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Abstract 

This paper reviews, for the first time, the measurement adsorption 

characteristics techniques to facilitate optimal testing of the validity of 

adsorbent materials in adsorption applications. Thermo-physical properties, 

adsorption characteristics and modelling techniques are presented. The 

characterisation of material thermo-physical properties includes true and bulk 

densities, specific heat capacity, surface area, pore volume distribution and 

thermal conductivity. The adsorption characteristics were categorized into 

adsorption isotherms and kinetics including experimental and theoretical 

equations. A range of models used in the simulation of adsorption cooling 
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systems is presented and discussed. The paper highlights the conditions for 

which each measurement technique is most suitable and the limitations of 

modelling techniques, which is a vital element in the robust assessment of the 

performance of adsorption cooling units. 

Keywords: Activated carbon; Adsorption cooling; Adsorption kinetics; 

Isotherms. 

1. Introduction 

Worldwide, building air-conditioning systems consume more than 15% 

of all generated electricity. Such significant electrical energy consumption leads 

to depletion of fossil fuel resources and production of greenhouse gases. Heat-

driven cooling systems utilize waste and/or renewable energy such as 

automobile exhausts and solar thermal energy to produce a cooling effect with 

correspondingly lower environmental impact. One such system is sorption 

cooling which has low global warming potential (GWP) and zero ozone 

depletion potential (ODP). In recent decades, absorption (liquid/vapour) cooling 

systems have become commercially available technology, but they still suffer 

from corrosion, toxicity and crystallisation of the working fluids. Adsorption 

cooling (solid / vapour) offers several advantages including relatively low 

electricity consumption (no circulating pump), low driving heat source 

temperature and high operational reliability due to the low number of moving 

parts [1-4].  
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Common adsorbents, which have been studied extensively and employed 

in adsorption cooling applications, include zeolite, silica gel and activated 

carbon [5-7]. The activated carbon materials have been used with various 

refrigerants to produce adsorption cooling systems for low-temperature 

applications [8-11]. Activated carbon pairs are proposed in this investigation 

because they have a large surface area and relatively low cost. These adsorbents 

are manufactured from natural materials and indicate promising performance 

through chemical modification of their surface characteristics. However, while 

the advantages of adsorption cooling systems are clear, there remains a number 

of sub-optimal characteristics such as low performance and relatively high 

specific volume. Accordingly, much recent research has been targeted towards 

improving the performance of adsorption cooling systems, including the 

identification of new adsorption pairs, the improvement of heat transfer 

coefficient of adsorbents, and the presentation of new applications for 

adsorption techniques [12-16]. There are accepted stages in the investigation of 

new adsorbents to determine sufficient data for the validation of performance 

and suitability in adsorption cooling applications. These steps include i) 

measuring their physical properties such as density, thermal conductivity and 

specific heat, ii) establishing their adsorption isotherms, iii) determining their 

adsorption kinetics, iv) simulating their duty in a modelled adsorption cooling 

system, and v) evaluating their application in an experimental adsorption 

cooling system. 
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Although the above five steps can be considered a suitably robust testing 

protocol for any new adsorbent, there is no agreed method for evaluating each 

of the five stages and therefore numerous different methods have been 

employed. The aim of the current review was therefore to present these different 

techniques for determining material thermo-physical properties, adsorption 

isotherms, adsorption kinetics, and computational modelling techniques with a 

specific focus on the use of activated carbon. 

 

2. Activated Carbon  

Activated carbon is a solid material used in granular or powder form, it is 

black in colour and has the general appearance of charcoal. It is prepared in two 

stages by, firstly, the carbonization of carbonaceous raw material which is 

treated in an inert atmosphere at temperatures below 800 °C, and secondly, the 

activation of the carbonized product [8] as shown in Fig. 1. In the first stage, the 

cross-linkages between carbon atoms are broken down in the absence of 

oxygen. At this stage, the adsorbent still has poor adsorbing characteristics as 

the pores are blocked by carbonization by-products [11]. However, during the 

activation process, an enhancement of the porosity is triggered by cleaning out 

of the pores, which occurs through three stages, namely carbonized surface 

cleaning and exposure to the activating agent, then burning of elementary 

crystals, and lastly, oxidation with a reduction in the total micro pore volume. 
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There is a wide range of activated carbon materials reported in the 

literature, which could be classified according to their (i) physical form, e.g. 

powders, pellets, or granules; (ii) original carbonaceous source, e.g. olive stones 

[10], oil palm biomass [11], guava seed-based, and coconut-shell; and (iii) 

carbon activation methods, e.g. activation by gases or chemicals [6]. Activated 

carbon has a non-polar or slightly polar structure, which facilitates adsorbing 

non-polar and slightly polar organic molecules (e.g. ammonia, ethanol and 

methanol) to a level that is higher than other sorbents. Also, the heat of 

adsorption, or bond strength, is generally lower in the case of activated carbon 

compared to other sorbents [6]. Fig. 2 presents the adsorption characteristics of 

activated carbon materials with ethanol, carbon dioxide, HFC134a and 

methanol with adsorbent  Maxsorb III that has a surface area of 3045 m2/g 

(manufactured by Kansai Coke and Chemicals Co. Ltd) .  Due to the slow 

kinetics of Maxsorb III–ethanol pair, it is a candidate adsorbent for solar 

adsorption cooling where cycle time effect has low importance. 

3. Thermo-physical Properties 

Physical properties of adsorbent materials, such as their particle size 

distribution, porosity, permeability, density, specific heat capacity, surface area, 

pore volume distribution and thermal conductivity, have been shown to 

influence their adsorption uptake and kinetic capacity [6, 17]. The ability to 
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measure such properties is therefore necessary for the development of adsorbent 

materials and their applications as discussed below. 

3.1 Particles size distribution and porosity 

Powder porosity refers to the voids within the powder bed including 

spaces between agglomerates, between primary particles, and micro-spaces 

(micropores) within the particles. Powders with irregular shaped particles and 

anisometric particles (elongated or flattened shaped particles) have been 

reported to have more porosity than spherical shaped particles [18]. Powder 

porosity (ε) is correlated to powder bulk density as (porosity = 1 - (bulk 

density/true density)).  

Particles with low density and high porosity have weaker interparticle 

Van der Waals forces. In contrast, powders with increased bulk densities and 

decreased porosities have higher cohesive forces due to the increase in the 

number of interparticle contacts. Particle porosity can be measured using 

mercury intrusion measurements [20]. The principle of this technique is based 

on the fact that mercury does not wet most substances and hence it will not 

penetrate pores by capillary action but must be forced into the pores by the 

application of external pressure. The required equilibrated pressure is inversely 

proportional to the pore size. Mercury porosimetry analysis is the progressive 

intrusion of mercury into a porous structure under stringently controlled 

pressures. The MIP instrument generates volume and size distributions from the 
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pressure versus intrusion data. Mercury porosimeter analysis is recommended 

for macroporous adsorbents. Gas adsorption is used for mesopores and 

micropores measurements where nitrogen or carbon dioxide is injected into the 

pores instead of mercury [21].  

Several techniques could be used to determine particle size distribution of 

adsorbent materials. For example, the sieving method employs several mesh 

sizes fitted placing the large meshes on top of the smaller mesh sizes. Each 

mesh holds adsorbent particles above a certain size. Following sieving, the 

weight of the powder held on top of each sieve size is recorded to get particle 

size distribution. In general, particle sieving is ideal for particles larger than 75 

µm and is not suitable for particles smaller than 38 µm due to particle 

cohesiveness. Sieving could be performed wet or dry, by hand or by machine. 

