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Abstract: 15 

As a promising technique to reduce the in-cylinder temperature and exhaust 16 

temperature, mitigate combustion knock, improve combustion phasing and decrease 17 

NOx emissions, water injection applied on different types of engines has attracted 18 

extensive attention in recent years to further improve fuel economy and fulfill stricter 19 

emission regulations. Since mechanisms of water injection with different aims are 20 

distinct, benefits on engine performances and emissions are also varied. This paper 21 

intends to give a comprehensive review of water injection applied on the internal 22 
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combustion engine. First, different implementations of water injection are introduced, 1 

followed by a detailed description of water evaporation processes. Second, mechanisms 2 

of the in-cylinder combustion process with water addition are discussed with respect to 3 

the heat release rate, knock tendency and emission formations. Next, recent works of 4 

water injection applied on different kinds of engines are reviewed with special 5 

attentions given to the comparisons of different implementations and injection 6 

parameters. Furthermore, comparisons and combinations of water injection with other 7 

advanced engine techniques are summarized. Finally, critical issues of current research 8 

on the water injection technique are discussed. 9 
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Nomenclature: 14 

AFR Air fuel ratio 

AFTDC After firing top dead center 

AI Auto ignition 

AKI Anti-knock index 

ATDC After top dead center 

BMEP Brake mean effective pressure 

BSFC Brake specific fuel consumption 

BTDC Before top dead center 
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CAC Charge air cooler 

CAD Crank angle degree 

CFD Computational fluid dynamics 

CI Compression ignition 

CO Carbon monoxide 

CR Compression ratio 

DISI Direct injection spark ignition 

DOC Diesel oxidizing catalysts 

ECU Electronic control unit 

EGR Exhaust gas recirculation 

GDI Gasoline direct injection 

HC Hydrocarbons 

HCCI Homogenous charge compression ignition 

ICE Internal combustion engine  

IMEP Indicated mean effective pressure 

ISFC Indicated specific fuel consumption 

IVC Intake valve closing 

MFB Mass fuel burned 

MW Methanol/water 

NA Naturally aspirated 

NOx Nitrogen oxides 

PFI Port fuel injection 
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PM Particulate matter 

SI Spark ignition 

SOI Start of injection 

TIT Turbine inlet temperature 

VCR Variable compression ratio 

WI Water injection 

WLTC Worldwide harmonized Light vehicles Test Cycles 

WOT Wide open throttle 

 1 

Contents 2 

1 Introduction ....................................................................................................................... 5 3 

1.1 Background and significance ................................................................................ 5 4 

1.1.1 Knock combustion ........................................................................................ 6 5 

1.1.2 NOx emissions ............................................................................................... 7 6 

1.2 Water injection ...................................................................................................... 8 7 

2 Water injection and evaporation ...................................................................................... 10 8 

2.1 Implementations of water injection ..................................................................... 10 9 

2.1.1 Pre/after the compressor or charge air cooler water injection ..................... 11 10 

2.1.2 Intake runner or port water injection ........................................................... 13 11 

2.1.3 Direct in-cylinder water injection ............................................................... 14 12 

2.2 Water evaporation ............................................................................................... 17 13 

3 Mechanisms of the in-cylinder combustion with water addition .................................... 22 14 

3.1 Heat release rate .................................................................................................. 22 15 

3.2 Knock mitigation ................................................................................................. 27 16 

3.3 NOx and PM ........................................................................................................ 29 17 

3.3.1 NOx and PM emissions from the CI engine ................................................ 29 18 

3.3.2 NOx and PM emissions from the SI engine ................................................. 33 19 

3.4 HC and CO .......................................................................................................... 35 20 

3.4.1 HC and CO emissions from the SI engine .................................................. 35 21 

3.4.2 HC and CO emissions from the CI engine .................................................. 36 22 

3.5 Steam injection .................................................................................................... 37 23 

4 Summary of water injection on different types of engines .............................................. 38 24 

4.1 Water injection applied on the gasoline engine ................................................... 38 25 

4.2 Water injection applied on the diesel engine ....................................................... 45 26 

4.3 Other utilizations of water injection .................................................................... 49 27 

4.3.1 Water injection with different fuels and combustion modes ....................... 49 28 



 

5 

 

4.3.2 Water injection as supplementary working fluid ......................................... 52 1 

5 Comparisons and combinations with other advanced techniques ................................... 53 2 

5.1 Water injection vs. EGR ...................................................................................... 53 3 

5.1.1 Comparisons on the gasoline engine ........................................................... 54 4 

5.1.2 Comparisons on the diesel engine ............................................................... 55 5 

5.2 Combinations of water injection with other techniques ...................................... 57 6 

5.2.1 Applications on the gasoline engine ............................................................ 57 7 

5.2.2 Applications on the diesel engine ................................................................ 58 8 

5.3 Comparisons with other downsizing techniques ................................................. 59 9 

6 Other critical issues ......................................................................................................... 61 10 

6.1 Alcohol/water injection ....................................................................................... 61 11 

6.1.1 Methanol/water mixtures............................................................................. 62 12 

6.1.2 Ethanol/water fumigation ............................................................................ 63 13 

6.2 Potential CO2 reduction ....................................................................................... 63 14 

6.3 System integration on the gasoline engine .......................................................... 66 15 

7 Conclusions and future research directions ..................................................................... 69 16 

Acknowledgement .................................................................................................................. 72 17 

Appendix A. Supplementary Material ..................................................................................... 72 18 

References ............................................................................................................................... 72 19 

 20 

1 Introduction 21 

1.1 Background and significance 22 

The ongoing changes to legislation are imposing more and more stringent 23 

constraints on tailpipe emissions and fuel consumption for the ICEs (internal 24 

combustion engines). This trend is pushing engine manufacturers to look for new 25 

solutions to obtain lower pollutant levels without lowering engine performance and 26 

market appeal [1]. 27 

Gasoline engine design trends are now oriented towards the adoption of the so-28 

called downsizing and down-speeding techniques, while preserving their performance 29 

targets. Therefore, BMEP (brake mean effective pressure) is markedly increasing, 30 

leading to increased risks of knock onset and abnormal combustion. The above needs 31 
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will be even more stringent in the near future, since more severe driving cycles are 1 

going to be imposed on manufacturers for vehicle testing, such as WLTC (Worldwide 2 

harmonized Light vehicles Test Cycles) [2].  3 

For the highly efficient and widely used diesel engine, fulfilling stricter emission 4 

regulations (e.g. implemented EURO 6 standards for vehicles and IMO Tier3 for marine 5 

engines, upcoming China 6 regulations, etc.) has intensified research efforts 6 

investigating new in-cylinder strategies and/or aftertreatment devices. Even though 7 

levels of HC (hydrocarbons) and CO (carbon monoxide) are comparatively lower in 8 

diesel engines compared to gasoline due to the inherently lean combustion, NOx 9 

(nitrogen oxides) and soot emissions can be significant. In addition, the contradictory 10 

formation conditions of NOx and soot make it challenging to devise in-cylinder 11 

strategies to decrease these emissions simultaneously [3, 4]. 12 

1.1.1 Knock combustion 13 

Knock is an abnormal combustion phenomenon which can constrain the engine 14 

performance and thermal efficiency. It can also result in severe engine damage under 15 

certain operating conditions. For SI engines, especially the downsized gasoline engine, 16 

the increased boost level for the prescribed high-load performance promotes the onset 17 

of knock or even pre-ignition phenomena [5, 6]. Many methods have been proposed to 18 

suppress knock, such as increasing turbulence and combustion speed, reducing CR 19 

(compression ratio) and end-gas temperature, adopting anti-knock additives and 20 

alternative fuels [7]. However, most of them have their own drawbacks especially when 21 

applied on a heavily downsized SI engine, such as difficult implementing in a wide 22 
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operating range, decreasing the engine thermodynamic efficiency, less effective, high 1 

cost, unwanted side effects or not appealing to the market. Thus, knock is still 2 

commonly prevented by retarding the spark timing and combustion phasing, which 3 

results in a low thermodynamic efficiency and high exhaust temperature.  4 

The increased TIT (turbine inlet temperature) may also cause thermal and 5 

structural problems for the turbine wheel and the catalytic converter. For this reason, an 6 

enrichment of the AFR (air fuel ratio) is usually adopted at high speeds to maintain the 7 

amount of indicated work with further BSFC (brake specific fuel consumption) 8 

penalties and lower efficiency of the catalytic converter. Besides the legislative road 9 

map for the reduction of NOx and PM (particulate matter) from passenger vehicles over 10 

standard driving cycles, stricter legislation for CO emissions under real driving 11 

conditions is also widely expected in the immediate future [8, 9]. This increases the 12 

pressure to use alternative technologies for component protection instead of fuel 13 

enrichment. To meet these new regulations, gasoline engine technologies enabling 14 

lambda 1 operation across the entire engine map are highly desirable. The introduction 15 

of inert species into the cylinder, such as WI (water injection), can be used to decrease 16 

the in-cylinder temperature, which is a promising approach to mitigate knock and 17 

maintain lambda 1 operation simultaneously. 18 

1.1.2 NOx emissions  19 

Diesel engine manufacturers are currently intensifying their efforts to meet stricter 20 

NOx emission limits, such as the IMO Tier 3 regulation requiring an 80% reduction of 21 

NOx from ships compared with the Tier 1 standard and the EURO 6 regulation requiring 22 
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a 56% reduction of NOx from diesel vehicles compared with the EURO 5 limitation [8]. 1 

Hydrogen as an alternative fuel has been studied for several decades, and recent 2 

researches have primarily focused on improving the trade-offs of power-efficiency-NOx 3 

emissions, which have a strong correlation with the AFR [10, 11]. Biofuels are also 4 

regarded as promising renewable and environmentally friendly options for reducing 5 

petroleum-dependence and greenhouse gas emissions in the transportation sector [12, 6 

13], while many studies have reported that engines running with biofuels emit NOx in 7 

higher concentrations [14, 15]. 8 

Various methods have been used to control NOx formation such as retarded 9 

injection timing and EGR. However, use of these techniques is accompanied with 10 

penalties in specific fuel consumption and soot. Aftertreatment is a good option to 11 

efficiently reduce NOx emissions efficiently, but the additional costs including initial 12 

investment, maintenance and additional energy consumption by the devices, make it an 13 

expensive and complex option [16, 17]. A promising technology for NOx reduction 14 

especially for heavy-duty diesel engines is the addition of water to the combustion 15 

chamber to reduce the combustion temperature and NOx emissions.  16 

1.2 Water injection 17 

With a large latent heat of vaporization, water has the effect of substantially 18 

cooling the charge air as the liquid water vaporizes. Furthermore, the water vapor acts 19 

as a diluent in the combustion process, decreasing NOx emissions and suppressing 20 

knock reactions in much the same way as the cooled EGR gas. The application of water 21 

cooling is not a novelty in ICEs, and the first successful use of WI for suppressing 22 
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combustion knock can be traced back to the early 1930s [18]. During World War II, 1 

similar use of WI was made in the operation of high output aircraft engines [19-21], 2 

and additional studies were conducted on various kinds of engines until the 1980s [22-3 

25]. 4 

To fulfill more and more rigorous CO2 and pollutant emissions regulations recently, 5 

the WI technique has again been investigated to explore its potential benefits on both 6 

the SI (spark ignition) and CI (compression ignition) engines [26, 27], and a detailed 7 

review of the literatures will be presented in Section 4. To summarize, cooling effects 8 

suppressing knock combustion in turbocharged SI engines result in possibilities to 9 

apply a higher CR, higher boost level and advanced spark timing thus improving power 10 

output and efficiency as well as better part load performance. For the turbocharged CI 11 

engine, due to NOx reduction achieved with water addition in the combustion processes, 12 

strict emission regulations could be fulfilled, and other measures, such as optimizing 13 

the fuel injection timing, can be adopted to further minimize the fuel consumption and 14 

soot emission. 15 

However, many problems still need to be addressed with respect to utilization on 16 

different types of engines, such as mechanisms of WI with different aims, comparison 17 

of different implementations, optimum WI parameters and maximum potential. In 18 

addition, the on-board vehicle utilization of WI brings some new issues regarding cost, 19 

robustness, water consumption and emissions. Although lots of research on WI has been 20 

reported in recent years, no systematic review of those problems is conducted to the 21 

authors’ knowledge. 22 
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This paper aims to present a comprehensive review of research progresses and 1 

future trends of WI to improve the combustion, emissions and efficiency of the ICE. 2 

First, the injection and evaporation processes of water are discussed, followed by 3 

mechanisms of the in-cylinder combustion process with water addition to give a deeper 4 

understanding of this technique. Next, current research activities on WI applied on 5 

different types of engines are summarized. Furthermore, comparisons and combinations 6 

of WI with other engine techniques are reviewed. Finally, some other critical issues of 7 

