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Abstract

In this paper, a novel mechanistic model is proposed and validated for the consumption
of energy in milling processes. The milling machine is considered as a thermodynamic
system. Mechanisms of the significant energy conversion processes within the system
are used to construct an explicit expression for the power consumption of the machine
as a function of the cutting parameters. This model has been validated experimentally
and is shown to be significantly more accurate than popular existing models. A
simplified form of the model is also proposed that provides a balance between
complexity and accuracy.

The novelty of the model is that it maps the flow of energy within a machine tool, based
solely on the active mechanisms of energy conversion. As a result, only limited
assumptions are made in the model, resulting in an error of less than one percent,
verified by experiments. This accurate model can be used to substantially reduce energy
consumption in milling processes at machine and factory levels leading to massive cost
savings and reduction of environmental impact of numerous industries. The generality
of the modelling method makes it applicable to other types of machine tools with
minimal adjustments.
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1. Introduction to energy consumption in machine tools

Strategies for sustainable development involve three major technological changes:
energy saving on the demand side, efficiency improvements in energy production and
replacement of fossil fuels by various sources of renewable energy (Lund, H. 2007).
Energy-efficient utilisation of end users of energy is a low-cost and flexible approach
towards energy saving on the demand side. Machine tools are end users of electrical

energy.

The total rate of energy consumption of machine tools at global or national levels were
not found in the authors’ search of statistics. US Energy Information Administration
(2016, p.113) classifies industries, according to their global energy consumption, into
three classes: energy-intensive manufacturing, non-energy-intensive manufacturing
and non-manufacturing. There are seven subclasses in the energy-intensive
manufacturing, but the fabricated metal products is listed under one of the two
subclasses of the non-energy-intensive manufacturing. So the cumulative energy
consumption of machine tools, which is a fraction of the energy consumption of the
fabricated metal products industry, cannot be larger than two order of magnitude
smaller than the total industrial consumption. As a response to the aforementioned lack
of specific data, Rajemi et al. (2010) suggested that as metal fabrication contributes to
mechanical engineering sector, the total energy consumed by machine tools in 2008
must be a part of that sector’s energy consumption of 8TWh. The industrial electricity

consumption was 342TWh that year.

In 2016, the total energy consumption in the UK exceeded 140.7Mtoe, i.e. million
tonnes of oil equivalent. The industrial use accounted for 23.7Mtoe of it, of which,
7.9Mtoe, was consumed in the form of electricity (Department for Business, Energy &
Industrial Strategy, 2017a, pp.29-30). Among the processes that constitute the
industrial energy consumption, the manufacture of fabricated metal products, except
machinery and equipment consumed 654ktoe, of which 321ktoe was consumed in the
form of electricity (Department for Business, Energy & Industrial Strategy, 2017b,
Table 4.04). 147ktoe of this electricity is consumed in low temperature processes.
Machine tools receive their energy input as electricity and perform low temperature
processes. Machining of metals is thus one of the energy consuming processes that

constitute the aforementioned 147ktoe. So, the overall energy consumed for machining



of metal parts in the UK during 2015, is a fraction of 147ktoe. This, provides an upper
limit for the total energy consumed by machine tools in the UK during 2016 for

machining metals.

Emachining-2016 < 147ktoe (1)
147ktoe is equivalent to 1.7TWh, in contrast with the 8TWh upper bound suggested by
Rajemi et al. (2010). This upper limit is equal to 1.9% of the industrial electricity
consumption, 0.6% of the industrial energy consumption, and 0.1% of the total energy
consumption of the UK (Department for Business, Energy & Industrial Strategy,
2017b). So, the energy consumption of machine tools is not among the major energy
consuming industrial processes in the UK, but assuming that the fraction of the above
147ktoes that corresponds to machining processes is not more than one order of
magnitude smaller than 1, then Eyqcnining-2016 €an be estimated to be within the range
[10,10%] ktoe, equivalent to [0.1,1] TWh of electricity, and equal to about [0.1-1]
percent of the industrial electricity consumption in the UK. In monetary terms, at
20p/kWh, that is equivalent to £[20,200]m per annum, or O(£10°m/a). This is the order
of magnitude of the cost incurred annually to the manufacturing industry in the UK,
due to its consumption of electrical energy in machining processes. So, it is expected
that 1% improvement in the energy efficiency of the machining processes in the UK,

to be equivalent to a cost reduction of the order of magnitude of £1m.

Energy is consumed in all four stages of a machine tool’s life-cycle; manufacturing,
transportation, use and end-of-life. Dematerialisation of machine tools can reduce the
energy consumed during all four stages. For the use stage, the study of energy
consumption has been ongoing since the early 1980s, when De Filippi et al. (1981)
noticed a trend in fitting NC machine tools with increasingly powerful motors, caused
by a clear request from the customers, in the few years prior to the publication of their
work and raised the question whether that demand reflected the existence of a real need.
They found that the installed power of machine tools is never fully exploited. They also
found that the mass of machine tools is an increasing function of their installed power
and concluded that increasing installed power of a machine tool is likely to result in an
unnecessary rise in its cost. Lack of priority for energy efficiency among machine tool
manufacturers has left potential for improvement of up to a factor of 3 through redesign
of machine tools (Duflou et al., 2012). Process level hardware enhancement approaches

have also been proposed to reduce energy consumption during machining. For example,



using diamond-like tools can reduce energy consumption by up to 36% (Zolgharni et

al., 2008).

