other organisms
- Chemotrophic heterotrophs obtain energy by dissolving/absorbing organic material
- Phototrophic heterotrophs meet some energy needs from photosynthesis, but must absorb organic compounds.
 Bacterial Respiration

■ Bacterial Respiration:

- 3 major categories
- Obligate aerobes. Must have O2 in order to live
- Obligate anaerobes Must live in an O2 free environment
- Facultative anaerobes Can live with or without O2.

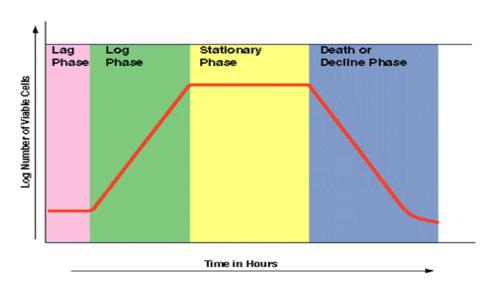
Seite 25

Bacterial Reproduction:

- Bacteria reproduce through binary fission.
- Can engage in primitive sexual reproduction called conjugation.
- A bridge is formed between 2 bacteria
- Plasmids are shared across bridge, thus exchanging genetic information.
- In times of harsh conditions, bacteria can form endospores, to

encapsulate themselves in a dormant state, until conditions

THE GROWTH CURVE


- Bacterial growth is defined not by growth in size, but by an increase in number.
- The growth curve is a hypothetical represent-ation of bacterial culture growth.
- The curve is comprised of four distinct phases.

Seite 2

GROWTH CURVE

LAG PHASE:

- During this phase, bacteria are growing in size, but they are not undergoing binary fission.
- Hence, there is no increase in cell number.
- The bacteria are adapting to the new environment and are synthesizing cellular components such as ribosomes, enzymes, and other proteins.

Soito 20

LOG PHASE:

- This phase is also referred to as the exponential phase because there is a logarithmic increase in cell number.
- This exponential growth is expressed as the bacteria's generation time.
- During this phase, the conditions are optimal for growth and binary fission occurs.

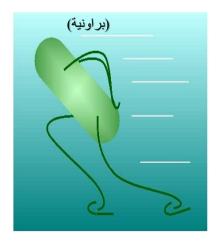
STATIONARY PHASE:

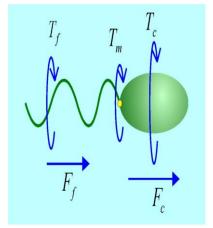
There is no net increase or decrease in cell number in this stage. In other words, cell growth (division) equals cell death.
The birth rate decreases due to limited nutrients, lack of space, and the build up of secondary metabolic products (e.g. toxins).
The insufficient supply of nutrients also causes some bacteria to form spores during this phase.

Saita 3

DEATH PHASE:

 This phase is characterized by an exponential death of cells. When the media runs out of nutrients and there are too many toxins, cells begin to die at a faster rate.

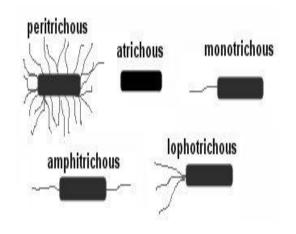




الحركة في البكتيريا

حركة ذاتية

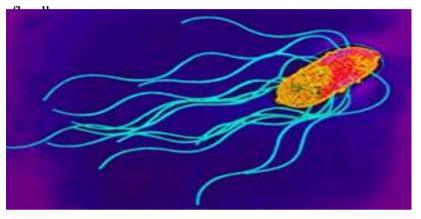
" flagellaحركة باستخدام الاسواط - الفلاجلا "**



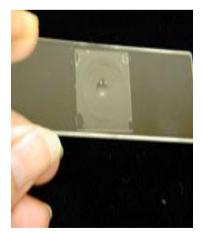
Types of flagella

Seite 35

gtz Partner for the Future. Worldwide.


- Motility Test Agar with TTC.
- The culture on the left is nonmotile; the cultures in the middle and right side are motile

 Salmonella enterica. Salmonella is an enteric bacterium related to E. coli. The enterics are motile by means of peritrichous

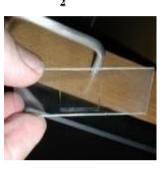

Seite 37

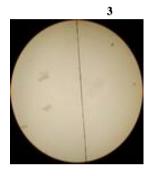
 Preparation of hanging drop mount using a depression slide (left, before inverting coverslip; right, completed

■ FOR CULTURES: Place 15 - 20 uL of the culture in the middle of the slide. FOR COLONIES: Place a small drop of dH2 O in the center of a slide. [For greater volume of sample, or for hanging drop preparations, use a depression slide for this

Seite 39

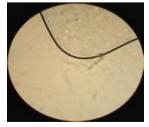
• <u>CULTURES</u>: The sample of liquid culture is place on the slide.
<u>COLONIES</u>: Sterilely transfer a tiny portion of a single colony to the drop with a loop and suspend (be certain to allow the loop to cool before picking up specimen). For solid specimens or dry spores, transfer a small portion of the specimen with a scalpel.





- Lower a clean cover slip over the drop as though it were hinged at one side.
- Finished preparation
- First focus with the 4x objective on the edge of the coverslip. It is easier to find and focus on than the nearly transparent suspension.

Seite 4



- Find a bubble in the liquid suspension, and adjust the fine focus on the edge of the bubble.
- Switch to the 10x objective, repeat the careful focusing.
- Switch to the 40x objective, repeat the careful focusing. You should be able to discern bacteria at this power (magnification = 400x).

Apply oil and examine with 100x oil immersion lens, again using the edge of the bubble as a focusing point. At 1000x, maximize the depth of field by narrowing the iris diaphragm, and adjust the focus so that most bacteria are in focus. (Because of the depth of the water, not all bacteria will be in focus at a given point.) Illustrate the types of motility you observe.

Seite 4

Gram stain

A small sample of a bacterial culture is removed from a

■ The bacterial suspension is smeared onto a clean glass slide.

01.05.2010 Se

gtz Partner for the Future.
Worldwide.

• The bacterial smear is then dried slowly at first and then, when dry, heated

 Once cool, the slide is transferred to a support over and flooded with a stain called Gentian Violet

01.05.201

Seite 47

• The Gentian Violet is gently washed off the slide with running water

■ The bacterial smear is then treated with Gram's solution which consists of 1 part iodine, 2 parts potassium iodide, and 300 parts water.

01.05.201

Seite 49

■ After about 30 seconds the slide is gently rinsed with ethyl alcohol

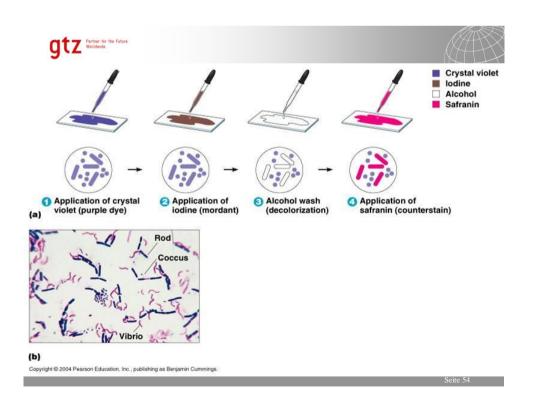
■ Eosin or fuchsin, safranin are red. These are called counterstains.

01.05.2010

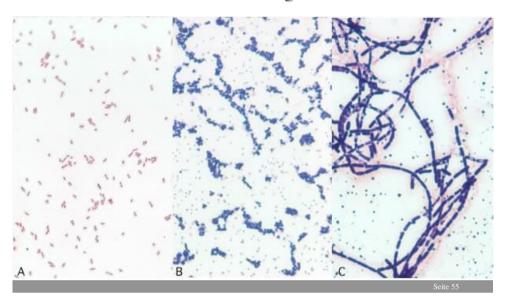
Caita 5

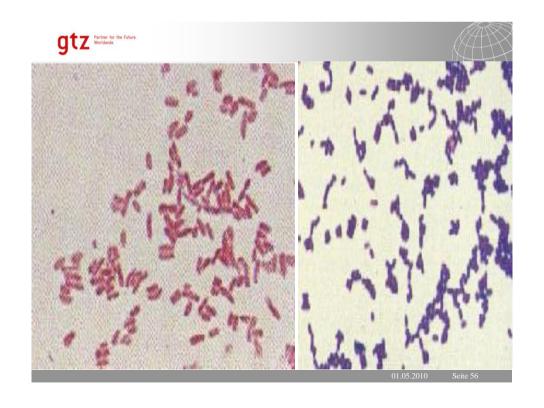
gtz Partner for the Future. Worldwide.

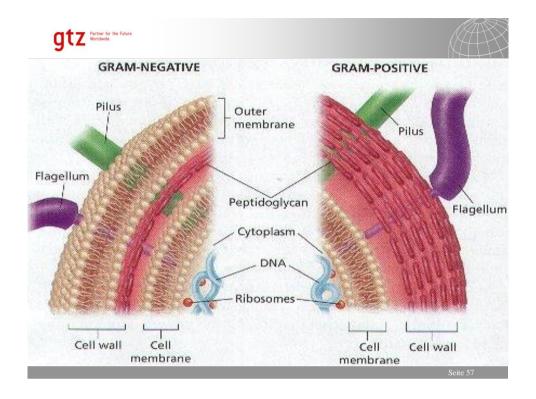
- The counter stain is left on the smear for about 30-60 seconds and then gently rinsed away with running
- water.
 After the
 counterstain has been
 rinsed off, the slide is
 placed between some
 absorbent paper and
 the excess water



- The slide is gently warmed to drive off any residual moisture and then a drop of immersion oil is placed on the stained bacterial smear.
 - The slide is then placed on a microscope stage and the oilimmersion lens lowered into the immersion oil.