Mechanical sieving is preferable for non-cohesive powders, whereas air-jet 

sieving is more suitable for cohesive powders [22]. In general, sieving results in 

particles larger than the sieve holes’ diameters, especially for elongated 

particles.  

Other techniques include scanning electron microscopy (SEM) [23], 

sedimentation methods, opto-electrical sensing, laser diffraction, and photon 

correlation spectroscopy. In SEM, a focused beam of high-energy electrons 

interacts with atoms in the sample, generating a variety of signals at the surface 

of the solid sample. The signals derived from electron-sample interactions 
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reveal much information including the particle size. Qualitative particle size 

determinations could be obtained by investigating an area having a particular 

number of particles and measuring the diameter by using the scale bar presented 

in the images. Sedimentation methods are based on the dispersion of the 

material particles in a liquid. Particles are allowed to settle and then the particle 

size is taken as a function of time. In the optical and electrical sensing zone 

method (Coulter Counter), electrical impedance (resistance) generates a voltage 

with an amplitude proportional to particle volumes in an electrolyte as they pass 

through an orifice. Laser diffraction methods use a laser beam that passes 

through a dispersed particulate sample, and the particle size distribution 

(ranging from 0.02 µm to 2000 µm) is measured from the angular variation in 

the intensity of the scattered light. Large particles scatter light at small angles 

relative to the laser beam and small particles scatter light at large angles. The 

angular scattering intensity data are analysed to calculate the size of the 

particles responsible for creating the scattering pattern. Finally, photon 

correlation spectroscopy (1 nm to 5 µm) measures the Brownian motion of fine 

particles as a function of time. A laser beam is scattered by particles in 

suspension. The diffusion of particles causes rapid fluctuations in scattering 

intensity around a mean value at a specified angle. From the scattered light 

intensity signal, information about the Brownian motion of the particles and 

subsequently their size is obtained. Laser diffraction does not take into account 

the apparent particle density and dynamic shape factors. Additionally, particles 
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with irregular surfaces result in high-angle scattering that could be interpreted 

as small particles. Therefore, the diffracted light can change with the orientation 

of non-spherical particles, and thus the results may not be a true representation 

of the actual size, especially for irregular shaped (e.g. elongated) particles. 

Possible alternatives include the use of size estimations obtained by SEM as 

discussed previously. Nevertheless, it should be acknowledged that laser 

diffraction gives volume-weighted size distribution estimations whereas SEM 

gives number-weighted size estimations. Table 1 summarizes the advantages 

and disadvantages of the foregoing techniques. Choosing a method for particle 

sizing depends on several factors such as the nature of the material to be sized, 

the estimated particle size distribution, the intended use, and cost. 

 

3.2 Permeability 

Permeability is an important characteristic for ensuring good refrigerant 

mass transfer through the packed adsorbent materials and the recommended 

permeability should be better than 10-12 m2 [24]. Low permeability values result 

in high-pressure gradients and high mass-transfer resistance [25]. Usually, the 

experimental pressure drop and flow velocity are correlated with the 

permeability using the Darcy model [26] or Ergun model [27]. As velocities 

increase, discrepancies between experimental data and Darcy’s law calculations 

appear; in such cases, the Ergun model would be more accurate. Increasing the 
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particle diameter increases the permeability but decreases the adsorption 

kinetics; there is an optimal particle diameter for the maximum cooling power 

output as given by Hongyu et al. [28]. Experimental facilities for measuring the 

permeability typically use a differential pressure sensor and velocity 

measurement device as presented in Fig. 4.  

 

3.3 True and bulk densities 

The bulk density (or apparent density) is defined as the density of a large 

volume of porous material powder including the pore spaces within the material 

particles in the measurement volume. The bulk density can be measured using 

calibrated graduated cylinders filled with an accurately weighed specimen 

material [20].  

True density (density of the pure solid material excluding both internal 

and external voids) is typically determined using a helium pycnometer. A 

defined volume of helium fills the pores in the chamber containing the sample, 

thus establishing their volume contribution in the measurement. Table 2 

presents the bulk and true densities of activated carbon materials. True density 

measurements have been performed using a Quantachrome Ultrapyc 1200e 

helium pycnometer with vacuum purge option. Before analysis, the samples 

were cleared of contaminants (e.g. water) or trapped air by evacuation [20]. 

Bulk density is a powder characteristic whereas true density is a particle 
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refadseff xCCCp � 

characteristic. An activated carbon powder with a higher powder bulk density 

value indicates that there is a higher number of contact points between particles 

within this powder. A decreased bulk density for an activated carbon powder 

indicates that this powder has a higher specific surface area. 

3.4 Specific heat  

The specific heat is the amount of heat required to raise the temperature 

of unit mass of the sample by one degree Celsius. Highly conductive materials 

exhibit low specific heat capacity values. The specific heat capacity can be 

measured using differential scanning calorimetry (DSC) [20]. The measured 

heat flow is the product of the mass and specific heat capacity and heating rate, 

then the specific heat can be calculated using the previously measured stated 

parameters. For example, Table 2 presents DSC measurements conducted at a 

heating rate of 0.5 K/min with a maximum heating temperature of 130 ˚C. 

Adsorbent material heat capacity can be used to determine the effective specific 

heats of the adsorbent/refrigerant pair at different uptake values under isosteric 

conditions as shown by Eq. 1 [29-31]: 

                                                                                       (1) 

where Cref is the refrigerant specific heat, Cads is the adsorbent specific heat and 

x is the adsorption capacity in kg/kg. 

3.5 Surface area and pore volume distribution 
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Surface characteristics such as surface area, pore size and volume of any 

material refer to the properties associated with its surface geometry and may 

ultimately determine its uptake. A range of different methods is used to measure 

the various surface properties. Many methods are based on the isothermal 

adsorption of nitrogen. The surface area of porous materials is usually measured 

either according to the Langmuir’s theory or Brunauer Emmet and Teller (BET) 

theory. 

The Langmuir model is based on the maximum amount of adsorbate (usually 

nitrogen) adsorbed per gram of adsorbent for the formation of a monolayer. The 

molecular weight of the adsorbate and knowledge of the approximate contact 

area of an adsorbate molecule facilitate the determination of surface area of 

adsorbent. The most common and reliable BET method employs the adsorption 

of nitrogen, CO2, argon or krypton on the adsorbent samples [20]. The BET 

equation is used to give the volume of gas needed to form a monolayer on the 

surface of the sample. The actual surface area can be then calculated using the 

size and the number of the adsorbed gas molecules. The Langmuir surface area 

is always higher than the BET surface area, as the Langmuir equation considers 

the monolayer as the limit of adsorption while the BET equation is based on the 

concept of multilayer adsorption with regards to the monolayer. Other, less 

commonly used, methods for determining the surface area have been presented 

including the free surface energy method of Fu and Bartell and the uniform 
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circular capillaries method [32]. In this method, samples are pretreated by 

applying some combination of heat, vacuum, and/or flowing gas to remove 

adsorbed contaminants acquired (typically water and carbon dioxide) from 

atmospheric exposure. The solid is then cooled, under vacuum, usually to 

cryogenic temperatures (77 K, -195 oC). An adsorptive (typically nitrogen) is 

dosed to the solid in controlled increments. After each dose of adsorptive, the 

pressure is allowed to equilibrate and the quantity adsorbed is calculated. The 

quantity adsorbed at each pressure (and temperature) defines an adsorption 

isotherm, from which the quantity of gas required to form a monolayer over the 

external surface of the solid is determined; with the area covered by each 

adsorbed gas molecule known, the surface area can be calculated.  

