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Abstract

This paper presents a novel distributed control strategy for large scale deployment of

demand response. In the considered framework, large populations of storage devices

and electric vehicles (EVs) participate to an integrated energy-reserve market. They

react to prices and autonomously schedule their operation in order to optimize their

own objective functions. The price signals are obtained through the resolution of an

optimal power flow problem that explicitly takes into account the impact of demand

response on the optimal power dispatch and reserve procurement of committed gen-

eration. Differently from previous approaches, the adopted game-theoretic framework

provides rigorous theoretical guarantees of convergence and optimality of the proposed

control scheme in a multi-price setup that includes ancillary services. The performance

of the coordination scheme is also evaluated in simulation on the PJM 5-bus system,

demonstrating its capability to flatten demand profiles and reduce the costs of genera-

tors and flexible devices.
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Nomenclature

Indices and Sets

m (M) Index (set) of nodes

l (L) Index (set) of transmission lines

t (T ) Index (set) of time instants

j (N ) Index (set) of flexible devices

NEV Set of EVs

N S Set of storage devices

Uj Set of feasible power profiles of device j

Parameters

s(l) Sending node of transmission line l

r(l) Receiving node of transmission line l

Xl Reactance of transmission line l

F̄l Capacity of transmission line l

Ḡm Capacity of the generation at node m

¯
Gm Minimum power generation at node m

∆GmaxL Loss of the largest power unit

∆t Time discretization step

P̄j Maximum charging rate of EV or storage j

Aj Time availability interval of EV j

T sj Starting charging time of EV j

T ej Ending charging time of EV j
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Ej Energy amount required by EV j

Ej,0 Initial energy level of storage j

¯
Pj Maximum discharging rate of storage j

Ēj Energy capacity of storage j

Variables

Dm,t Power demand at node m at time t

Gm,t Power generation at node m at time t

R0
m,t Reserve provided by generation at node m at time t

Rm,t Reserve provided by flexible devices at node m at time t

θm,t Voltage angle at node m at time t

Fl,t Power flow at line l at time t

uj ∈ RT Power profile of device j

u∗j ∈ RT Power profile of device j at equilibrium

u ∈ RNT Power profiles of the whole population of flexible devices

Ej,t Energy level of storage j at time t

Functions

fGm(·) Energy cost function of the generation at node m

fRm(·) Reserve cost function of the generation at node m

ϕ(D,R) Minimized total cost of generations

pm,t(D,R) Electricity price at node m at node t

ρm,t(D,R) Reserve price at node m at node t

rj,t(·) Reserve amount provided by device j at time t
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D̃m,t(u) Power demand at node m at time t when power schedule is u

R̃m,t(u) Reserve provided by flexible devices at node m at time t

p̃m,t(u) Electricity price at node m at time t

ρ̃m,t(u) Reserve price at node m at time t

C(u, uj) Cost of device j

ψ(uj) Discomfort cost of EV j

1. Introduction

Recent technological developments and the ongoing electrification of transporta-

tion and heating [1–3] are leading to unprecedented changes in power systems. The

diffusion of domestic storage, “smart” appliances and electric vehicles (EVs) will soon

ensure an increased flexibility on the demand side, which could be used to support

the system and improve its reliability and efficiency [4–7]. However, in order to

fully achieve these potential benefits, it is crucial to design scalable and robust con-

trol schemes that are able to coordinate large population of new devices and align the

global system objectives with the local requirements of customers.

A wide array of different techniques has been proposed to tackle this issue. In par-

ticular, a substantial amount of research has investigated game-theoretic frameworks

[8–14]. With this approach, the individual devices are modelled as self-interested ra-

tional agents that autonomously determine their operational schedule in response to

prices, with the purpose of optimizing their own objective function. Through iterative

updates of the control/price signals, these works analytically demonstrate the conver-

gence of their proposed coordination schemes to a stable system configuration, usually

characterized as a Nash equilibrium. However, these approaches utilize very simplistic

pricing models (usually assuming that the price of electricity is a monotone increas-

ing function of power demand) and they do not envision the possibility for the flexible

devices to also provide ancillary services.
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This active participation of demand response to system operation has been assessed

with different approaches. For example, a bi-level scheme is proposed in [15] to coor-

dinate the scheduling problem between an isolated microgrid and EV battery swapping

stations in multi-stakeholder scenarios, taking into account demand response. Cen-

tralized methods for primary frequency support in microgrids are presented in [16]

and reward allocation mechanisms are proposed in [17] to enable provision of an-

cillary services by thermostatically controlled loads. Market frameworks have also

been widely investigated for the provision of frequency response [18, 19] and reserve

services [20–23]. These papers consider flexible demand that actively participates to

ancillary services markets. However, [18–23] do not provide any theoretic guarantee

of convergence and optimality of their proposed market setup. Moreover, they gener-

ally require demand aggregators to coordinate the individual loads and translate their

flexibility into financial rewards.

This paper bridges the gap between the game-theoretic schemes in [8–14] and the

market approaches proposed in [18–23]. In particular, it considers large populations of

flexible devices that individually participate to an integrated energy-response market.

This scenario is analysed through a rigorous game-theoretic setup in order to formally

demonstrate convergence of the proposed coordination scheme to an optimal configu-

ration.

The problem is analysed through an agent-based framework: each individual device

is modelled as a self-interested agent that responds to price signals and determines its

operational schedule in order to optimize its own objective function. In addition to the

minimization of the energy cost, the individual device will also aim to maximize the

rewards received for reserve allocation. The agents are coordinated through an iterative

scheme: they sequentially update their scheduled power profile in order to improve, at

each step, their objective function. Using Lyapunov techniques, it is demonstrated that

this iterative technique converges to a stable market configuration (characterized as an

aggregative equilibrium) that is also socially optimal. Simulations are carried out on

the PJM 5-bus system to assess the performance of the proposed scheme.
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2. System Model

The considered power system is composed by a setM = {1, . . . ,M} of nodes con-

nected by a set L = {1, . . . , L} of transmission lines. The analysis is performed over

a discrete time interval T = {1, . . . , T}, with a time discretization step ∆t. Power de-

mand is denoted by the vector D ∈ RMT , whose single component Dm,t corresponds

to the total power consumption at node m at time t. With a similar notation, Fl,t indi-

cates the power flow over line l ∈ L at time t ∈ T from the sending node s(l) ∈ M

to the receiving node r(l) ∈ M. Generation, reserve and voltage angle vectors are

denoted as G ∈ RMT , R0 ∈ RMT and θ ∈ RMT , respectively.