WI applied on the ICE are presented. 8 

2 Water injection and evaporation 9 

The water injection and evaporation processes determine the mixture (fuel, air and 10 

water) formation, evolution and combustion processes in the cylinder, which should be 11 

reviewed first before further exploring mechanisms and comparing applications on 12 

various kinds of ICEs. 13 

2.1 Implementations of water injection 14 

The main goal in all these WI techniques is to disperse the water to achieve an 15 

efficient cooling of the hottest spots within the cylinder, while at the same time the 16 

negative effects and the amount of injected water are minimized. To introduce water 17 

into the cylinder, many possible locations can be selected as the WI points, which have 18 

their own advantages and drawbacks especially when applied on different types of ICEs. 19 

As shown in Fig. 1, typical WI implementations can be categorized into three kinds 20 

with respect to injection locations and methods: 21 
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a) Single point WI upstream or downstream of the compressor or post charge air 1 

cooler; 2 

b) Multipoint WI into the intake runner or intake port; 3 

c) Direct WI into the cylinder via a separate injector or the same injector as fuel. 4 

 5 

Figure 1. Potential implementations of water injection  6 

2.1.1 Pre/after the compressor or charge air cooler water injection 7 

For the turbocharged ICEs, water can be directly injected into pipes upstream of 8 

the compressor, downstream of the compressor or downstream of the charge air cooler, 9 

which is commonly known as intake air humidification or fumigation [28]. To evaluate 10 

those different implementations, some guiding factors should be considered, such as 11 

the maximum allowable intake air humidity, good evaporation, ease of application and 12 

maintenance. Good evaporation is especially important for the intake air humidification 13 

in order to avoid water condensation and accumulation in the intake system, to ensure 14 

even distributions of water flowing into each cylinder, to limit cycle to cycle variations 15 

and abnormal emissions, to eliminate possibilities of cylinder liner corrosion problems 16 

and contaminations of lubrication oil. 17 

Since the temperature before the compressor is near ambient unless it is pre-heated, 18 
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good evaporation of water droplets upstream of the compressor could be a problem 1 

although the low pressure upstream of the compressor favors the evaporation. With air 2 

mist flowing into the compressor, some water droplets continue to evaporate, which 3 

decreases the compression temperature and results in a high compressor efficiency. The 4 

addition of water increases compressor work but the additional mass flow will also 5 

increase the turbine work of the turbocharger. The fluid properties will change which 6 

will also affect the compressor and turbine work. However, big water droplets can lead 7 

to serious damage of the compressor blades. It is challenging to atomize the water to a 8 

small enough particle size to avoid damage and to ensure complete evaporation. If 9 

proper precautions are taken, humidification of intake air is possible before the 10 

compressor with the advantage of long residence time and good mixing of air and vapor 11 

before flowing into the intake manifold.  12 

For the WI after the compressor, the charge air temperature is high and often 13 

greater than the boiling point of water, which can accelerate the evaporation process of 14 

the injected water. With this humidification process, the charge air temperature can be 15 

cooled down so that the coolant flow across the intercooler could be reduced to maintain 16 

a desired post-intercooler temperature, and a mist catcher should be adopted to avoid 17 

droplet condensation in the intake manifold [28]. Under some conditions, it may even 18 

be possible to eliminate the intercooler altogether and rely solely on the evaporation of 19 

water [29, 30]. 20 

Another possible location for WI downstream the compressor is after the 21 

intercooler. Since the humidification potential is less due to the low temperature and 22 
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high pressure of the charged air out of the intercooler, only a small amount of water can 1 

be held in the cooled charge air. In addition, the available time for water evaporation is 2 

much shorter here compared with the above two locations since the injection point is 3 

quite close to the combustion chamber. Therefore, the post charger air cooler injection 4 

may be a feasible injection system, if only small amount of water is either sufficient for 5 

operation or if it is combined with another injection system. 6 

With those characteristics, the intake air humidification is especially attractive for 7 

engines operating on heavy fuel oil where the use of EGR is difficult and expensive. In 8 

addition, intake air humidification is more easily integrated on large marine engines 9 

due to the spacious installation room, low engine and compressor speeds, steady 10 

operating conditions and easy water acquisition [27]. To get a high proportion of water 11 

addition, the humidity of the air should be near saturation as it enters the cylinder, and 12 

the intake manifold temperature should be as high as the engine can tolerate. Sulphuric 13 

acid corrosion, often referred to as cold corrosion, is another significant problem in 14 

marine engines even with low-Sulphur fuels, and advanced cylinder liner and piston 15 

technologies should be considered. But for those high-speed vehicle engines, intake air 16 

humidification may not be a good choice if a large amount of water is required, and 17 

specific precautions should be considered seriously for the injection and evaporation 18 

processes in a large operating range. 19 

2.1.2 Intake runner or port water injection 20 

The intake runner and intake port are another two alternative locations for the WI, 21 

and the main advantage is the easy implementation similar to a PFI (port fuel injection) 22 



 

14 

 

system. In general, the gasoline PFI system can be directly used for the WI with little 1 

modifications [31], which shows the highest probability for short term series production. 2 

Furthermore, the amount of water injected into each cylinder is controlled by the water 3 

injector directly to ensure even distribution. Since the injection points are very close to 4 

the combustion chambers, not enough time is available for the water to fully evaporate 5 

before flowing into the cylinder, and the relatively low temperature and high pressure 6 

of the cooled charge air also slow down the evaporation rate. Therefore, it is hard to 7 

assume a fully evaporation process outside the cylinder for the intake runner or port WI, 8 

which will be further discussed in Section 2.2. Thus, those features make the intake 9 

runner or port WI more suitable for the knock control in the gasoline engine. 10 

2.1.3 Direct in-cylinder water injection 11 

Water can also be injected into the cylinder directly with a separate injector, a 12 

traditional fuel injector or a specially designed fuel/water injector. The main advantage 13 

of direct in-cylinder WI is the flexible control of water amount and distributions in the 14 

cylinder at the right time, which can adjust the fuel/air/water concentrations in the 15 

combustion zone and decrease the water requirement. Drawbacks are also obvious, such 16 

as the cost of a high-pressure injection system, packaging and robustness.  17 

The primary benefit of WI via a separate injector is that both the injected mass 18 

flow rate and the injection timing can be controlled separately from the fuel injection. 19 

WI during the intake stroke and compression stroke may have different effects on the 20 

engine volumetric efficiency, in-cylinder evaporation and mixture evolution. In general, 21 

water should be injected to ensure that there is no liquid film build upon the cylinder 22 
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wall and that evaporation is complete before the end of the compression stroke. 1 

However, inappropriate WI timing and spray with respect to the fuel injection will 2 

locally quench the flame, contaminate lubrication oil, increase the cycle-to-cycle 3 

variation and other emissions [32]. For the GDI (gasoline direct injection) engine, 4 

integrating the water injector into the combustion chamber consumes a lot of the 5 

package volume available. A more feasible solution may be the combination of port 6 

fuel injection and direct water injection or emulsion water injection. 7 

Stratified fuel/water direct injection with a specially designed injector, often 8 

adopted on the diesel engine, is slightly better than the direct WI with a separate injector. 9 

The amount of water injected in sequence with fuel from the same injector can also be 10 

varied although the timing of injection is dependent on the fuel injection and water/fuel 11 

ratio. The liquid water is inserted close to the flame and away from the cylinder wall. 12 

With stratified injection, it is easier to cool the flame zone directly rather than cool the 13 

entire combustion chamber [33]. This allows for high NOx reduction without 14 

compromising other values such as fuel consumption and emissions like HC and CO. 15 

This arrangement can also minimize the negative impact on overall engine reliability 16 

compared with a poorly placed nozzle which may over-cool the combustion chamber 17 

and lead to ignition delay and incomplete combustion [34]. However, additional cost 18 

on modification of the injector make this system less popular compared to other WI 19 

systems. 20 

Fuel/water emulsion with the addition of emulsifier, primarily adopted on the 21 

diesel engine for NOx reduction, needs almost no engine modification for the 22 
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implementation [35]. The presence of a surfactant (or emulsifier), which is a typical 1 

chemical additive attracting the immiscible liquids, plays an important role in forming 2 

a stable emulsion. In addition, different types and percentages of the chemical additives 3 

determines the type of emulsions. With larger amounts of surfactant, normally up to 4 

10%, micro-emulsion can be generated compared to the normal emulsion with up to 2% 5 

of surfactant [36, 37]. Thus, micro-emulsion has a much smaller dispersed water droplet 6 

with the diameter size ranging from 5~20 nanometer compared to 1~10 micron of the 7 

normal emulsion. Regarding the engine power and emission performances, Ithnin et al. 8 

[37] indicated that not much difference can be observed with those two types of 9 

emulsion fuels. Even though the micro-emulsion has more stable thermodynamic 10 

properties, the high cost of micro-emulsion restricts its commercialization. 11 

The main disadvantage of using fuel emulsion technology is the limitation of the 12 

amount of water that can be added to the system [38]. For fuels emulsified with water, 13 

there is always an inherent risk that an excess of water may be injected into the cylinder 14 

either too early or too late in the combustion process. This can cause cooling of the 15 

entire cylinder and lead to increased ignition delay, engine noise and retarded 16 

combustion. Another disadvantage is that engine operation at low loads and at stops 17 

and starts are sometimes hindered, which limits the utilization of this technique on 18 

vehicle engines. In addition, an increased engine operation cost, like a more extended 19 

and developed distribution network of fuel/water emulsion or a complex on-board 20 

emulsion production system equipped on the engine, should be evaluated seriously. 21 

For the gasoline engine, the technology of pre-mixed macro emulsions of water 22 
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and gasoline is proposed and investigated. In this system, water is metered into a mixing 1 

chamber filled by the pre-pressurized fuel flow of 4-5 bar, where those two fluids are 2 

mechanically sheared by a static mixing device [39, 40]. Thus, short-term time-resistant 3 

emulsions can be obtained, and emulsifying additive is avoided. Pumped by the high-4 

pressure pump, stabilized emulsions flow through the fuel supply system to the fuel 5 

injectors. With no modification of the cylinder head, this implementation is relatively 6 

easy to integrate into an existing engine. Since water is directly injected into the 7 

combustion chamber with fuel, chamber-wall wetting can be minimized, which shows 8 

great potential for the future gasoline water injection.  9 

2.2 Water evaporation  10 

After being injected, water should first mix with the air flow and then evaporate, 11 

which has significant effects on the engine intake, compression and further combustion 12 

processes. Hoppe et al. [41] separated the effects of specific heat and vaporization 13 

enthalpy of water on the in-cylinder compression temperature based on the fuel-air 14 

cycle, which showed the charge cooling effect of WI is almost entirely due to the high 15 

latent heat of vaporization. Therefore, the water evaporation process, which depends on 16 

not only the implementations discussed above but also the engine operating conditions, 17 

should be discussed thoroughly especially for the intake runner/port WI and the direct 18 

in-cylinder WI.  19 

Under suitable conditions, water vaporization may result in cooling, and hence, 20 

increase density of the inlet fuel-air mixture just prior to closing of the intake valve. On 21 

the other hand, if sufficient time is not available especially with high engine speeds, 22 
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low charge temperature or short distance between the injection point and the intake 1 

valve, the induction process will be unaltered by the injection of water. In addition, for 2 

highly boosted engines with a highly efficient charge air cooler, the cooled fresh charge 3 

may be at or near 100% relative humidity [26]. Under this condition, water injected in 4 

the intake runner/port will not evaporate. Instead, liquid water will enter the cylinder 5 

and evaporate during the compression stroke as the in-cylinder pressure and 6 

temperature rise. Nicholls et al. [22] evaluated effects of two different water 7 

evaporation models on the intake and compression processes. The phase equilibrium 8 

model assumes the water vapor existing in a continuously shifting phase-equilibrium 9 

with liquid water during the induction process, and the liquid phase model is based on 10 

the assumption that sufficient time is not available for water evaporation throughout the 11 

induction process. Thus, those two models correspond to the two possible extremes of 12 

water vaporization rate. Theoretical analysis indicated that the intake charge density 13 

and IMEP (indicated mean effective pressure) are much higher with the phase 14 

equilibrium model compared with those of the liquid phase induction model, while no 15 

obvious increase in volumetric efficiency was observed in the later experimental 16 

research. 17 

To simplify the simulation of the water evaporation process, the gasoline 18 

evaporation process can be used as a good reference. With the water injector located 19 

upstream the port fuel injector and the maximum water/fuel ratio of 0.3, De Bellis et al. 20 

[42] assumed 20% of the total mass of water vaporizes immediately upon the injection 21 

and described the in-cylinder water evaporation rate with a semi-empirical correlation 22 
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resembling the fuel evaporation process in a 1D simulation model. Although no data 1 

was available to verify the reliability of this assumption, De Bellis et al. [42] also 2 

stressed that problems such as oil dilution, misfire, or partial combustion were not 3 

detected in the experimental campaign, which suggested a good evaporation in the real 4 

engine. To simulate a more accurate evaporation process of port WI with a 1D model, 5 