In addition to hardware improvement methods, optimal utilisation of the existing
machine tools can significantly improve their energy efficiency. At factory level, Su et
al. (2017) used an integrated model to minimise energy consumption, while
maintaining desired productivity in Bernoulli serial lines. Mouzon et al. (2010), noting
the fact that a significant amount of energy saving is possible by turning off
underutilised machines, proposed several dispatching rules in order to increase the

energy efficiency at factory level.

At machine level, Li et al. (2013) proposed a framework for characterising energy
consumption of machining manufacturing systems based on a hierarchical description
of the holistic energy flow in machining manufacturing systems in three layers of
machine tool, task and auxiliary production. They also classified quantitative energy
consumption models at system level into models in spatial and temporal dimensions.
This framework provides a robust basis for breakdown of energy consumption in
machining manufacturing systems into a number of simple cases, each dealing a certain
layer, at a certain space and time interval. Hu et al. (2017) investigated optimisation of

energy usage by sequencing manufacturing features.

Optimisation of process parameters can allow reduction in energy consumption to a
factor of 1.1, 1.e. 10% increase (Duflou et al., 2012). Identifying the optimum process
parameters for the purpose of energy efficiency improvement would require
information about the behaviour of a machine tools’ energy consumption as a function
of the controllable process parameters. Prabhu et al. (2017) identifies modelling energy
consumption in varying scales and subsystems as one of the three ley challenges in
energy-aware manufacturing operations, along with the balance between energy
efficiency and manufacturing-system effectiveness and the volatility in energy

availability, supply and cost.

The aim of this research is thus to construct a model that represents the consumption of
energy in a typical CNC machine tool during the milling process and to provide a
predictive formula for the power consumption of the machine tool as a function of
milling process parameters. This paper presents a more general form of the approach

presented in one of the authors’ PhD thesis (Imani Asrai, 2013) to mechanistic



modelling of energy consumption in a milling machines. The experimental data used
in this paper for validation of the constructed model is also taken from the
aforementioned thesis, where further details of the data and the data acquisition process

can be accessed.

The structure of this paper thus consists of this section as background. In section 2, a
review of the literature on energy consumption models for machine tools is presented
and a gap is identified for sufficiently precise mechanistic model at machine level. One
such model is constructed in section 3, based on the energy conversion mechanisms in
a typical CNC machine tool. In section 4, the constructed model is verified for the case
of steady-state slot milling of Al 6082 on a 3-axis CNC milling machine with 14mm
carbide-steel end mill. Section 5 discusses the superior accuracy of the model in
comparison to a number of existing model and presents a simplified form of the model.

The final section outlines the conclusions and possible avenues for future work.
2. Literature review: energy consumption models for machine tools

Akbari et al. (2001) noticed that during cutting processes, the power consumption of
the peripheral equipment, e.g. coolant pump, hydraulic pump and control devices, is
usually higher than power consumed directly for cutting. They argued that it is possible
to significantly reduce the energy consumption during machining through dry cutting
and increasing the process speed. The former turns off a major energy consumer
component of the machine tool and the latter reduces the process time, hence smaller
time integral of the peripherals’ power, i.e. their energy consumption during the
process. Dahmus and Gutowski (2004) observed a trend towards fitting more auxiliary
equipment on machine tools, that could potentially lead to lower energy efficiency.
Their analysis of energy consumption in a number of machine tools showed that the
maximum share of electric power used directly for cutting can be as small as 14.8% in
the case of a large machining centre, in contrast with up to 69.4% in the case of a manual
milling machine. They also concluded that the energy consumption of machine tools
could be broken down into a combination of some constant terms that do not depend
on the material removal process and a variable part that is a result of material removal
and depends on cutting process parameters. The variable part was found to increase by
the increase in the rate of the Material Removal Rate (MRR). The observation that a

machine tool’s power consumption is almost constant when it is not cutting material



has led to models which are based on defining different states of function for a machine
tool and assigning a constant power consumption to each state, except for the cutting
state. For example, Balogun and Mativenga (2012) defined three different states: Basic,
Ready and Cutting, and assumed constant power consumption for states other than
Cutting. Since the desirable function of a machine tool takes place during the cutting
process, then minimising the time that a machine spends in other states, is a simple way
of improving its energy efficiency. Energy-aware scheduling is an example of efforts

towards harnessing this potential (Bruzzone et al. 2012).

The strictly increasing relation between the MRR, and energy efficiency of machining
processes was further emphasised in Diaz et al. (2009). They initially hypothesised the
existence of an optimum MRR, above and below which, the efficiency to fall. However,
in their experiments, they found that the optimum MRR, is larger than the physical
limitations of the cutting process allow, and all their experimental results show a strictly
increasing relation between the MRR and the energy efficiency of the cutting process,

suggesting that the highest efficiency may be achieved at highest possible MRR.

Empirical and mechanistic models have been developed for finding quantitative
expression of energy consumption in machine tools in terms of process parameters.
Draganescu et al. (2003) applied Response Surface Methodology for empirical
modelling of energy consumption of a milling machine. Their model states energy
efficiency in terms of spindle speed and spindle torque. Since the latter is not a
controllable operation parameter, this model cannot be directly used as an instrument

for optimisation of energy consumption in machining operations.

Gutowski et al. (2006) proposed that the variable part of power is proportional to the
MRR. Equation 2.a expresses their model, in which, P represents machine tool’s overall

power consumption, Py, the constant term and k, a constant coefficient.

P = Py + k(MRR) (2.2)
Dividing both sides of the above equation by MRR gives an equivalent form of it,
equation 2.b, which appears frequently in the literature. In this equation, SEC is the
Specific Energy Consumption and Co and C; are constant coefficients to be evaluated

experimentally.

