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Abstract. This paper reports a new figure of merit for the selection of pyroelectric materials for
thermal energy harvesting applications, for example, when the material is exposed to heat or radiation
of a specified power density. The figure of merit put forward and developed is of interest to those
selecting materials for the design of thermal harvesting devices or the development of novel ceramic,
single-crystal and composite materials for pyroelectric harvesting applications.
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Introduction

Energy harvesting is a topic of intense interest as a result of the growing energy demands of society
and as a potential approach to create autonomous and self-powered systems; examples are energy-
harvesting devices for battery-free wireless sensor networks which do not require maintenance or
replacement. In the context of thermal energy harvesting, heat remains an almost ubiquitous and
abundant ambient source of energy that is often wasted [1] [2]. A significant amount of waste heat is
lost as a by-product of power, refrigeration, or heat pump cycles [3]. Pyroelectric harvesting by
radiative heating has also been considered by a number of researchers [4] [5] [6].

Thermoelectrics have been widely used and considered as a means to convert temperature gradients
(dT/dx, where T is temperature, and x is co-ordinate) into electrical energy using the Seebeck effect. A
less widely researched area is ‘pyroelectric harvesting’ in which temperature fluctuations (d7/dt,
where ¢ is time) are converted into electrical energy. This has similarities to the way in which
piezoelectric harvesters convert mechanical oscillations (do/dt, 6 is mechanical stress) into electrical
energy. Pyroelectric materials are of interest as they have the potential to operate with a high
thermodynamic efficiency and, compared to thermoelectrics, do not require bulky heat sinks to
maintain the temperature gradient.

Pyroelectric effect and energy harvesting

All pyroelectrics are polar materials and exhibit a spontaneous polarisation in the absence of an
applied electric field, and the spontaneous polarisation is defined as the average electric dipole
moment per unit volume [7]. The presence of the spontaneous polarisation leads to a layer of charge
on each surface of the material, and free charges, such as ions or electrons, are attracted to the charged
surfaces of the poled material. The origin of pyroelectric effect stems from the behaviour of surface
charge as the ambient temperature is changed and assuming that polarization level of the material is
dependent on temperature [8].

If a pyroelectric material is exposed to radiation of power density W (J s m™) for a time, A, radiation
is absorbed onto the surface of the material which results in an increase in the temperature, AT (Figure
1). It is assumed that all of the power absorbed in time A¢ is rapidly distributed through the
pyroelectric element volume, resulting in a uniform temperature increase. In this case, to simplify the
process, heat losses from the pyroelectric are neglected. The increase in temperature is related to
incident power density by:

W.At W.At
AT = = (1)
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where % is the pyroelectric thickness (m), ¢, is the specific heat capacity (J kg K1), o is the
density (kg m~), and cg is the volume specific heat (J m K1). As the temperature of the pyroelectric
material increases (i.e. d7/dt > 0), there is a decrease in its level of the spontaneous polarisation as
dipoles within the material lose their orientation due to thermal vibrations. This fall of the polarisation
level leads to a decrease in the number of unbound charges on the material surface [8]. The
pyroelectric coefficient of an unclamped material, under a constant stress and electric field, is defined
by Equation 2,

= (%), . 2)

where P is the spontaneous polarisation, and the subscripts o and E correspond to the conditions of
constant stress and electric field respectively. While the pyroelectric coefficient is a vector quantity,
the electrodes that harvest the charges are often normal to the polar direction, i.e. are on the upper and
lower surfaces of the element (figure 1), and therefore, the pyroelectric coefficient is often treated as a
scalar quantity [8].
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Figure 1. Pyroelectric element subjected to heat flux with (a) open and (b) closed circuit conditions.
Polarisation direction (P) is through the thickness as shown and electrodes at the top and bottom
faces.