Cavina et al. [43] adopted a port injector and a fictitious direct in-cylinder injector to 6 

split the evaporation proportions of the injected water in the intake runner and the 7 

cylinder, but this modelling approach was not predictive. However, to realize a similar 8 

evaporation process as the gasoline, WI with the gasoline injector needs a much higher 9 

injection pressure due to the low evaporation saturated vapor pressure compared with 10 

that of the gasoline. If the water droplet is also assumed to be of similar size as the 11 

gasoline, the water droplets potentially never undergo full vaporization process before 12 

combustion like the gasoline [44]. Therefore, special attentions should be paid when 13 

injecting water with traditional gasoline injectors. 14 

Battistoni et al. [45] indicated that the primary atomization quality, which 15 

ultimately depends on the nozzle design and injection pressure, is a key point to 16 

improve the performance of the WI system. The location and targeting of the water 17 

injector are also very important. CFD (computational fluid dynamics) simulations of 18 

liquid water distributions shown in Fig. 2 indicated that the installation of the water 19 

injector very close to the inlet valves, mimics a “quasi-direct” WI with respect to the 20 

installation far upstream in the intake runners. Wall film formation that reduces charge 21 

cooling and premature vaporization outside of the cylinder are the main causes for the 22 
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lower efficiency of the intake runner installation, which decrease substantial gains in 1 

terms of combustion control and knock suppression. With a 3D simulation model of the 2 

port WI on a GDI engine, d’ Adamo et al. [46] compared evaporations of the liquid fuel 3 

and water in the cylinder at different engine speeds. The results showed that a lower in-4 

cylinder temperature level can slow down the phase transition processes, and liquid 5 

water is more affected than liquid fuel because of its higher latent heat of vaporization. 6 

Under low to medium speed conditions, no more than 50% liquid water is evaporated 7 

at 700 CAD (crank angle degree). 8 

 9 

Figure 2. Effect of injector positions (pos.#1: upstream of the intake runner, pos.#2 10 

close to the inlet valves) on liquid water mass balance [45]. 11 

With the in-cylinder water injection timing at the IVC (intake valve closing) timing, 12 

Kim et al. [44] superimposed the saturation temperature and dew-point temperature 13 

lines on the in-cylinder temperature and pressure buildup map in order to roughly 14 

evaluate the phase of the water. As shown in Fig. S1, a delay of evaporation process 15 

would occur when the in-cylinder temperature is lower than the saturation temperature 16 

of water early in the compression stroke, and rapid vaporization of water accompanying 17 

effective charge cooling would be expected when the in-cylinder temperature is higher 18 
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than the saturation temperature of the water as the “evaporation zone” depicted in Fig. 1 

S1 (a). Bhagat et al. [32] conducted CFD simulations of the vaporization profile and 2 

liquid film formation over the crank angle with the in-cylinder water injection timing 3 

of 60 degree and 90 degree BTDC (before top dead center). The results showed that the 4 

crank angle of 50% water evaporation with injection timing of 90 degree BTDC is 100 5 

degree crank angle earlier than that with injection at 60 degree BTDC at the engine 6 

speed of 2000rpm, and a 28% increase in wall film mass was predicted for injection at 7 

60 degree BTDC compared to injection at 90 degree BTDC. 8 

 9 

Figure S1. (a) Water injection evaluation on the in-cylinder temperature and pressure 10 

profile and (b) enlargement of (a) in the pressure range of 0.1-0.4 MPa [44]. 11 

Thus, an accurate evaluation of the water evaporation shows great importance in 12 

the design and optimization of different WI systems and also for an accuracy calculation 13 

of heat release rate. Sometimes it is necessary to judge whether the injected water fully 14 

evaporates or not especially since this may have implication on avoiding corrosion 15 

problems or lubrication oil contaminations. Since it is unrealistic to detect the water 16 
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phase with a sensor, an empirical evaluation with the measured or calculated 1 

temperature can be used to approximate whether the air is saturated or unsaturated as 2 

shown in [44]. 3 

3 Mechanisms of the in-cylinder combustion with water addition 4 

The low in-cylinder temperature at the end of the compression stroke due to the 5 

water evaporation might affect the ignition delay and combustion speed, and other 6 

engine parameters need to be adjusted simultaneously to target the engine performance 7 

and emissions. Therefore, it is not surprising to get inconsistent results of engine 8 

performances and emissions from different references. To provide a deep 9 

understanding of WI with different aims on various types of ICEs, mechanisms of the 10 

in-cylinder combustion with water addition needs to be discussed thoroughly. To the 11 

best of the authors’ knowledge, studies on chemistry kinetics of water/fuel combustion 12 

are mostly limited to specific reactant components [47, 48] (like hydrogen, carbon 13 

monoxide, iso-octane and syngas mixtures) with rapid compression machines or 14 

special burners [49, 50], and research focusing on real engines was rarely reported. 15 

Considering the limited knowledge of water/fuel interactions under practical 16 

conditions of engine combustion, thermophysical effects of water injection are mainly 17 

illustrated in this review article.  18 

3.1 Heat release rate 19 

For the CI engine, the combustion process consists of two parts, the premixed 20 

combustion and the diffusive combustion. The premixed combustion part is mainly 21 
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determined by the amount of injected fuel during the ignition delay period, and the 1 

diffusive combustion speed is governed by the amount of air entrained by the fuel spray 2 

per unit of time [51]. Since a large quantity of water results in a long ignition delay due 3 

to the cooling effect, the proportions of those two combustion parts are varied and 4 

further influence the combustion profile. When WI is used, the spray entrains a 5 

water/air mixture instead of pure air, so that a decrease in combustion speed could be 6 

expected similar as the case of EGR. Tauzia et al. [52] indicated that at higher speeds 7 

and higher loads, the combustion is almost purely diffusive with a relatively short 8 

ignition delay, and much smaller influences of WI on the combustion profile can be 9 

expected with a large AFR. In the case of water/fuel emulsion or stratified injection 10 

with fuel, water does not replace air but is added to the fuel spray, and the influence of 11 

water addition on heat release rate is negligible or even positive due to the long liquid 12 

penetration and water evaporation [53]. Hountalas et al. [54] compared two different 13 

water addition strategies (fuel/water emulsion and intake manifold water injection) on 14 

a heavy-duty diesel engine with the multi-zone simulation model and the water fuel 15 

ratio ranging from 0 to 30%. Simulation results of fuel/water emulsion at 1800 rpm 16 

showed that the specific fuel consumption decreases linearly with the increase of water 17 

percentage at low and part loads. However, the intake manifold water injection 18 

observed a linear increase of fuel consumption with increasing water percentage. Thus, 19 

they summarized that the presence of excessive water inside the combustion chamber 20 

has a positive effect on combustion and engine efficiency when water is introduced 21 

from the “fuel side” (as the stratified fuel/water injection or emulsion). On the other 22 
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hand, a small negative effect on efficiency is inevitable when water is introduced into 1 

the fuel jet from the surrounding “air side” (as the port injection).  2 

For the SI engine, the laminar and turbulence flame speeds are two important 3 

parameters to determine the combustion heat release rate [55]. Assuming water acts in 4 

the same way as any other inert specie, Bellis et al. [42] attributed effects of the water 5 

presence on the gasoline burning rate to variations of laminar flame speed based on a 6 

two-zone SI turbulence flame combustion model, and experimental and simulation 7 

results of the in-cylinder pressure and burn rate showed good agreements with the 8 

water/fuel ratio ranging from 0 to 0.3 and spark timing of -5 and -9 CAD AFTDC (after 9 

firing top dead center). Bozza et al. [56] tried to separate effects of the water addition 10 

from other diluent of EGR on the laminar flame speed based on a chemical kinetic 11 

solver. The importance of such refinement is highlighted in Fig. 3, which shows that 12 

water causes a stronger decrease in the flame speed than EGR, up to about 40% for 13 

water mass fraction of 0.1. Berni et al. [57] compared the turbulent kinetic energy fields 14 

of pure fuel and WI cases, and the similar 3D simulation results showed that intake port 15 

WI does not noticeably affect the in-cylinder flow structure with a low-pressure 16 

injection system. 17 
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 1 

Figure 3. Sensitivity of the laminar flame speed to the addition of water or exhaust 2 

gas [56]. 3 

Since many of the sub-models needed with WI are missed, not tuned or not 4 

sufficiently validated, modelling of the actual combustion process is difficult to set up. 5 

Despite an unfavorable effect of WI on the laminar speed of SI combustion, Bellis et al. 6 

[42] indicated the combustion duration can be slightly shortened if the spark timing is 7 

advanced to move the combustion process closer to the top dead center. 3D simulations 8 

conducted by Berni et al. [57] also showed that the combustion duration is not 9 

significantly affected by the water presence due both to the small changes of laminar 10 

flame speed at ignition and to the advanced spark timing for the WI case. With an 11 

experimental test matrix of different water/gasoline ratios and spark timings under full 12 

load conditions of a twin cylinder gasoline engine, Iacobacci et al. [58] compared the 13 

combustion phasing and in-cylinder pressure, and similar variation trends were 14 

obtained at different engine speeds. Results at 3500 rpm shown in Fig. 4 indicated that 15 

with the same spark advance, water injection can slow down the combustion, which 16 

retards the MFB (mass fuel burned) 50 and decrease the in-cylinder peak pressure. 17 
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Further combined with the advance of spark timing to maintain the same MFB 50, the 1 

in-cylinder peak pressure almost remained the same. Thus, for small percentages of WI, 2 

compensated by an advance of the spark discharge, the use of a constant Wiebe function 3 

is not expected to change the predicted trends significantly [59]. 4 

 5 

Figure 4. Effects of water injection on combustion phasing and in-cylinder peak 6 

pressure at 3500rpm [58]. 7 

By conducting experiments of WI on a NA (naturally aspirated) gasoline engine 8 

under full load conditions with the water/fuel mass ratio increasing from 0 to 250%, 9 

Kim et al. [44] also analyzed the effects of water mass on the combustion duration. 10 

Results at 1500 and 2000 rpm shown in Fig. S2 indicated that advancing spark timing 11 

with increased water mass flow decreases the combustion duration due to the high-12 

temperature and high-pressure environment near top dead center, and further increasing 13 

the water mass decreases the reactivity of the air–fuel mixture due to dilution. The 14 

combustion duration eventually increases when the negative effect by the dilution is 15 

greater than the benefit gained from advancing the spark timing. Increased combustion 16 

duration is disadvantageous for the engine BMEP and BSFC, due to the deviation from 17 
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the ideal cycle with constant volume combustion process. 1 

 2 

Figure S2. Effects of water injection on engine performance and fuel consumption at 3 

full-load condition [44]. 4 

3.2 Knock mitigation  5 

Knock is well known as a major barrier for further improving the SI engine thermal 6 

efficiency. It is generally accepted that engine knock is the result of autoignition of the 7 

end-gas before it is being reached by the flame front emanating from the spark plug [7]. 8 

As an effective knock mitigating solution, the use of WI in highly downsized SI engines 9 

has been reported in many references. Analyzing from the combustion viewpoint, the 10 

cooling effect of water introduction can not only delay the fuel autoignition time but 11 
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also extend the combustion duration, and results from those antagonistic influences 1 

determine the potential gain or loss in using water addition. Kim et al. [44] stated that 2 

the negative effect of increased combustion duration with WI is more pronounced than 3 

any other positive effect when the water mass exceeds the optimum, and the combustion 4 

duration on the crank angle timescale is increased drastically at high speeds. 5 

In order to foresee whether a trade-off region exists between the increase in 6 

autoignition delay time and the slowdown of burning velocity, Berni et al. [60] treated 7 

water as an EGR species and established a 0D constant chemical reactor model based 8 

on the assumption that the low-pressure port WI does not influence the in-cylinder 9 

turbulence level, which had been verified based on a heavily downsized gasoline engine. 10 

Fig. 5 shows results from 0D analysis of extension in combustion duration and in AI 11 

(auto ignition) delay. Case Reference, A, B and C refer to in-cylinder fuel air 12 

equivalence ratio of 1.21, 1.1, 1.0 and 0.9 and injected water mass of 0, 4.93, 9.23, 13 

13.55 mg respectively. As can be observed, a clear trade-off between the beneficial 14 

increase in AI delay time and the undesired slowdown of the burning velocity is 15 

identified, and case B with the equivalence ratio of 1.0 shows best performances on the 16 

knock resistance and fuel economy. To separate different chemical and physical 17 

quantities of water injection on the combustion process in a boosted SI engine, Netzer 18 

et al. [61] adopted a laminar flame speed table based on different water/fuel ratios in 19 

the 3D CFD simulation. The results showed that the laminar flame speed has the largest 20 

impact on the knock limit spark advance, and the effect of charge cooling due to the 21 

vaporization of water is found to be the second most significant one, followed by 22 
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chemical equilibrium and water vapor heat capacity. 1 

 2 

Figure 5. Results of combustion duration elongation and increased knock resistance 3 

for several equivalence ratio and water addition levels [60]. 4 

3.3 NOx and PM 5 

Similar to the EGR species, effects of WI on the NOx emissions can be attributed 6 

to three aspects: dilution effect, thermal effect and chemical effect [62]. Concerning 7 