It is assumed that the power system operates under an integrated energy-reserve

market. Consistently with the approach presented in [24] and [25], an optimal power

flow (OPF) is solved to optimally dispatch power and procure reserve capacity, mod-

eled as follows.

ϕ(D,R) = min
G,R0,θ

M∑
m=1

T∑
t=1

(
fGm(Gm,t) + fRm(R0

m,t)
)

(1)

subject to:

Dm,t −Gm,t +
∑

{l:s(l)=m}

Fl,t −
∑

{l:r(l)=m}

Fl,t = 0
∀m ∈M

∀t ∈ T
(2a)

|Fl,t| =
∣∣∣∣ 1

Xl
·
[
θr(l),t − θs(l),t

]∣∣∣∣ ≤ F̄l ∀l ∈ L, ∀t ∈ T (2b)

¯
Gm ≤ Gm,t ≤ Ḡm ∀m ∈M, ∀t ∈ T (2c)

R0
m,t ≤ Ḡm −Gm,t ∀m ∈M, ∀t ∈ T (2d)

M∑
m=1

(
R0
m,t +Rm,t

)
≥ ∆GmaxL ∀t ∈ T . (2e)
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The objective function in the right-hand side of (1) corresponds to the sum (over all

times t and buses m) of the generation cost fGm(Gm,t) for producing Gm,t units of

power and the cost fRm(R0
m,t) for providing R0

m,t units of reserve. The functions fGm

and fRm are assumed to be strictly convex.

Regarding the constraints, (2a) corresponds to the supply-demand balance. The in-

equalities in (2b) ensure that the power flow Fl,t does not exceed the line capacity F̄l,

whereas (2c) imposes that generation at bus m is always within the minimum
¯
Gm and

maximum Ḡm capability. The amount of reserve R0
m,t that can be procured by gen-

eration at bus m at time t is constrained by (2d) and cannot exceed the extra available

capacity. Finally, (2e) imposes that the total allocated reserve exceeds some minimum

quantity ∆GmaxL , which for example could be the largest power unit capacity. Note

that, in the left-hand side of (2e), the total procured reserve is calculated as the sum

over all buses of two components: the reserve R0
m,t procured by the committed gener-

ation and the reserve Rm,t provided by flexible devices, which will be characterized in

the next section.

Under this paradigm, the prices for energy and reserve provision can be defined:

pm,t(D,R) =
∂ϕ(D,R)

∂Dm,t
(3a)

ρm,t(D,R) = −∂ϕ(D,R)

∂Rm,t
. (3b)

The quantity pm,t represents the marginal cost of accommodating an additional unit of

demand at nodem at time t and it can be interpreted as the price of electricity at that bus

and time instant. Similarly, the quantity ρm,t represents the marginal saving obtained

if flexible devices increase by an additional unit their allocated reserve Rm,t at node

m at time t (counterbalanced by an opposite reduction of R0
m,t from generators). As

a result, ρm,t can be considered the price at which the allocation of reserve by flexible

devices is rewarded.

Assumption 1. The function ϕ(D,R) is differentiable with respect to Dm,t and Rm,t

for any m ∈ M and t ∈ T . Its derivatives pm,t(D,R) and ρm,t(D,R) in (3) are
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Lipschitz continuous.

The hypothesis of global differentiability of ϕ is introduced to simplify the subsequent

analysis and ensure that the prices p and ρ in (3) are always well-defined. It can be

extended to the case of ϕ differentiable almost everywhere by using the double-price

framework presented in [26].

3. Price-Responsive Flexible Devices

Flexible devices have flexibility in adjusting their power consumption, which could

potentially change the system demand and provide reserve. This section proposes an

agent-based modelling of flexible devices, presenting their dynamics and objectives

and characterizing their overall impact on the power system.

3.1. Dynamics and Constraints

Consider a population N = {1, . . . , N} of flexible devices partitioned into two

groups: the set NEV of EVs and the set N S of storage batteries. Each device j ∈

N operates over the time interval T according to a scheduled power profile uj =

[uj,1, . . . , uj,T ] ∈ RT , where uj,t denotes the power charged/discharged by device j at

time t. The feasibility of uj is now characterized for EVs and storage.

EVs: Each EV j ∈ NEV has rated power P̄j and requires a certain amount of

energy Ej to fully charge its battery. Its charging can only occur within the interval

Aj = {T sj , T sj + 1, . . . , T ej } ⊆ T , when the EV is plugged into the grid. Therefore,

the set Uj of all feasible charging profiles uj for an EV j can be defined:

Uj :=

{
uj ∈ RT :

T∑
t=1

uj,t ·∆t = Ej , 0 ≤ uj,t ≤ P̄j · 1Aj (t) ∀t ∈ T

}
(4)

where 1Aj
(t) is the indicator function:

1Aj (t) =

 1 if t ∈ Aj
0 if t 6∈ Aj .

(5)
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The equality in (4) guarantees that the energy charged by the EV j over T is equal to

required amount Ej , while the inequalities indicate that the positive charging rate of

the EV j cannot exceed its rated power P̄j during the availability times Aj and should

be zero outside Aj .

Storage Devices: The storage device j ∈ NS is characterized by: its energy ca-

pacity Ēj , its maximum charging rate P̄j and discharging rate
¯
Pj . For a certain initial

energy Ej,0 and charge/discharge profile uj , the associated energy level Ej,t of storage

j at time t can be expressed:

Ej,t = Ej,0 +

t∑
x=1

uj,x ·∆t. (6)

The set Uj of all feasible uj for the storage j can therefore be defined:

Uj :=

{
uj ∈ RT :

T∑
t=1

uj,t = 0, 0 ≤ Ej,0 +

t∑
x=1

uj,x ·∆t ≤ Ēj ,

¯
Pj ≤ uj,t ≤ P̄j ∀t ∈ T

}
.