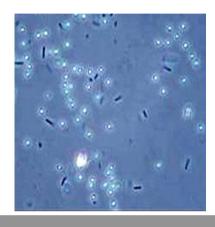


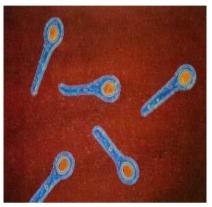


Gram Staining

نظريات تفسير الصبغة:

- سطح البكتيريا السالبة لجرام اكثر نفاذية من الايجابية


- يعتمد الصبغ الايجابي علي وجود طبقة الببتيدوجليكان بسمك أكبر في البكتريا الموجبة لجرام



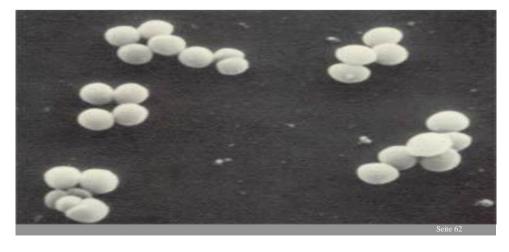
Spores

Clostridum spores

Clostridium tetani spores, magnified about 3,000 times their actual size.

Seite 59

Clostridium difficile


LEGIONELLA

A scanning electron micrograph of Staphylococcus aureus, the bacteria that produces staphylococcal poisoning (staph). The diameter of the bacteria is 1 micrometer (um) or 1/25,000 inch.

Salmonellosis

FOODS INVOLVED

Poultry, red meats, eggs, dried foods, dairy products.

SYMPTOMS

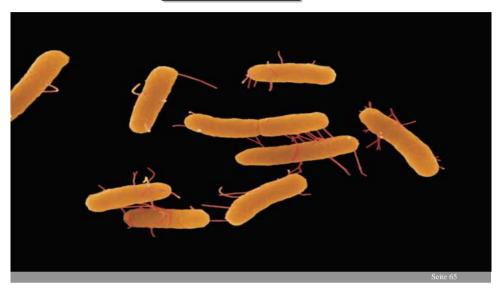
Severe headache followed by vomiting, diarrhea, abdominal cramps, and fever. Infants, elderly, and persons with low resistance are most susceptible. Severe infections cause high fever and may even cause death.

Seite 6

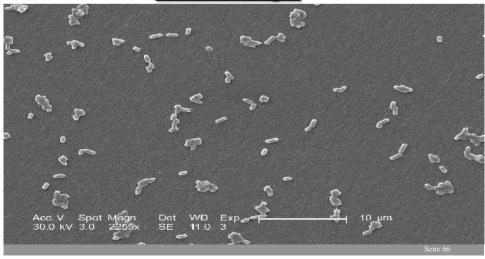
CHARACTERISTICS

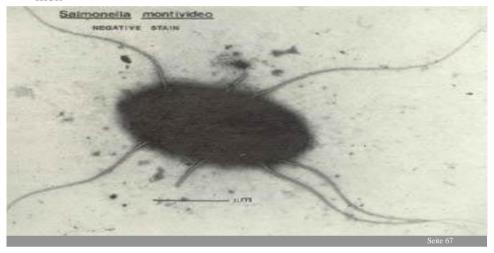
Transmitted by eating contaminated and undercooked food, or by contact with infected persons or carriers of the infection. Also transmitted by insects, rodents, and pets.

Onset: Usually within 12 to 36 hours

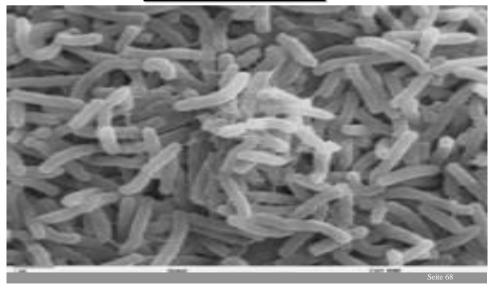

Duration: 2 to 7 days.

01.05.2010


<u>Salmonella</u>

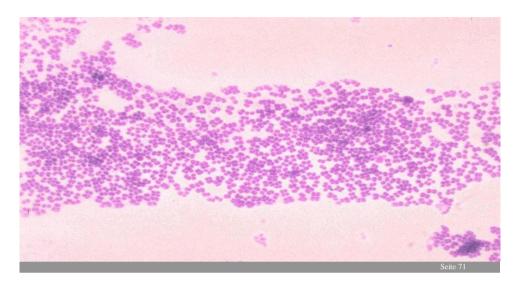

Salmonella Smear under Microscope

gtz Partner for the Future.

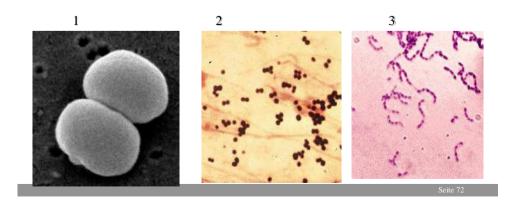

A transmission electron micrograph of Salmonella montivideo, one of the salmonella bacteria that causes salmonellosis. The magnification of the micrograph is 1 micrometer (um) = 1/25,000 inch

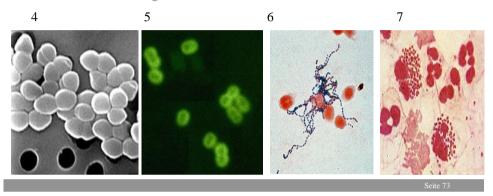

Vibrio cholera

Clostridium perfringens

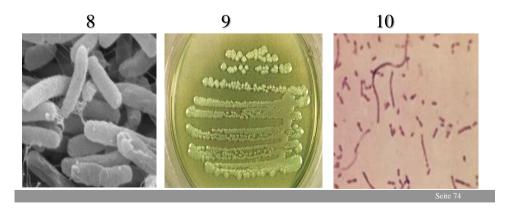


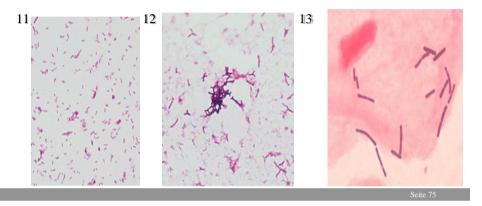
- The disease can also be differentially diagnosed from similar conditions by its lack of the following symptoms:
- sensory nerve damage; fever;
- history of preceding infection;
- mental status changes; and electromyogram, cerebral spinal fluid or electroencephalogram abnormalities.
- The clustering of cases that would occur with an attack would also help distinguish botulism from other conditions.

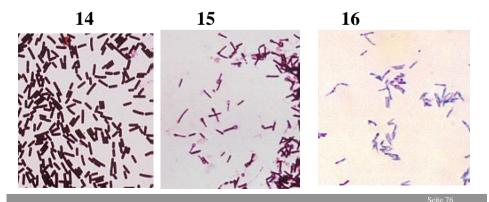

Gram stain of a species of Micrococcus, commonly isolated from the skin and nasal membranes of humans


- 1. S. epidermidis 2. S. aureus 3. Streptococcus mutans
- 3. Streptococcus mutans is the primary bacterium involved in plaque formation and initiation of dental caries.

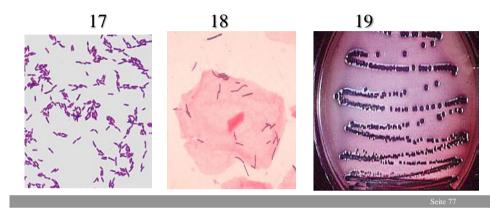
gtz Partner for the Future. Worldwide.

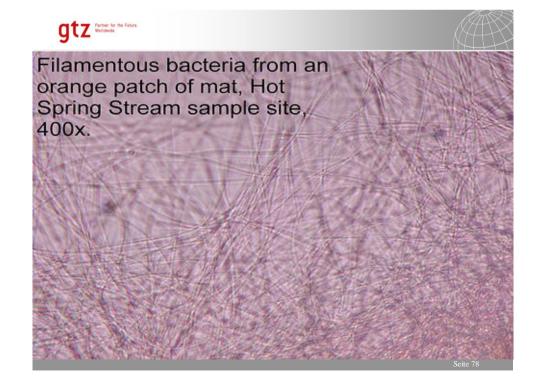

- 4. Vancomycin Resistant Enterococcus faecalis. Scanning E.M. CDC
- 5. Streptococcus pneumoniae. Direct fluorescent antibody stain. CDC.
- 6. Streptococcus pyogenes. Gram stain.
- 7. Neisseria meningitidis. Gram stain.


- 8. E. coli. Scanning E.M.
- 9. Colonies of Pseudomonas aeruginosa growing on an agar plate.
- 10. Haemophilus influenzae. Gram stain.

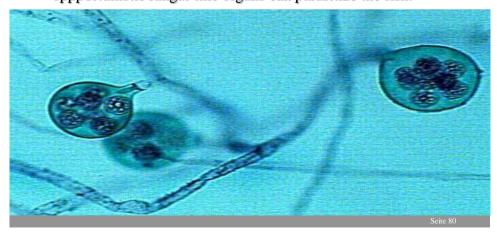

- 11. Bacteroides fragilis. Gram stain.
- 12. Bifidobacterium bifidum. Gram stain
- 13. Lactobacillus species

- 14. Clostridium perfringens. Gram stain.
- 15. Clostridium tetani. Gram stain.
- 16. Corynebacterium diphtheriae, no longer a member of the normal flora. Methylene blue stain.




38

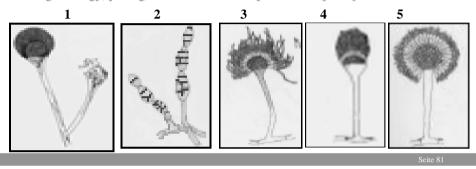
- 17. Lactobacillus acidophilus, informally known as "Doderlein's bacillus"
- 18. Lactobacillus species, possibly Doderlein's bacillus
- 19. Colonies of E. coli growing on EMB agar.


FUNGI

Seite 79

Saprolegnia parasitica is usually an innocuous water mold that grows on dead vegetable matter in the water. It can form sexual spores (oospores) in oogonia. However if a fish's immune system becomes compromised by environmental pollution, this oppportunistic fungal-like organs can parasitize the fish.

40



1.Absidia is a zygomycete fungus and reported to be allergenic. May cause mucorosis in immune compromised individuals. The sites of infection are the lung, nasal sinus, brain, eye and skin. Infection may have multiple sites. Acr

2. Alternaria sp

Commonly found in outdoor air and may grow on water damaged building materials which contain cellulose. Although Alternaria is a notable source of fungal allergy, pathogenic infections are reported infrequently.