PM (particulate matter) emissions, variations of flame temperature, global AFR and 8 

flame lift-off length all have effects on the soot production rate. Thus, it is more 9 

advisable to review effects of water injection on those emissions with respect to 10 

different types of engines and injection implementations. 11 

3.3.1 NOx and PM emissions from the CI engine 12 

To separate those three effects of water injection on NOx emissions, Ma et al. [63] 13 

conducted CFD simulations on a turbocharged diesel engine with part of the intake 14 

oxygen replaced by the same amount of water and nitrogen. Simulation results showed 15 

that the dilution effect on the NOx deduction reflected by the nitrogen replacement is 16 
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much larger than the other two effects which are represented by the difference between 1 

the water and nitrogen replacements. Since the AFR of the original condition is much 2 

larger, the soot generation mainly depends on the in-cylinder combustion temperature, 3 

which results in a decrease of the soot with the increase of the replacement ratio. In 4 

addition, Ma et al. [63] stated that the chemical effect has limited effect on engine 5 

combustion and emissions. Nicholls et al. [22] also indicated charge dilution by water 6 

vapor is primarily responsible for the effectiveness of WI in reducing in-cylinder 7 

temperature and NOx compared with water vaporization. With experimental research 8 

conducted on a production diesel engine, Serrano et al. [64] testified the cooling effect 9 

of water injection follows the hard relationship between NOx formation and combustion 10 

temperature of the Zeldovich mechanism. 11 

Ladommatos et al. [62, 65] compared effects of CO2 and water vapor contained in 12 

EGR on the diesel engine emissions. Results of the experiment and chemical 13 

equilibrium model showed that the dilution effect is the most significant one. 14 

Furthermore, the dilution effect for CO2 is higher than that for water vapor because 15 

EGR has roughly twice as much carbon dioxide than water vapor. On the other hand, 16 

the water vapor has a higher thermal effect in comparison to that of CO2 due to the 17 

higher specific heat capacity. The chemical effect of water addition can be further 18 

explained as that the increased OH radicals might have a significant impact in soot 19 

oxidation and reduce the soot formed in the gas phase [66]. The relation between the 20 

normalized soot number density and OH radicals in-cylinder was described by 21 

Fujimoto et al. [67]. They cited that the normalized soot number density shows the 22 
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maximum when OH radicals start to be detected and decreases with increase in OH 1 

emission. OH radicals immediately form just after the ignition and is used in the 2 

oxidation of soot and other hydrocarbons. 3 

Compared to the separated fuel/water injection, the fuel/water stratified injection 4 

has the advantage of having the liquid water close to the flame and away from the 5 

cylinder wall, which result a large decrease of the NOx formation. If too much water is 6 

used, the soot emissions might be increased due to the long injection duration. CFD 7 

simulations conducted by Bedford et al. [53] indicated the liquid penetration increases 8 

approximately 35% with 23% of the fuel volume replaced by water, due mostly to the 9 

increase in latent heat of vaporization. Engine simulations showed that the vaporization 10 

of liquid water as well as a local increase in specific heat of the gas around the flame 11 

result in lower NOx and soot formation rates. In addition, due to the significant 12 

reduction in NOx, it is possible to optimize injection timing and thus reduce PM 13 

emissions and brake specific fuel consumption. 14 

Regarding the water/diesel emulsion, the suspended water has a lower evaporation 15 

temperature compared to the diesel. The water vapor explosion during the combustion 16 

promotes the formation of fine air/fuel mixtures. The mechanism of micro-explosion of 17 

emulsified fuel droplets which leads to a better atomization and thus air-fuel mixing has 18 

been proposed and understood from a theoretical view to a certain extent for the 19 

emulsion fuel combustion [68-70]. Vellaiyan et al. [71] reviewed articles on the water-20 

in-diesel emulsion and indicated that there is an inconsistency in the domain of 21 

emulsion fuel in terms of specific fuel consumption, brake power, HC and CO 22 
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emissions due to the complexity in combustion analyses. However, in terms of NOx and 1 

PM emission levels, all the studies agreed on the improvements. Park et al. [72] 2 

identified micro-explosion of emulsified fuel droplets in the luminous flames near the 3 

tip of the spray in a rapid compression and expansion machine. However, some 4 

investigations on sprays indicated that there is no clear evidence that micro-explosion 5 

occurs in modern diesel engine combustion process. Zhang et al. [73] indicated that in 6 

the high-pressure environment, such as the combustion chamber of the diesel engines, 7 

the micro-explosion of the emulsion should have little effect on combustion, and the 8 

water particles in emulsified fuel cause a rapid vaporization and expansion phenomenon. 9 

Eckert et al. [74] stated that an increased liquid penetration length, an increased flame 10 

lift-off length and a leaner spray of diesel fuel-water emulsions result in an improved 11 

NOx and PM trade-off. 12 

With various implementations of WI, the reduction of NOx levels in the CI engine 13 

should be different [75]. Since the water is injected directly into the combustion zone, 14 

implementations of water/fuel emulsion and direct WI result in large decrease of 15 

combustion temperature and thus much lower NOx emissions. Ishida et al. [76] 16 

indicated that the NOx reduction with direct WI or water/fuel emulsion is around twice 17 

as high as with the intake manifold WI at a given quantity of injected water. Ishida et 18 

al. [76] further explained this phenomenon theoretically. According to equations of a 19 

two-zone combustion model, the amount of water moving from the unburned zone into 20 

the burned zone is determined by the entrained air rate with the assumption of a uniform 21 

distribution of water/air mixtures in the cylinder for the case of port WI. If the amount 22 



 

33 

 

of entrained air for combustion is about half of the total in-cylinder charge, only half of 1 

the water can be entrained into the combustion zone. 2 

3.3.2 NOx and PM emissions from the SI engine 3 

Different from the CI engine, NOx in the tailpipe of the SI engine is less of a big 4 

problem, because of conversion in the three-way catalyst. Considering the main aim of 5 

knock mitigation on the gasoline engine, other parameters like spark timing and AFR 6 

are always adjusted to optimize the combustion efficiency, which also have significant 7 

effects on the NOx and PM emissions [58, 77]. In general, NOx emissions from gasoline 8 

engines depend on the peak temperature achieved during combustion, oxygen 9 

concentration and time available for the reactions (ignition timing, flame speed). 10 

Tornatore et al. [78] compared the NO emissions of a downsized gasoline engine at 11 

WOT (wide open throttle) with and without intake runner WI, and experimental results 12 

shown in Fig. 6 indicated that the NO emitted with WI is higher than the original 13 

standard ECU (Electronic control unit) operation. Although the cooling effects of water 14 

addition reduces combustion temperature, the predominant factor in this case is the 15 

different lambda (excess air coefficient). In the standard ECU case (rich operation, 16 

lambda<1), the concentration of available oxygen is lower and is therefore the limiting 17 

factor for the NO formation. In the WI case, the stoichiometric lambda results in a high 18 

temperature and promotes the NO formation. In addition, advancing the spark timing 19 

increases the in-cylinder peak pressure (and temperature) and thus increases NO 20 

emission. With the same lambda and spark timing as the standard ECU calibration, 21 

Iacobacci et al. [58] indicated the NO decreases with the increase of injected water, and 22 
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the amplitude of variations depends on the engine speed and fuel enrichment. 1 

Experiments conducted by Durst et al. [79] showed that the intake manifold water 2 

injection with the water fuel ratio of up to 50% can decrease the NOx emissions up to 3 

25% at low speeds at partial load, while NOx emissions increase continuously and reach 4 

four times the base level at full load and high speeds. However, the majority of the NOx 5 

can be converted by the three-way catalytic converter. Sun et al. [80] also indicated that 6 

water injection has a negligible effect on the three-way catalyst conversion efficiency 7 

under stoichiometric conditions according to their experimental results at high load 8 

conditions. 9 

 10 

Figure 6. NO emissions against spark advance for engine speed from 2500 to 4500 11 

rpm [78]. 12 

Although the direct injected gasoline engine provides higher efficiency, emission 13 

of small particulates is greatly increased due to the inhomogeneous air fuel mixing and 14 

more than 10 times greater in mass per mile driven than that from the port injected 15 

engine [81]. Hermann et al. [40] indicated that within the engine enriched area, less fuel 16 

enrichment is required with the increase of water fuel ratio, which results in a decrease 17 
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of the PM emission. Increasing the water fuel ratio further in the stoichiometric region, 1 

the particulate number strongly increases due to the reduced combustion temperature 2 

and uneven water distribution. Similar results are reported in [79, 82] 3 

3.4 HC and CO 4 

HC (hydrocarbons) are organic compounds formed when fuel molecules do not 5 

burn or burn only partially in the engine because of crevice volumes, rich fuel-air ratio, 6 

or flame quenching [83]. CO is a byproduct of incomplete combustion when carbon in 7 

the fuel is partially oxidized rather than fully oxidized to CO2 [83]. An increase of the 8 

water/fuel ratio might cause higher HC and CO emissions due to the dilution effect of 9 

the water, the reduction of the combustion temperature and possible presence of water 10 

droplets that do not evaporate before combustion. In addition, water is expected to be 11 

heterogeneous especially with the direct in-cylinder WI, a decrease in the local 12 

temperature where the vaporization of water occurs can be a source of increased HC 13 

emissions due to quenching [23, 24, 44, 84]. 14 

3.4.1 HC and CO emissions from the SI engine 15 

Taking the benefit of knock suppression, water injection can advance the spark 16 

timing and shift the combustion center near to the top dead center, which reduce the 17 

unburned HC. With the exhaust temperature controlled by water injection instead of 18 

fuel enrichment, the gasoline engine can also decrease the unburned HC and CO 19 

emissions [58]. Tornatore et al. [78] compared variations of HC and CO emissions with 20 

the intake runner WI on a downsized gasoline engine. It can be observed from Fig. 7 21 
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that the HC emission with WI is lower than the corresponding full load points at 1 

standard ECU operation, which is clearly due to the different lambda of the two cases. 2 

Moreover, the higher turbulence intensity at high speeds decreases flame quenching in 3 

crevice regions at the cylinder wall, which result in a decrease of the HC emissions with 4 

increasing engine speed. As a general trend, it can be seen that the concentration of 5 

exhaust HC is not strongly affected by the spark advance angle. The CO emitted with 6 

WI is significantly lower than the corresponding baseline (no WI) case at any speed due 7 

to the stoichiometric combustion. Iacobacci et al. [58] stated that HC and CO emissions 8 

increase with the port water injection when running the same lambda and spark timing 9 

as the base ECU calibration. 10 

 11 

Figure 7. Unburned HC and CO emissions against spark advance for engine speed 12 

from 2500 to 4500 rpm [78]. 13 

3.4.2 HC and CO emissions from the CI engine 14 

Different from the SI engine, HC and CO in the tailpipe of the CI engine is less of 15 

a big problem, because of the oxygen-enriched combustion. Experimental research on 16 

a high speed automotive diesel engine conducted by Tauzia et al. [52] presented that 17 
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the increase of dilution ratio due to intake manifold WI results in an increase of CO 1 

flow rate upstream the DOC (diesel oxidizing catalysts), which may affect the final CO 2 

emissions if the DOC is unable to oxidize a higher CO flow rate. Furthermore, the 3 

decrease of exhaust gas temperature induced by WI may reduce the conversion 4 

efficiency of the DOC. The impact of WI on CO and HC emissions as well as their 5 

after-treatment in the DOC should be further investigated before any industrial 6 

application. Udayakumar et al. [85] also observed an increase in HC and a decrease in 7 

engine performance with the increase of water/fuel ratio in experiments of inlet 8 

manifold WI conducted on a diesel engine. Subramanian et al. [75] conducted 9 

experimental research of effects of the intake manifold WI and water-diesel emulsion 10 

on performances, combustion and emissions of a diesel engine at different loads. With 11 

the same water to diesel ratio of 0.4:1 by mass, experimental results showed that the 12 

water-diesel emulsion is superior to manifold injection at all loads, especially at part 13 

loads. Smoke reduction with water-diesel emulsion resulted in higher CO and HC 14 

emissions compared with intake manifold WI. 15 

3.5 Steam injection 16 

Apart from the WI, studies of steam injection have also been reported. With steam 17 

injection, the cooling effect due to water evaporation is removed, but the dilution and 18 

chemical effects of water addition are still retained. In addition, the problem of cold 19 

corrosion arising from liquid water flowing into the cylinder can be eliminated [86]. 20 

Zaidi et al. [87] pointed out that partial humidification of the intake air with superheated 21 

steam (less than 3%) neither influences the ignition delay period nor the start of 22 
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premixed combustion as the water does not have to evaporate, thus the fuel 1 

consumption does not deteriorate as expected with water or wet steam injection.  2 