(7)

The equality in (7) is equivalent to the cyclic constraintEj,0 = Ej,T from (6), ensuring

that the initial and final storage energy levels are equal. The first and second chains of

inequalities in (7) ensure that the energy level Ej,t and charging/discharging rate uj,t

remain within feasible limits.

The set U of feasible power schedule u ∈ RNT for the whole population can be

characterized:

U = U1 × · · · × UN . (8)

3.2. Reserve Service Provision

It is envisioned that EVs and storage devices can contribute to the provision of re-

serve by being available to reduce their power consumption. In particular, it is assumed

that each device allocates the maximum feasible reserve amount, i.e. the maximum

power reduction that does not violate the feasibility conditions expressed in (4) and

(7). For simplicity, it is assumed that this power reduction must last for a period of

time step ∆t, which has been chosen equal to 30 minutes in the proposed case study.
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EVs: At each time t, the reserve amount r that can be provided by the EV j cor-

responds to a reduction of its power consumption from its scheduled value uj,t to 0.

rj,t(u) = uj,t ∀j ∈ NEV . (9)

Storage Devices: The reserve r that can be allocated by the storage j at time t is

determined by the feasibility constraints in (7) and must fulfill the following conditions:

rj,t(u) ≤ uj,t −
¯
Pj (10a)

Ej,t − rj,t(u)∆t = Ej,0 +

t∑
x=1

uj,t∆t− rj,t(u)∆t ≥ 0 (10b)

Equation (10a) imposes that rj,t(u) is smaller than the maximum feasible power reduc-

tion uj,t −
¯
Pj whereas (10b) ensures that a potential power reduction of rj,t(u) units

by storage j at time t does not violate its energy constraints. The reserve r can then be

expressed as:

rj,t(u) = min

(
Ej,t
∆t

, uj,t −
¯
Pj

)
∀j ∈ NS . (11)

3.3. Aggregate Impact of Flexible Devices

It is now possible to express the parameters D and R of ϕ in (1) as functions

D̃(u) and R̃(u) of the overall power schedule u of flexible devices. The total demand

D̃m,t(u) at busm at time t is given by the sum of the demand dm,t of inflexible devices

(assumed to be known a priori) and the total power consumption of the flexible devices.

Denoting by µj ∈M the bus where the device j ∈ N operates, it holds:

D̃m,t(u) = dm,t +
∑

{j:µj=m}

uj,t. (12)

Similarly, the total reserve R̃m,t(u) has the following expression:

R̃m,t(u) =
∑

{j:µj=m}

rj,t(u). (13)
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Replacing the generic terms D and R in (3) with the corresponding expressions D̃(u)

and R̃(u) yields:

p̃m,t(u) := pm,t(D̃(u), R̃(u)) (14a)

ρ̃m,t(u) := ρm,t(D̃(u), R̃(u)). (14b)

The functions p̃m,t(u) and ρ̃m,t(u) correspond, respectively, to the prices of electricity

and reserve as functions of the overall power schedule u by the flexible devices.

4. Game-Theoretic Formulation

4.1. Cost of Flexible devices

On the basis of broadcast price signals, the cost C of a device j can be expressed

as a function of its power profile uj and the overall schedule u.

EVs: The cost C of EV j has the following expression:

C(u, uj) =

T∑
t=1

[p̃µj ,t(u) · uj,t − ρ̃µj ,t(u) · rj,t(u)] + ψ(uj) ∀j ∈ NEV (15)

This expression includes electricity cost, reserve revenue and a discomfort cost sum-

marized by a function ψ(uj). The function ψ is meant to represent the potential dis-

comfort incurred by the EV owner if, by actually providing reserve, the vehicle battery

is not fully charged by the end of the considered interval. Denoted by Ê(uj , t) the final

energy mismatch if reserve is provided by the EV j at time t, the following expression

is considered for ψ:

ψ(uj) =
∑
t∈Aj

ξ · Ê(uj , t), (16)

where ξ is a penalty factor. The missed energy Ê(uj , t), if positive, will correspond

to the difference between the required energy Ej and the maximum energy that the

EV can charge by operating at the maximum power rate P̄j after the potential reserve
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service provision:

Ê(uj , t) = min

0, Ej −

 t−1∑
τ=T s

j

uj,τ∆t+

T e
j∑

τ=t+1

P̄j∆t

 . (17)

To capture the sensitivity of the cost C in (15) with respect to the power profile uj

of the single EV, the gradient ∇ujC(u, uj) =
[
∂C(u,uj)
∂uj,1

, . . . ,
∂C(u,uj)
∂uj,T

]
is considered.

Recalling from (9) that the provided reserve rj,t(u) is equal to the power consumption

uj,t when j ∈ NEV , the individual components of ∇uj
C(u, uj) have the following

expression:

∂C(u, uj)

∂uj,t
= p̃µj ,t(u)− ρ̃µj ,t(u) +

∂ψ(uj)

∂uj,t
∀j ∈ NEV . (18)

Storage Devices: The cost C of the storage j only considers the first two compo-

nents in (15), as there is no customer discomfort associated to its final energy level:

C(u, uj) =

T∑
t=1

[
p̃µj ,t(u) · uj,t − ρ̃µj ,t(u) · rj,t(u)

]
∀j ∈ NS . (19)

The individual components of ∇uj
C(u, uj) have the following expression:

∂C(u, uj)

∂uj,t
= p̃µj ,t(u)−

T∑
s=t

ρ̃µj ,s(u)
∂rj,s(u)

∂uj,t
∀j ∈ NS . (20)

Note that the partial derivatives ∂rj,s(u)
∂uj,t

appear in (20) only for s ≥ t. This is because

changes in uj,t at time t only modify the energy level Ej,s in (6) for s ≥ t. Conse-

quently, the reserve values rj,s(u) in (11) will be affected by changes in uj,t only if

s ≥ t, implying that ∂rj,s(u)
∂uj,t

= 0 when s < t.