Cq
MRR

SEC = Cy + (2.b)

Since its introduction, equation 2, has been used extensively for modelling the power



consumption of machine tools during cutting operations. Imani Asrai et al (2009)
provided a process level model of energy consumption and Li and Kara (2011) used it
to model energy consumption in a turning machine and found out that it can predict the
machine’s power with 90% accuracy. Kara and Li (2011) extended their work to
include eight different machine tools and considering both wet and dry cutting. Diaz et
al. (2011) decomposed a milling machine’s energy consumption to a cutting power that
is modelled by equation 2 and an air cutting power, which is assumed to be constant.
Rajemi et al. (2010) and Mori et al. (2011) used similar decompositions of the process
time and used equivalents of equation 2 to predict energy consumption during cutting
time, while assuming different constant powers for other states of machine operation.
Jeon et al. (2017) used equation 2 in their study of power demand risk models on milling

machines.

Equation 2 suggests that regardless of the individual cutting parameters, power
consumption should remain unchanged as long as the MRR is kept constant. However,
experimental data have revealed that this is not necessarily the case and the error in this
statement can be considerably large. Newman et al. (2012) observed that in the case of
slot milling aluminium alloy 6042 at constant MRR and variable depths of cut the
change in power consumption could be up to 13 percent. Camposeco-Negrete (2013)
also reported considerable disparity in energy consumption at constant MRR and
variable spindle speeds. Liu et al. (2015) point at the inaccuracy of equation 2 in
predicting energy consumption during finish hard milling of tool steel. This indicates
the requirement for more precise models. Modified forms of equation 2 have been
proposed to increase its accuracy. Li et al. (2013) incorporated the effect of spindle
rotation in energy consumption by adding a linear function of spindle speed to equation

to reach:

SEC = Co+Ci (=) + G, (=) 3)

MRR MRR

Guo et al. (2012) modified equation 2 for turning processes, by considering a nonlinear

relationship between the variable part of power and process parameters:

Cy
vefap

4

Where: v. is the cutting speed, f is the feed rate, a, is the depth of cut and D is the final

SEC =Co-v& fF-a)-D? +

workpiece diameter. The constant coefficients and powers are to be evaluated



experimentally. Hu et al. (2014) use a similar model to predict the energy consumption

in turning processes.

Many models have been developed for energy consumption at the process level. Munoz
and Sheng (1995) constructed a model based on the mechanics of chip formation.
Kishawy et al. (2004) decomposed the process energy into three parts: the energy for
plastic deformation in the primary and secondary shear zones, Ep and Es, and the energy
for debonding the particle from the matrix, Ep. They used mechanistic and empirical
models for each of the three and constructed a model for energy consumption at process
level by adding up the three models. Wang et al. (2017) categorised the process time
into setup time, Ts, cutter engagement time, Tce, cutting time, T, cutter retract time,
Ter, tool exchange time, Ti. They used an existing force model to directly evaluate

energy consumption during the process.

Tool wear affects the energy consumption of metal cutting processes and models have
been developed to incorporate this effect. As an example, Yoon et al. (2014) proposed

the effect of tool wear as an additional term to the power:

Pmachining = fl(nr f ap) + /> (Tl, f ap)VB (5)
Where: n, f, a, and VB are spindle speed, feed rate, depth of cut and the tool’s flank

wear, respectively. f1 and f; are second order functions of n, f and a, with interactions.

To summarise, the existing models for energy consumption in machine tools can be
roughly categorised into three types (Cai et al., 2017): linear models in terms of MRR,
detailed parameter models and process oriented models. The conducted review of
literature shows that although there are mechanistic models of energy consumption in
machine tools at process level, there is currently no such model at machine level. There
exist empirical models, but they either lack precision in predicting the actual energy
consumption, or contain many coefficients that need to be evaluated for each specific

combination of machine tool, cutting tool, workpiece material, etc.
3. A model for energy consumption of a CNC milling machine

This paper aims to provide a mechanistic model, based on the energy conversion

mechanisms within a typical machine tool.



3.1. CNC machine tool as a thermodynamic system S

Consider a CNC milling machine as a thermodynamic system S, in an environment at
temperature T, as shown in figure 1. Assume there is no mass exchange between S and
its environment. S receives energy from the power grid in electromagnetic form,
through the machine’s electric plug conductors, at the rate of P(t). The input energy
experiences a number of conversions before leaving S for the environment. S surrenders
energy to the environment in thermal form at the rate of Q,,,(t), and in mechanical
form, through sound and vibration, at the rate of Ej;,,,¢(t). According to the 1% law of

thermodynamics, during the infinitesimal time interval [t, t + dt]:

dQ =dW +dU (6)
where: dQ is the infinitesimal heat entered S, dW is the infinitesimal work performed

by S on the environment and dU is the infinitesimal increase in the internal energy of

S. By definition of Q,y;:

dQ = _Qoutdt (7.2)

dW is the sum of electromagnetic and mechanical work performed the by S on the

environment, including G. By definitions of P and Ejp;oy::

AW = —Pdt + Epyoyedt (7.b)
Replacing dQ and dW in equation 6 by their equivalents from equation 7:

P = Qout + Emout + Z_Lt] (8)
The internal energy of S, U(t), can be partitioned, as a set, according to form, into U,
Uy, Ur, Uc and Uy, respectively for Electromagnetic, Mechanical, Thermal (including
radiation), Chemical and Nuclear. Normally, within a machine tool, the rates of energy
conversion due to nuclear and chemical reactions are very much smaller than the total
input power, P. Therefore, Uy and U, have been assumed constant in this paper and the
flows of energy into and out of them have been neglected when mapping energy flows.
So the only significant conversions take place between electromagnetic, mechanical

and thermal forms. Therefore:

U=UE+UM+UT+Cte (9)
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Figure 1. A CNC milling machine as a thermodynamic system, S

In figure 1, the curved arrows, represent the conversions of energy between forms
within S. W;; represents the rate of conversion from form i to form j, e.g. Wgy
represents the rate of conversion from Electrical form to Mechanical. There are 6
possible direct conversions between Uy, Uy and Ur. The rates of 2 of them, Wiy and
Wyg, shown by dotted curved arrows in figure 1, are zero. There is no direct mechanism
of active energy conversion from thermal form to electromagnetic, e.g. thermoelectric,
within a typical CNC machine tool. Neither is a mechanism of conversion from
mechanical to electromagnetic, as long as the average values of quantities over one or
many AC cycles are considered. So:
Wre =0 (10.a)
Wye =0 (10.b)

The rate of conversion from thermal to mechanical, Wy, shown by dashed curved
arrow, 1s also very small in comparison to the rate of opposite conversion, Wyr.
Thermal engines convert thermal energy to mechanical. The efficiency of thermal
engines is limited to the Carnot efficiency. In the volume of S, only within a small
neighbourhood of the tool-workpiece contact is the temperature high enough, so the
Carnot is not negligible compared to 1. In this region, a fraction of the input mechanical
energy, which itself is a fraction of Wgwm, converts to high temperature heat. If the
cutting process is carried out with coolant, then almost all of the high temperature heat
converts to low temperature heat, before any of it reaches a thermal engine. Even if the
machining is performed without coolant, most of the high temperature heat is dissipated
to low temperature heat, through thermal conduction and radiation, and only the
remaining fraction of it is available to thermal engines. Normally, there is no thermal
engine for energy recovery installed on CNC machines. The only existing thermal

engine within S is natural convection which has a much lower than Carnot efficiency.



Therefore, the rate of conversion from thermal to mechanical is negligible in

comparison with Wy,r.

Wy & Wyr (11.a)
Eprous» The rate of output energy in the mechanical form as sound and vibration, shown
with a dashed straight arrow, is very small, compared to other terms in the above
equation. For example, if the sound intensity just outside the surface of the machine
tool is as high as 100dB, the total power of the output acoustic wave is of the order of
magnitude of 10"'W, considering an outer surface area of the order of magnitude of
10m? for the machine. This is 4 orders of magnitude smaller than the idle power of a

typical CNC machine tool, which is of the order of magnitude of kilowatts. Therefore:

Evout < Wey (11.b)
The three remaining conversion rates, Wgy, Wy and Wy are not necessarily
negligible. Writing the conservation of energy for the subset Uy and applying 11.a

results in:

du .
Wur + Wgr = d_tT + Qout (12)

Incorporating equations 12 and 9 into 8 and applying 11.b:

- Wy | dUg
P~ Wy + Wpr + 52+ (13)

Equation 13 always holds, irrespective of the process. The uncertainty is because of
11.a and 11.b, and its relative scale is estimated to be no more than 10, Equation 13
has been used in this paper to construct a quantitative model of P in terms of process
parameters, through mechanistic models of the terms on the right side of the equation,

for the specific case of steady-state slot milling.

3.2. Steady-state slot milling

Imagine the machine during a steady-state slot cutting. In steady-state, at every point
in S, the temperature, velocity, material properties and electromagnetic field are
constant. So, the densities of thermal and electromagnetic internal energies are constant.

So their volume integrals over S are constant.

— =0 (14)
The internal mechanical energy U, is the sum of kinetic and potential energies Uy and

Up.



UM=UK+UP (153)
In steady-state, the density of internal kinetic energy is constant, so is its volume

integral over S.

dUg

M _ dUp
a T ar (16)
Rewriting equation 13, using 14 and 15.c:
au
PzWMT-I_WET +d_tP (17)

By expressing the three terms on the right, in terms of cutting process parameters, the
above equation becomes an expression for the machine tool’s power as a function of
the process parameters. Table 1 lists the conversion mechanisms from Uy and Uy to

U;r. The total rate of these mechanisms constitute Wy and Wy,r.

Source form Mechanism of conversion to thermal
Electromagnetic ~ Joule Heating — Semiconductor dissipation
Mechanical Dry friction — Viscous dissipation — Plastic deformation

Table 1. Energy conversion mechanisms within a typical CNC machine tool

3.3. Conversion of energy from mechanical to thermal; W yr

Mechanical energy converts to thermal energy through three mechanisms: Dry friction,

viscous dissipation and plastic deformation.

3.3.1. Dry friction

This occurs between solid surfaces in contact and relative motion at their contact. The
dry friction force, Fpp, is proportional to N, the normal force between the two solids at
their contact point, with the friction coefficient, £, being the constant of proportionality.
The rate of conversion of energy from mechanical to thermal through dry friction is,

therefore:

d S
E — Fpp - = uNv (18)

where v is the relative velocity between the two objects at their contact. Dry friction in
ancillary devices, e.g. the bearings of the lubricant pump, takes place at a constant rate,

because N and v are constant and independent of the milling process parameter:



Lor| ¢ (19)

dat lancil.