Powder specific surface area has been related to particle size distribution, 

surface energy, surface roughness, bulk density, crystallinity, and electrostatic 

charge. Particles with a higher surface area show higher moisture uptake [33]. 

The surface area also depends on the size of the pores, which can be measured 

using the density functional theory (DFT) where the pore size can be 

determined by the observed peaks in the pore size distribution [20] as presented 

in Fig. 5. In this figure, two peaks are observed: the first one is for the small 

pore width 0.32 nm while the second peak is related to the large pores with 

width 0.5-0.7 nm. Such volume distribution can be linked to the adsorption 

capacity of the material where the pore size affects its adsorption ability for a 
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particular refrigerant [20]. For example, methanol is better adsorbed by 

activated carbon compared to silica gel where activated carbon pore size is 

dominated by pores less than 2 nm while the silica gel includes a wider range of 

micro and mesopores as shown in Fig. 6. 

3.6 Thermal conductivity 

Thermal conductivity is an indication of the degree to which a material 

can conduct heat. It describes the transport of energy in the form of heat through 

a body as the result of a temperature gradient. It is a crucial parameter as it 

controls the heat transfer to the adsorbent materials during the adsorption and 

desorption phases and the operating cycle time.  

Thermal conductivity is determined either using steady-state or transient 

techniques. The transient technique is more suitable for adsorbent materials to 

take into account the short cycle time used in adsorption cooling applications. 

The development of experimental facilities that can measure the thermal 

conductivity of dry adsorbent are reported in Çağlar [34], while measurements 

of wet adsorbent under vacuum are reported by Wang et al. [35], Dawoud et al. 

(using 4A zeolite/water with thermal conductivity less than 0.26 W/m.K) [36], 

Freni et al. (water /composite SWS achieving conductivity of 0.2-0.3 W/m.K) 

[37] and Gurgel et al. [38]. In the dry measurement approach, an effective 

thermal conductivity model should be used to combine the adsorbent and 

refrigerant conductivities. The facilities for measuring the conductivity of dry 
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adsorbents include infrared detectors as used by Zhao et al. [29], Jiang et al. 

[39] and Zhao et al. [40] and shown in Fig. 7; and transient plane source 

methods (TPS) as used by Hu et al. [41]. An infrared detector is used to 

measure the corresponding temperature rise of the sample due to timed 

exposure to laser light on the surface; the increment of temperature versus time 

curve can then be drawn. The thermal diffusivity is determined by thickness of 

the testing samples and time required for raising the sample temperature 

(thermal conductivity = calculated thermal diffusivity x sample specific heat x 

sample density). The Transient Plane Source technique typically employs two 

sample halves, in-between which the sensor is sandwiched. Normally the 

samples should be homogeneous. During the measurement, a constant electrical 

effect passes through the conducting spiral, increasing the sensor temperature. 

By recording temperature with time response of the sensor (the mean 

temperature change of the sensor is defined in terms of the dimensionless 

variable of time and thermal diffusivity), the thermal diffusivity and thermal 

conductivity of the material can be calculated. The conductivity (expressed in 

terms of measured heat flux and adsorbent thickness, following Fourier’s law 

[5]) of wet adsorbent material using a hot wire method (with refrigerant under 

vacuum (Fig. 8) depends on both the operating temperatures and pressures. 

Measuring the thermal conductivity through the wet approach is more desirable 

and accurate compared to the dry method as the latter approach requires 

assumptions of mixing rules, such as those described by Maxwell-Eucken, 
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between the refrigerant and the solid material. Such assumptions may lead to a 

degree of uncertainty in the effective adsorption bed thermal conductivity. 

 

 

4. Adsorption characteristics 

This section discusses the current techniques used to measure material 

performance, including isotherms and kinetics. The major parameters that 

influence the performance of adsorbent materials are capacity, selectivity, 

ability to regenerate, kinetics, cost, and the minimum regeneration temperature 

of an available heat source [6]. 

Many refrigerants have been used with activated carbon materials in 

adsorption systems research, including ammonia, methanol, ethanol, carbon 

dioxide (Table 3). Ammonia has a large latent heat of vapourization tested with 

activated carbon [30, 63] or composites [64] adsorbents. It has been shown to 

work at low temperature in ice makers but it is flammable and toxic. 

Hydrocarbons such as butane and propane have been investigated by many 

researchers [30,65]. The main disadvantages of hydrocarbons are their low 

latent heat and modest uptake which makes their performance very low and 

unattractive for adsorption systems. Methanol has a good latent heat (1224 

kJ/kg) and methanol/activated carbon uptake is nearly twice that of water/silica 

gel resulting in similar cooling capacity [66]. Ethanol has moderate latent heat, 
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nearly three times than that of HFC134a, Carbon dioxide, butane, and propane 

and nearly 80% that of methanol. It is non-toxic and flammable but operates 

under desorption temperatures lower than 120 qC without problems regarding 

flammability. Although carbon dioxide is natural, non-toxic, non-flammable, it 

has a very high operating pressure that can be up to 7 MPa. Much of the 

existing published literature on the use of carbon dioxide is related to 

developing adsorption isotherms [67-69] or theoretical cycle analysis [70]. 

Pressure swing adsorption cooling has been accomplished using carbon dioxide 

and activated carbon by Anupam et al. [71], achieving lower temperatures 

below 0 qC with a large number of cycles (compression combined with 

adsorption, bed cooling, desorption combined with expansion). Although 

HFC134a has been investigated by many authors [72-74], it has high global 

warming potential (GWP) that will restrict its future usage. Ramji [55] 

compared the trend of chilled fluid temperatures of different refrigerants with 

the same kind of activated carbon as shown in Fig. 9. 

Several authors tested pure refrigerants, hydrocarbons and refrigerant blends. 

Ismail et al. [42] tested Maxsorb III with several refrigerants: R32, R507, R290, 

and R134a. They concluded that R-32 produced the highest specific cooling 

capacities at high chilling and low ambient temperatures. Attalla et al. [43] 

measured the Granular GAC/R134a performance in circular tube heat 

exchanger adsorber with fins. Measurements showed that large uptake of R134a 
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(up to 1.92) was observed with GAC activated carbon after 1200 sec. Shmroukh 

et al. [51,52] tested several activated adsorbents in both granular and powder 

forms, i.e. R-134a, R-407c, R-507A. Measurements showed that ACP/R-134a 

pair is highly recommended for use as an adsorption refrigeration working pair 

because of its higher maximum adsorption capacity compared to other tested 

pairs. Habib et al. [54] simulated an 8 kW unit with AC/R134a. A single-stage 

chiller was superior when the heat source temperature was relatively higher 

(above 75˚C), however, when the regeneration temperature was at or below 

55˚C, the two-stage chiller would still operate. Ramji et al. [55] tested 

water/ammonia/methanol with activated carbons. Their simulations showed 

activated carbon-water pair to yield the highest COP of 0.58 due to the high 

heat of evaporation. Habib et al. [56] investigated the adsorption uptakes of 

ACF/Ethanol, AC/Methanol and water/silica gel. ACF/ethanol showed the 

highest adsorption uptake followed by AC-methanol and silica gel-water pairs. 