4.2. Flexible Device Operation as Competitive Game

The flexible devices can be considered as price-responsive rational players that au-

tonomously schedule their power profiles uj to minimize their own costs C(u, uj),

competing for power consumption at times with lower price p̃(u) and for reserve allo-

cation at times with higher rewarded price ρ̃(u). The devices interact with each other
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through the changes in prices introduced by their aggregate power profile. Notice in

fact that variations in the individual power profiles uj modify the overall power sched-

ule u and change the price signals p̃(u) and ρ̃(u) in (14). For example, all devices will

try to consume more power at times when p̃(u) is low. However, this will increase u

and induce higher prices.

4.3. Aggregative Equilibrium

The power profile u∗ scheduled by the flexible devices should correspond to a stable

market configuration that satisfies each individual price-responsive agent. This can be

characterized as an aggregative equilibrium.

Definition 1. Consider a feasible power schedule u∗ with u∗j ∈ Uj , ∀j. This corre-

sponds to an aggregative equilibrium if the following conditions hold:

C(u∗, u∗j ) ≤ C(u∗, uj) ∀uj ∈ Uj , ∀j ∈ N . (21)

Condition (21) implies that, at the equilibrium u∗, no device j can unilaterally reduce

its individual cost by changing its scheduled power u∗j into any other feasible profile

uj . This equilibrium solution proposed in this work is also fair in terms of flexibility:

devices with larger availability windows will have lower costs.

To simplify the analysis, this aggregative equilibrium assumes that the strategy

variation of agent j from u∗j to some other uj has a negligible impact on the overall

schedule u∗ (i.e. the first variable of the cost C) and therefore on the prices p̃(u∗)

and ρ̃(u∗). This is a reasonable approximation since the power consumption of the

individual device is several order of magnitudes smaller than total power demand.

5. Distributed Control Strategy

In this section we propose a distributed scheme that, by iterated price broadcasts

and independent power schedule updates by the flexible devices, converges to the ag-

gregative equilibrium in Definition 1. Convergence will be proved with Lyapunov

13



methods, demonstrating that a certain function V is reduced at each schedule update.

V (u) = ϕ(D̃(u), R̃(u)) +
∑

j∈NEV

ψ(uj). (22)

Note that V corresponds to the sum of the minimized cost ϕ and the EV discomfort ψ,

thus representing a global cost index for the considered problem.

5.1. Elementary Power Swap

It is envisioned that the flexible devices sequentially update their power profile

in response to price signals, with the objective of reducing their cost function. The

fundamental power update operation of device j consists of a power swap of ∆ power

units from time
¯
t to time t̄. Starting from an initial power schedule u ∈ U , the updated

global power profile u+ after the swap will have the following expression:

u+
i,s =


ui,s −∆ if i = j, s =

¯
t

ui,s + ∆ if i = j, s = t̄

ui,s otherwise

(23)

If one denotes by êj,t the vector of the standard orthogonal basis associated to the com-

ponents j and t of RNT , the following equivalent compact expression can be provided:

u+ = u+ ∆
(
êj,t̄ − êj,

¯
t

)
(24)

For a certain power schedule u ∈ U , the amount of power ∆ that can be swapped

by the single device j ∈ N is limited by the quantity δ, defined as follows:

δ(u, j, t̄,
¯
t) = min

{
a(u, j, t̄), b(u, j,

¯
t), c(u, j, t̄,

¯
t), d(u, j, t̄,

¯
t)
}
. (25)

Each of the four terms of the minimum function in (25) is now described in detail:

• Maximum feasible power increase at time t̄:

a(u, j, t̄) = P̄j − uj,t̄ (26)
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• Maximum feasible power decrease at time
¯
t:

b(u, j,
¯
t) =

 uj,
¯
t if j ∈ NEV

uj,
¯
t −

¯
Pj if j ∈ NS

(27)

The bounds a and b ensure that u+
j in (23), i.e. the new power schedule of device j

after the swap, always fulfils the power bounds in (4) and (7) when ∆ ≤ a and ∆ ≤ b.

• Maximum feasible power swap that fulfils energy constraints:

c(u, j, t̄,
¯
t) =


P̄j if j ∈ NEV

min
t∈{

¯
t,..., t̄−1}

Ej,t
∆t

if j ∈ NS ,
¯
t < t̄

Ēj −maxt∈{t̄,...,
¯
t−1}Ej,t

∆t
if j ∈ NS , t̄ <

¯
t

(28)

By imposing ∆ ≤ c, the energy constraint in (7) is fulfilled. In the second case in

(28), it is ensured that the minimum energy level of the storage device j between
¯
t and

t̄− 1, which is lowered by c∆t as a result of the power swap, remains above zero. The

third case in (28) fulfils a similar purpose when t̄ <
¯
t and energy level of the storage

is increased between t̄ and
¯
t − 1. Since no energy constraints are considered when

j ∈ NEV , in the first case in (28) c corresponds to the maximum power P̄j .

• Maximum cost-reducing power swap.

The last term d in (25) ensures that ∆ > 0 only if the associated power swap

reduces the cost of the individual device. This term can generally be defined as follows:

Lemma 1. For all j ∈ N , (t̄,
¯
t) ∈ Aj ×Aj , u ∈ U , there exists d(u, j, t̄,

¯
t) ≥ 0 such

that, for any ∆ ∈ [0, d(u, j, t̄,
¯
t)], the following conditions hold:

d(u, j, t̄,
¯
t) = 0 ⇐⇒ ∇uj

C(u, uj)
(
êj,t̄ − êj,

¯
t

)
≥ 0 (29a)

C
(
u, u+

j

)
− C(u, uj) = ∇uj

C(u, uj)
(
êj,t̄ − êj,

¯
t

)
∆ (29b)
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∃ α > 0 : V (u+)− V (u) = ∇uj
C(u, uj)

(
êj,t̄ − êj,

¯
t

)
α (29c)

PROOF OF LEMMA 1. See Appendix A.