To avoid water evaporation in the cylinder and subtract the water latent heat of 3 

vaporization from the heat released during the combustion process, Nour et al. [88, 89] 4 

proposed to introduce water into the exhaust manifold to utilize the enthalpy of exhaust 5 

gases to evaporate injected water, and by opening the exhaust valve during the intake 6 

stroke, the evaporated water and exhaust gases flow into the cylinder and participate in 7 

the combustion. Thus, the thermal effect of WI is reduced, and other effects such as 8 

chemical and dilution effects of water vapor are expected to promote soot oxidation and 9 

decrease the NOx formation. Experimental work conducted on a single diesel engine 10 

showed that NOx emissions can be decreased by 80% for 25% EGR ratio accompanying 11 

with a large increase of soot emissions. Combining EGR with WI, soot emissions can 12 

be decreased by up to 40% compared to the EGR case but still higher than the 13 

conventional diesel combustion. Gonca et al. conducted research into port steam 14 

injection on various engines fueled with diesel [90], gasoline [86] and biofuel [15] to 15 

improve emissions and engine performances. To further decrease the in-cylinder 16 

temperature and minimize NOx emissions, Gonca et al. also proposed to combine 17 

cooled EGR [91] or Miller cycle [92, 93] with the steam injection, which showed that 18 

higher efficiency and less NOx emissions can be obtained compared to the original 19 

steam injection engine. 20 

4 Summary of water injection on different types of engines 21 

4.1 Water injection applied on the gasoline engine 22 
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For the highly boosted and downsized gasoline engine, WI shows great potential 1 

to extend the knock limit without increasing the TIT and fuel enrichment. The turbine 2 

inlet temperature limit and rich misfire are the major limitations of existing knock 3 

mitigating techniques (before reducing the power/torque). However, the optimum 4 

injection parameters, like the location, timing, flow rate and pressure, still need to be 5 

clarified. 6 

To reach the lowest temperature at the end of the compression stroke, maximizing 7 

the amount of water drawn into the cylinder and the water droplets evaporation in the 8 

combustion chamber are two criteria for determining the injector location and injection 9 

timing with runner/port WI. With a single-hole water injector and injection pressure of 10 

approximate 5 bar, Berni et al. [57] compared different water injection timings and 11 

injector locations (one close to the intake port junction and another close to the intake 12 

valve) with 3D simulations. The results showed that more liquid water droplets are 13 

trapped in the cylinder with the injector close to the intake valve. In addition, there 14 

exists an optimum injection timing (around 100 CAD before intake valve open) to lower 15 

the charge temperature before the start of combustion, and the optimum WI timing 16 

varies at different speeds due to the very different flow velocities in the intake port as 17 

well as the physical time allowed for water to enter the cylinder. For the use of WI as a 18 

substitute of the excess fuel, fuel injection timing should be adjusted due to the reduced 19 

amount of fuel. Berni et al. [57] also indicated that keeping the same end of injection 20 

timing as the original case can result in leaner end gases and slightly richer equivalence 21 

ratio near the spark plug. For better comprehension of the mixture flow field with port 22 
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WI, Hermann et al. [40] recorded the air/water/fuel behavior with in-situ video in both 1 

intake channels and the cylinder. The in-cylinder videos showed that the mixing of 2 

water and gas was not perfect, and the injected water mass shot from the intake valve 3 

across the cylinder to the opposite walls without being involved in the tumble especially 4 

with high water rates. In addition, the tumble will be affected in a negative way, and the 5 

inhomogeneous mixing will waste the evaporation enthalpy due to the wall wetting. 6 

For the direct in-cylinder WI, a low-pressure level in the WI system would be cost-7 

efficient. However, a lower injection pressure worsens the primary breakup of water 8 

droplets and increases the time span of injection and evaporation, and water droplets 9 

might not be fully evaporated at the end of the compression stroke. Consequently, the 10 

in-cylinder end gas temperature and knock propensity are not reduced as well as with 11 

higher pressure levels [41]. Thus, an optimum injection pressure for the engine 12 

performance should be determined to guarantee complete evaporation of water droplets. 13 

This also impacts the optimum injection timing. With the same end of injection timing 14 

of direct WI with separated injectors, Hoppe et al. [41] evaluated different injection 15 

pressures ranging from 50 to 200 bar at three loads. Experimental results showed that a 16 

constant increase of the knock reduction with higher rail pressure was already visible 17 

at the lowest load point, and the benefit grows with increasing load and thus injected 18 

water mass. 19 

Hoppe et al. [94] also stated that there exists an optimum injection timing for the 20 

direct in-cylinder WI, and further advancing or retarding the start of injection results in 21 

reduced gains in MFB 50 and increased burn duration. The optimal timing for direct 22 
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injection of water can be found during the compression stroke. It is almost independent 1 

from the IVC timing, the engine load and the injected water mass. However, it was 2 

found that the optimal injection timing of water shifts to earlier timings with increasing 3 

engine speed. In addition, the CR also has an influence on the optimal WI timing. The 4 

reason for this can be attributed to the higher cylinder pressure and temperature at a 5 

certain crank angle during the compression for the higher CR which reduces spray 6 

penetration length and thus shifts the trade-off for the optimal injection timing to 7 

slightly earlier SOI (start of injection). 8 

From a system perspective, there is one big disadvantage for direct water injection 9 

with separate injectors: within the cylinder roof, the water injector tip must be cooled 10 

in order to avoid thermal damage. That means, a minimum amount of water needs to 11 

be injected during each cycle, even when it would not be needed for the engine 12 

thermodynamically. The handicap of direct mixture injection is the homogeneous 13 

mixture distribution to each cylinder. Pre-mixture WI experiments conducted by 14 

Hermann et al. [40] on the operation point 5000 rpm/280 Nm of a 1.6 L demonstrator 15 

engine confirmed that the distribution over the four cylinders was not homogeneous 16 

and does not follow a clear rule with water fuel ratio higher than 15%. To obtain better 17 

transient performances, the rail with a small volume is required. On the other hand, a 18 

large volume is preferable to decrease the pressure fluctuations caused by the high-19 

pressure fuel pump. Therefore, a dedicated design for the high-pressure fuel rail is 20 

needed. As shown in Fig. 8, BMW [82] employed a volume divider that slips into the 21 

series fuel rail, and the hollow interior of the volume-divider insert was hydraulically 22 
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connected to the feed volume and provides an additional volume of fuel to reduce the 1 

pressure fluctuations. 2 

 3 

Figure 8. Schematic diagram of volume splitter in the fuel-injection rail from BMW 4 

Evaluating from the same amount of water for the cooling effects of the cylinder, 5 

Cavina et al. [43] indicated that direct injection is undoubtedly the best solution, and 6 

port injection solution with an injector installation as close as possible to the intake 7 

valve is better than a single-point configuration located upstream the intake manifold. 8 

Table 1 shows summarized comparisons of three different implementations of WI 9 

systems for the gasoline engine [40, 95]. Port WI with a low-pressure system (5-20 bar) 10 

has the advantage of simplicity, low cost and robustness for corrosion and freezing 11 

issues, but its main drawback with respect to the other possible solutions is the higher 12 

water consumption. The compromises of the direct in-cylinder water injection mixed 13 

or separated with fuel are the higher cost of the high-pressure injection system, the 14 

corrosion damage and also the packaging. As a result of previous considerations, 15 

according to [40][80] the port WI concept is the best candidate for series production. 16 

For the higher water consumption of port WI, spray targeting and reduction in droplet 17 

size can be used to reduce water usage [96, 97]. 18 

Table 1. Comparison of possible implementations for water injection systems [40, 95]. 19 

 Port water injection Direct fuel/water 

mixture injection 

Direct water injection 

with separate injector 
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Comb. Benefits Good Good Good 

Cost Low High High 

Robustness High Complex Complex 

Packaging Modular and 

compact 

Non-modular Extra circuit for water 

Energy efficient Low energy demand High energy demand High energy demand 

Water consumption Higher Lower Lower 

Transient operation Good Poor Good 

Distribution to cylinders Good  Poor Good 

It should be mentioned that comparing the work done by various people is not easy 1 

and may result in different conclusions due to differences in design and operating 2 

parameters of the engines and WI systems. Therefore, some conclusions in the 3 

references are valid only under some conditions and cannot be treated as general ones. 4 

To provide a better comparison of different WI implementations on the gasoline engine, 5 

Table 2 lists selected researches with respect to the engine specifications, research 6 

methods, injection parameters, engine parameter adjustments, engine performances and 7 

emissions. It can be safely concluded that WI combined with advancing spark timing 8 

can maintain lambda 1 operation within the whole engine map and improve the engine 9 

BSFC and BMEP by mitigating knock. However, these benefits and the required WI 10 

parameters depend on the engine specifications and operating conditions. 11 

Table 2. Water injection applied on the gasoline engine. 12 

ICE 

specificati

ons 

Method

s 

Injection location 

and parameters 

Parameters 

adjustments  

Engine 

performances and 

emissions 

Ref

s. 

3.8L 8V 

DISI 

turbocharg

ed engine 

with CR of 

9.6 

 

3D 

CFD 

simulati

ons at 

7000, 

4000 

and 

2000 

WOT 

Water injector close to 

the intake valve with 

SOI at 250 CAD, 

injection pressure 

limited to 5 bar, 

injection mass 

approximately 

meeting the same 

charge cooling of 

Spark timing 

is recalibrated 

for the same 

IMEP, and 

fuel/air 

equivalence 

ratio is 

adjusted to 1 

BSFC decreases by 

2%, 10% and 22% at 

2000, 4000 and 7000 

rpm respectively 

[46

,57

] 
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conditio

ns 

excess gasoline 

1.6L NA 

PFI engine 

with CR of 

13.5 and 

Atkinson 

cycle 

technique 

Experi

ments at 

speed 

ranging 

from 

1500 to 

3000 

rpm 

WOT 

conditio

ns 

Direct injected with a 

GDI fuel injector at -

120 CAD ATDC with 

water injection 

pressure of 50 bar, 

water/fuel ratio 

ranging from 0 to 

250% for different 

speeds 

Spark timing 

is advanced, 

and over-

fueling is 

eliminated up 

to knock and 

TIT 

limitations 

BMEP increases by 

14%, and BSFC is 

improved by 16-17% 

at the speed of 1500-

2000 rpm. Unburned 

HC increases, NOx 

decreases, and CO 

variations depend on 

speeds 

[44

] 

0.875L 

twin-

cylinder 

PFI 

turbocharg

ed engine 

with CR of 

10 

Experi

ment 

and 1D 

simulati

ons at 

3500, 

4000 

and 

4500 

rpm 

under 

full 

loads 

WI upstream of the 

standard fuel injector 

in the port with the 

same injection timing 

as the gasoline, 

discontinuous 

injection of water 

with pressure of 4 bar 

and water/fuel ratio 

ranging from 10 to 

30% 

Spark timing 

is advanced at 

constant fuel/ 

air equivalent 

ratio up to 

knock 

occurrence 

IMEP increases by 

7.3% at 3500 rpm, 

and the increase is 

around 3% at high 

speeds. Spark 

advance reduces the 

HC, and NOx 

decrements depend on 

speeds 

[42

,56

] 

2.0L 4-

cylinder 

DISI 

turbocharg

ed engine 

with CR of 

9.2  

Experi

mental 

research 

under 

WOT 

conditio

ns with 

differen

t anti-

knock 

fuels  

Water is injected with 

Bosch fuel injector 

into intake runners; 

injection pressure is 

limited by the 

standard compressed 

air of 8.6 bar; 

water/fuel ratio is 

larger than 150% to 

achieve a targeted 

CA50 

Spark timing 

is recalibrated 

for a target 

CA50 or 

knock 

limitation, 

and lambda 

was adjusted 

to 1 

Improvements of 

BMEP and BSFC 

with 87AKI fuel are 

up to 5% and 34% 

compared with 

production ECU 

calibration with 

91AKI fuel. 

Emulsified water/oil 

mixture was observed 

in crank case 

[31

] 

DISI single 

cylinder 

engine 

with CR of 

13.5 and 

the 

adoption of 

Experi

mental 

research 

under 

part and 

high 

loads 

Water is injected via a 

side injector at an 

optimum injection 

timing of 120 CAD 

BTDC; injection 

pressure ranges from 

25-150 bar, and 

Spark timing 

is recalibrated 

for an optimal 

MFB50 of 7-8 

CAD ATDC, 

and knock 

combustion is 

Efficiency increases 

by 3.3%-3.8% in the 

region of the 

minimum fuel 

consumption, and 

16% improvement is 

possible at full load 

[41

,94

] 
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Miller 

cycle 

with / 

without 

EGR 

water/fuel ratio is 

smaller than 60% 

avoid 

simultaneousl

y 

operation. HC 

increases, and NOx 

changes slightly 

especially under EGR 

conditions 

1.6L 

demonstrat

or engine 

of 

GM/Opel, 

no 

specificati

on list 

Experi

mental 

research 

at 3000, 

4000 

and 

5000 

rpm 

WOT 

conditio

ns 

Port WI with an 

electrical water pump 

of up to 10 bar 

pressure, and 

water/fuel ratio 

ranging from 0 to 

80% 

Spark timing 

is advanced to 

maintain 

same knock 

intensity, and 

fuel 

enrichment is 

reduced with 

the TIT 

limitation 

Water fuel ratio of 

65% is required to 

fulfill Lambda 1 

operation at 5000 

rpm. CO linearly 

decreases with the 

water fuel ratio. 