3. Aspergillus flavus

A plant, foods and dairy products, and warm soil micro fungi, it is found on moldy corn and peanuts. Some strains are capable of producing a group of mycotoxins in the aflatoxin group. It also may cause ear and eye infections.

4. Aspergillus fumigatus

This fungus is frequently reported as a cause of Aspergillosis in immune compromised individuals and can be very dangerous.

5. Aspergillus niger

A black mold commonly found on onions. Like Aspergillus flavus, Aspergillus niger can infect the human ear.

01.05.2010 Seite 8

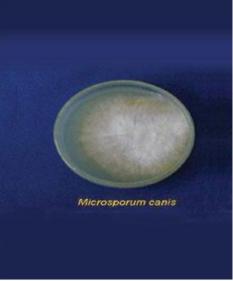
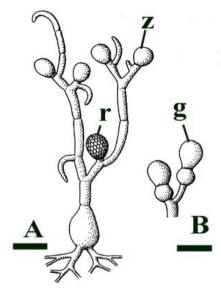
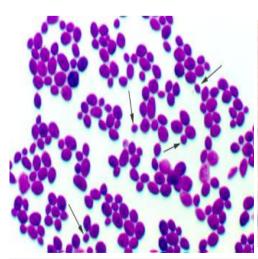



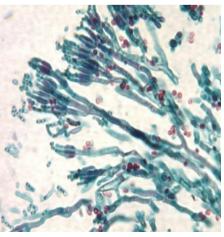
FIGURA 2: Culturas de fungos obtidas a partir da água destilada

Left: Idealised reconstruction of Palaeoblastocladea milleri.

A: Sporothallus showing terminal zoosporangia (z) and resting sporangia (r) (scale bar = 40μm).
B: Part of a gametothallus

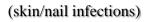

showing terminal gametangia (g) (scale bar = 20µm)

Saita 95



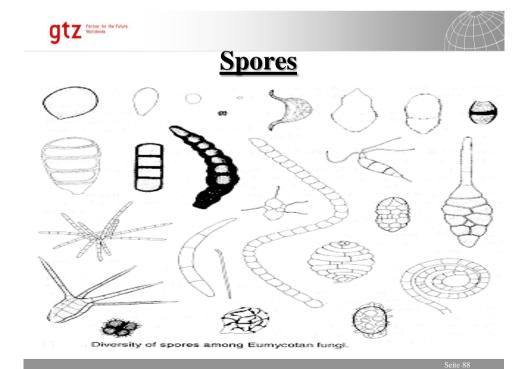
Yeast Cells Budding (Reproducing)

Penicillium Conidiophores -Orange Peel



Penicillium notatum

atum Trychophyton rubrum

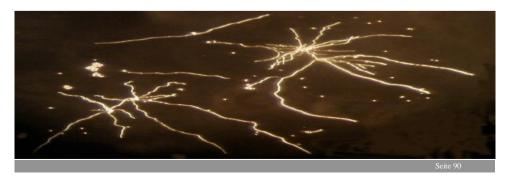

(Produces Penicillin)

Seite 87

SPORES:

The non-motile microscopic spores of eumycotan fungi, which come in a dazzling array of forms to fit specific functions, are often produced very quickly (in a matter of days or even hours after the initial colonization of the substrate), and in enormous numbers.

Spores are dispersed by wind, by water, or by animal <u>vectors</u>, and they can often survive long periods, sometimes even years, of unfavourable conditions such as freezing, starvation or desiccation.


Caita Of

HYPHAE:

these are the vegetative, assimilative organs of most fungi. When a spore germinates, what emerges is a hypha (sometimes more than one hypha), which grows at its tip, and explores the microscopic world in which it landed. The picture below shows hyphae emerging from spores and looking for food.

ALGAE

What are algae?

Pond scums, terrestrial algae, snow algae, <u>seaweeds</u>, freshwater and marine phytoplankton. The plant body is relatively undifferentiated, and there are no true roots, leaves, etc.

Seite 9

Algae are very simple chlorophyll-containing organisms: some say that they are plants; other say that the are not, calling them Protists or Protoctists. We use the term "algae" very loosely because defining them is very difficult. In general, we can say that they are simple organisms composed of one cell, or grouped together in colonies, or as organisms with many cells, sometimes collaborating together as simple tissues.

01.05.2010

Most algae form some sort of spore (for reprod-uction), which is a cell that is often motile and serves to reproduce the organism. Algae also have sex, often a very simple kind of sex where the algae themselves act as gametes, but sometimes very complicated with sperm-like cells.

Seite 93

Some of the larger kelps have translocation but most do not.

They have no need for water-cond-ucting tissues as they are, at some stage, surr-ounded by water. Spores may be motile or non-motile; varies from phylumto phylum, e.g., the red and blue-green algae are non-flagellated.

01.05.2010

Algae of other groups usually have two flagella (singular: flagellum). Reproduction may be isogamous, anisogamous, or oogamous. Female gametangia are not enclosed by a wall of sterile cells as in higher cryptogams. Mostly autotrophic (photosynthetic), pigments very variable and are the basis of classification; all have chlorophyll a; some have b, others c; all have accessory pigments of some kind e.g. phycocyanin (blueish), phycoerythrin (reddish), carotenes (yellow-brown), xanthophylls (brown).

Soite Of

Some are heterotrophic (get energy from non-photosynthetic sources also). Great variation in size - unicellular and 3-10 µm (microns) to giant kelps up to 70 meters long and growing at up to 50 cm per day. Found in mostly aquatic situations (need water to reproduce and, generally, to photosynthesise).

Don't forget: Algae ("al'guy" or "al'gay") is the plural; Alga ("al'ga") is the singular. There is no such thing as "algaes".

Phaeophyceae: Brown Algae

Examples: Laminaria and Saccharine, Focus, Sargassum muticum

Characteristics

The brown colour of these algae results from the dominance of the xanthophyll pigment fucoxanthin, which masks the other pigments, Chlorophyll a and c (no Chlorophyll b), beta-carotene and other xanthophylls. Food reserves are typically complex polysaccharides, sugars and higher alcohols.

Saita O

The principal carbohydrate reserve is laminaran, and true starch is absent (compare with the green algae). The walls are made of cellulose and alginic acid, a long-chained heteropolysaccharide.

There are no known unicellular or colonial representat-ives; the simplest plant form is a branched, filamentous thallus. The kelps are the largest (up to 70 m long) and perhaps the most complex brown algae, and they are the only algae known to have internal tissue differentiation into conducting tissue; there is, however, no true xylem tissue as found in the 'higher' plants.

Most brown algae have an alternation of haploid and diploid generations. The haploid thalli form isogamous, anisogamous or oogamous gametes and the diploid thalli form zoospores, generally by meiosis. The haploid (gametangial) and diploid (sporangial) thalli may be similar (isomorphic) or different (heteromorphic) in appearance, or the gametangial generation may be extremely reduced (Fucales).

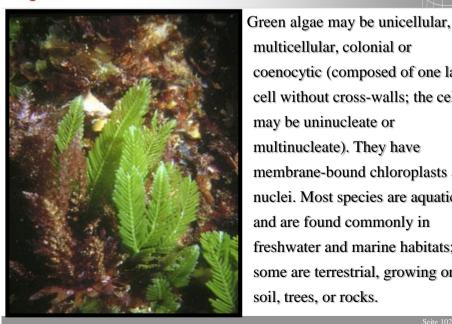
Seite 99

Alginates, derivatives of alginic acids, are used commercially for toothpastes, soaps, ice cream, tinned meats, fabric printing, and a host of other applications.

There are about <u>1800 species</u> of brown algae, and most are marine. In general, brown algae are larger and more species are found in colder waters.

01.05.2010

eite 100



Chlorophyta: Green Algae

Examples: Chlamydomonas, Spirogyra, Ulva.

Characteristics: Green colour from Chlorophyll a and b in the same proportions as the 'higher' plants; carotene; and various characteristic xanthophylls. Food reserves starch, some fats or oils like higher plants. Thought to be the origin of the higher green plants but there is currently some doubt on this point.

multicellular, colonial or coenocytic (composed of one large cell without cross-walls; the cell may be uninucleate or multinucleate). They have membrane-bound chloroplasts and nuclei. Most species are aquatic and are found commonly in freshwater and marine habitats; some are terrestrial, growing on

Some are symbiotic with fungi giving lichens. Others are symbiotic with animals, e.g. the freshwater coelentrate Hydra has a symbiotic species of Chlorella as does Paramecium bursaria, a protozoan. Chlorella is now grown and sold as a health supplement. A number of freshwater green algae (charophytes, desmids and Spirogyra) are now included in the Charophyta, a phylum of mostly freshwater and terrestrial algae, which are more closely related to the higher plants than the marine green algae.

Seite 103

Asexual reproduction may be by fission (splitting), fragmentation or by zoospores (motile spores). Sexual reproduction is very common and may be isogamous (gametes both motile and same size); anisogamous (both motile and different sizes - female bigger) or oogamous (female non-motile and egg-like; male motile). May have an alternation of haploid and diploid phases.

The haploid phases form gametangia (sexual reproductive organs) and the diploid phases form zoospores by reduction division (meiosis). Some do not have an alternation of generations, meiosis occurring in the zygote.

There are about 8,000 species of green algae, about 800 of which are marine

Seite 10

Rhodophyta: Red algae

Examples: Palmaria, Coralline algae

Corallina

Characteristics: The red colour of these algae results from the pigmen-ts phycoerythrin and phycocyanin; this masks the other pigments, Chlorophyll a (no Chlorophyll b), beta-carotene and a number of

unique xanthophylls. The main reserves are typically floridean starch, and floridoside; true starch like that of higher plants and green algae is absent.

Soita 106

The walls are made of cellulose and <u>agars</u> and <u>carrageenans</u>, both long-chained polysaccharide in widespread commercial use. There are some unicellular representatives of diverse origin; more complex thalli are built up of filaments.