Condition (29a) imposes that d is positive (and therefore a power swap is performed by

device j between times
¯
t and t̄) only when the gradient of C is negative. This means

that also the cost variation C
(
u, u+

j

)
− C(u, uj) is negative, as established in (29b).

Finally, (29c) ensures that the variations of C and V caused by the power swap have

the same sign.

5.2. Coordination Algorithm

Algorithm 1 Iterative scheme - Flexible device coordination

1. Initialization phase. Set:

uj(0)← u
(0)
j ∈ Uj ∀j n← 0 conv ← 0

2. Power scheduling update

WHILE (conv = 0)

(a) conv ← 1 n← n+ 1 u(n)← u(n− 1).

(b) FOR j = 1 : 1 : N

i. (t̄,
¯
t)← arg max

t1,t2

δ(u(n), j, t1, t2)

ii. uj,t̄(n)← uj,t̄(n) + δ(u(n), j, t̄,
¯
t)

uj,
¯
t(n)← uj,

¯
t(n)− δ(u(n), j, t̄,

¯
t)

iii. IF δ(u(n), j, t̄,
¯
t) > 0 : conv ← 0.

END FOR

END WHILE

3. Final results. The power schedule at the last iteration corresponds to the ag-
gregative equilibrium:

u∗ ← u(n).

The proposed coordination strategy is described in Algorithm 1, which includes

three main phases. In the Initialization phase, the power schedule of the devices is
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initialized to some arbitrary u(0) ∈ U . Two additional variables are also initialized: n

keeps track of the number of iterations in the algorithm, whereas the flag variable conv

indicates whether an equilibrium has been reached and the update iterations can thus

be terminated. In the Power scheduling update, the execution of a FOR cycle corre-

sponds that all devices from j = 1 to j = N have updated their power schedule once,

and the iteration number n will increase by one accordingly. The schedule updating of

a single device j is performed as follows. First, in step 2.b.i) the device j selects a pair

of time instants (t̄,
¯
t) that maximize the non-negative function δ. The maximization of

δ, associated to a cost-reducing power swap, is determined based on the current overall

schedule u(n) and the consequent prices p̃(u(n)) and ρ̃(u(n)). Then the power amount

δ is swapped from time
¯
t to t̄ in step 2.b.ii), where the power schedule uj(n) (as well

as u(n)) is updated. Note that the next device j + 1 will update its schedule based on

the updated u(n). Finally, in step 2.b.iii) conv is set to 0 if the current δ is greater than

zero, to signal that the devices are still improving their strategy and convergence has

not been reached yet. When the non-negative δ maximized in step 2.b.i) is equal to

zero for all devices, conv remains equal to one throughout the whole FOR cycle and

the Final results phase is reached, returning the desired equilibrium solution u∗.

The convergence and optimality of the proposed coordination scheme are now for-

mally demonstrated.

Theorem 1. Under Assumption 1, for any population N of flexible devices operating

in the power system, Algorithm 1 asymptotically converges to an aggregative equilib-

rium u∗.

PROOF OF THEOREM 1. See Appendix B.

Theorem 2. The final aggregative equilibrium u∗ is a global minimizer of the function

V :

V (u∗) ≤ V (u) ∀u ∈ U . (30)

PROOF OF THEOREM 2. See Appendix C.
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6. Performance and advantages of proposed approach

This section highlights some fundamental features of the coordination algorithm.

6.1. Agent-based modelling

The proposed approach utilizes a multi-agent framework where each device inde-

pendently schedules its operational strategy. This framework does not require any ag-

gregator, i.e. an intermediate entity coordinating the flexible loads installed in multiple

private households, which exhibits some potential advantages:

• Economic optimality for single devices: the proposed approach ensures cost

minimization for each individual device. This might not be the case when aggre-

gators are considered, since they will generally optimize only the overall opera-

tion of the devices’ population.

• Maximized social welfare: as demonstrated in Theorem 2, the proposed coor-

dination strategy is able to maximize the function V in (22), which can be inter-

preted as the social welfare of the system. This optimality property might not be

satisfied when aggregators are considered, especially if these are self-interested

entities aiming at maximizing their own profit.

• Full control of the appliances: with the approach, customers preserve full con-

trol of their devices, whose operation is not determined by external entities.

6.2. Distributed approach and scalability

Through the distributed framework where each device operates independently in

response to price signals, the proposed approach is able to break down the complex

task of coordinating large number of devices into smaller sub-problems. This avoids

the computational issues of centralized approaches, which include a large number of

decision variables. Although with the proposed algorithm, the time required to calcu-

late the equilibrium solution is fundamentally linear with respect to the number |N | of

controlled devices, faster convergence and improved scalability can be obtained with

some adjustments to the algorithm. For example:
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• Simultaneous power updates by multiple devices: instead of updating and

broadcasting a new price signals to a single device at each strategy update, a

subset of devices can use the same price signal and modify their power profiles

at once. This would reduce the number of required iterations and further enhance

the scalability of the proposed method. Numerical convergence of this alternative

method has been verified in simulation.

• One-shot strategy: the central entity internally emulates the proposed coordina-

tion algorithm and then performs a one-shot broadcast of the final price signal,

in order to directly induce the associated equilibrium solution. This scheme, ini-

tially presented in [11] for the simpler case of smart appliances not providing

ancillary services, assumes that the central coordinator would possess some gen-

eral knowledge of the devices’ population, based for example on estimations or

on historical data.