At the contact of tool and workpiece, the normal force, N, is proportional to the
MRR and v is proportional to the spindle speed, s. Therefore, the rate of conversion of
energy from mechanical to thermal through dry friction mechanism at the tool tip is

dorl = A(MRR)s (20)
dt l¢ool

At the supports, bearings and drives of the machine bed, the normal forces are mainly
determined by the weight of the bed, which is constant. However, to balance the force
exerted on the workpiece by the tool tip, these normal forces change slightly by an
additional term. The additional term is proportional to the tool tip force, because they
result from the equilibrium equations, which are linear. The tool tip force is

proportional to MRR. So, at the machine bearings:

Nlbed.support = A+ B(MRR) (21)
The relative velocity of surfaces in contact at the machine bed bearings are proportional
to the feed rate, f. Therefore, the rate of conversion of energy from mechanical to

thermal due to dry friction at the machine bed bearings is:

20or = (A + B(MRR))f 22)
dt lped.support

The above equation holds for every dry friction mechanism whose characteristic speed
is proportional to feed rate. The same argument applies to the dry friction mechanisms
whose speed is proportional to the spindle speed, e.g. in the spindle bearings, which

will lead to:

dQpFr
dt

= (A + B(MRR))s (23)

spindle.support

Combining equations 19, 20, 22 and 23, the total rate of conversion of energy from

mechanical to thermal through dry friction may be written as:

Lot — ¢ + (4 + BA(MRR)) f + (As + B{MRR))s (24

3.3.2. Viscous dissipation

This occurs inside fluids with non-zero viscosity, wherever the strain rate tensor is non-
zero. The form of relation between the rate of conversion and the characteristic velocity,
v, is determined by the Reynolds number of the flow. For low Reynolds numbers, i.e.

Stokes and other laminar flow, the viscous stresses are proportional to v, which result



in the rate of conversion of energy from mechanical to thermal being proportional to
v2. For large Reynolds numbers, i.e. fully developed turbulent flow, the viscous stresses
are proportional to v, and therefore, the rate of dissipation is proportional to v°. A

typical example of these two regimes can be seen in Moody chart, for the flow in pipes.

The volumes occupied by fluids may be partitioned into low and high Reynolds number
regions and the total rate of viscous dissipation may be found by adding the rates of all

regions to find:

LNE = Dv? + Ev? 25)
For the fluid flows whose speed are independent of the process parameters, e.g. flow of
lubricant in pipes, the total rate of conversion remains constant, irrespective of the flow
regime. For flows whose speed is determined by the spindle speed, e.g. air flow around
the spindle, the characteristic speed, v, is proportional s, and for flows whose speed is
determined by the feed rate, f, the characteristic speed is proportional to f. Therefore,

for the total rate of conversion of energy from mechanical to thermal through viscous

friction:

SNE = €+ (Dyf? + Epf?) + (Dss? + Egs?) (26)

3.3.3. Plastic deformation

This mechanism occurs within a solid material undergoing plastic deformation. In a
CNC machine tool, this happens during material removal, where plastic deformation
continues until the material breaks. The amount of energy required to plastically deform
a unit volume of a material until it breaks, is a property of the material, and almost
independent of the process parameters. Therefore, the rate of conversion of energy from
mechanical to thermal through plastic deformation is proportional to the rate of material

removal, MRR:
20 = K(MRR) 27)

3.3.4. Total rate of conversion from mechanical to thermal

The total rate of conversion from mechanical to thermal, Wy, is the sum of the rates
due to each of the three mechanisms above. Equations 28 is the result, in which, the

terms are grouped into 4, according to their variables: a constant; a product of MRR



and a linear function of f and s; and two 3"-order polynomials of f and s, both without
constant terms.

Wyr = C + (K + Bff + Bgs)(MRR) +
(Aff + Dpf? + Eff3) + (Ass + Dss? + Egs®) (28)

3.4. Conversion of energy from electrical to thermal; W g

Conversion of energy from electromagnetic to thermal takes place through two
different mechanisms in the machine’s conductors and semiconductors. In
semiconductors, e.g. in the machine’s computers and, if present, semiconductor
lightings, the potential difference across semi-conductor components is a constant and
therefore, the rate of conversion of energy from electromagnetic to thermal is
proportional to the current that passes through the component. However, since there is
no relation between the cutting process and the activity of semiconductor components,
the rate of this conversion is independent of the cutting parameters. In conductors, e.g.
the main cable connecting the machine to the plug, the wiring in the machine’s
electromotors, eddy currents in the machine’s transformers and electromotors, etc., the
rate of energy conversion from electromagnetic to thermal is proportional to the square
of current. In some conductors, the current, and therefore the rate of thermal dissipation,

is independent of the cutting process, €.g. in lubricant pump electromotor.

However, in spindle motor and feed motors, the current depends on the cutting process
and so does the rate of energy conversion from electromagnetic to thermal. In

electromotors, the torque is proportional to the current:

T/
As mentioned above, the rate of energy conversion from electromagnetic to thermal,

Pges, 1s proportional to the square of the current:

Pges X T2 (29)
The torque, having to overcome dry friction, viscous friction and to contribute to
material removal, obeys the
Teres = A’ + B's + C's? + D'(MRR) (30.a)
Trres = A"+ B"f + C"f* + D"(MRR) (30.b)

The total rate of direct energy conversion from electrical to thermal is:



Wyr = cte + (A' + B's + C's? + D'(MRR))" + (A" + B"f + C"f? + D"(MRR))’
(31

dUp

3.5. Increase in internal potential energy, TS

A fraction of the mechanical energy provided by the spindle motor at the tool tip, ends
up stored in S in potential mechanical form as residual stress in cooled-down chips and
workpiece. The rate of this increase is proportional to the rate of material volume going

through this storage, which is proportional to the MRR.

dUup

as thermal and mechanical energy. enteres energy is being stored in potential
mechanical form, as residual stress in the cooled-down chips and workpiece. The rate
of'this increase is proportional to the rate of material volume going through this storage,

which is proportional to the MRR.