Seite 107

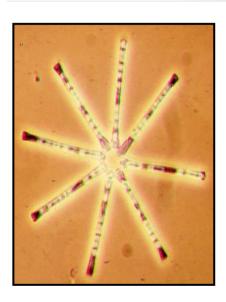
A very important group of red algae is the coralline algae, which secrete calcium carbonate onto the surface of their cells. Some of these corallines are articulated (last fig., Corallina, with flexible erect branches; others are crustose (below). These corallines have been used in bone-replacement therapies.

Coralline algae were used in ancient times as vermifuges, thus the binomial Corallina officinalis.

01.05.2010

Bacillariophyta Diatoms

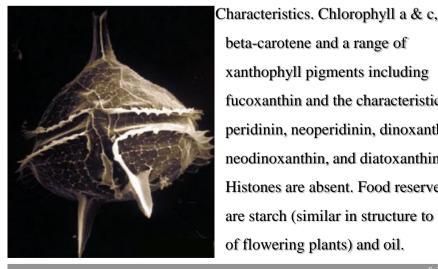
Examples: Asterionella, Amphipleura.


Characteristics:

Golden-brown colour from fucoxanthin masking chlorophylls a and c; beta-carotene; various xanthophylls. Each cell is enclosed in a unique type of siliceous cell wall which takes the form of a box with an overlapping lid.

Seite 109

Diatoms are unicellular or colonial coccoid algae. Have membrane-bound chloroplasts and nuclei. Most are aquatic, occurring in the sea or in freshwater, but some occur on damp soil or rocks. Marine phytoplankton largely consists of diatoms and in temperate oceans where there is upwelling bringing nutrients to the surface they are responsible for the very high primary productivity in these areas.


Dead diatoms accumulating under such high-productivity areas form diatom oozes. Geological deposits derived from such oozes, mainly Tertiary in origin, are now mined as diatomite or diatomaceous earth used for water filtration, in toothpastes (as an abrasive) and in deodorants and decolouring agents.

There are two types of diatom: centric and pennate. The centric diatoms are radially symmetrical (the first) and the pennate diatoms are bilaterally symmetrical (the second). Centric diatoms appear to have evolved first.

Dinophyta: Dinoflagellats

beta-carotene and a range of xanthophyll pigments including fucoxanthin and the characteristic peridinin, neoperidinin, dinoxanthin, neodinoxanthin, and diatoxanthin. Histones are absent. Food reserves are starch (similar in structure to that of flowering plants) and oil.

The wall or theca, when present, is composed of cellulose.

Pyrenoids and eyespots may be present. Projectiles known as trichocysts and cnidocysts are found in a number of species and probably have a protective or evasive function.

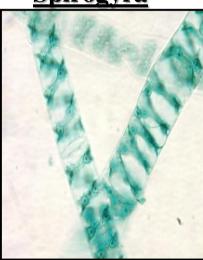
The dinoflagellate nucleus is very distinctive in that it has an unusual combination of prokaryotic and eukaryotic characteristics. It is described as a mesokaryon and has permanently condensed chromosomes. Some species of dinoflagellates have non-condensed chromosomes at some stage in their life cycle.

Seite 113

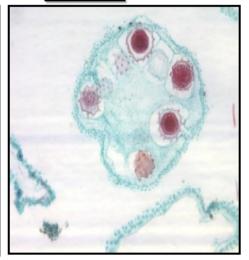
Chromosomes are generally membrane attached and the nuclear membrane remains intact during mitosis. The Dinophyta are probably a very ancient group that diverged from other eukaryotic organisms before the evolution of typical eukaryotic chromatin but after the evolution of repeated DNA sequences.

Dinoflagellates are typically unicellular, free-swimming, biflagellate organisms that constitute an important component of freshwater, brackish and marine phytoplanktonic communities.

There are, however, a number of non-motile forms including amoeboid, coccoid, palmelloid and filamentous types. Most have some form of photosynthesis, but some are saprophytic (feeding on decayed organic matter), symbiotic, or holozoic (feeding like an animal by ingesting solid food particles). Some are highly modified parasites.

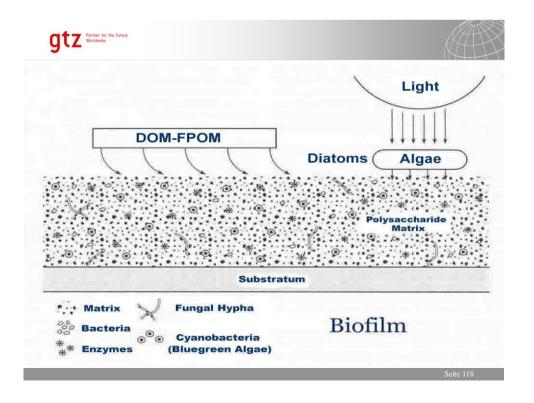

The flagella of the motile cells are very distinctive. The typical pattern is a pair of unequal, heterodynamic flagella, which have independent beating patterns

Caisa 116



Spirogyra

Volvox



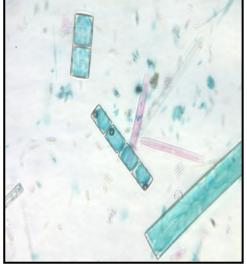
Biofilm

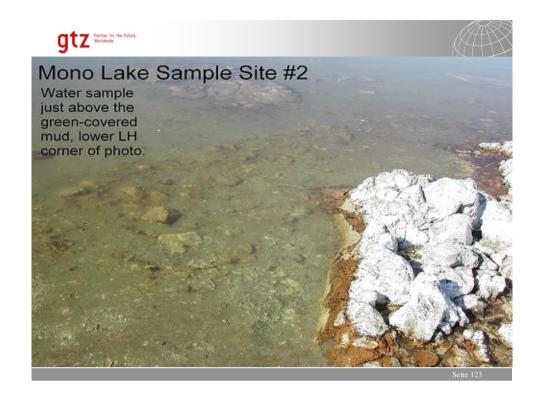
is a gel-like substance and is a mixture of sugars, enzymes, diatoms (attached and loose), bluegreen algae, bacteria, fungus, microinvertebrates, i.e., protozoans and early stages of insects. It absorbs Dissolved Organic Matter (DOM) from the water and collects Fine Particulate Matter (FPOM) in the matrix.

Diatoms

commonly compr-ise the dominate algal group in river biofilms in terms of species number and bio-mass

01.05.2010





Diatoms

Parasites Are Dangerous

Parasites are like unwanted guests who eat your food, leave trash on the floor, and throw the day-to-day functions on your household completely out of kilter.

Seite 125

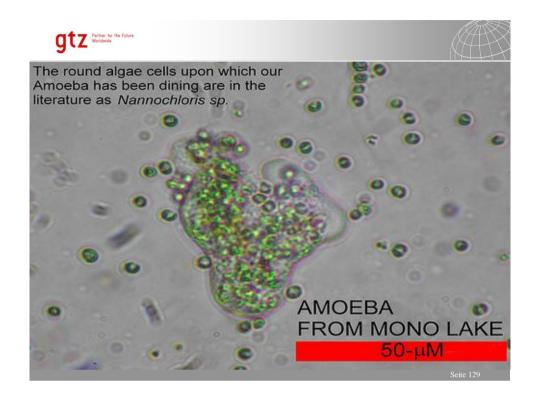
Some parasites are life-threatening--killing or handicapping many people every year--while others are a perpetual drain on the nutrients needed to drive and maintain the normal functions of your bios stems.

Although some parasites may not cause apparent symptoms, others are sources of justifiable concern because they:

- 1) Steal nutrients intended for your body.
- 2) Damage your tissues and / or infuse your system with toxic byproducts.
- 3) Unbalance your system by forcing it to continuously compensate for their presence.

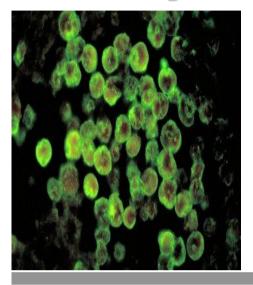
01.05.2010

Caita 12



AMOEBA

CRC 120



Nagleria fowleri

Naegleria fowleri is a free living amoeba typically found in warm fresh water, from 25-35 degrees Celsius (77-95 degrees Fahrenheit) in an amoeboid or temporary flagellate stage. It belongs among a group called the Percolozoa or Hetero-lobosea.

Soito 121

In humans, N. fowleri can become pathogenic, causing Primary Amoebic Meningoencephalitis (PAM or PAME), a syndrome affecting the central nervous system, characterized by changes in olfactory perception (taste and smell), followed by vomiting, nausea, fever, headache, and the rapid onset of coma and death in two weeks.

PAM usually occurs in healthy children or young adults with no prior history of immune compromise who have recently been exposed to bodies of fresh water. N. fowleri invades the central nervous system via penetration of the olfactory mucosa and nasal tissues, resulting in significant necrosis of and hemorrhaging in the olfactory bulbs.

01.05.2010

Caita 121

From there, amoebae climb along nerve fibers through the floor of the cranium and into the brain. Amphotericin B is currently the most effective known pharmacologic treatment for N. fowleri, but the prognosis remains bleak for those that contract PAM, as only eight patients have survived (3% survival rate) in a clinical setting.

Detection

N. fowleri can be grown in several kinds of liquid axenic media or on non-nutrient agar plates coated with bacteria.

Detection in water is performed by centrifuging a water sample with Escherichia coli added, and then applying the pellet to a non-nutrient agar plate.

01.05.2010

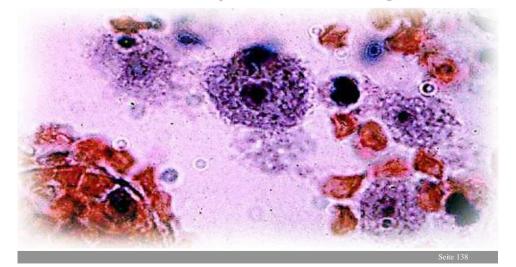
Caita 12

After several days the plate is microscopically inspected and Naegleria cysts are identified by their morphology. Final confirmation of the species' identity can be performed by various molecular or biochemical methods. According to the Centers for Disease Control and Prevention, the amoeba killed 23 people between 1995 and 2004.

In July, the amoeba caused the deaths of three boys in lakes around Orlando, Florida. Possible causes of the infections include higher temperature and droughts in that area of Florida.

In late summer, the amoeba caused two deaths in Lake LBJ in Texas.