7. Simulations

Figure 1: The PJM 5-bus system.
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7.1. System Model and Parameters

The coordination algorithm is tested on the PJM 5-bus system [27] in Fig. 1. A time

interval of T = 24 h is considered, with time discretization ∆t = 0.5 h. The generation

and reserve cost functions are assumed to be quadratic, i.e. fGm(x) = 1
2amx

2 + bmx

and fRm(x) = 1
2cmx

2 + dmx. Relevant generation and transmission parameters are

presented in Fig. 1. To fulfill the reserve requirement (2d), the total allocated reserve

must be not less than ∆GmaxL = Ḡ5 = 450 MW. Inflexible demand dm at buses

m = 2, 3, 4 has been derived from historical data [28]. It is envisioned that a population

of EVs NEV
m and storage batteries N S

m operate at buses m = 2, 3, 4, with NEV =

NEV
2 ∪NEV

3 ∪NEV
4 and N S = N S

2 ∪NS
3 ∪NS

4 . A description of the two types of

devices is provided below:

EVs: The required energy amount Ej for the EV j at bus m is determined ac-

cording to a Gaussian distribution with mean value βEm and a standard deviation ωEm.

Additionally, the rated power P̄j is set to the same value P̄j = 11 kW for all j ∈ NEV .

Relevant parameters are listed below:

βE2 = βE3 = βE4 = 30 kWh

ωE2 = 1.0 kWh ωE3 = 1.5 kWh ωE4 = 1.5 kWh.

It is assumed that each EV j at node m must complete its charging within a continuous

time interval [tj , tj + dj ]. The start time tj and the duration dj also follow Gaussian

distributions, with mean βtm and βdm and standard deviations ωtm and ωdm, respectively:

βt2 = 20:30 h ωt2 = 1.5 h βd2 = 10 h ωd2 = 1.0 h

βt3 = 21:30 h ωt3 = 1.5 h βd3 = 11 h ωd3 = 2.0 h

βt4 = 21:00 h ωt4 = 1.0 h βd4 = 11 h ωd4 = 1.5 h

Accordingly, the availability time interval Aj of EV j can be expressed in the dis-

cretized time horizon as:

Aj = {T sj , T sj + 1, . . . , T ej } = {t ∈ T : tj ≤ t ·∆t ≤ tj + dj} .

Storage Devices: An homogeneous population of storage batteries is considered,

with the following parameters:

P̄j = −
¯
Pj = 2.5 kW Ēj = 25 kWh ∀j ∈ NS .
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The total installed storage capacity is equal to Ēj · |NS | = 432.5 MWh. The initial

energy levels Ej,0 are determined stochastically, according to a uniform distribution

with support [0, Ēj ].

7.2. Algorithm Implementation and Results

In the Initialization phase of Algorithm 1, the initial power schedule u(0)
j ∈ Uj is

chosen as a constant power profile over the availability intervalAj when j ∈ NEV and

is identically equal to zero when j ∈ NS . The WHILE cycle in the Power scheduling

update phase is iterated n = 15 times. Simulations have required about 90 minutes on

a standard PC machine with a 4-core 2.40 GHz Intel(R) Xeon(R) E5620 processor and

12 GB of RAM. The final results are compared to a No-Flexibility scenario (denoted as

NF), where the devices do not react to price signals, do not provide reserve and simply

apply the initial power schedule u(0).
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Figure 2: Electricity prices (top) and demand profiles (bottom) at each bus, when the NF scenario (blue
dashed lines) and the proposed solution (red lines) are considered. For the latter, the shaded areas represent
the power contribution of storage and EVs.

Fig. 2 compares the electricity price profiles and the power demand obtained with

the proposed algorithm and in the NF scenario. It can be seen that prices are different

at each node and are generally flattened by the coordination algorithm. It is interesting

to note that, at bus 2, the price p̃2,t is lower than pNF2,t also during the first hours of the
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day, when the demand D̃2,t is higher than DNF
2,t . This is due to the interplay between

demand D and allocated reserve R in the price expressions (3) and the fact that, in the

NF scenario, EVs and storage do not provide any reserve, thus indirectly impacting

also electricity prices. A similar flattening trend can be seen in the demand profiles: a

substantial peak-shaving/valley-filling is introduced by the algorithm. From the disag-

gregation of flexible devices D̃(u∗) in storage component D̃S(u∗) and EV component

D̃EV (u∗), it can be seen that the EVs schedule their charge during night-time, when

electricity prices are lower. Similarly, the storage devices perform energy arbitrage by

charging during night time and discharging at peak times.
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Figure 3: Power flows on transmission lines.

The power flows F (u∗) and FNF in the two scenarios are compared in Fig. 3,

showing that the algorithm reduces the variation over time of the power flow. The

negative values on some lines indicate that power is flowing in the direction opposite to

the conventional one (e.g., power is flowing from node 5 to node 1 on line 3). Note that

line 6 remains congested and operates at its capacity 100 MW over 24 h. This leads to

different locational marginal prices throughout the network, as shown in Fig. 2.
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Figure 4: Reserve price (left) and allocated reserve (right).

Fig. 4 compares the prices for reserve provision at the equilibrium and in the

NF scenario and shows the disaggregation of allocated reserve from different sources

through the algorithm. Note that the reserve price ρ̃m,t(u∗) obtained with the proposed

strategy is always lower than the price ρNFm,t in the NF scenario. This is to be expected

since, by providing reserve, the flexible devices reduce the marginal price of additional

units of reserve. In the right part of Fig. 4, it can be seen how the EVs mostly provide

reserve during the early hours of the day (when they are charging and therefore are

available to reduce their power consumption). Conversely, the contribution of storage

covers almost the whole day, with the exception of the interval between t = 16 : 00 h

and t = 21 : 00 h, when the batteries are mostly discharging.
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Figure 5: Power production and allocated reserve at each bus.
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The power production and allocated reserve of the generators are shown in Fig. 5.

Note that the capacity of the generator at bus 1 is fully allocated to power production

(no reserve is provided). For the generators at the other buses, when Algorithm 1 is

applied there is a reduction of reserve and an increase of power production during the

early hours of the day to accommodate the higher demand from flexible devices.
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iteration n (right).

The aggregate demand profiles DTOT
t (u(n)) =

∑M
m=1 D̃m,t(u(n)) – at different

iterations n – are provided on the left of Fig. 6, showing that how the sequential power

swaps from the flexible devices gradually flatten the demand profile. The right part of

Fig. 6 shows the values of V (u(n)) in (22) at each iteration n. Note that V (u(n)) is

reduced at each step and reaches a minimum at n = 15, as established in Theorem 2.