When the pyroelectric is subjected to radiation of power density, W, that results in a temperature
increase (A7), the charge (AQ) released by the area (4) of material due to a decrease in polarisation is
given by,

AQ =p.A.AT
and from Eqn. 1,

AQ = [%] . [%] W At 3)

Under open circuit conditions, as schematically shown in figure 1(a), the charges that are free due to
the decrease in polarisation remain at the electrode surface and an electric potential (AV) is generated
across the material thickness. From the relationship AQ=C'AV between charge and capacitance (C)
and considering the pyroelectric element as a parallel plate capacitor, where C=A4¢e{,/¢, the potential
difference is:

AV =2 h AT
€33
and from Eqn. 1
_ 14
AV = [cE.egg] LW, At (4)

where €45 is the permittivity of the pyroelectric material (F m™),



If the material is under short circuit conditions, as shown in figure 1(b), the change in temperature
results in an electric current flowing between the two polar surfaces of the material. Eqn. 5 describes
the relationship between generated pyroelectric current (i,), rate of temperature change (d77dt),
surface area of the element and pyroelectric coefficient (p) [9]:

o _do_  dr
T T P
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Figures of Merit (FOM) for Pyroelectric Materials

and from Eqn. 1

)

A variety of FOMs have been derived for pyroelectric materials selection based on consideration of
the thermal and electrical circuits employed [9]. The most common FOMs are based on the generation

of maximum current or voltage for a given power input for applications such as thermal imaging
sensors [8] [10] [11].

For a high voltage responsivity (£) the relevant figure of merit [8] to maximise pyroelectric voltage
for a given W value can be seen from Eqn. 4, namely,

F,=—t_=_F (6)

- o [
CE-€33  P-Cp-€F3

To maximise performance of infrared detection devices based on current responsivity () [8] in order
to maximise the pyroelectric current generated for a given value of 4, 4 and W, the FOM from Eqn. 5
is given by

Fr=o =2 (7

The two FOMs from Eqns. 6 and 7 are often used for selection of materials for heat and infra-red
detection, but these are not to be confused with energy-harvesting applications where generated power
is a key criterion as well as the overall efficiency of the conversion of thermal energy to electrical
energy.

For energy harvesting applications two pyroelectric based FOMs have been proposed [12] [13]. An
electro-thermal coupling factor has been defined to estimate the effectiveness of thermal harvesting
[12]:

kZ — pz-Thot — pz-Thot (8)
cp.€95 p-Cp-€33

where T}, 1s the maximum working temperature.

An energy-harvesting FOM, Fg, has also been proposed as [13]:

2

FE = pT (9)
€33
The Fr FOM has been widely used for materials selection and materials design [14] [15] [16] [17]
[18] for pyroelectric harvesting applications. It is of interest to note that compared to the voltage (F))
and current (F;) responsivities, the harvesting FOM, Fg, does not include the volume heat capacity.
Atulasimha et al. [19] have also provided a simple but effective analysis of the influence of harvested
power on factors such as geometry, clamping conditions and material properties.



We now derive a modified pyroelectric thermal harvesting figure of merit, Fg, by considering the
electrical energy associated with the temperature change or applied power density which gives rise to
an increase in electric potential under open circuit conditions as in Eqn. 4. A similar approach has
been used to derive criteria for the selection of piezoelectric vibration harvesting materials [20].
Since the change in energy (AE) stored in a capacitor is ¥2.C(AV)?, then

AE =1 [%] [A. h]. (AT)? (10)

and from Eqn. 2,

AE =3 P’ |- 3] w.a02
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As follows from Eqn. 10, if the material with specific values of 4 and /4 is subjected to a specific
thermal cycle (AT), then the relevant FOM is p? /&% as in Eqn. 9; this is valid if the harvesting device
is subjected to two specific temperatures via a pumping cycle or if the pyroelectric is used for
harvesting of a heat source and heat sink of specific temperatures [16]. However, in a number of cases
the harvesting device may be subjected to an incident heat source of specific energy density, W, e.g.
as in [21] [22] [23]. The new material FOM is written as,

2
Fp = —t— (12)
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This particular pyroelectric-harvesting FOM indicates that potential materials operating under these
conditions should have a high pyroelectric coefficient to develop a large charge with a temperate
change, a low permittivity to develop a large potential difference as a result of the charge generated
and a low volume specific heat to ensure the temperature rise due to the incident power density is
large. Surprisingly this simple of merit has not used or reported in order to select potential materials
for energy harvesting related applications. It is of interest to note that the relation Fg = F,.F; holds,
see Eqns. 6, 7 and 12.