In September, a 14-year-old boy was killed by the amoeba after likely having caught it while swimming in Lake Havasu in Arizona.


01.05.2010

Seite 133

The Naegleria fowleria amoeba is a parasite that lives in bodies of fresh water when temperatures rise above 82 degrees.

69

AVOIDING CONTACT

- Don't swim to the bottom, where the amoebas are more prevalent.
- Don't get water up your nose, which is how the amoebas enter the brain.
- Avoid diving, rough-housing and any activities that are likely to force water up the nose.
- Wear nose clips.

Soito 120

- Stay close to the surface of the water, and swim in the deep part of a lake. Amoebas are typically found in shallow water.
- Stay out of water declared unsafe by the Health Department.
- Avoid stagnant, polluted water.

01.05.2010

ROUNDWORMS

ROUNDWORMS

- Looks like a common earth worm.
- -The female worm may be as thick as a lead pencil, and both sexes are creamy-white in color.
- -Some of the largest roundworms are 6 to 12 inches long.
- -The mature female roundworm can produce an estimated 200,000 eggs daily.

Ascaris lumbricoides and Ascaris suum (intestinal roundworms of humans and pigs)

Ascaris lumbricoides is one of the largest and most common parasites found in humans. The adult females of this species can measure up to 18 inches long (males are generally shorter), and it is estimated that 25% of the world's population is infected with this nematode.

Saita 142

The adult worms live in the small intestine and eggs are passed in the faeces. A single female can produce up to 200,000 eggs each day!

About two weeks after passage in the faeces the eggs contain an infective larval or juvenile stage, and humans are infected when they ingest such infective eggs.

The eggs hatch in the small intestine, the juvenile penetrates the small intestine and enters the circulatory system, and eventually the juvenile worm enters the lungs. In the lungs the juvenile worm leaves the circulatory system and enters the air passages of the lungs.

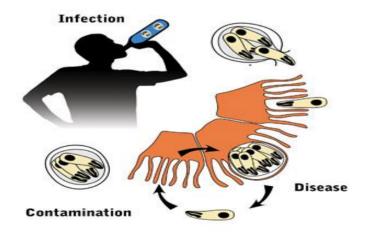
01.05.2010

Caita 14

- -The juvenile worm then migrates up the air passages into the pharynx where it is swallowed, and once in the small intestine the juvenile grows into an adult worm.
- -The migration of the larvae through the lungs causes the blood vessels of the lungs to haemorrhage, and there is an inflammatory response accompanied by edema. The resulting accumulation of fluids in the lungs results in "ascaris pneumonia," and this can be fatal.

Instances have been reported in which Ascaris have migrated into and blocked the bile or pancreatic duct or in which the worms have penetrated the small intestine resulting in acute (and fatal) peritonitis.

HOOKWORMS


- inject an anti-coagulant into the blood to insure it will get a good supply.
- It has an innate intelligence like all creatures in nature.
- It often penetrates the wall of the small intestine until it reaches a small blood vessel. Once it finds this vessel, it will inject and anti-coagulant into the blood to prevent the blood from clotting.
- In this way, the hookworm is insured of a good supply of blood. The hookworm uses the hemoglobin in the blood to get oxygen to breath.

Seite 149

Cryptosporidium can hitch a ride on food-or in water-causing diarrhea and even death in vulnerable individuals.

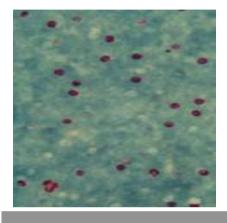
What is cryptosporidium?

Cryptosporidium is a protozoan pathogen of the Phylum Apicomplexa and causes a diarrheal illness called cryptosporidiosis.

Seite 151

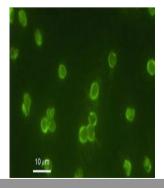
What are the symptoms of cryptosporidiosis?

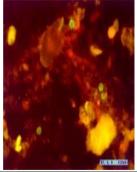
Symptoms include watery diarrhoea, stomach cramps, upset stomach and a mild fever. Some people have no symptoms. Symptoms can appear 2 to 10 days after a person becomes infected. Symptoms usually last about 2 weeks however, you may continue to pass the parasite in your faeces (bowel motion) for up to 2 months. Symptoms may be more severe if you have a weaken-ed immune system.

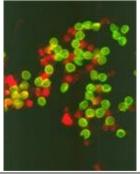

01.05.2010

Examples of Cryptosporidium oocysts stained by the modified acid-fast technique (panel A), and seen by phase contrast microscopy (Panel B)

A B

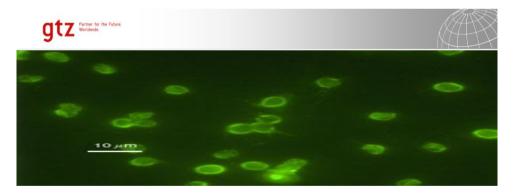

Seite 153

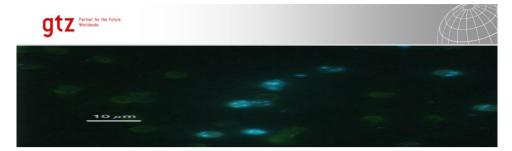




Detection of oocysts using immunofluorescence microscopy

This method offers higher sensitivity and specificity compared to staining techniques, and has, therefore, found widespread application in research and clinical laboratories. It is also widely used to monitor the presence of Cryptosporidium oocysts in water samples.

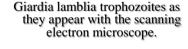


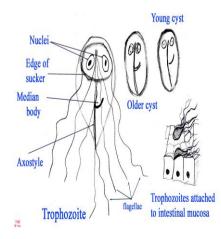


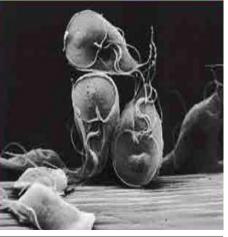
Above: Differential interference contrast (DIC) image of Cryptosporidium parvum oocysts, purified from murine fecal material. Oocysts are spheroidal objects, 4 to 6 microns in diameter. Oocysts may contain as many as 4 banana shaped sporozoites, and a residual body. In some oocysts the sporozoites and residuum will be indistinct. Scale bar is 10 microns. (higher resolution image)

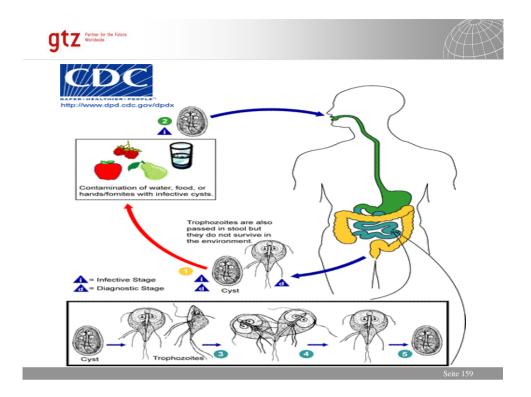
Seite 155

Above: Immunofluorescence image of Cryptosporidium parvum oocysts, purified from murine fecal material. (Same field of view) Oocysts were stained with commercially available immunofluorescent antibodies. Oocysts should have an intense apple green fluorescence on the periphery of their oocyst wall, and measure 4 to 6 microns in diameter. Scale bar is 10 microns. (higher resolution image)


Above: Fluorescence image of Cryptosporidium parvum oocysts, purified from murine fecal material. (Same field of view.) Oocysts were stained with 4,6-diamidino 2-phenyl-indole dihydrochloride (DAPI). DAPI interacts with nucleic acids and stains the nucleus of each sporozoite within the oocyst. There should be 4 sporozoites each with 1 nucleus, or 4 stained nuclei in each oocyst. Oocysts that appear to have fewer than 4 stained nuclei, may have 4 nuclei with the others not visible in this plane of focus. Oocysts with no nuclei visible, may be dead, may be resistant to DAPI staining, or may be organisms other than C. parvum. (higher resolution image)


Soito 157





G. lamblia has two morphological stages: the trophozoite and the cyst.

1-2. Giardia cysts are the infective stage of G. intestinalis. As few as 10 cysts can cause infection. These cysts are ingested by consuming contaminated food or water, or fecal-orally. They can survive outside the body for several months, and are also relatively resistant to chlorination, UV exposure and freezing.

- 3. When cysts are ingested, the low pH of the stomach acid produces excystation, in which the activated flagella breaks through the cyst wall. This occurs in the small intestine, specifically the duodenum. Excystation releases trophozoites, with each cyst producing two trophozoites.
- 4. Within the small intestine, the trophozoites reproduce asexually (longitudinal binary fission) and either float free or are attached to the mucosa of the lumen.

Saita 16

5. Some trophozoites then encyst in the small intestine. Encystation occurs most likely as a result of exposure to bile salts and fatty acids, and a more alkaline environment. Both cysts and trophozoites are then passed in the feces, and are infectious immediately or shortly afterward. Person-to-person transmission is possible. Animals can also be infected with Giardia, and beavers have been associated with giardia outbreaks, although not definitively.

VIRUSES

Definition:

Viruses are:

sub-microscopic, obligate intracellular parasites.

Virus particles are produced from the assembly of pre-formed components, whereas other agents 'grow' from an increase in the integrated sum of their components & reproduce by division.

Seite 16

- Virus particles (virions) themselves do not 'grow' or undergo division.
- Viruses lack the genetic information which encodes apparatus necessary for the generation of metabolic energy or for protein synthesis (ribosomes).

No known virus has the biochemical or genetic potential to generate the energy necessary for driving all biological processes, e.g. macromolecular synthesis.

They are therefore absolutely dependent on the host cell for this function.

The Origins of Virology

Ancient peoples were not only aware of the effects of virus infection, but in some instances also carried out research into the causes & prevention of virus diseases Perhaps the first written recordof a virus infection consists of a heiroglyph from Memphis, the capital of ancient Egypt, drawn in approximately 1400BC, which depicts a temple priest called Siptah showing typical clinical signs of paralytic poliomyelitis.

Caita 165

In addition, the Pharoh Ramses V,
who
died in 1196BC, is believed to have
succumbed to smallpox - compare the
pustular lesions on the face of the
mummy

& those of more recent patients.