Table 1: Daily costs sustained by generators and single EV/storage devices.

Scenario No Flexibility (NF) Proposed algorithm
Cost ($) Total Energy Reserve Total Energy Reserve
Generation 5.402·105 4.118·105 1.284·105 5.133·105 4.107·105 1.026·105
EVs 0.92 0.92 0 0.47 0.91 -0.46
Storage 0 0 0 -0.96 -0.03 -0.93

A comparison of the daily costs sustained by generation and individual flexible de-

vices in the two scenarios is presented in Table 1. From a generation perspective, the

algorithm reduces total costs by approximatively 5%, with particularly lower costs for

reserve allocation. It should be emphasized that the comparison does not consider the

payments made in the proposed algorithm to EVs and storage for reserve allocation,

which in the present case amount to 25, 519 $. From an EV perspective, total costs are

halved with the algorithm: this is the result of substantial revenues for reserve alloca-
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tion and a marginal reduction in the electricity costs. Note that the total cost for single

EV is not equal to the sum of the energy and reserve components, as EVs also incur in

an average discomfort cost of 0.02 $, as defined in (16). Storage devices are assumed

not to operate and have zero costs in the NF scenario. When the algorithm is applied,

as in the EV case, storage will obtain most of its revenues for reserve allocation.

8. Conclusions

This paper presents a novel game-theoretic scheme for coordination of price re-

sponsive flexible devices operating in an integrated energy-reserve market. The pro-

posed algorithm ensures the convergence to a stable market configuration which is

also globally optimal. The algorithm is tested in simulation on the PJM 5-bus system,

demonstrating its capability to flatten demand profiles at each node while reducing

costs for generators and flexible devices.
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Appendix A. Proof of Lemma 1

Note that (29a) can be verified by construction and the lemma holds if there exists

∆̄ > 0, different in general for (29b) and (29c), such that these conditions are satisfied

when ∇ujC(u, uj)
(
êj,t̄ − êj,

¯
t

)
< 0 and ∆ ∈ [0, ∆̄].

Proof of (29b): When j ∈ NEV , the only term in (18) which depends on uj is

the derivative of the discomfort cost ∂ψ(uj)/∂uj,t. Since Ê(uj , t) in (17) is piecewise

linear, the same holds for ψ(uj) in (16). This means that ∂ψ(uj)/∂uj,t and the cost

derivative ∂C(u, uj)/∂uj,t are piecewise constant ∀t ∈ T . As a result, there always

exists ∆̄ > 0 such that:

∂C(u, uj + êj,t̄s− êj,
¯
ts)

∂uj,t̄
=
∂C(u, uj)

∂uj,t̄
∀s ∈ [0, ∆̄] (A.1a)
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∂C(u, uj + êj,t̄s− êj,
¯
ts)

∂uj,
¯
t

=
∂C(u, uj)

∂uj,
¯
t

∀s ∈ [0, ∆̄]. (A.1b)

To take into account the possibility of uj being a discontinuity point (where the cost

derivative switches between two constant values), it is assumed that the left and right

derivative are considered in (A.1a) and (A.1b), respectively. Given ∆̄ and the associ-

ated modified strategy u+
j = uj +

(
êj,t̄ − êj,

¯
t

)
∆̄, it holds:

C(u, u+
j )− C(u, uj) =

∫ ∆̄

0

∇uj
C(u, uj + êj,t̄s− êj,

¯
ts)
(
êj,t̄ − êj,

¯
t

)
ds

=

∫ ∆̄

0

∇uj
C(u, uj)

(
êj,t̄ − êj,

¯
t

)
ds = ∇uj

C(u, uj)
(
êj,t̄ − êj,

¯
t

)
∆̄. (A.2)

Equation (A.2) also holds in the case j ∈ NS by considering r instead of ψ in the

proof above.

Proof of (29c): Consider the following parametrized expressionW for the variation

of the function V :

W (∆) = V (u+
(
êj,t̄ − êj,

¯
t

)
∆)− V (u) = V (u+)− V (u)

= ϕ(D̃(u+), R̃(u+))− ϕ(D̃(u), R̃(u)) + ψ(u+
j )− ψ(uj) (A.3)

When j ∈ NEV , we have ∂Dµj ,t(u)/∂uj,t = ∂Rµj ,t(u)/∂uj,t = 1. Therefore, if we

consider ũ(s) = u+
(
êj,t̄ − êj,

¯
t

)
s, it holds:

W (∆) =

∫ ∆

0

∂ϕ(D̃(ũ(s)), R̃(ũ(s)))

∂Dµj ,t̄
+
∂ϕ(D̃(ũ(s)), R̃(ũ(s)))

∂Rµj ,t̄

− ∂ϕ(D̃(ũ(s)), R̃(ũ(s)))

∂Dµj ,
¯
t

− ∂ϕ(D̃(ũ(s)), R̃(ũ(s)))

∂Rµj ,
¯
t

+
∂ψ(ũj(s))

∂uj,t̄
− ∂ψ(ũj(s))

∂uj,
¯
t

ds. (A.4)

Recalling the price equations (3) and (14) and expression (19) for the cost derivative,

26



the quantity Ẇ (∆) = dW (∆)/d∆ evaluated at ∆ = 0 is equal to:

Ẇ (0) =

(
p̃µj ,t̄(u)− ρ̃µj ,t̄(u) +

∂ψ(ũj(s))

uj,t̄

)
−
(
p̃µj ,

¯
t(u)− ρ̃µj ,

¯
t(u) +

∂ψ(ũj(s))

uj,
¯
t

)
= ∇ujC(u, uj)

(
êj,t̄ − êj,

¯
t

)
. (A.5)

As initially established in this proof, we are considering∇uj
C(u, uj)

(
êj,t̄ − êj,

¯
t

)
< 0

and therefore we have W (0) = 0 and Ẇ (0) < 0. For continuity of W and Ẇ (ensured

by Assumption 1), there exists a finite ∆̄ such that W (∆) < 0 for all ∆ ∈ (0, ∆̄], thus

concluding the proof. Same arguments can be used to demonstrate the lemma statement

when j ∈ NS , recalling that in this case ∂Dµj ,t(u)/∂uj,t = 1 and ∂Rµj ,t(u)/∂uj,t =

∂rj,t(u)/∂uj,t.