3.6. Total power consumption

Starting from equation 17 and replacing the three terms on its right side by their
equivalents from equations 28, 31 and 32, equation 33 is constructed, which is a
relationship between the machine tool’s power P and the process parameters: f, s and
MRR. The constants of similar terms of the constituent equations are combined to form
the constants in equation 33.

P(f,s,MRR) = C + (A¢f + B;f* + Cf® + Dpf*) + (Ags + Bgs? + Cgs® +

Dys*) + (E + Fif + Fys + Ggs? + Grf?)(MRR) + K(MRR?) (33)
Equation 33 is the final result of the model constructed above and provides a predictive
equation for the power consumption of a milling machine during a cutting process, in

terms of its feed rate, spindle speed and its rate of material removal.
4. Experimental validation of the model

To validate equation 33, a set of measurements is designed and made. The best fit of
the equation 33 onto the collected data is found. The performance of the model is
compared to some of the existing models. The results are also used to obtain a simpler
form of the model by discarding the terms with small contributions to the total power

consumption over the investigated domain of variables.



4.1. Equipment and material

The milling machine used for the experiment is a 3-axis Bridgeport VMC 610 XP2. The
cutting tool chosen for the experiments is a 2-flute 14mm carbide end mill. The material
is aluminium alloy 6082, which comes in identical blocks of size 230 X 150 X

37.5mm3.

The power measurement device used in the experiment is a “HIOKI 3169-20 Clamp on
Power Hitester”. Three HIOKI 9695-02 clamp-on sensors are also used along with the
Hitester as current probes. The Hitester uses three direct connections to the machine’s

power supply wires for voltage measurements.

4.2. Domain of variables

Equation 33 expresses power in terms of three independent variables (s, f, MRR). It is
possible to replace one of the variable with a function of these three terms without the
independence of variables being compensated, if the determinant of the Jacobian matrix
of the transformation is a nonzero real number. By replacing the MRR with the depth

of cut, a, this condition is satisfied for nonzero values of feed, because:

MRR = fad
Where: d is the tool diameter.
B MRR
a= Fd

1 0 0
_d(s,f,a) [0 1 0
~a(s,f,MRR) |\, _MRR 1
f2d fd

det()) = !

e _fd

So we are allowed to replace the set of independent variables (s, f, MRR) with another
set of independent variables (s, f, MRR), which is more convenient for design of
experiments. There are constraints of different origins on the choice of cutting
parameters, each making parts of the three-dimensional (s, f,a) space inaccessible.
The nature of these constraints and the mathematical representation of the boundaries

of the domain they define are discussed here.



4.2.1. Limitation on cutting speed

The cutting speed of materials should be within a certain range to achieve an acceptable
cutting quality. Consulting with available machining guidelines, the range for cutting

speed was chosen as:

Using this range of cutting speeds and the diameter of the cutting tool being 14 mm,
the range of spindle speed is found:

1705 < s < 3978

or roughly:
1700 < S¢pm) < 4000 (35)

4.2.2. Limitation on feed per tooth

The recommended range of chip load (feed per tooth) is:

0.15mm < C.L.< 0.25mm (36)

In terms of cutting parameters, the above inequality may be written as:

0.3 < Lommin 5 (37)

S@rpm)

4.2.3. Limitation on depth of cut

For cutting aluminium with the chosen 14mm end mill the upper limit of depth of cut
is given to be 8mm. However, to keep the effect of tool wear at minimum, the maximum

depth of cut was chosen to be 4mm. Hence:

a < 4mm (38)

4.2.4. Limitation on machine tool power

The spindle motor of the CNC milling machine used for the experiments has a rated
power of 13 kW. The maximum specific cutting energy for aluminium is 1.1 J/mm?

(Dahmus and Gutowski, 2004). Therefore:

af < 5.0 x 10*Mm*/

min (39)



4.2.5. Domain of cutting parameters

Constraints represented in equations 35, 37, 38 and 39 define a prismatic volume with
trapezoidal base in the (s, f, a) space, as the accessible domain of cutting parameters.

Figure 2 illustrates this domain.

a(mm) |

a

kho 8s0 1200 2000 f (F12m/ min)
17 Let. r—

Lt E

s(rpm) ,

Figure 2. Accessible domain of cutting parameters

4.3. Design of experiment

The experiment has been designed such that:

e The entire domain is covered

e The domain in covered homogeneously, so the variations of power in all the
domain is captured equally well

e The design is symmetric with respect to variables, so the data acquired can be
equally used to test the accuracy of other models

A transformation was applied to transform the prismatic domain in (s, f, a) space to a
unit cube in (g, B, y) space:
s =1700 + 23000

f = (£+03) (1700 + 23000) (40)
a=4y

This transformation is a nonlinear transformation and does not preserve the

homogeneity of volumetric distribution of design points. Therefore, a homogeneous

design in (s, f,a) space represents a nonhomogeneous design in (g, 8,y) space and

vice versa. Still, the authors argue that the homogeneity of the design should be



considered and applied in (o,f,y) space, where domain is a unit cube rather than
(s, f,a) space, where it is a prismatic volume with trapezoidal base, mainly because
this is the topology of the domain’s boundaries that contains information about the
physical causes of the shape of the domain not its geometry that is a construct in a 3-D
Cartesian space based on three axes made of quantities with different physical
dimensions. Also there exists a symmetric homogeneous design that covers the entire
cube and that is an n® cubic design. It is also a simple design for an experimenter to
follow and, therefore, reduces the risk of experimentation error. Therefore, an n3 cubic

design is chosen for this experiment.