Silica gel-water showed the highest COP value of 0.5 when the regeneration 

temperature was below 70 °C; however, the COP of the ACF-ethanol based 

adsorption cycle was found to be the highest when the regeneration temperature 

was above 70 °C. Jribi et al. [57] simulated a novel CO2 / Maxsorb III 

adsorption chiller with 1.72 kW of cooling power at a driving heat source 

temperature of 85 °C and with 80 kg of adsorbent. Further to his investigation, 

the author investigated [58] a new pair AC/HFO1234ze(E) as an alternative of 

AC/R134a with slightly better performance (COP of 0.15) at low regeneration 
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temperatures of 70 qC. Askalany et al. [61-62] investigated Maxsorb III and 

ACF with R410A and R32, respectively. Maxsorb uptake capacity (up to 1.8 

kg/kgads) was higher by 1.6 times than that of ACF. 

Other authors focused their testing and simulations on ethanol and methanol 

activated carbons. Miyazaki et al. [44] investigated chemically treated 

Maxsorb/Ethanol and recommended that the time length of the adsorption 

process should be longer than that of the desorption process for the maximum 

SCP. An SCP of 140 W/kg with COP of 0.48 was predicted by simulation with 

the temperature conditions of 80 ºC for hot water, 30 ºC for cooling water, and 

14 ºC for chilled water. Habib and Saha [45] simulated AC fibre ACF-

20/ethanol pair in a lumped analysis for an adsorption chiller driven by solar 

energy for the hot climate of Malaysia. Chekirou et al. [46] tested AC-

35/Methanol in a solar cooling system and found that the optimal thermal 

performance coefficient COPth was achieved at internal adsorber radius R2 of 60 

mm. Rowe KC [47] simulated a 4-bed chiller with AC-35/Methanol with COP 

of 0.33 and SCP of 327 W/kg. Phenol resin based activated carbons were found 

to adsorb up to 1.2 kgethanol/kgads as reported in Jerai et al. [48]. Hassan [49] 

developed a simulation model for a refrigerator performing at a COP of 0.6 for 

AC/Methanol pair. Multi-cycle using zeolite and activated carbon in the upper 

cycle developed by He et al. [50] reported a COP of 0.4. Umair et al. [53] 

simulated the performance of activated carbon fibre/Ethanol for a solar cooling 

refrigerator. Uddin et al. [59] and El-Sharkawy et al. [60] tested different 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

versions of chemically modified activated carbons with ethanol. The adsorption 

capacity of H2 treated Maxsorb III/ethanol was slightly higher than that of the 

parent Maxsorb III/ethanol pair while the KOHeH2 treated Maxsorb III showed 

the lowest adsorption capacity. 

A review of the recent literature reveals that ethanol/modified activated 

carbon for low cooling temperature applications is a popular focus of research, 

mainly due to the non-toxicity, low-flammability, and environmentally benign 

nature of ethanol. A number of such modified activated carbon materials have 

uptakes approaching 1.2 kgethanol/kgadsorbent [48, 59, 60]. 

4.1 Adsorption isotherms 

A range of experimental methods is used to determine adsorbent material 

isotherms including gas flow, volumetric, and gravimetric methods [75, 76].  

In the gas flow technique, helium is used as the carrier gas and the partial 

pressure of adsorbate is determined by the gas flow meter. The volume 

adsorbed by the adsorbent is determined from the peak area in the 

adsorption/desorption chart recorded over time by a potentiometer. This 

apparatus is simple, inexpensive, easy to handle, requires no vacuum, and 

available gas chromatographers can also be modified for this approach. 

However, the measurement of the adsorbed amount is indirect and the method 

does not claim high precision.  
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In the volumetric technique, the adsorbent is placed in an evacuated 

chamber and the charging chamber includes the initial charge of refrigerant. 

Regulating flow between two chambers and the application of the ideal gas can 

be used to determine both kinetic and equilibrium adsorption isotherms as 

presented in Fig. 10. The volumetric method has the advantage of simplicity of 

design and cost effectiveness. Disadvantages of the volumetric method include: 

i. Several grams of sorbent material are needed for the volumetric 

measurements because only considerable changes in the gas pressure, 

caused by adsorption, can be observed. If only tiny amounts (e.g. several 

milligrams) of the sorbent are available gravimetric measurements are 

then strongly recommended.  

ii. Gas adsorption processes may last for various times according to the 

adsorbent material. Therefore, one can never be certain that equilibrium 

in a volumetric experiment has been realized unless control and alarm 

units are utilized to check the adsorption process condition.  

iii. The hot dry sample weight could have some uncertainties during handling 

and packing of adsorbent inside the bed, although this uncertainty is 

usually less than 1%. 

In gravimetric techniques, the weight of a sample is measured by a 

microbalance located inside a vacuum system and isolated from the 

surroundings. A furnace heats the sample. The gas can be purged into the 
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system, and then adsorption occurs. The balance measures the weight change of 

adsorbent directly as illustrated in Fig. 11. Isotherms can be obtained directly at 

different pressures and temperatures. The gravimetric method has the following 

advantages in comparison to the volumetric methods. 

i. Microbalances commonly exhibit high reproducibility, sensitivity, and 

accuracy, hence they allow an accurate determination of the adsorbed gas 

masses.  

ii. For highly sensitive microbalances (e.g., Thermo Cahn, Hiden, Mettler 

Toledo, Rubotherm, Setaram, TA Instruments, VTI) only tiny amounts of 

sorbent materials are needed to measure gas adsorption equilibria. 

iii. Microbalances with a data recording system allow one to observe the 

process of approaching equilibrium. Such measurements deliver 

information concerning the kinetics of the adsorption process. 

iv. Contrary to the volumetric method, very high and very low pressures of 

the sorptive gas can be accommodated in gravimetric measurements.  

v. Modern microbalances allow recoding weight data every tenth of a 

second. If the kinetics of a pure gas sorption process is slow compared to 

this time, it can be easily recorded.  

vi. In practice, the activation of a sorbent material can be accomplished more 

easily in gravimetric sorption instruments compared to other instruments. 
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In gravimetric methods, the mass of the sample can be recorded during 

the activation process.  

 
Disadvantages of the gravimetric approach include: 

i. Complexity where modern microbalances, especially the magnetic 

suspension balances, are used. These devices are complex systems in 

their design and regular maintenance may thus be needed. 

ii. Oscillations of the microbalance caused by external vibrations e.g. road 

traffic. Also, fine grained sorbent materials, especially activated carbon 

fibres or powder, may cause problems as they may change their position 

within a vessel mounted to the balance or may simply be blown out of the 

vessel due to the sorptive gas flow. 

iii. In the case of the low-temperature measurements, such as those using 

liquid nitrogen (77 K), it is difficult to maintain temperature stability. 

Accordingly, the gravimetric method is commonly used at or above room 

temperature.  

iv. Mixture adsorption processes normally cannot be detected by simple 

gravimetric measurements. This is because the sorptive gas mixture must 

be circulated during the process to avoid local concentration gradients. As 

the gas flow inside the adsorption vessel causes dynamic forces acting on 

the sorbent sample, the balance recording is changed.  
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Isotherm data of different pairs were measured at different operating 

temperatures and pressures for various activated carbons pairs [12, 77, 78, 79]. 