Appendix B. Proof of Theorem 1

Proof of convergence: It is initially demonstrated that Algorithm 1 converges asymp-

totically to some final power schedule u∗. To this end, the following preliminary result

is proved:

V (u(n)) ≤ V (u(n− 1)) ∀n > 0. (B.1)

This is trivial to check when δ = 0, as in this case we have u(n) = u(n−1). When δ >

0, it is sufficient to note that ∇ujC(u, uj)
(
êj,t̄ − êj,

¯
t

)
< 0 from (29a) and therefore,

from (29b)-(29c), we have:

V (u(n))− V (u(n− 1)) = V (u+)− V (u) < 0. (B.2)

Since V is a bounded quantity, it follows from (B.1) that V (u(n)) converges to some

minimum value. At such minimum the IF condition in step 2.b.iii) is never verified,

otherwise V would be further reduced. Hence the variable conv (set to 1 in step 2.a)

does not change value throughout the FOR cycle and it ensures that step 3) and the

final power schedule u∗ is reached.

Proof of equilibrium: To verify that the final result u∗ of Algorithm 1 corresponds

to the aggregative equilibrium of Definition 1, an alternative formulation is considered
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for the feasible uj ∈ Uj of device j. In particular, each uj can be characterized as

the sum of the candidate equilibrium solution u∗ and a finite number M of elementary

power swaps δ(m):

uj = u∗j +

M∑
m=1

δ(m). (B.3)

Each δ(m) corresponds to swapping ∆m units of power from time
¯
tm to time t̄m and it

can be expressed:

δ(m) = ∆m

(
êt̄m − ê

¯
tm

)
. (B.4)

The terms δ(1), . . . , δ(M) can always be selected in order to fulfil the following feasi-

bility conditions [29]:

u
(m)
j = u∗j +

m∑
i=1

δ(i) ∈ Uj ∀m ∈ {1, . . . ,M} (B.5a)

ũ
(m)
j = u∗j + δ(m) ∈ Uj ∀m ∈ {1, . . . ,M} . (B.5b)

Furthermore, the following condition is assumed:

∇uj
C
(
u∗, u∗j + ε

(
êj,t̄ − êj,

¯
t

))
= ∇uj

C(u∗, u∗j ) ∀ε ∈ [0,∆m]. (B.6)

This does not introduce any loss of generality since∇uj
C is piecewise continuous: any

δ(m) with associated ∆m not fulfilling (B.6) can be split into multiple smaller swaps

such that (B.5) and (B.6) hold.

The equilibrium result is now demonstrated by contradiction. In particular, it is

assumed that u∗ is not an aggregative equilibrium and there exists some uj ∈ Uj such

that C(u∗, uj) < C(u∗, u∗j ). From (B.5), if this were the case, there would exist

m ∈ {1, . . . ,M} such that:

C(u∗, u∗j + δ(m)) < C(u∗, u∗j ). (B.7)
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From the feasibility result in (B.5b) for u∗j + δ(m), we have:

a(u∗, j, t̄m) > 0 b(u∗, j,
¯
tm) > 0 c(u∗, j, t̄m,

¯
tm) > 0. (B.8)

From (B.7) and (B.6), it follows that C(u, uj)
(
êj,t̄ − êj,

¯
t

)
< 0. As a result of (29a),

it holds:

d(u∗, j, t̄m,
¯
tm) > 0. (B.9)

We can conclude from (B.8) and (B.9) that δ(u∗, j, t̄m,
¯
tm) in (25) is also positive. This

is not possible, since u∗ = u(n) represents the final result in step 3 of Algorithm 1,

which is only reached when the variable conv remains equal to one through in step 2

and therefore δ(u∗, j, t̄m,
¯
tm) ≤ 0. It follows that (B.7) cannot hold, thus concluding

the proof by contradiction.

Appendix C. Proof of Theorem 2

Given the strict convexity of fGm and fRm and the linearity of all the constraints in

(2), it follows that ϕ(D,R) is strictly convex. Therefore, (30) holds if the following

sufficient condition is satisfied for all u ∈ U :

M∑
m=1

∇Dm
ϕ(D̃(u∗), R̃(u∗))

[
D̃m(u)− D̃m(u∗)

]
+

M∑
m=1

∇Rm
ϕ(D̃(u∗), R̃(u∗))

[
R̃m(u)− R̃m(u∗)

]
+

∑
j∈NEV

∇uj
ψ(u∗j )(uj − u∗j ) ≥ 0 (C.1)
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Recalling (12) and (13), this corresponds to:

M∑
m=1

[
∇Dmϕ(D̃(u∗), R̃(u∗))

∑
{j:µj=m}

(
uj − u∗j

) ]

+

M∑
m=1

[
∇Rm

ϕ(D̃(u∗), R̃(u∗))
∑

{j:µj=m}

(rj(u)− rj(u∗))
]

+
∑

j∈NEV

∇ujψ(u∗j )(uj − u∗j ) ≥ 0. (C.2)

A slightly stronger condition is considered over all j ∈ N and uj ∈ Uj . In the case

j ∈ NEV and µj = m, this corresponds to:

∇Dmϕ(D̃(u∗), R̃(u∗))(uj − u∗j )

+∇Rm
ϕ(D̃(u∗), R̃(u∗))(rj(u)− rj(u∗)) +∇uj

ψ(u∗j )(uj − u∗j ) ≥ 0 (C.3)

Since ∇Dm
ϕ and ∇Rm

ϕ correspond respectively to the vectors of prices p̃m and ρ̃m,

this is equivalent to ∇ujC(u∗, uj)(uj − u∗j ) ≥ 0, which is always verified since u∗j is

an aggregative equilibrium according to Definition 1, thus concluding the proof.
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