Variations of UHC, 

NOx and PM 

emissions depend on 

Lambda and water 

fuel ratio.  

[40

] 

1.5 L 

three-

cylinder 

engine 

with CR 

increase 

from base 

value of 

9.5 to 11  

Experi

mental 

research 

under 

full map 

conditio

n 

Plenum water 

injection (water/fuel 

ratio < 5%) plus water 

fuel mixture injection 

(water/fuel ratio < 

30%) 

Lambda 1 

operation 

with knock 

and TIT 

limitation  

Engine performance 

increases from 

150kW/300Nm to 

160kW/320Nm. 

Intercooler load and 

engine thermal load 

decrease by 30% and 

10% at 5500 rpm. 

[82

] 

0.5L 

single-

cylinder 

test engine 

with CR of 

10 and a 

centrally 

positioned 

fuel 

injector 

Experi

mental 

research 

at 2500 

rpm 

with 

differen

t IMEP 

Water injector is 

positioned on the side 

of the cylinder head 

with different 

injection pressure, 

timing and amount 

Reducing 

knock 

tendency and 

advancing the 

center of 

combustion to 

optimized 

efficiency 

values. 

A minimum injection 

pressure of approx. 

100 bar to assist water 

vaporization, and the 

optimum injection 

window is approx. 

−120 °CA AFTDC. 

[97

] 

4.2 Water injection applied on the diesel engine 1 

For the CI diesel engine, the cooling effect of WI is mainly used to decrease the 2 

NOx emissions. Although lots of works have been reported in recent years, comparative 3 

analyses of different WI implementations still need to be conducted to figure out the 4 
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best choice under different utilizing conditions. 1 

With CFD simulations of intake air fumigation and direct WI on a large two-stroke 2 

marine diesel engine, Chryssakis et al. [98] concluded that direct WI is more effective 3 

in reducing NOx emissions compared to the intake air fumigation. Further by 4 

systematically varying the locations of the direct water injectors as well as fuel injection 5 

timing, it is possible to maintain a high level of NOx emissions reduction with only 6 

milder penalties in fuel economy and soot emissions. Experiments conducted by Samec 7 

et al. [99] indicated that port WI and pre-compressor WI show similar NOx reduction 8 

with a water/fuel ratio ranging from 0 to 40%. Additionally, the pre-compressor WI 9 

showed a good performance regarding the engine thermal load. 10 

For obtaining a maximum NOx reduction with a minimum water consumption, 11 

water should be targeted to the right location at the right time, namely to those locations 12 

in the combustion chamber where the highest temperatures prevail for considerable 13 

periods of time. In this regard, inlet manifold WI and direct WI with a separate injector 14 

are unfavorable. With a specially designed injection nozzle, Wirbeleit et al. [100] 15 

applied a stratified fuel/water injection on a single-cylinder heavy duty diesel engine. 16 

In the 13-mode ECE test they obtained a NOx reduction of 55% for the same PM and 17 

BSFC with the application of stratified fuel/water injection combined with EGR. The 18 

advantage of this method is the variable amount of injected water depending on engine 19 

speed and load, however disadvantages are the greater complexity and higher cost of 20 

the injection nozzle. Wirbeleit et al. [100] also indicated that there exists an optimum 21 

water injection timing for the stratified fuel/water injection in respect of the NOx and 22 
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PM trade-off. Kohketsu et al. [101] pointed out that for the stratified fuel/water injection 1 

with the same injector, the magnitude of NOx reduction depends almost solely on the 2 

water injection quantity and is affected only slightly by other factors. With a two-zone 3 

characteristic time model based on the dominant physical and chemical sub processes 4 

occurring in the cylinder, Mello et al. [102] analyzed effects of stratified fuel-water-5 

fuel injection on the NOx emissions. They indicated that the fraction of water entering 6 

stoichiometric eddies increases as the water/fuel mass ratio is increased, and the NOx 7 

reduction potential is about 90 % at the highest water-to-fuel mass ratio. In conclusion, 8 

the stratified WI offers a very high potential in NOx reduction due to the well-directed 9 

addition of water into the spray. 10 

With the concept structure shown in Fig. 9, Murotani et al. [103] designed a new 11 

injection system for instantaneous mixing of fuel and water in the combustion chamber 12 

by injecting water in a mixing passage located in the periphery of the fuel spray. 13 

Experimental work and CFD simulations showed good correlation in that the 14 

combustion speed and cylinder temperature decrease with an appropriate water 15 

injection timing. This resulted in a drastic NOx reduction with simultaneous decrease 16 

of soot emissions. A two-needle type fuel and water injection nozzle with a single 17 

injector body was manufactured and tested by Tajima et al. [104], to investigate the 18 

optimum water injection timing regarding the fuel economy, NOx and PM emissions. 19 

The results showed that the soot formation inside the flame could be clearly reduced by 20 

applying the water injection covering the latter half of the fuel injection duration. 21 
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 1 

Figure 9. Concept of instantaneous mixing of fuel and water 2 

Tanner et al. [105] compared WI techniques including the injection of water via 3 

separate injectors, the injection of fuel/water mixtures and the stratified injection of 4 

fuel/water via specially designed nozzles. CFD simulations on a large-bore diesel 5 

engine showed both the stratified and the emulsified injections yield best NOx 6 

reductions per injected water mass for the same power outputs and at identical peak 7 

cylinder pressures. Kegl et al. [106] conducted experiments of different WI methods 8 

(multipoint injection into the manifold, mono-point injection before and after 9 

compressor, and fuel/water emulsion injection into the cylinder) on a four-cylinder 10 

truck diesel engine. Comparative results with the same water/diesel volume ratio 11 

ranging from 0 to 20% showed that water/diesel emulsion is the most proper approach 12 

to decrease NOx and PM simultaneously without worsening the fuel consumption. 13 

Mono-point injection after the compressor showed a worse potential in NOx reductions 14 

compared with the other two WI locations, but the reason was not discussed in detail in 15 

the published article. 16 

Wirbeleit et al. [100] compared different WI methods regarding achievable NOx 17 

reduction (related to the amount of water injected), PM reduction, variability of water 18 

addition, effects on cold start, lubricating oil dilution and expenditure as shown in Table 19 
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3. To obtain a maximum combustion benefit, water should be brought to the right 1 

location at the right time during the combustion period, thus WI with the same nozzle 2 

as the diesel shows better performance on NOx and PM emissions compared to other 3 

methods, which reduce the temperature level all over the combustion chamber. The 4 

main drawbacks of fuel/water emulsion are the nonadjustable water/fuel ratio and its 5 

effect on cold start. The technological advantage vs. the financial expenditure has to be 6 

considered, especially for the injector of the stratified fuel/water injection. 7 

Table 3. Comparison of water introduction methods [100]. 8 

 Inlet manifold 

water injection 

Direct water 

injection with 

separated nozzle  

Diesel fuel-

water 

emulsion 

Stratified 

fuel/water 

injection 

Relative NOx reduction - - + ++ 

Effect on PM emission -- -- ++ ++ 

Variability of water addition + ++ -- ++ 

Effect on cold start None None -- None 

Lubricating oil dilution -- - - None 

Expenditure - -- - -- 

4.3 Other utilizations of water injection 9 

4.3.1 Water injection with different fuels and combustion modes 10 

Current and future emission regulations are becoming more stringent, and the 11 

fossil fuel demand is continuing to increase all over the world. This compels the world 12 

to focus on developing/finding alternative fuels to the existing fossil fuels. Biodiesel is 13 

one of the most promising alternative fuels that can be used in a diesel engine without 14 

any engine modification. Compared to conventional diesel fuel, use of biodiesel is 15 

generally found to reduce emissions of HC, CO and PM but with an increase of NOx 16 

emissions [107, 108]. Palash et al. [109, 110] reviewed impacts of biodiesel combustion 17 



 

50 

 

on NOx emissions and pointed out that WI and water/fuel emulsion are two promising 1 

techniques for NOx reduction. Experimental results on a biodiesel turbocharged engine 2 

from Tesfa et al. [111] showed that the water injected into the intake manifold reduces 3 

the NOx emission by up to 50% over the entire operating range. However, the CO 4 

emission increases by about 40%.  5 

To further improve the lubricity, stability and combustion efficiency of emulsion 6 

fuels, metal-based nano-additives have drawn much attention in recent years. 7 

Hasannuddin et al. [112] indicated nano-additives with different metals impact the 8 

water/diesel emulsion fuel properties, performance and emissions differently, and 9 

evaluation results of various nano-additives showed that Al2O3 is the best nano-additive 10 

and yields the highest reduction of fuel consumption, CO and NOx emissions. Koc et 11 

al. [113] tested different water concentrations (5%, 10% and 15%) in a biodiesel nano-12 

emulsion fuel on a 4-cylinder diesel engine, which showed strong evidences of 13 

emulsified biodiesel fuel for reducing NOx and soot emissions. E et al. [114] compared 14 

varied mixtures of biodiesel-diesel, water and cerium oxide nanoparticles components 15 

on a marine medium-speed engine with respect to combustion and emission 16 

performances. Experimental results showed that the proper water additive and metal-17 

based additives can effectively improve the engine thermal efficiency and decrease the 18 

CO, PM, NOx and HC emissions due to the micro-explosion phenomenon and the 19 

catalytic activity. Similar conclusions were also claimed by Gharehghani et al. [115].  20 

Hydrogen fueled internal combustion engines have the potential for high thermal 21 

efficiencies compared to conventionally fueled engines. Depending on the source of the 22 
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hydrogen, fuel-based carbon emissions can be reduced or eliminated entirely. In order 1 

to maximize the hydrogen engine efficiency over a broad range, the entire operating 2 

regime should remain at equivalence ratios much leaner than stoichiometric. The issue 3 

of high NOx formation in a hydrogen fueled engine is well-known and has been 4 

investigated by many researchers. The method of WI would be one of the best solutions 5 

to reduce NOx formation [116, 117]. Nande et al. [118] examined effects of combining 6 

an advanced direct hydrogen injection strategy with WI for efficiency benefits and 7 

emission reductions on a SI engine with a CR of 11.5:1. Experimental results showed 8 

that water injected into the intake manifold results in a decrease of the NOx emissions 9 

up to nearly 55% with a marginal loss in efficiency. Younkins et al. [119, 120] 10 

conducted experiments of water injection on a hydrogen engine with two different 11 

configurations, port injection of water with direct injection of hydrogen and direct 12 

injection of water with port injection of hydrogen. The results showed the potential of 13 

more than 85% NOx reduction is available on both of those two configurations, without 14 

any significant fuel consumption penalty. Chintala et al. [121] tried to improve the 15 

hydrogen energy share in a CI dual fuel engine with WI and CR reduction to suppress 16 

knocking. The hydrogen share was improved from 18.8% to 66.5% with water injection 17 

and improved further to 79% combining water injection and a reduced CR. Bleechmore 18 

et al. [122] compared dilution strategies of EGR and WI using a dual fluid direct injector 19 

on a hydrogen fueled engine and indicated that WI is an effective alternative to EGR in 20 

extending load range and reducing NOx emissions. 21 

Compared to conventional diesel combustion, which is mainly diffusion 22 
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combustion, HCCI (homogenous charge compression ignition) uses a homogeneous 1 

premixed fuel-air mixture resulting in lower smoke and NOx emissions [123, 124]. 2 

However, the heavy load operation range is limited by knock due to an exceptionally 3 

high heat release rate. To help solve this problem, direct WI has been suggested to lower 4 

the local temperatures that seem to cause knock in HCCI. Iwashiro et al. [125] 5 

investigated effects of the direct in-cylinder WI on the knock control of a HCCI engine 6 

to reduce heat losses and expand the operating load range. The results indicated the 7 

IMEP of HCCI operation can be increased from 460 kPa to 700 kPa maintaining low 8 

NOx levels, while the HC and CO emissions increased due to wall wetting, especially 9 

with an early water injection timing. Another major problem of HCCI combustion is 10 

controlling the ignition timing over a wide load and speed range. Christensen et al. [126] 11 

indicated it is possible to control the ignition timing in a narrow range, using an amount 12 

of injected water similar to the amount of fuel. However, an increase in the already high 13 

emissions of unburned hydrocarbons was observed, which indicated poor combustion 14 

quality. 15 

4.3.2 Water injection as supplementary working fluid 16 

The injected water can also be treated as supplementary working fluid in the 17 

cylinder or through the turbine. With the traditional four-stroke Otto or Diesel engine 18 

followed by a two-stroke steam cycle, the six-stroke engine concept had been 19 

considered for a long time [127]. Conklin et al. [128] proposed to trap and recompress 20 

some of the exhaust from the fourth piston stroke, followed by a water injection and 21 

expansion of the resulting steam/exhaust mixture. With assumptions of instantaneous 22 
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water evaporation and mixing processes, calculation results with an ideal 1 

thermodynamics model showed that the net mean effective pressure of the steam 2 

expansion stroke ranges from 0.75 to 2.5 bar compared to the mean effective pressures 3 

of the naturally aspirated gasoline engines of 10 bar, which means water injection has 4 

the potential to significantly increase the engine efficiency and fuel economy. Arabaci 5 

et al. [129] retrofitted a single cylinder four-stroke engine to a six-stroke engine, which 6 

was similar as the configuration described above. Test results showed that the exhaust 7 

gas temperature and specific fuel consumption can be decreased by around 7% and 9% 8 

respectively with the adoption of water injection.  9 

The pre-turbine water/steam injection has also drawn much attention in recent 10 

years. Fu et al. [130] proposed a steam-assisted turbocharging system to increase the 11 

turbine output, and simulation results on a 1.8 L turbocharged gasoline engine showed 12 

that this system can improve the engine low-speed performances and make the peak 13 

torque shift to the low-speed area. Zhu et al. [131, 132] testified the pre-turbine steam 14 

injection combined with Miller cycle can be used to improve the turbocharging system 15 

matching with the engine, experimental results showed the fuel economy under full 16 

load conditions can be improved by up to 5.9%. Zhao et al. [133] evaluated the 17 

combination of steam injection and turbo compounding on a turbocharged diesel engine, 18 

which showed the fuel economy can be increased by 6.0–11.2% at different speeds. 19 