On 14th May 1796, **Edward Jenner** used cowpox-infected material obtained from the hand of Sarah Nemes, a milkmaid from his home village of Berkley in Gloucestershire to successfully vaccinate 8 year old James Phipps.

On 1st July 1796, Jenner challenged the boy by deliberately inoculating him with material from a real case of smallpox! He did not become infected!!!

Seite 167

Pasteur (1822 – 1895) worked extensively on rabies, which he identified as being caused by a 'virus' (from the Latin for 'poison') but in spite of this, he did not discriminate between bacterial & other agents of disease.

On 12th February 1892, **Dmitri Iwanowski**, a Russian botanist, showed that extracts from diseased tobacco plants could transmit disease to other plants after passage through ceramic filters fine enough to retain the smallest known bacteria. This is generally recognised as the beginning of Virology.

Also in 1898, **Freidrich Loeffler & Paul Frosch** showed that a similar agent was responsible for foot-and-mouth disease in cattle. Thus these new agents caused disease in animals as well as plants. In spite of these findings, there was resistance to the idea that these mysterious agents might have anything to do with human diseases.

Seite 169

This view was finally dispelled by Landsteiner & Popper (1909), who showed that <u>poliomyelitis</u> was caused by a 'filterable agent' - the first human disease to be recognized as having a viral cause.

Frederick Twort (in 1915) & Felix d'Herelle (in 1917) were the first to recognize viruses which infect bacteria, which d'Herelle called <u>bacteriophages</u> (eaters of bacteria).

In 1881, Louis Pasteur began studies of <u>rabies</u> in animals. Over a number of years, he developed methods of producing attenuated virus preparations by progressively drying the spinal cords of rabbits experimentally infected with the agent, which when inoculated into animals, would protect from challenge with virulent virus. This was the first artificially produced <u>virus vaccine</u>.

Seite 171

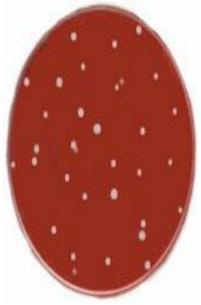
gtz Partner for the Future: Worldwide.

Some viruses will replicate in the living tissues of develop-ing embryonated hens eggs, such as influenza virus. Egg-adapted strains of influenza virus replic-ate well in eggs & very high virus titres can be obtained. This method has proved to be highly effective for the isolation & culture of many (but not all) viruses.

In recent years, an entirely new technology has been employed to study the effects on host organisms of viruses: the creation of **transgenic animals & plants** by means of the insertion into the DNA of the experimental organism of all or part of the virus genome, resulting in expression in the somatic cells (and sometimes in the cells of the germ line) of virus mRNA & proteins.

Caita 171

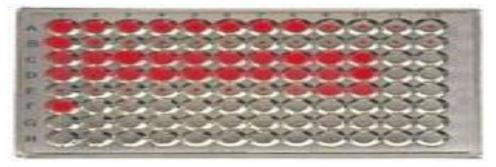
Cell culture


began early last century with whole organ cultur-es, then progressed to methods involving individual cells, either primary cell cultures (somatic cells from an experimental animal or taken from a human patient which can be maintained for a short period in culture) or immortalized cell lines, which given appropriate conditions, continue to grow in culture indefinitely

Saita 17/

gtz Partner for the Future.
Worldwide.

Renato Dulbecco in 1952 was the first to accurately quantify animal viruses using a plaque assay - dilutions of the virus are used to infect a cultured cell monolayer, which is then covered with soft agar to restrict diffusion of the virus, resulting in localized cell killing & the appearance of plaques after the monolayer is stained. Counting the number of plaques directly determines the number of infectious virus particles applied to the plate.


Seite 175

Serological/Immunological Methods

In 1941 **Hirst** observed haemagglutination of red blood cells by influenza virus. This proved to be an important tool not only in the study of influenza, but also with several other groups of viruses, e.g. rubella virus.

In the 1960s & subsequent years, many improved detection methods for viruses were developed, for example:

- Complement fixation tests
- Radioimmunoassay
- Immune fluorescence (direct detection of virus antigens in infected cells or tissue)
- Enzyme Linked Immune sorbent Assays (ELISAs)
- Radio immune precipitation
- · Western blot assays

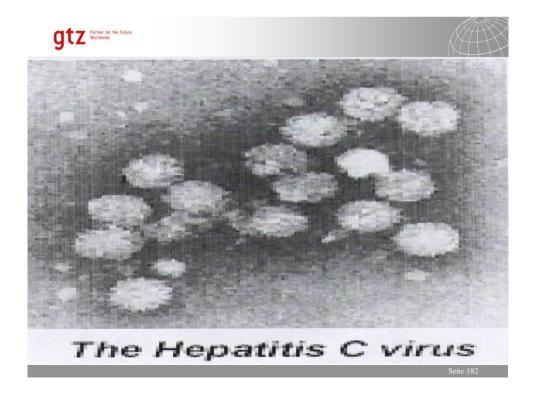
Seite 172

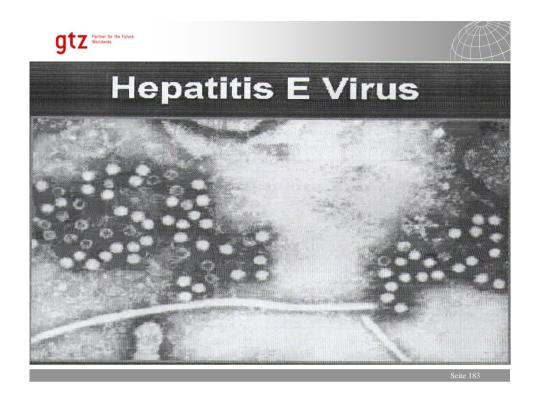
In 1975, Kohler & Milstein isolated the first monoclonal antibodies from clones of cells selected in vitro to produce an antibody of a single specificity directed against a particular antigenic target. This enabled virologists to look not only at the whole virus, but at specific regions - epitopes - of individual virus antigens. Monoclonal antibodies are also finding increasingly widespread application in other types of serological assay, e.g. ELISAs, to increase their reproducibility, sensitivity & specificity.

Physical measurements of virus particles began with the earliest determinations of their size by **filtration** through colloidal membranes with various pore sizes in the 1930s. Experiments of this sort led to the first (rather inaccurate) estimates of the size of virus particles.

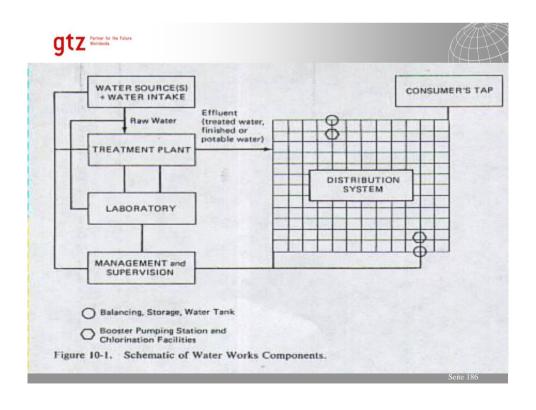
The accuracy of these was improved by studies of the **sedimentation properties** of viruses in ultracentrifuges in the 1960s.

Soite 170

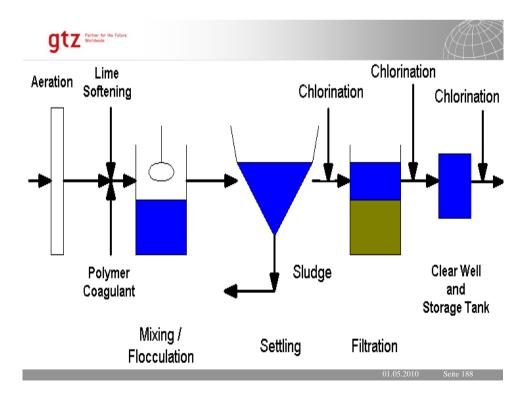



The physical properties of viruses can also be determined by spectroscopy, using both ultra-violet light to examine the nucleic acid content of the particle & visible light to determine its light-scattering properties.

Electrophoresis of intact virus particles has yielded some limited information, but electro-phoretic analysis of individual virion proteins by gel electrophoresis, & particularly also of nucleic acid genomes, has been far more valuable.



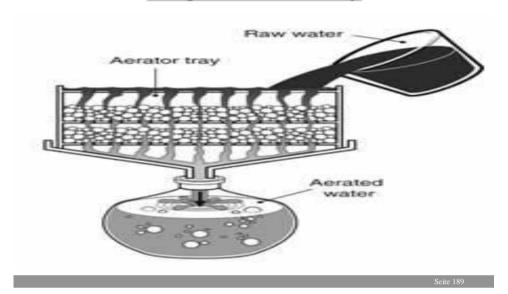
WATER TREATMENT & PUBLIC HEALTH



WATER TREATMENT PLANT

The Port LaBelle Utility has a small water treatment plant designed to serve under 10,000 people. It is a typical system and includes the following components:

Seite 187

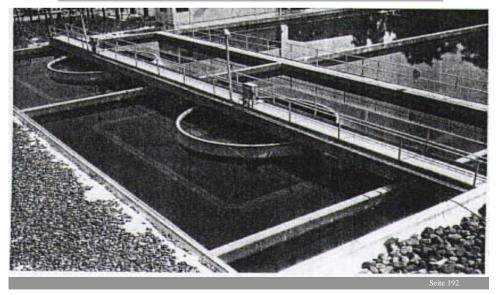


94

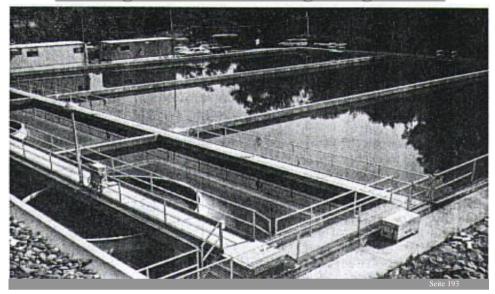
Simple Aerator Tray

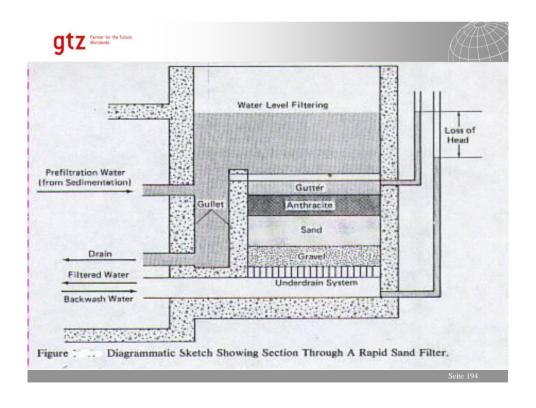
gtz Partner for the Future: Worldwide.