Since in this model power consumption relates to feed and spindle speed through 3™
order polynomials and since any set of 4 or less data points (in 2-D speaking) can be
fitted by a 3™ order polynomial, n should be no less than 5 or the experiment’s ability
to detect inconformity between the empirical data and the model’s prediction would be
questionable. n > 5 would be uneconomical as the number of measurement grows with
n3 and for n = 5 already 125 measurements have to be carried out. For n = 6 the figure
would be more than 1.7 times larger at 216. Moreover, lower uncertainties are not
achievable in the experiment because of an independent source of uncertainty, the

imprecision of the measurement set up, which will be discussed quantitatively later.

Hence:
n=>5 (41)
o, B and y are then chosen from the set V.
11 3
v={033731} (42)

V3 contains all 125 combinations of (g, 8,) and for each one of them, using (40),
(s, f, a) can be calculated. For example, (a,8,7) = G, 0, %) refersto (s, f,a) =

(2275 rpm)» 682 (mmminy» 2(mm) )-

4.4. Data acquisition

A block of aluminium is installed on the machine bed with its long edge parallel to
machine’s x-axis. After face milling, 5 full-length longitudinal slots are cut on equally
spaced paths, all at one certain combination of (a,y), i.e. (s, a). Each of the 5 slots is
cut at a feed rate equivalent to a distinct 8 chosen from V. Slots are cut in the increasing
feed rate order, i.e. increasing  from O to 1. This procedure is named a “measurement

routine” by the authors and is repeated 25 times to cover all 125 combinations of

(s, f, @)



Figure 3. An aluminium block after a number of measurement routines
(Newman et al., 2012)

The power measurement device records the apparent power, and some other related
quantities, of the machine every one second during the time the slots are cut. Figure 4

shows a graph of the measured values of apparent power during the measurement

routine run for (o,y) = G, %)
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Figure 4. Apparent power readings during measurement routine for (a,y) = (%, %)

The five plateaus observed in figure 4 represent power readings during the slot cutting
operations, which is the only part of the graph that is related to this research. The first

plateau represents § = 0. f increases in steps of 0.25 to § = 1 for the 5™ cut.

The average of recorded apparent powers for a plateau is defined as the measurement

on machine’s power consumption at the corresponding combination of (a,f,7).



Standard deviation of the same set of data is also calculated as a measure of random
error. Ratio of standard deviation to the average is defined as the relative measurement

eITOT, Nmeqs- 1t Was observed to be in the range:

Nmeas = 0.30 £ 0.05 (43)
The result of application of this procedure to the set of data utilised to produce figure 4

is presented in table 2.

— S(PH)
o /4 ﬁ PE (a: Y, B) [VA] S(PE) [VA] Nmeas = W [%]
0.5 0.75 0 3184 10 0.31
0.5 0.75 0.25 3266 9 0.27
0.5 0.75 0.5 3348 12 0.36
0.5 0.75 0.75 3426 11 0.32
0.5 0.75 1 3488 10 0.29

Table 2. Data extracted from the set of measurement routine presented in figure 4.

This data acquisition procedure is carried out 25 times, once for every combination of
(0,7), hence 125 measurements. Face milling takes place only when the block is
replaced with a new one. As long as the depth of slots is less than half the thickness of

the block, cuts are made into the existing slots. The effect of wall friction is ignored.

4.5. uncertainty estimation

before the analysis of the acquired data, their uncertainties must be estimated.

4.5.1. Repetition tests

To evaluate the magnitude of the random error in the case of repetition of experiment,
measurements were repeated 5 times for 8 of 125 combinations of (g, ,y), in a cubic
23 design containing corner points of the cube. The relative errors observed in repetition

tests were in the range of 0.7 to 0.9%.

Trep = 0.8+ 0.1 (44)

4.5.2. Equipment accuracy

The measurement device’s catalogue suggests that the accuracy in power readings may

be found through equation (44) (Hioki, pp. 188).



Sequip = £0.5%rdg. £0.14%f.s. (45)
In equation 45 “rdg.” represents the reading value of power and “f.s.” the full-scale
power measurable by the combination of sensors and range selection used on the device
during experiments, which is 60kVA. This introduces two independent uncertainties,

one with constant relative magnitude: 7,44 = 0.5%, and the other with constant

absolute magnitude: Sy = 84(VA).

4.5.3. Overall uncertainty in observed values of apparent power

From the 4 error sources, Nmeas> Mreps Nrag ANd 15 ., the last one dominates when
estimating an overall uncertainty in the final measurement through:

1

S = [Srzneas + Sﬁep + Szdg + Sjg.s.]E (46)
to end up with values in the range:
§=90+5(VA) (47)
Which is an estimation of the uncertainty in each of 125 measurements of machine’s

apparent power consumption.

4.6. Data fitting and analysis

There are 15 terms on the right side of equation 33. Each term is made of the product
of one unknown coefficient b; and a function of the independent variables g;(s, f, a).

Therefore, equation 33 may be written as:

P=332bigi(f hs) (48)
g; functions and b; coefficients are listed in table 3. The linear least square method was
used to find the values of coefficients that provide the best fit to the 125 experimentally
acquired power data. Table 4 contains the coefficients of the best fit. Figure 5 shows
the distribution of residuals, 1.e. the difference between predicted and measured power.