5 Comparisons and combinations with other advanced techniques 20 

5.1 Water injection vs. EGR 21 
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Both EGR and WI introduce inert species into the cylinder, which can effectively 1 

lower the combustion temperature and decrease NOx emissions [134]. The main 2 

drawbacks of EGR are the increase of PM emissions and the required high boost 3 

pressure to maintain AFR or the BMEP at a suitable level [135]. One advantage of WI 4 

compared to EGR is the possible reduction of NOx emissions either at low loads and 5 

high loads without a substantial increase in PM emissions. 6 

5.1.1 Comparisons on the gasoline engine 7 

In gasoline engines, the adoption of an external cooled EGR circuit for knock 8 

avoidance has also been analyzed in a number of papers [135, 136]. This technique, 9 

however, may induce a higher cyclic variability and a lower power output. 10 

Simultaneously, fluid-dynamics and thermal inertia of the EGR circuit pose control 11 

problems during fast transient operation.  12 

With validated turbulence combustion and knock models, Bozza et al. [137] 13 

compared the low-pressure cooled EGR and ported WI in a simulation model of a two-14 

cylinder gasoline engine under full load at different engine speeds. In all calculations, 15 

the spark timing was automatically modified to realize operation at the same knock 16 

threshold as the base configuration, and the waste-gate valve opening was adjusted by 17 

a PID controller targeting the prescribed load levels. Also, constraints of TIT, boost 18 

pressure, turbocharger speed and in-cylinder peak pressure were considered to obtain 19 

more realistic results. Fig. 10 shows a comparison of best EGR and best WI calibrations. 20 

The BSFC benefits can be mainly ascribed to a higher knock resistance that allows 21 

optimization of the combustion phasing and/or a reduction in fuel enrichment. The heat 22 
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subtracted by the water evaporation enhances the above effects, resulting in larger 1 

BSFC benefits with respect to the EGR technique in most cases. However, the BSFC 2 

advantages are limited by the maximum allowable in-cylinder pressure, TIT, 3 

turbocharger speed and boost level. 4 

 5 

Figure 10. Comparison of best EGR vs. best water injection calibrations [137]. 6 

5.1.2 Comparisons on the diesel engine 7 

Tauzia et al. [52] [138]conducted an experimental study of EGR and WI under 8 

different load conditions of an automotive diesel engine. As shown in Fig. 11, at low 9 

load conditions when excess air is naturally high, EGR and WI have the capability to 10 

reduce NOx emissions and PM simultaneously (due to the high AFR). A major 11 

drawback is that CO and HC emissions increase a lot at these temperatures, while 12 

combustion efficiency and fuel economy decrease. At these conditions, from a practical 13 

point of view, EGR seems to have an advantage compared to WI because it does not 14 

require liquid water in addition to fuel. At higher loads, WI has the capability to reduce 15 

NOx emissions without a large increase of PM emissions, because the air flow rate 16 

remains approximately constant. At these operating points, EGR can reduce NOx 17 

emissions, but the PM emissions increase significantly due to the reduced air flow rate. 18 
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Thus, the WI technique has a clear advantage in terms of NOx reduction, while 1 

maintaining PM emissions, compared to EGR at higher loads. 2 

 3 

Figure 11. Influences of water injection and EGR on NOx and PM trade-off with the 4 

load increasing from Point A to D [52]. 5 

Hountalas et al. [139] conducted comparative evaluations of EGR, intake manifold 6 

WI and fuel/water emulsion with a calibrated multi-zone phenomenological 7 

combustion model. The results showed that for a similar NOx reduction of about 30% 8 

(limited by the fuel/water emulsion), the use of fuel/water emulsion is the most 9 

favorable one, followed by intake water addition and EGR, considering both emissions 10 

and BSFC. Chadwell et al. [34] developed a new real-time WI system, in which water 11 

and diesel mix in the injector tip and water mass can be controlled cycle by cycle. 12 

Experimental researches of this new WI system compared to and combined with an 13 

EGR system were conducted on an 11.7L heavy-duty diesel engine. As shown in Fig. 14 

S3, by adding 30% water, the BSNOx was reduced by 42% with a 2.1% increase in 15 
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BSFC. In comparison, 10% EGR rate reduced the BSNOx by 65%, but at a BSFC 1 

penalty of 8.6%. Using a combination of 12% EGR and 30% water, a further 50% 2 

decrease of BSNOx was obtained compared to the 10% EGR only case. Additionally, 3 

an advantage of PM emissions was observed with the opacity decreased from an 4 

unacceptable value of 4.5% (10% EGR only case) to 1% (12% EGR and 30%water). 5 

Chadwell et al. [34] also pointed out that a faster torque rise rate can be obtained with 6 

this real-time WI system since a richer AFR limit can be used with no opacity spikes 7 

observed. 8 

 9 

Figure S3. Comparison and combination of EGR and water addition to reduce NOx 10 

[34]. 11 

5.2 Combinations of water injection with other techniques 12 

5.2.1 Applications on the gasoline engine 13 

Hoppe et al [41] demonstrated a potential efficiency increase of 3.3-3.8% in the 14 

region of the minimum specific fuel consumption, on a stoichiometric combustion 15 

concept with Miller cycle and cooled external EGR. Using WI in addition to 16 

homogenous lean combustion, an efficiency gain of 4.5% in the region of the minimum 17 
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specific fuel consumption was achieved, due to the lower heat losses and higher 1 

combustion efficiency. Hoppe et al. [94] further indicated that the combination of WI 2 

with a high CR of 14.7 and Miller cycle valve timings is very attractive as it resulted in 3 

low fuel consumption at part load operation, with a large sweet-spot area ranging to full 4 

load operation with ISFC (indicated specific fuel consumption) below 210 g/kWh.  5 

Teodosio et al. [140] conducted 1D numerical analysis of different solutions, 6 

including the variable compression ratio, the port WI, the external cooled EGR and their 7 

combinations in reducing the BSFC on a downsized turbocharged SI engine. 8 

Optimization results showed that the WI shows higher benefit at medium-high load due 9 

to its knock suppression capability, while cooled EGR can effectively reduce the 10 

pumping work at low load. Combining the above techniques provides BSFC reductions 11 

of 6.9%, 5.2% and 9.0% at low, medium and high load at 1800 rpm, respectively. With 12 

knock mitigation on the SI engine, a higher affordable BMEP level can be obtained 13 

with WI, and it is meaningful to quantify the potential of WI as an enabler for ultrahigh 14 

boost with multistage air charging system. The ability of WI to lower the exhaust gas 15 

temperature is also of interest since it may be used as an enabler for employing variable 16 

geometry turbines even in gasoline engines, thus allowing further downsizing potential. 17 

Alternatively, it may be used to reduce material costs on the turbochargers due to 18 

reduced thermal stresses on the component. 19 

5.2.2 Applications on the diesel engine  20 

It also appears that water injection using emulsion or stratified strategy could be 21 

used in combination with EGR to achieve the maximum NOx reduction. This is 22 
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attributed to the fact that its use has no penalty in engine BSFC (except for high load) 1 

while it reduces soot on the entire engine operating range [139]. Liang et al. [141] and 2 

Zhang et al. [142] stated the combination of oxygen enriched combustion and water 3 

emulsion appears to be one of the most effective ways to control PM and NOx 4 

simultaneously and maintain a comparable fuel consumption. Bertola et al. [143] 5 

indicated that with the use of water-diesel emulsion combined with high percentage of 6 

EGR and high injection pressures, NOx emissions below 1.0 g/kWh and PM emissions 7 

of about 0.01 g/kWh are realized at low loads without appreciable changes in fuel 8 

consumption. Wirbeleit et al. [100] suggested that the stratified diesel fuel-water-diesel 9 

fuel injection combined with EGR is the most efficient in-cylinder NOx and PM 10 

reduction technology without any negative effect on fuel economy. Nazha et al. [144] 11 

compared hot EGR, inlet manifold WI (water fuel ratio of 1.5:1), 20% water-in-diesel 12 

fuel emulsion and their combined effects on a 2.5L four-cylinder diesel engine. 13 

Experimental results at full load showed that a combination of EGR and WI reduces 14 

NOx emissions by over 70% with the smoke increased by close to 60%. The 15 

combination of emulsion and EGR reduces both NOx and smoke by about 55% and 45% 16 

respectively. The increased unburnt HC in both cases are still relatively low, and the 17 

fuel consumption is similar to the baseline engine case. 18 

5.3 Comparisons with other downsizing techniques 19 

De Cesare et al. [95] compared advantages and drawbacks of promising 20 

technologies for new generation SI engines including GDI lean combustion, Miller 21 

cycle, variable CR, WI, cylinder deactivation, external EGR and multistage air charging. 22 
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Johnson et al. [145] also evaluated those technologies with respect to the potential CO2 1 

reduction, challenges and implemented status. Based on the results of both studies, 2 

Table S1 shows an overview of typical CO2 reduction technologies for downsized 3 

gasoline engines. It can be safely concluded that WI, which is still in development, is a 4 

cost-effective approach for decreasing CO2 emissions. De Cesare et al. [95] also pointed 5 

out that combined with high CR, WI can benefit the whole gasoline engine operating 6 

map even at low loads, while influences of other techniques are often limited to certain 7 

engine operating zones. 8 

The legislated restriction of CO emissions under real world driving conditions will 9 

be a new challenge for the higher power region of the engine operating envelope, where 10 

fuel enrichment is currently employed for component protection. In order to avoid 11 

power loss while operating at lambda = 1 in the entire engine map, two options can be 12 

adopted: a decrease of the exhaust gas temperature, and the usage of enhanced materials. 13 

Busch [146] evaluated the potential of different technologies including the adoption of 14 

improved turbine material, two-stage variable CR and WI on two base engines with 15 

specific power outputs of 110 kW/l and 90 kW/l. The results showed that the adoption 16 

of optimized turbine material enabling up to 1050°C TIT still suffers a power loss of 6% 17 

with lambda 1 operation on the base engine of 90 kW/l. Both the two-stage variable CR 18 

and the WI can completely avoid power losses on the base engine of 90 kW/l, while 19 

only the WI is feasible for the base engine of 110 kW/l due to the high cooling potential 20 

in the combustion chamber. 21 

Table S1. Overview of typical CO2 reduction technologies [95, 145]. 22 
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ICE technology Advantages and drawbacks CO2 reduction(a) Δ Cost [€] 

GDI lean 

combustion 

-lower pumping loss and heat loss, knock 

mitigation with high efficiency; 

-Expensive after-treatment for NOx, higher 

cycle by cycle variation, combustion 

chamber needs redesign. 

10-20% 385 

Atkinson/Miller 

cycle (CR+2) 

-lower pumping loss, high CR enabled, 

knock mitigation; 

-high boosting and variable valve timing 

required. 

5-12% 200 

Variable CR 

(CR+2) 

-high efficiency at low load, very effective 

coupling with Miller cycle; 

-high cost and complex. 

4-9% 125/350(b) 

Water injection 

(CR+2) 

-knock mitigation, high CR enabled, fuel 

enrichment avoided; 

-water consumption and corrosion. 

4-6% 
95/130/180

(c) 

Cylinder 

deactivation 

-pumping and heating loss reduction at low 

loads; 

-high noise, vibrations, cost, package. 

2-10% 200 

External EGR 

-knock mitigation, lower heat loss and 

reduced throttling loss and NOx; 

-high cycle by cycle variation, turbo 

matching and transient response problems. 

3-4% 115 

Multistage air 

charging 

-low end torque increase, downsizing and 

down speeding enabled, scavenging 

reduction, improved drivability; 

-cost, package and complexity control. 

12% 200/400(d) 

NOTE: (a) CO2 reduction values were from different literatures, which might be varied based on different 

evaluation criterion; (b) cost of two stage and continuous variable CR; (c) cost of port WI, fuel/water mixture 

injection and separated injection; (d) cost of two-stage turbocharging and eBooster. 