PRIMARY AERATION TANK

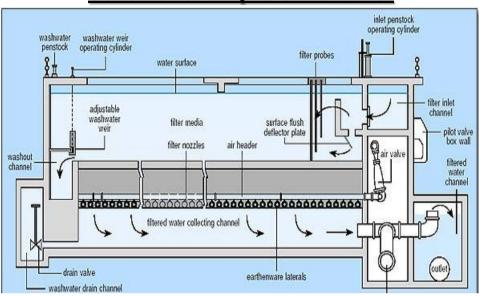

AERATION TANK AGITATOR

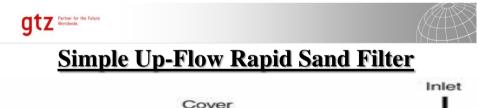
Conventional Water Treatment Plant

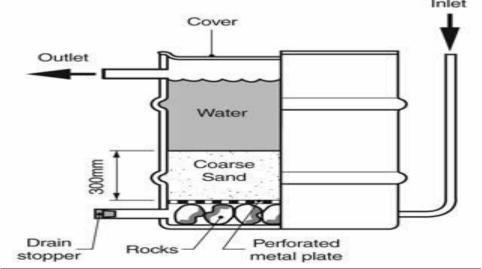



96

Settling Basins Following Coagulation

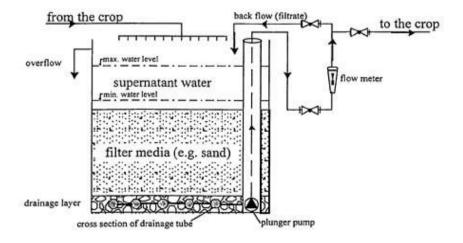






Scheme for Rapid Sand Filter

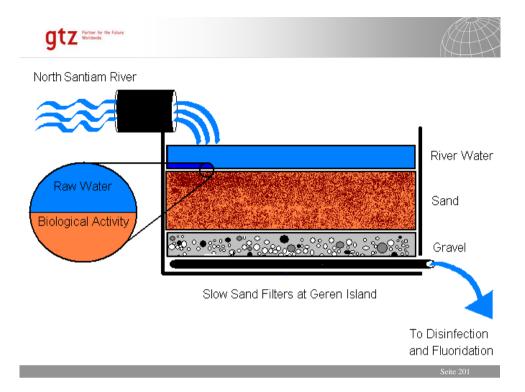
Slow Sand Filtration


Slow sand filtration is a water treatment process that uses naturally occurring biological activity to clean drinking water. Slow sand filters have been in use for centuries, and are time-tested systems for cleaning drinking water.

Seite 197

Diagram for Slow Sand Filter

Quality Requirements for Filter Sand (Adapted from W. Wohanka, Geisenheim, Germany).


- **Effective grain size**: 0.15-0.30mm (100 50 mesh)
- Uniformity coefficinet (UC): < 3, maximum 5

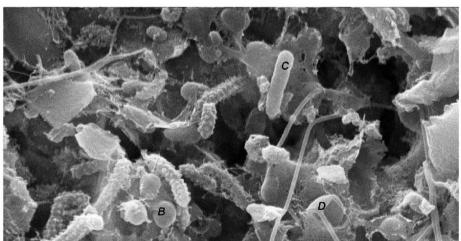
Seite 199

- Silt content: < 1%
- Acid solubility: < 5 % after 30 min
- Effective grain size (d10): sieve opening through which 10% (by weight) of the grains will pass.
- Uniformity coeffecient (UC): ratio between the sieve opening through which 60% (by weight) of the grains will pass and the effective grain size; UC = d60/d10

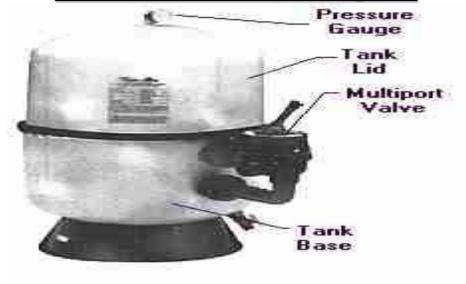
How Does Slow Sand Work?

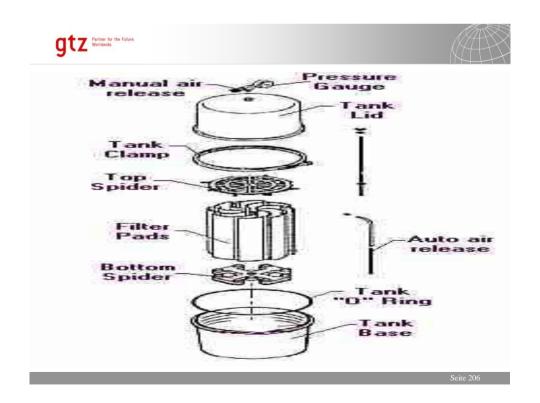
- 1. Water from the River is put onto large slow sand filters.
- Algae, protozoa, and small invertebrates that live in the slow sand filter remove biological contaminants, such as Cryptosporidium. The surface of the slow sand filter is where most of the contaminant removal occurs.

- Straining of dirt and clay particles occurs at the surface of the filter as well as further down through the sand and gravel.
- After water passes through the slow sand filter, chlorine and fluoride are added before it is sent to your tap.


Seite 203

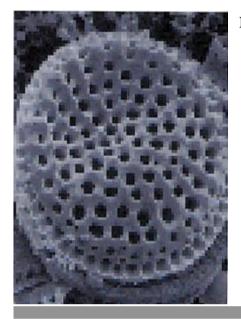
A electron photomicrograph of the complex biological matrix found in the schumtzdecke, or biolayer, in a slow sand filter


http://www.bioline.org.bs/showimage?bf/photo/bf01001c.jpg



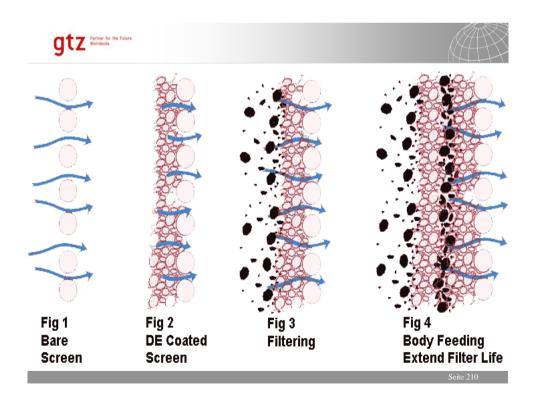
Diatomaecous Earth Filter (Swimming Pools)

FILTER LEAF PACKAGE


DE - Diatomaceous Earth Filters Cost Effective Filters out perform Bag Filters and Membrane Filters in separating 1-50 micron particulate.

Natural, mineral product of 90% porous algae fossils with micron sized holes to be used as filter media to coat retaining screens for a low cost, low micron filter.

Unique that it can be added to during filtration as the outer surface blinds - like adding a bag filter to the outside of another bag.


gtz Partner for the Future. Worldwide.

Natural, mineral product of 90% porous algae fossils with micron sized holes to be used as filter media to coat retaining screens for a low cost, low micron filter.

Unique that it can be added to during filtration as the outer surface blinds - like adding a bag filter to the outside of another bag.

Operation

DE filter process starts by drawing water through a retaining screen (fig1).

DE is added to the water and is recycled as it forms an even coating on the retaining screen (fig 2).

Seite 21

Once coated, the filtering process begins (fig 3).

As filtering proceeds, more DE is added (fig 4 - body feed) to extend the filter's life. When the filter plugs, the water pump is stopped and the DE coating falls off.

A jet spray removes the rest of the DE and filtering resumes after re-coating. The spent DE can be used to help de-water the contaminants prior to disposal.

<u>Table 4.6.</u> Factors affecting transport of enteric pathogens through soil

Factor Influence on transport

Soil texture

Fine-textured soils retain viruses, bacteria and protozoa more effectively due to increase interaction and adsorption. Fractured soils, however, are poor retainers of microorganisms.

Seite 213

Water flow

Water flow is the driving force of transport and pathogen transport velocities appear to be proportional to the water flow. Increased water flow may remobilize adsorbed microorg.

•<u>PH</u>

Adsorption generally increases when pH decreases, due to reduced electrostatic repulsion.

•Cations

The presence of multivalent cations (Ca2+, Mg2+) increases adsorption due to the formation of salt bridges between negatively charged microorganisms and soil particles.

Metal hydroxides

Iron hydroxides improve the adsorption of microorganisms.

Seite 215

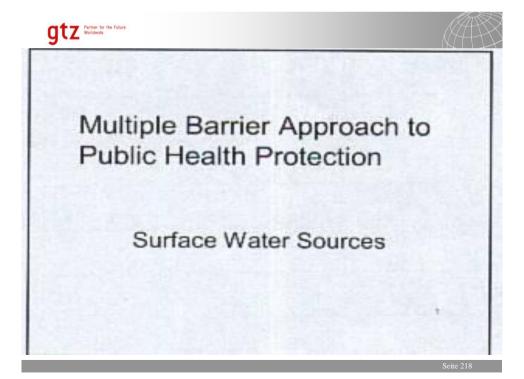
• Soluble organics

These can influence transport in various ways: they may compete with microorganisms for attachment sites (humic and fulvic acids compete with viruses), but they may also give rise to microbial activity that enhances attachment and inactivation.

• Microorganism Characteristics

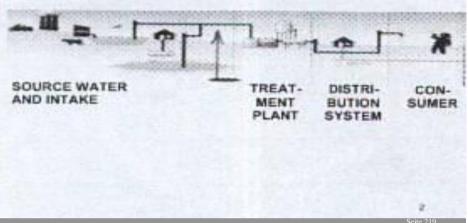
Bacteria and parasites are more readily removed than virus because of their size (1 - 20 μm versus 20 - 80 nm).