El-Sharkawy et al. [12] tested ethanol/Maxsorb III with 72 micron mean 

particle diameter using a TGA reacting chamber shown in Fig. 12. The data 

were generated at an evaporation temperature of 15 °C and adsorption 

temperature range of 20-60 oC. Cui et al. [77] developed the isotherm for the 

composite adsorbent at 27 qC evaporating temperature using a high-vacuum 

gravimetric method. Ivanova et al. [78] tested ethanol treated zeolite with HCl 

solutions for concentrations up to 3%. Activated carbon fibre (A-20) and (A-15) 

isotherms were developed by El-Sharkawy et al. [79] through a specially 

designed apparatus where the amount of ethanol adsorbed at the equilibrium 

condition and the refrigerant level inside the evaporator were measured using a 

digital microscope with ± 0.01 mm resolution prior to and after each 

experiment. The mass of ethanol evaporated was calculated using the liquid 

level difference. 

4.2 Adsorption kinetics  

Numerous different techniques are available for the recording of 

adsorbed/desorbed mass transfer rates, including gravimetric, calorimetric, 

volumetric, and micro-flow controller techniques. In the gravimetric technique, 

the mass of adsorbent is measured directly using a microbalance with the 

adsorbate synchronised with the adsorption process. The gravimetric method 
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has been used in measuring the adsorption kinetics of ethanol onto eleven 

commercially available activated carbon species [80]. An electronic balance has 

also been used for the kinetics of water/composite adsorbent pairs which were 

synthesized from activated carbon, silica gel and CaCl2 [51]. Other methods 

have been reported which determine the weight of the bed by load cell with 

water/SAPO-34 pair [81, 82] where a voltage sensor output signal is calibrated 

against weight.  

The calorimetric concept relates the measured heat rate released due to 

the adsorption process to the mass adsorbed using thermoelectric devices. This 

concept has been used in many cases such as in the case of water adsorption on 

type A beaded silica gel particles bonded to aluminium [83]. A heat flux sensor 

is used in a calorimeter where water is adsorbed on a layer of zeolite (UOP 

DDZ 70) [84] or micro-calorimetric sensor using a Tian–Calvet-type micro-

calorimeter where water vapour is adsorbed on silica gel. 

In the volumetric method, the refrigerant is charged in a charging 

chamber and is recorded by several techniques, including recording of the liquid 

level using a digital microscope as ethanol is adsorbed onto Unitika activated 

carbon fibre (ACF) of types (A-20) and (A-15) [3]. Another method using a 

magnetostrictive level sensor has been employed for many working pairs such 

as activated carbon–methanol, activated carbon–ammonia, and composite 

adsorbent–ammonia [86]. The sensor incorporates a float sending magnetic 
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signals to the sensor end which outputs current or voltage in response to the 

liquid refrigerant level. 

Other investigators have utilized manual recording of the height level 

using a graduated transparent glass vessel such as that presented in [87-90] 

where ammonia is adsorbed on BaCl2 impregnated into a vermiculite matrix. 

Other concepts used include those based on expressing the liquid level as a 

function of the pressure difference of the liquid such as in the adsorption of 

ammonia on six samples of three types of adsorbents (consolidated AC with 

expanded natural graphite treated with sulfuric acid (ENG-TSA), consolidated 

AC with expanded natural graphite (ENG) and granular AC) with different 

densities and different grain sizes reported in [29]. Pressure readings were 

converted into pressure heads, which are used to express the adsorbed mass by 

converting the refrigerant level difference in a liquid column before and after 

adsorption into liquid volume which is multiplied by the liquid refrigerant 

density to determine the adsorbed refrigerant mass. 

In the constant volume variable pressure method, which has been used 

with AC/HFC134a and AC/HFC507a pairs, the mass of initial charge is 

measured and the mass transferred to the adsorbent chamber, which is tracked 

by pressure and temperature measurements and an equation of state [91]. 

In the large temperature jump method, the adsorption process is a 

simulation of the non-isothermal adsorption/desorption process such as 
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adsorbed water vapour on pellets of composite sorbent SWS-1L (CaCl2 in silica 

KSK) placed on a metal plate as presented by Aristov [92]. The kinetics are 

measured under simulated conditions similar to the real adsorption chiller 

operation where the sample is tested under an initial high temperature then 

suddenly cooled or reversed in condition.  

The micro-flow controller technique measures the flow rate of 

desorbed/adsorbed mass, and the integration of the flow rate over a period of 

time gives the refrigerant uptake such as composite adsorbents synthesized from 

zeolite 13X and CaCl2/water vapour pairs tested in [68, 93]. Figures 13 to 16 

present examples of these techniques. It should be mentioned that some of the 

presented techniques are conducted with only a few milligrams of a solid 

adsorbent such as microbalance techniques with 10 mg [80] or the heat flux 

sensor method introduced by Füldner [84]. Characterization of materials from 

tiny material quantity makes such techniques suitable for the characterization of 

expensive materials such as metal-organic framework (MOF) materials. Other 

techniques mostly employ volumetric methods and require larger material 

quantities, ranging from few grams to kilograms, e.g. load cell with 42 g [81] 

and up to 600 g [82].  

5. Adsorption cooling system analysis and modelling techniques  

Modelling of adsorption cooling systems is a very effective tool in the 

design and performance optimization of such systems. There are many 
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modelling techniques used to model adsorption cooling systems such as the 

lumped analysis [95-103] and the distributed-parameter simulation technique 

[104] where variations in uptake and temperature with space directions are 

taken into consideration. Recent advances in computers power and 

computational techniques, such as computational fluid dynamics (CFD), can 

solve heat, and mass transfer problems to obtain temperature distribution, 

velocity, pressure and refrigerant concentration levels in both transient and 

steady states, and can thus facilitate optimization the bed design of adsorption 

cooling systems [105-107]. 

5.1 Modelling of Adsorbent materials 

For adsorbent materials, modelling the adsorption characteristics is 

necessary for designing an efficient adsorption system. For adsorption 

isotherms, Aristov [108] correlated the material uptake in terms of sorption free 

energy ('F) [J/mol], in the following form: 

2*( ) ....x F a b F c F'  � ' � ' �                                                                                  (2) 

where x* is the equilibrium uptake and a,b,c are empirical constants found from 

fitting to experimental data. The Polanyi potential theory considers the 

adsorption process to be similar to that of condensation, and the adsorbed 

refrigerant state to behave like a liquid [108]. In this approach, complex 

isotherms can be recorded by dividing the isotherm into multiple curves with its 

own fitted constant in the mathematical form described in the above equation.  
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In 1916, Langmuir presented an isotherm model for gas adsorption onto 

solids [109]. It is a semi-empirical isotherm model derived from a proposed 

kinetic mechanism. The Langmuir model was originally developed to represent 

the behavior of monolayer adsorption [108]. The model is based on four 

assumptions: 

1) Uniform surface of the adsorbent where all the adsorption sites are 

equivalent. 

2) There is no interaction between the adsorbent molecules. 

3) All adsorption occurs by the same mechanism. 