The rms of residuals is:

Erms = 19VA (49)
Since the uncertainty of measurements is 90VA, the empirical data does not falsify

the model.



j 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
g 1 f f*2 f2 f* s s s> s* MRR fMRR sMRR f?MRR s*MRR MRR®
K

b; As By C D A, B, G, D, E F F, Gy G, H

Table 3. List of g; functions and b; constants

Coeffecient
4.6681 x 103
—0.6189
8.6705 x 10~*
—4.5086 x 1077
8.2315 x 10711
—2.9120
0.0014
—3.1646 x 1077
2.5796 x 10711
10 0.0279
11 —1.7269 x 107>
12 3.0910 x 10
13 3.1361 x 10~°
14 —2.2890 x 10710
15 2.9619 x 1078

Table 4. Coefficients of the best fit according to the linear least square method
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Figure 5. Distribution of residuals.

5. Discussion

This consists of four major areas; model comparison, simplified form of the model
and, critique of the analysis and application of the constructed model.



5.1. Comparison with other models

The power measures acquired during the experiment may also be used to assess the
performance of other existing models of energy consumption in machining. This has
been carried out for two widely used models proposed by Gutowski et al. (2006) and
Lietal. (2013), i.e. equations 2 and 3 respectively. These two models are both truncated
forms of the model proposed in this paper. Applying the same linear regression method,
the best fits of the two models to the acquired data was found. The rms of residuals are
75V A for equation 2 model and 68V A for equation 3 model. Equation 3, despite having
one more term than equation 2, only has a marginally better performance than that. The
proposed model in this paper, with 19VA rms of residuals, has a significantly better
performance than both analysed models. The rms of relative errors, i.e. errors divided
by corresponding measured powers, is %0.67, in contrast with %2.28 for equation 2

and %2.05 for equation 3.

5.2. A Simplified form of the model

After observation of the good performance of equation 2, despite having only two
terms, and the marginal improvement that the additional term in equation 3 provides, it

was decided to analyse the performance of all 3-term truncated forms of equation 32.
The number of possible 3-term combinations of the 15 terms of equation 32 is (135) =

455. All 455 were fitted to the experimental data and rms of their residuals were
calculated. Figure 6 shows the distribution of the calculated rms values.

The smallest rms is 42VA and corresponds to the combination of the 1%, 10" and 11"

terms. Therefore, the most precise 3-term truncated form of equation 32, with rms as

small as twice as that of the complete 15-term model is:
P(f,s,MRR) = C + E(MRR) + F;f(MRR) (50)

Interestingly, from all 455 combinations, only the 13 combinations that contain both
terms of equation 2 have rms smaller than that of equation 2, i.e. 75V A, which confirms

the high accuracy of equation 2, despite being a simple 2-term model.
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Figure 6. Distribution of 455 rms of residuals for 3-term truncated forms of eq. 32

5.3. Critique of the analysis

The uncertainty in measurements made during the experiments has been 90VA. As this
is larger than the observed rms of residuals of the best fit of both the proposed model,
i.e. 1I9VA, and that of the other two models described by equations 2 and 3, i.e. 75VA
and 68V A, the conducted experiment cannot falsify any of the models. More accurate
measurements, with uncertainty of order of magnitude of no more than 10VA are
required to fundamentally distinguish between the performances of the proposed model

and other existing ones.

The power rating of the CNC machine used in the experiments is 13kW, but the
measured powers during the experiments have all been within the [2.3,4.5]kW. Since
the share of non-linear terms in the model grow by the total power, to better capture

their effect, further experiments should be conducted at higher powers.

Fitting the model to the experimentally acquired data using the least square method
results in both positive and negative coefficients, visible in figure 5. However, because
each of the 15 terms of equation 32 represents a rate of conversion, or the collection of
a few of them, it is expected for the coefficients to be positive. The only exception
might be the effect of balancing forces at machine bearings that are results of
equilibrium equations and may be large enough to produce negative coefficients.
Therefore, trying a non-negative least square method could, potentially, produce more

realistic coefficients with more meaningful terms. This remains to be investigated



further in future. Further experiments with other machines, tools and workpiece

materials are required to test the generality of the model proposed in this work.

5.4. Application of the model

The constructed model can also be utilised in process planning to choose milling
process parameters in order to either minimise the total consumed energy during the
process, as a single objective optimisation problem, or to reach an optimum
combination of a number of objective parameters, including the total consumed energy.
There would be no intrinsic difference between the model constructed in this paper and
other existing models in the way they may be used to achieve the aforementioned goals,
but the higher accuracy of this model will lead to more accurate choice of process

parameters and lower total energy consumption.
6. Conclusions

A mechanistic model of energy flow through a CNC machine tool performing a steady-
state slot milling was constructed through mapping of energy conversions inside the
machine tool as a thermodynamic system, figure 1. The model leads to equation 33 that
expresses power consumption of the machine tool as a function of spindle speed, feed

rate and the rate of material removal (s, f, MRR).

Equation 33 was validated experimentally on a 3-axis CNC milling machine,
Bridgeport VMC 610 XP?, cutting A16082, using a 14mm 2-flute end mill. The model
was found superior more than three times more accurate than two other existing models:

Gutowski et al. (2006) and Li et al. (2013), i.e. equations 2 and 3 respectively.

The best fitting 3-term truncated form of equation 33 to the experimental data was
found, among 455 possible combinations, which is given in equation 50. It provides a
simple, yet accurate estimation of the machine’s power consumption, within the range
of process parameters investigated in the experiment. Further investigation of the
proposed model, with more accurate measurements on a variety of machines, cutting
tools and workpiece material, over a larger range of machine power and application of

non-negative least square data fitting can increase the robustness of the model.

The model constructed in this paper provides an accurate, simple and powerful tool to

enable companies that use machining technologies to accurately predict and minimise



their energy consumption at machine and factory levels. This will lead to significant

cost savings and reduction of environmental impact for such companies.
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