Differencesin isoelectric points and surface composition determine the adsorption rates.



• Saturated versu

Under unsaturated flow conditions, water fills only the unsaturated flow small pores. This increases soil-microorganism contact and adsorption.


(Adapted from Gerba and Bitton, 1984; Schijven and Hassanisadeh, 2000)

Multiple Barrier Approach -From Source to Tap

gtz Partner for the Future. Worldwide.

Multiple Barrier Approach -Source Water and Intake

- Assessment, selection, location
 - Reliable quality and quantity
 - Treatment needs
- Watershed protection

3

Saita 220

Multiple Barrier Approach -Treatment Barriers

- Technology selection
 - Removal by coagulation, flocculation, sedimentation, and filtration with disinfection
 - Watershed control with disinfection

Soito 221

gtz Partner for the Future Worldwide.

Multiple Barrier Approach -Treatment Barriers

- Performance monitoring
 - Data analysis
 - Recordkeeping and referral
- Appropriate operational response

5

Multiple Barrier Approach -Distribution System Barriers

- Ensuring the physical integrity of system components
- Maintaining adequate pressure
- Preserving water quality

gtz Partner for the Future Worldwide.

Multiple Barrier Approach -At the Tap... Consumer

- Public right-to-know
- · Informed consumer is essential
 - Water quality
 - Compliance status
 - Risks to health
 - System's financial needs

Surface Water Treatment Technique Requirements

- 99% (2-log) Removal of Cryptosporidium
 - (or address Crypto. in unfiltered source watershed control program)

Saita 225

gtz Partner for the Future: Worldwide.

Surface Water Treatment Technique Requirements

- 99.9% (3-log) inactivation, or removal and inactivation of Giardia lamblia
- 99.99% (4-log) inactivation, or removal and inactivation of viruses

34

Surface Water Treatment Technique Requirements

- Compliance measured by...
 - Turbidity limits for specific technologies
 - Microbial inactivation by disinfection

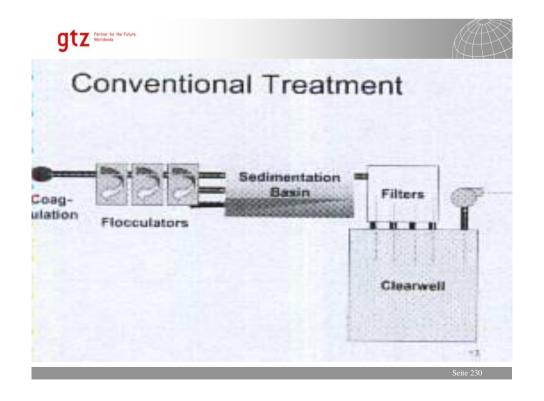
198

a : 000

Types of Filtration

- · Conventional treatment
- · Direct filtration
- · Slow sand filtration
- Diatomaceous earth filtration
- Alternative filtration technologies
 - Membranes
 - Bags and cartridges

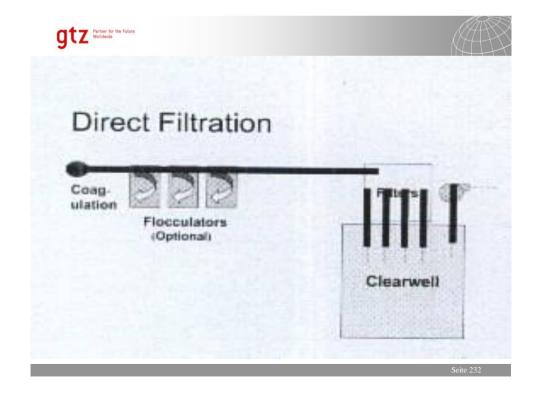
*1



Conventional Treatment

- Conventional Filtration Treatment...
 - means a series of processes including coagulation, flocculation, sedimentation, and filtration resulting in substantial particulate removal.

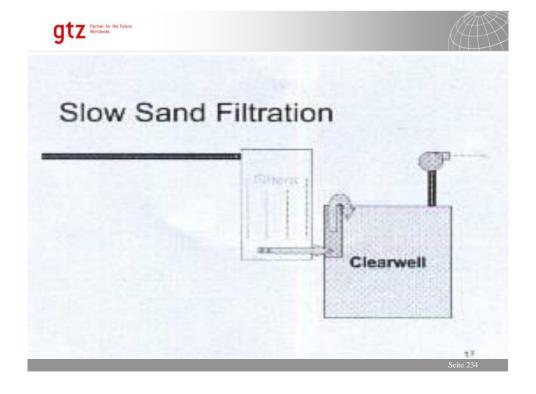
32

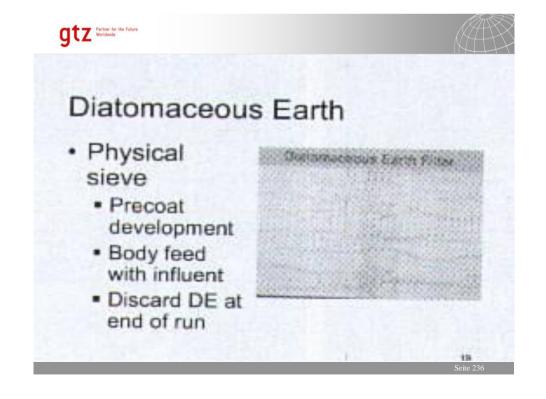


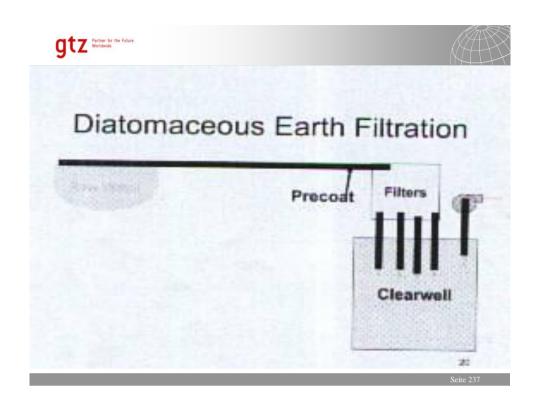
Direct Filtration

- Direct Filtration...
 - means a series of processes including coagulation and filtration but excluding sedimentation resulting in substantial particulate removal.

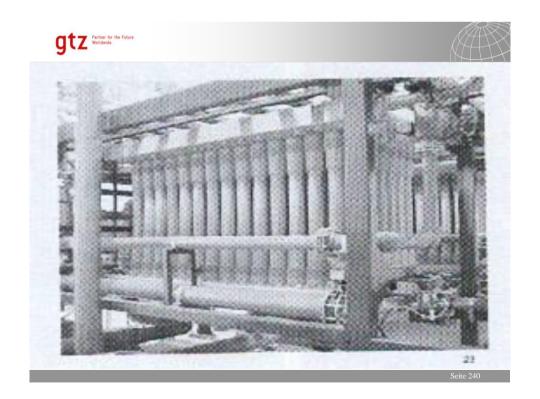
Soito 221

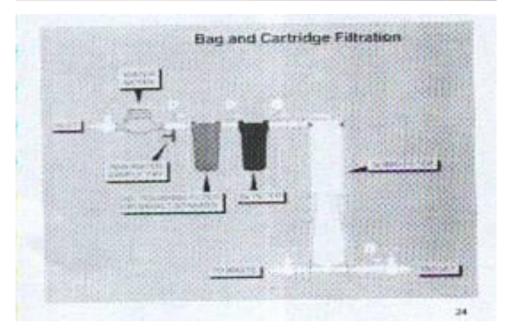





Slow Sand Filtration

- Physical sieve and biological predation
- Schmutzedecke
- Colloids/clay pass through filter
- Cleaning schmutzedecke and ripening period between filter runs




Alternative Filtration Technologies

- Membrane filters
- Microfiltration
- Nan filtration
- Reverse Osmosis
- Cartridge filters, bag filters
- Others
- All: physical sieves

Microbial Inactivation

- Surface water treatment techniques
- Inactivation, or removal and inactivation
- Capable performance defined
- SWTR Guidance (research)
- Demonstration Studies

What is microbial Inactivation?

- Render the organism unable to cause disease
- Does not mean sterilization
- Targets pathogens
- Non-pathogenic organisms may still be present

Seite 243

Factors Affecting Microbial Inactivation

- Organism disinfectant resistance
- Disinfectant concentration
- Contact time
- Competing/shielding of other particles
- Water temperature and pH

Types of Disinfectants

- Chlorine
- Chlorine Dioxide
- Ozone
- UV Light

Seite 245

Quantifying Microbial Inactivation

- Log Inactivation
- Log10
- Specific to organism and disinfectant
- CT concept
- CT calc.

Maintaining Water Quality Distribution Systems

- Challenges to maintain
- Adequate minimum pressure and flow
- Solution
- Operational and physical tools

Seite 24

<u>Maintaining Water Quality - Distribution</u> <u>System Tools</u>

- Disinfectant residual
- Minimize microbial growth
- Protection from (limited) contamination
- Maximum Residual Disinfectant Levels
- Disinfection byproduct MCLs

Maintaining Water Quality- Distribution System Tools

- Cross connection control program
- Monitoring
- Identify problem areas
- Identify deterioration events
- Document adequate treatment

Seite 249

<u>Multiple Barriers – Public Education and</u> <u>Involvement</u>

- Public Notificaion Rules
- Consumer Confidence Reports
- Public participation opportunities
- Capital investment

Sanitation Survey - Eight Essential

Elements

- Source
- Treatment
- Distribution system

Seite 251

- Finished water storage
- Pumps
- Monitoring/reporting/data verifications
- Water system management/operations
- Operator compliance with rule3s

Sanitation Survey - Surface Water or GWUDI


- No less than every 3 years for community systems
- •No less than every 5 years for no community systems
- Regardless of population served

Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH Water & Wastewster Management Program Holding Company for Water and Wastewster (HCWW). Comiche El Nil, Water Treatment Plant-Road El Farag

Tel: +2 02 245 98 405/411 Fac: +2 02 245 98 405/411

Website; www.gtz.de