4) At maximum loading, only a monolayer is formed: molecules of 

adsorbate do not deposit on other, already adsorbed, molecules of adsorbate, 

only on the free surface of the adsorbent. This model is expressed as; 
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x bP

 
�                    (3)  

in which, 

( )

0

adsH
RTb b e
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             (4) 

where  

x0 is an empirical constant that represents the maximum adsorption capacity in 

kg/kg, b0 is adsorption affinity at infinite temperature in 1/kPa, P is the bed 

pressure [kPa], 'Hads is the isosteric heat of adsorption in kJ/kg, R is the gas 

constant in kJ/kg and T is the temperature in K. The Langmuir equation has 

been modified by Tóth using a fitting parameter (t). The Toth equation contains 
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three fitting parameters, as a result it describes well many adsorption data for 

practical adsorbents. This model is expressed in Eq. 5 [110]. 
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where m is empirical constant determined from fitting the isotherm data. When t 

is equal to 1, the equation reduces to the Langmuir equation [75].  

The Dubinin–Astakhov (D-A) was reported as the most representative 

model for activated carbon adsorption [12,111]. The model has been developed 

mainly to describe the adsorption of gases in microporous adsorbents and is 

particularly appropriate for activated carbon with a large pore 

heterogeneousness. The heterogeneity coefficient (n) in such a model provides 

greater flexibility in fitting of the experimental isotherms compared to Dubinin–

Radushkevich in which the heterogeneity coefficient is fixed to a value of 2. 

The heterogeneity coefficient takes the effect of non-uniform pore sizes on the 

surface (n = 2) in the case of homogenous pore sizes [112]. The greater the 

value of the heterogeneity coefficient of a working pair, the higher the 

regeneration temperature required to release the refrigerant.  
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where xo [kg/kg], n, E [J/mol] are the empirical constants obtained from fitting 

isotherm experimental data. 

Usually, Langmuir and Dubinin–Astakhov (at high and low partial 

pressure ratios) models fail to predict the isotherms of mesoporous 

heterogeneous surfaces similar to water/silica gel [113]. The Langmuir model 

has limitations in fitting uptake data at high pressure and in the case of 

heterogeneous materials. Alternatively, the Tóth model is commonly used for 

heterogeneous adsorbents such as activated carbon because of its ability to more 

realistically represent behavior at both the low and high pressures. Dubinin and 

Astakhov proposed their model for adsorption of vapours and gases onto non-

homogeneous carbonaceous solids with wider pore size distributions [118]. 

The adsorption isotherms can be used to determine the heat of adsorption 

as shown in the following equation [108]:  
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T1 [K] and T2 [K] are two different operating points of the bed temperature on 

the same isosteric lines. For adsorption kinetics, several models are available in 

the literature to track the adsorption rate with time. The most commonly used 

model is the linear driving force (LDF) model. El-Sharkawy et al. [114] 

predicted the adsorption uptake using the modified LDF model to account for 
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both micropores and mesopores of the adsorbent materials that are described as 

follows: 

� �xx
R
DF

dt
dx

p

so � *2
                                                (9) 

where x*, x, Rp represent the volume averaged equilibrium uptake after a long 

time, the volume averaged instantaneous uptake, and particle radius 

respectively. Fo is the particle geometry constant and Ds is the surface diffusion 

coefficient [m2/s]. Other investigators utilized the particle diffusion approach by 

incorporating a Fickian model [78, 91] with analytical solutions as presented in 

Eq. 10: 
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where xin is the initial uptake of the adsorbent sample and n varying (1 to f). 

Constant 6 is for spherically shaped adsorbents. 

5.2  CFD modelling of adsorption processes 

Two CFD approaches are commonly used for simulating adsorption beds. 

The first approach is based on modelling the adsorbent material as a solid 

volume with porosity, whereas the second approach models the adsorbent 

material as physical particles and solves heat and mass transfer equations for 

each of these particles [105]. In the first approach, Sahoo et al. [25] used 

equations Eqs.11 to 15 to model an activated carbon adsorption bed used for 

methane storage.  
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where Ub is the bulk bed density Ug is the vapour density, ug is the vapour 

velocity in the bed, H is the bed porosity, t represents the time, �P is the 

pressure gradient, �T is the temperature gradient. K is the bed permeability, Cp 

is the specific heat, and Oeff is effective thermal conductivity of 

adsorbent/vapour porous material. Neglecting the unsteady, drag and viscous 

terms, the momentum equation (12) reduces to the Darcy form as:  

                                                                                

PKu
g
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                         (14)                                                                                                             

where the permeability K was calculated from: 

� �2
32

1150 H
H
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 pd
K                  (15)  

where dp is the particle size [m], The effective specific heat and thermal 

conductivity values were calculated as:  
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)1( HOHOO �� sgeff                  (18) 

where Ub  and Us  are the packing and solid carbon densities.            

Elsayed et al. [80] used the above CFD model with a modified thermal 

conductivity equation (Eq. 19) to simulate a flat plate adsorber bed packed with 

Maxsorb activated carbon/cooling water on the sides of plate exchanger (shown 

schematically in Fig. 17) with instantaneous uptake calculated from LDF model 

in the governing equations. 
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22

                 (19)       

where Os and Og are the solid adsorbent and refrigerant vapour thermal 

conductivities. 

The adsorbent layer thickness affects the size, cooling capacity and 

energy efficiency of adsorption machine. The amount of adsorbed refrigerant 

equals to the refrigerant uptake multiplied by the amount of the packed 

adsorbent material. As the adsorbent layer thickness increases, the mass of 

adsorbent material increases but the refrigerant uptake decreases due to the 

reduction in the bed permeability and the reduction in the effectiveness of 

cooling the adsorbent material. Fig. 18 presents the variation of specific cooling 

power of Maxsorb with time for various layer thicknesses. The use of large 

layer thicknesses reduces the specific cooling power significantly as the SCP 

decreased from 45 W/kg to 14 W/kg by increasing the packing depth from 5 

mm to 20 mm. It should be noted that the Darcy approach is accurate only in 
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cases where the velocity of vapour is low and where drag and viscous effects 

are negligible. Regarding the second CFD approach, Füldner and Schnable [84] 

used equations 20 to 23 to model the diffusion process inside a thin layer of 

zeolite adsorbent material. 

 ( ) b
eff

c xD c
t M t

U
H

w w
��� �  �

w w
                                                                                 (20) 

where C is the refrigerant concentration mol/m3 and Deff is the effective 

diffusivity [m2/s].  

Instead of using LDF model, the instantaneous uptake is directly related to 

temperature and pressure change: 

 

                                           (21) 

 where the pressure is related to concentration using ideal gas relations:  

TRCp universal **                           (22) 

The energy equation expressed by combining equations 21 and 22: 

� � � �eff b ad s b geff

T x dTCp T H Cp x
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w w
               (23) 

Freni et al. [105] used the same equations to simulate water vapour/silica gel 

granule adsorption where the effect of packing depth on the uptake and 

temperature distribution was investigated as shown in Fig. 19. Elsayed et al. 
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[107] used the same technique to simulate ethanol/Norit RX3 pellet adsorption 

as presented in Fig. 20. In the work of the previous authors, except Füldner and 

Schnable, the effect of interparticle resistance was neglected (mass transfer 

resistance in the vapour surrounding the particles i.e., constant pressure 

boundary conditions over bed surfaces were utilized). Such conditions of 

uniform pressure may not be satisfied if there was no good transfer of vapour 

from adsorber bed to evaporator/condenser [115, 116] as the pressure may be 

elevated in the bed during desorption process and desorber pressure starts to 

become higher than the condensation pressure. Such simplified assumptions 

could over-predict the uptake with adsorption process or under-predict the 

uptake with desorption operation as the pressure gradient between the vapour 

and particle surface was neglected by assuming no interparticle resistance. 