At this stage it is of interest to compare the F,, F;, k>, Fr and Fz FOMs for conventional pyroelectric
materials, see Table 1, which includes a set of parameters of pyroelectric materials employed in heat
detectors and thermal energy harvesting. Due to the relatively small difference in volume specific heat
between materials the current responsivity, Fj, is largest for the materials with the highest pyroelectric
coefficients, such as the poled ferroelectric ceramics (PZT) and domain-engineered relaxor-
ferroelectric single crystal (PMN-PT). The low permittivity of PVDF leads to a high voltage
responsivity, F,, for this material. The &% coupling coefficient is high for PMN-PT due to the high
pyroelectric coefficient. In terms of the p?/ed; energy-harvesting FOM, PMN-PT single crystal
material is particularly high in addition to LiTaOs3 single crystal and PZT ceramic; this is due to the
high pyroelectric coefficient and strong dependency on p?. For the new Fgz FOM from Eqn. 12, PMN-
PT remains a material of high performance, however the low squared volume specific heat of PVDF
leads to Fg being almost as large as that of PZT. This is of interest sine PVDF based materials can be
relatively low cost, easily manufactured in thin and large area sections, have high breakdown strength,
are flexible and damage tolerant. Composite systems, such as those with tailored porosity, may be of
interest for achieving a high Fg value by maintaining a high pyroelectric coefficient but reducing both
permittivity and volume specific heat [18].



Table 1. Figures of merit F;, F,, k2, Fr and F ¢ for variety of materials, Tho = 298K for k2 (%).

Physical parameter =~ PMN-0.25PT SC* PZT" PVDF¢ ZnO SC LiTaO3;SC
p (uC m2 K1) 1790 [24] 533 [24] 33[24] 9.4][7] 230 [9]
c 961 [24] 1116 [24] 9 [24] 11 [25] 47 [9]
€ 33 /€0
ce (MJ m? KT 2.5 [24] 2.5 [24] 1.8[24] 2.3[26] 3.2[9]
Fi (pm V) 716 213 18.3 4.1 71.9
Fy (m*>C) 0.08 0.02 0.23 0.04 0.17
k2 (%) 4.5 0.34 0.23 0.01 1.18
Fe(J m3 K?) 376.7 28.8 13.6 0.91 127.2
Fe (x102)(m?J ) 60.3 4.6 4.2 0.17 12.4

2 Relaxor-ferroelectric 0.75Pb(Mg13Nb23)O3—0.25PbTiO; single crystal poled along [111] of the
perovskite unit cell; ® Poled ceramic; ¢ Polyvinylidene fluoride, a polymeric ferroelectric.

In summary, the present publication provides the new pyroelectric harvesting FOM, p?/e33(cg)?, to
select and compare materials for pyroelectric energy harvesting when the harvesting element is
subjected to an incident power density. The FOM is of interest to those considering the design of
thermal harvesting devices or the search and development of new materials and composites for
pyroelectric harvesting applications. Additional FOMs that include dielectric loss and diffusivity
have been defined for thermal sensing [9] and may be of interest to also adapt for harvesting
applications.

Acknowledgements

The research leading to these results has received funding from the European Research Council under
the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement no.
320963 on Novel Energy Materials, Engineering Science and Integrated Systems (NEMESIS). Chris
Bowen would also like to acknowledge his father, Ceri Bowen, who passed away at the time of
submission of this article.

References

[1] Prepared by BCS, Incorporated U.S. Department of Energy, "Waste Heat Recovery Technology
and Opportunities in U.S. industry", 2008.

[2] S R Hunter, N V Lavrik, S Mostafa, S Rajic, and P G Datskos, "Review of pyroelectric thermal
energy harvesting and new MEMs-based resonant energy conversion techniques," Proc. SPIE,
vol. 8377, p. 83770D, 2012.

[3] FY Lee, A Navid, and L Pilon, "Pyroelectric waste heat energy harvesting using heat
conduction," App. Therm. Eng., vol. 37, pp. 30-37, 2012.

[4] Q Zhang, A Agbossou, Z Feng, and M Cosnier, "Solar micro-energy harvesting with pyroelectric



effect and wind flow ," Sensors and Actuators A, vol. 168, pp. 335-342, 2011.

[5] S Krishnan, D Ezhilarasi, G Uma, and M Umapathy, "Pyroelectric-based solar and wind energy
harvesting system ," IEEE Trans. Sustainable Energy, vol. 5, pp. 73-81, 2014.

[6] V Kotipalli et al., "Light and thermal energy cell based on carbon nanotube films," Applied
Physics Letters, vol. 97, p. 124102, 2010.

[7] S B Lang, "Pyroelectricity: From ancient curiosity to modern imaging tool," Phys. Today, vol. 58,
pp. 31-36, 2005.