6 Other critical issues 1 

6.1 Alcohol/water injection  2 

WI systems using a mixture of water and alcohol with trace amounts of water-3 

soluble oil also have attracted interests of researchers. The water provides the primary 4 

cooling effect due to its great density and high heat absorption properties. The alcohol 5 

is combustible, and also serves as antifreeze for the water. The purpose of the oil is to 6 
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prevent corrosion of WI and fuel system components. The alcohol mixed into the 1 

injection solution is often methanol or ethanol [7]. 2 

6.1.1 Methanol/water mixtures 3 

Port injection of methanol-water mixtures is receiving increasing interest. Unlike 4 

the water injection alone, the presence of a second fuel allows the engine to meet higher 5 

performance. Moreover, the latent heat of vaporization of methanol is three times that 6 

of gasoline, which can further reduce the mixture temperature before the start of 7 

combustion. In addition, the octane number of methanol is much higher than that of 8 

gasoline. Since the laminar flame speed of methanol is higher than that of gasoline, 9 

burn rate is also expected to be improved, but the increased in-cylinder pressure level 10 

may potentially cancel out the mentioned anti-knock benefits [13]. As an energy source 11 

and a customer cost, methanol also has to be taken into account for the calculation of 12 

specific fuel consumption. 13 

Maintaining the same charge cooling effect in a 3D simulation model, Breda et al. 14 

[60, 147] compared different port injected MW (methanol/water) mixtures with 15 

methanol ratios ranging from 0 to 100% by mass fraction at 7000 rpm of a downsized 16 

gasoline engine. The spark advance was increased to preserve the knock safety margin 17 

as the baseline 100% gasoline case. As illustrated in Fig. 12, approximately the same 18 

IMEP is obtained for all the cases, with the pure water case having the lowest ISFC and 19 

the pure-methanol case having the highest ISFC. Breda et al. [60, 147] also indicated 20 

that MW mixtures may be a better choice at lower speed conditions due to the reduced 21 

charge temperature and turbulence intensity and higher evaporation rate of the methanol, 22 
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which should be further investigated. 1 

 2 

Figure 12. Comparisons of ISFC and IMEP with ported mixture injections of different 3 

MW ratios [147]. 4 

6.1.2 Ethanol/water fumigation 5 

Morsy et al. [148] assessed ethanol/water mixtures fumigation into the inlet air on 6 

the performance and exhaust emissions of a single cylinder diesel engine. The results 7 

indicated that NOx emissions tend to decrease with mixtures containing water and tend 8 

to slightly increase with pure ethanol fumigation. Slight improvements in thermal and 9 

exergy efficiencies with ethanol/water mixtures fumigation are found, which confirm 10 

the potential use of ethanol/water fumigation in diesel engines for better energy and 11 

exergy efficiencies and lower NOx emissions. In addition, the encountered weaknesses 12 

of increased CO and HC emissions could be partially resolved by using the right 13 

proportion of ethanol and water along with aftertreatment, e.g. using a DOC. 14 

6.2 Potential CO2 reduction 15 

Although effectiveness of the WI has been proved both experimentally and 16 
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numerically at high loads, its usefulness still needs to be quantified in terms of CO2 1 

emissions along a vehicle driving cycle. This information is indeed relevant at industrial 2 

level to estimate the real potential of the WI technique in contributing to meet actual 3 

and future CO2 emission targets.  4 

In order to quantify the impact of a WI strategy on fuel economy and CO2 emission 5 

over a real driving cycle, Bozza et al. [56] superimposed the engine operating points 6 

over a WLTC on a computed contour map of BSFC reduction with WI as shown in Fig. 7 

13. Evaluation results showed that the operating points that mostly contribute to the 8 

overall CO2 emission frequently lie in a region of null or very small BSFC improvement, 9 

and only a 0.61% reduction of CO2 emission is obtained. The lower fuel enrichment 10 

level and the largely incomplete water evaporation are the main reasons for the minor 11 

impact of WI at low speed points. 12 

 13 

Figure 13. Contour map of percentage decrease of BSFC due to WI and bubble chart 14 

of fuel consumption along the WLTC [56]. 15 

Hoppe et al. [94] evaluated the effects of WI with a CR of 13.5 and a Miller 16 

camshaft on driving cycles of NEDC (New European Driving Cycle), WLTChigh and 17 
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RTS (Standardized Random Test Sequence) 95. As shown in Fig. S4, the red spots 1 

indicate distributions of load points in the corresponding driving cycle. Due to the low 2 

share of load points above 10 bar BMEP in the NEDC, the fuel consumption reduction 3 

potential with WI is limited to 1.29%, and the water consumption is below 1L/100km. 4 

For the WLTChigh and RTS 95, which comprise higher power demands, the fuel 5 

consumption benefits are 3.08% and 5.53% respectively with increased water 6 

consumptions. In addition, the water consumption is relatively small compared to the 7 

fuel consumption in a real driving cycle. 8 
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 1 

Figure S4. Fuel share diagrams, fuel and water consumption with/without water 2 

injection for NEDC, WLPChigh, and RTS 95 [94]. 3 

6.3 System integration on the gasoline engine 4 

BMW produced the limited edition M4 GTS vehicle powered by a turbocharged 5 

inline six-cylinder gasoline engine with water injection for increasing specific power, 6 

and experiences gained on the road and on racetracks have confirmed the system 7 
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robustness [79]. However, providing water for the onboard operation still brings some 1 

new issues regarding the water tank size, onboard water recovery, required water quality, 2 

bio-decontamination and protection against filling with wrong liquid.  3 

The water consumption depends on both the engine/vehicle character and the 4 

customer's driving profile. Furthermore, the water requirement is also a function of the 5 

ambient temperature, and more water is consumed in a warm climate than under cold 6 

conditions. Three possible solutions including refilling by the user, A/C condensation 7 

& rainwater harvesting and exhaust gas condensation are possible for the required 8 

amount of water [79, 96]. The first one is the most promising because it is cheap and 9 

accepted by the end-customer. Detailed customer surveys conducted in Germany and 10 

USA, which were commissioned by Bosch, indicated that the end-consumers were 11 

willing to refill distilled water at an interval of 6000 km [96]. The other solutions are 12 

being developed to minimize the end-user impact and refilling costs. If the WI is 13 

combined with the latter two water supply technologies, the trade-off considerations 14 

between water and fuel consumption can be mitigated or even avoided [94].  15 

Condensing water from the air conditioning system is also a simple approach. 16 

Investigations have shown that the pH value of the recovered water does not drop below 17 

6 with even low air quality, which means corrosion of engine components is not a 18 

problem. The disadvantage of this system is that no water recovery is possible in cold 19 

environmental conditions, despite the fact that the water requirement is also low.  20 

To condense water from the exhaust gas, a temperature of approximately 40~56 21 

˚C would need to be achieved to fall below the dew point depending on the pressure 22 
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level and the relative AFR. Barros et al. [149] designed a water recycle loop from the 1 

exhaust gas and stated that the exhaust temperature out of the heat exchanger is 2 

inversely proportional to the amount of water recaptured. At high engine speeds, a 3 

higher flow velocity tends to carry moisture with the flow before there is a chance to 4 

condensate the water vapor. Sun et al. [80] tested three different water separation 5 

prototypes including a passive cyclone separator, a passive membrane separator and an 6 

active separator on a low-pressure EGR engine. Evaluations of the condensate 7 

collection efficiency with different separators, at different locations (after the EGR 8 

cooler or charge air cooler), pressure drops and condensate quality were conducted in 9 

detail, which showed the potential of water recovery from gasoline engine exhaust for 10 

future implementations of water injection. Another disadvantage of the system is the 11 

low pH value of the condensate as a result of acid formation in the exhaust gas. Sun et 12 

al. [80] also indicated the use of high-sulfur fuel results in a more acidic condensate 13 

with the pH value ranging from 2.8 to 4, which leads to significant corrosion on the 14 

components of the injection system and the basic engine. With the use of low-sulfur 15 

fuel, the collected condensate has pH of 6.5~8.5 depending on the collecting location. 16 

Moreover, this system requires large installation space, and its complexity also leads to 17 

higher costs. 18 

In addition, an efficient on-board diagnostic strategy needs to be developed for WI 19 

applied on the vehicle, which should ensure that a minimum allowable level of water is 20 

available and also trigger conventional knock mitigating strategies with WI failing [26]. 21 

Unlike a fuel tank, a water tank provides an environment in which microorganisms can 22 
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exist, which brings a new problem of avoiding biogenic deposits. Water tank heating 1 

and chemical disinfection are possible solutions. Another major concern of WI is the 2 

possibility of oil dilution in the engine crankcase caused by a poor water atomization 3 

especially with large injected quantities of water, and further damage or wear to the 4 

engine may be problematic in a long-term lifespan of the ICEs [56]. Finally, although 5 

neither misfire nor unstable combustion was observed with WI in any of the published 6 

works, the requirement of an improved ignition system for the SI engine may need to 7 

be considered for a fast and safe ignition of the cylinder charge [44]. 8 

7 Conclusions and future research directions 9 

Water injection, with an effective cooling effect for the in-cylinder combustion 10 

process, has attracted extensive attentions in recent years due to the potential knock 11 

mitigation and NOx reduction. This paper provides a critical review of the current state 12 

of the art research on this technique. After detailed introductions of water injection and 13 

evaporation processes, mechanisms of the in-cylinder combustion with water addition 14 

were discussed thoroughly. An in-depth survey of WI applied on different types of ICEs 15 

was then conducted followed by the comparisons and combinations of WI with other 16 

engine techniques. Finally, some critical issues were addressed.  17 

From the above discussions, the following conclusions are obtained: 18 

(1) Wall film formation that reduces charge cooling and premature vaporization 19 

outside of the cylinder are the main causes for the lower efficiency of the intake 20 

runner/port WI implementation, compared to direct or emulsion WI. An accurate 21 

evaluation of the water evaporation shows great importance of the design and 22 
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optimization of different WI systems, and also for an accurate calculation of the heat 1 

release rate. 2 

(2) For the CI engine, water addition from the “fuel side” has a positive effect on 3 

the combustion, while a small negative effect on efficiency is inevitable with the water 4 

addition from the surrounding “air side”. The dilution effect of WI is much larger than 5 

the thermal effect and chemical effect on the NOx reduction of the CI engine. Water 6 

directly injected into the combustion zone allows larger decreases of the combustion 7 

temperature and therefore the NOx emissions. This also benefits the NOx and PM trade-8 

off, where NOx reduction is possible without significant impact on PM. 9 

(3)  For the SI engine, water injection mainly slows down the laminar flame speed, 10 

but the combustion duration is not significantly affected when combined with an 11 

advanced spark timing with a small amount of injected water. Effects of WI on 12 

emissions of SI combustion should be considered with the engine operating conditions 13 

and the adjustments of other parameters like the spark timing and AFR. With the 14 

increase of WI amount and the decrease of fuel enrichment, HC and CO decrease 15 

simultaneously, but trends are different with WI under stoichiometric operating 16 

conditions. Variations of NOx and PM emissions also depend on both the amount of 17 

injected water and the in-cylinder air fuel ratio. 18 

(4) WI has been shown as a cost-effective approach for the downsized gasoline 19 

engine operating without fuel enrichment (lambda = 1), and the required water fuel ratio 20 

for stoichiometric operation depends on the WI implementation, engine specifications 21 

and driving cycles. Evaluating from an in-cylinder charge cooling point of view, using 22 
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the same amount of water, direct in-cylinder WI is the best choice, and port WI is better 1 

than the upstream WI. Injection pressure, timing and location of water should be 2 

optimized with consideration given to the water evaporation, combustion and emissions. 3 

In addition, the selection of WI implementations should be considered with respect to 4 

benefits, robustness, packaging and expenditure.  5 

(5) WI is a good alternative to EGR for introducing inert species into the cylinder, 6 

therefore mitigating knock combustion on the SI engine and reducing NOx emissions 7 

from the CI engine. A combination of WI and EGR can further decrease the NOx 8 

emissions in the CI engine, and PM emissions (smoke) also decrease compared to the 9 

sole EGR solution.  10 

(6) Combined with a high CR, multistage air charging system or Miller cycle, WI 11 

shows great potential on the SI engine for further downsizing, which has been shown 12 

to be a cost-effective approach to reduce CO2 emissions for the new generation of SI 13 

engines. The decreased TIT maybe used as an enabler for employing variable geometry 14 

turbines on the gasoline engine, and material costs on the turbocharger can be decreased 15 

due to the reduced thermal stress. 16 

It should also be stressed that water injection is still not a mature technique for 17 

commercial vehicles. Fundamentals of both thermophysical and chemical kinetic 18 

effects of water addition on combustion phenomena and emissions need to be further 19 

investigated with respect to different water injection implementations and engine types. 20 

In addition, only limited amount of studies regarding long term operation using water 21 

injection have been published, and friction analysis on piston ring and engine block, 22 
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carbon deposit on water injector, metal debris and water content on lubricating oil and 1 

corrosion analysis need to be further evaluated for water injection commercialization. 2 
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