Recent research by Niazmand et al. [116] considered the diffusion effects in the 

bulk vapour where the optimal particle size was investigated. The use of 

particles with a smaller size results in faster adsorption kinetics but it reduces 

the bed permeability due to decreased interparticle voids. It should be 

mentioned that although this type of mathematical model is highly detailed, it 

requires significant computing time and resources. Regarding the diffusion 

resistance in the porous solid particle, the LDF model was found to be as 

accurate as the diffusion models in cases with a diffusion ratio (D/(r2.tads)) of 

more than 0.3, as clarified by Hong et al. [117]. 
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6 Conclusions  

The appropriate measurement of adsorption properties is a critical 

component in the investigation of new adsorption pairs and in the optimization 

of adsorption applications. Existing techniques for the measurement of these 

properties have been reviewed. The adsorption characteristics were classified 

into thermo-physical properties and adsorption characteristics. The thermo-

physical properties include particle size, sample porosity, permeability, true 

density, bulk density, specific heat, surface area, pore volume distribution and 

thermal conductivity. The techniques employed to experimentally measure the 

adsorption characteristics including adsorption isotherms and kinetics were 

discussed. Techniques of measuring kinetics were identified for the 

measurement of the performance of expensive materials where samples of only 

a few milligrams can be used. A range of equations was identified for the 

modelling of the adsorption characteristics, most notably, Langmuir, Tóth and 

Dubinin–Astakhov equations. LDF and Fickian equations have been used to 

model the adsorption kinetics. Additionally, CFD models used in the simulation 

of adsorption cooling systems were reviewed. The selection of kinetics 

techniques can be optimized based on cost and target sample to be measured.  

The linear driving force model was extensively utilized by researchers 

due to its ease of mathematical representation and reduced computational time 

taken to predict the adsorption kinetics. However, under circumstance where 
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there is difficulty of transporting the vapour between the bed and 

evaporator/condenser, such as bed designs with small gaps between packed bed 

and chamber walls that result in a large pressure differences between the 

adsorption bed and evaporator/condenser, it is desirable to utilize a diffusion 

model to record the local variation in vapour pressure close to porous solid 

particles.  

Chemically modified activated carbon surfaces represent a promising 

candidate for future applications, however further research is needed in the 

future to test such materials in full-scale adsorption units and to develop more 

efficient materials that are cost-effective in large quantities. 
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Fig. 1. Flow diagram of activated carbon production [9] 
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Maxsorb III-ethanol pair [12] Granular activated carbon/HFC134a pair [13] 

 
 

  
Clayperon diagram for AC/Co2 [14]          Maxsorb III/methanol [15] 

 
 

Fig. 2. Uptake of different carbon based pairs 
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(a) Sieving analysis (b) Photo sedimentation technique 

  

(c) Electrical sensing zone method (d) Photon Correlation Spectroscopy 

 

(e) Laser diffraction 

Fig. 3: Different techniques for measuring powder particle sizes. [23] 
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Fig. 4.  Permeability test facility [29] 
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Fig. 5. Methanol pore size distribution function for different carbon samples [20] 
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Fig. 6. Comparison of the pore volume for three different sorbents [17] 
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Fig. 7. Laser beam thermal conductivity measurement technique [29] 
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Fig. 8.  Hot wire thermal conductivity measurement technique  [37] 

 

 

 

 

 

 

 

 

 

 

 

 



10 
 

 
Fig. 9: Temperature distribution of chilled fluid in evaporator during cycle time for different 

refrigerants based on activated carbon. [55]
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Fig. 10. Volumetric technique for measuring adsorption isotherms [76] 
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Fig. 11. Gravimetric concept of isotherm measurements [76] 
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Fig. 12. TGA test facility [12]. (1)Evaporator; (2)Constant temperature water bath; (3) Water 
circulator; (4)TGA reacting chamber; (5)Helium cylinder; (6) Pressure regulator; (7) Valve; 

(8) To the vacuum pump. 
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Fig. 13.  Load cell sensor technique used by Ming [81] 
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Fig. 14.  Heat flux sensor technique used by Füldner and Schnabel [84] 

 

 

 

 

Fig. 15. Manual refrigerant liquid recording [88] 
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Fig. 16.  Measurements by electronic balance by Tso et al. [94] 
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Fig. 17. Plate type adsorber configuration for the CFD modeling [80] 
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Fig. 18. Chiller SCP at various adsorbent thicknesses [80] 
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Fig. 19. Water /silica gel uptake mapping for 20 s of simulation of adsorption process, 

calculated for a) one-grain, b) two-grain and c) four-grain configurations [105] 
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Fig. 20. Uptake, pressure, and temperature distribution in single adsorbent  NX3/Ethanol 

pellet at 400 s [107] 
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Table 1. Techniques to determ
ine the particle size. 

M
ethod  

A
dvantages 

D
isadvantages 

x Sieving Techniques 
x Ease of operation 
x W

ide size range 
x Inexpensive 

x R
eproducibility 

x W
ear/dam

age during use or cleaning 
x Irregular (e.g. elongated) particles: overestim

ation of size distribution 
x Labour intensive 

x Sedim
entation Technique 

x Equipm
ent required can be relatively sim

ple and inexpensive. 
x C

an m
easure a w

ide range of sizes w
ith accuracy and reproducibility 

x Sedim
entation analyses m

ust be carried out at concentrations that are 
sufficiently low

 for interactive effects betw
een particles to be negligible so 

that their term
inal falling velocities can be taken as equal to those of isolated 

particles 
x Large particles create turbulence - thus are slow

ed and recorded undersize  
x Particle re-aggregation during extended m

easurem
ents m

ay occur. 
x Precise tem

perature control is necessary to suppress convection currents  
x The low

er lim
it of particle size is set by the increasing im

portance of 
B

row
nian m

otion for progressively sm
aller particles 

x Particles have to be com
pletely insoluble in the suspending liquid 

x Electrical Sensing Zone 
M

ethod 
x True volum

e distribution 
x H

igh resolution 
x W

ide range of m
easurem

ent: particle diam
eter from

 approx. 0.5-400µ 

x N
eeds calibration  

x M
edium

 m
ust be an electrolyte 

x Low
 particle concentration 

x Errors w
ith porous particles 

x O
rifice blocking troublesom

e 
x Particles below

 m
inim

um
 detectable size go unnoticed 

x D
ifficult w

ith high density m
aterial 

x Laser D
iffraction 

x N
on-intrusive: uses a low

 pow
er laser beam

  
x Fast: typically <3 m

inutes to take a m
easurem

ent and analyse it 
x Precise and w

ide range up to 64 size bands can be displayed covering a 
range of up to 100,000:1 in size.  

x Easy to use. 
x A

bsolute m
easurem

ent - N
o calibration required (the instrum

ent is 
based on fundam

ental physical properties). 

x expensive 
x  volum

e m
easurem

ent - all other outputs are num
erical transform

ations of 
this basic output form

, assum
ing spherical particles 

x there m
ust be a difference in refractive indices betw

een particles and 
suspending m

edium
 

x particle size recordings are influenced by particle shape, surface roughness 
and orientation 

x Photon C
orrelation 

Spectroscopy 
x N

on-intrusive  
x Fast  
x N

anom
etre size rang 

x V
ibration and tem

perature fluctuations can interfere w
ith analysis 

x R
estricted to solid in liquid or liquid in liquid sam

ples 
x Expensive 
x N

eed to know
 viscosity values  



Table 2. Physical characteristics of AC samples [20] 