[8] S B Lang and D K Das-Gupta, "Pyroelectricity: Fundamentals and Applications," in Handbook of
Advanced Electronic and Photonic Materials and Devices, H S Nalwa, Ed.: Academic Press, 2001,
vol. 4, pp. 1-54.

[9]1 R W Whatmore, "Pyroelectric devices and materials," Rep. Prog. Phys., vol. 49, pp. 1335-1386,
1986.

[10] J Cooper, "A fast response pyroelectric thermal detector," J. Sci. Instrum. 39, pp.467-472, 1962.

[11] E H Putley, "A method for evaluating the performance of pyroelectric detectors," Infrared
Physics, vol. 20, pp. 139-146, 1980.

[12] G Sebald, E Lefeuvre, and D Guyomar, "Pyroelectric energy conversion: Optimisation
principles," IEEE Trans. Ultrason. Ferroelect. Freq. Cntrl., vol. 55, pp. 538-551, 2008.

[13] G Sebald, L Seveyrat, D Guyomar, L, Guiffard, B Lebrun, and S Pruvost, "Electrocaloric and
pyroelectric properties of 0.75Pb(Mg1/3 Nb2/3 )03 -0.25PbTiOs single crystals," J. App. Phys., vol.
100, p. 124112, 2006.

[14] A Navid and L Pilon, "Pyroelectric energy harvesting using Olsen cycles in purified and porous
poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] thin films," Smart Mater. Struct., vol.
20, p. 025012, 2011.

[15] RV K Mangalam, J C Agar, A R Damodaran, J Karthik, and L W Martin, "Improved pyroelectric
figures of merit in compositionally graded PbZr;_TixOs thin films ," ACS Appl. Mater. Interfaces,
vol. 5, pp. 13235-13241, 2013.

[16] S K T Ravindran, T Huesgen, M Kroener, and P Woias, "A self-sustaining micro
thermomechanic-pyroelectric generator," App. Phys. Lett., vol. 99, p. 104102, 2011.

[17] S K T Ravindran, T Huesgen, M Kroener, and P Woias, "A self-sustaining pyroelectric energy
harvester utilizing spatial thermal gradients ," in Solid-State Sensors, Actuators and
Microsystems Conference, Beijing, 2011, pp. 657-660.

[18] A Navid, CS Lynch, and L Pilon, "Purified and porous poly(vinylidene fluoride-trifluoroethylene)
thin films for pyroelectric infrared sensing and energy harvesting ," Smart Mater. Struct. , vol.



19, p. 055006, 2010.

[19] J Atulasimha, J Xie, M Richeson, and K M Mossi, "Pyroelectic materials: Scaling of output power
with dimensions and substrate clamping ," in Proceedings of the ASME 2009 Conference on
Smart Materials, Adaptive Structures and Intelligent Systems , 2009, pp. 213-219.

[20] S Priya, "Criterion for material selection in design of bulk piezoelectric energy harvesters," IEEE
Tans. Ultrasonice, Ferroelectric and Frequency Control, vol. 57, pp. 2610-2612, 2010.

[21] S H Krishnan, D Ezhilarasi, G Uma, and M Umapathy, "Pyroelectric-based solar and wind energy
harvesting system ," IEEE Transactions on Sustainable Energy, vol. 5, pp. 73-81, 2014.

[22] A Cuadras, M Gasulla, and V Ferrari, "Thermal energy harvesting through pyroelectricity," Sens.
Act. A: Physical, vol. 158, pp. 132-139, 2010.

[23] C C Hsiao and A Siao, "Improving pyroelectric energy harvesting using a sandblast etching
technique ," Sensors, vol. 13, pp. 12113-12131, 2013.

[24] G Sebald, E Lefeuvre, and D Guyomar, "Pyroelectric energy conversion: Optimisation
principles," IEEE Trans. Ultrason. Ferroelec. Fre. Cntrl., vol. 55, pp. 538-551, 2008.

[25] K F Young and H P R Frederikse, "Compilation of the static dielectric constant of inorganic
solids," J. Phys. Chem. Ref. Data , vol. 2, pp. 313-409, 1973.

[26] T A EI-Brolossy, O Saber, and S S Ibrahim, "Determining the thermophysical properties of Al-
doped ZnO nanoparticles by the photoacoustic technique ," Chin. Phys. B, vol. 22, p. 074401,
2013.