Sample 

 

Cp Bulk density 

g cm-3 

True 
density 

g cm-3 

Calc. porosity ε form 
Hg intrusion T/°C J g-1 K-1 

G32-H 

40 

80 

120 

0.86 

0.95 

1.05 

0.37 ± 0.04 2.174 ± 
0.002 

0.77 

RUTGERS CG1-3 

40 

80 

120 

0.84 

0.95 

1.05 

0.37 ± 0.04 2.139 ± 
0.002 

0.87 

Norit R 1 Extra 

40 

80 

120 

0.88 

0.95 

1.04 

0.42 ± 0.03 2.259 ± 
0.007 

0.84 

Norit RX 3 Extra 

40 

80 

120 

0.83 

0.97 

1.04 

0.37 ± 0.03 2.169 ± 
0.001 

0.75 

CarboTech C40/1 

40 

80 

120 

0.78 

1.0 

1.06 

0.38 ± 0.03 2.142 ± 
0.001 

0.82 

Carbotech A35/1 

40 

80 

120 

0.86 

0.95 

1.05 

0.33 ± 0.03 2.191 ± 
0.002 

0.88 

 
 

  

 



Table 3. Refrigerants, working temperatures and Specific Cooling Power (SCP) for 
adsorption refrigeration systems using activated carbon adsorbent.  

Author Pair Tevap 
[˚C] 

Tcond/ 
Tads[˚C] 

Tdes 
[˚C] 

SCP 
[W/kg] 

Ismail  et al. (2014) 
[42] 

 

R32 
R507 
R290 
R134a 

-5 to 20 
 

30 
 

85 
 
 

 
 

Attalla  et al. (2014) 
[43] 

 

Granular GAC/R134a pair 
(Characterization) 

 20-60  
60 to 105 

 

Miyazaki  et al.(2014) 
[44] 

 

Chemically treated 
Maxsorb/Ethanol 
(characterization) 

14 30 80 140 

Habib and Saha (2013) 
[45] 

AC fiber ACF-20/ethanol 14 30 85 12 [kW] 

Chekirou  et al. (2013) 
[46] 

 

AC-35/Methanol 
(Solar cooling) 

    

Rowe  et al. (2014) [47] 
 

Ac/Methanol 5 30/25 90 327 

Jerai  et al. (2015) [48] 
 

AC KOH-6/Ethanol     

Hassan (2013) [49] 
 

AC/Methanol -5 30 120  

He  et al. (2014) [50] 
 

Zeolite and AC combined 
cycle 

15 30 50 200 [W/L] 

Shmroukh  et al. (2013, 
2015) [51, 52] 

R-134a,R-407c, R-507A 
In both powder and 

granular form 

  80  

Umair  et al. (2014) 
[53] 

 

Activated carbon 
fiber/Ethanol 

   80 [KJ/kg] 

Habib  et al. (2013) 
[54] 

AC/R134a 14 30 70 8 kW 

Ramji  et al. (2014) 
[55] 

 

AC/Water 
AC/Methanol 
AC/Ammonia 

  120 0.98[kW] 
0.65[kW] 
0.5[kW] 

Habib  et al. (2014) 
[56] 

 

ACF/Ethanol 
AC/Methanol 

Silica gel/water 

14 30 85 Less than 20 
kW 

 
20 W 

Jribi  et al. (2014) [57] Co2/Maxsorb 15 27 to 37 50 to 95 1.7 kW 
Jribi  et al. 
(2013) [58] 

AC/HFO1234ze(E) 15 30 85 2 kW 

Uddin  et al. (2014) 
[59] 

El-Sharkawy  et al. 
(2014) [60] 

Maxsorb III 
KOH-H2 Maxsorb III 
H2 treated Maxsorb III 

-14 °C to77 °C 20 °C to 80 °C 

Askalany  et al. 
(2014) [61] 

Maxsorb III /R410A 
ACFiber A-20/R410A 

 10 °C to 50°C 

Askalany and Saha 
(2015) [62] 

Maxsorb III /R32 
ACFiber A-20/R32 

 25 °C to 65°C 

 
 
 



  

Table 4. Comparison of kinetic measurement techniques. 

Measurement 
technique  

Concept Sensors required Principals Direct Data 
logging 

Quantity of 
adsorbent 

Microbalance Gravimetric Sensitive Mass 
scale 

Direct mass 
measurements 

� Small quantities 
(few milligrams) 

Adsorption heat 
measurements  Calorimetric 

Heat flux sensor Adsorption heat 
converted to uptake  

� Both large and 
small quantities 

Thermoelectric Adsorption heat 
converted to uptake 

� Both large and 
small quantities 

Load cell  Gravimetric 
Load cell sensor Voltage output 

signal converted to 
uptake  

� Large quantities 

Liquid column  
 

volumetric 
 

Digital 
microscope 

Observed liquid 
column converted to 

uptake 

Manual 
recording of 

uptake 

Large quantities 

Magnetostrictive 
Liquid level 

sensor  

Liquid column 
converted to uptake 

� Large quantities 

transparent glass 
vessel 

Observed liquid 
column converted to 

uptake 

Manual 
recording of 

uptake 

Large quantities 

Pressure 
differential sensor  

Pressure difference 
converted to uptake 

� Large quantities 

constant volume 
variable pressure 
method 

Volumetric 

Pressure and 
temperature 

sensors 

Equation of state 
utilized to track the 

adsorbed mass under 
isothermal 
conditions 

� Large quantities 

large temperature 
jump 

Available 
both 

Gravimetric 
and 

volumetric 
versions  

Pressure and 
temperature 

sensors 
(volumetric) 

Load cell 
(gravemtric) 

Non-isothermal 
adsorption kinetics 

similar to real 
adsorption chiller 

operation 

� Small and Large 
quantities 

 

Mass transfer from 
evaporator/condenser 
chamber to 
adsorber/desorber 
chamber  

Mass flow 
integration 

Micro-flow 
controller 
technique 

Integration of mass 
flow through the 
mass controller 

� Large and small 
quantities 

 

 



Table 5. Comparison of mathematical models  

Model classification  Working Pair  Main features  Reference 
Darcy model describes 
the flow in porous solid 
adsorbent and kinetics 
described by equilibrium 
Model  

Methane/ 
activated 
carbon 

� Low vapour flow velocity 
� gas and solid are in 

thermodynamic equilibrium 
� the equilibrium model was 

used to calculate the uptake 
where both the inter-particle 
mass transfer 
resistance(external resistance) 
and resistance inside particle 
(internal resistance) were 
neglected 

Sahoo  et al.[25] 

Darcy model describes 
the flow in porous solid 
adsorbent and kinetics 
described by linear 
driving force , the 
diffusion resistance in 
the vapour phase was 
neglected (interparticle 
resistance neglected) 

Ethanol/activat
ed carbon 

x low vapour flow velocity 
x inter-particle mass transfer 

resistance is neglected 
x The resistance in the adsorbent 

pore considered using LDF 
model where the average 
volume uptake is tracked with 
time and linear concentration 
gradient from particle center to 
surface is assumed. 

x LDF is a mathematically 
simplified version of solid 
diffusion model where the 
Fickian concentration derivative 
is replaced by linear difference 
in concentration( Parabolic 
concentration profile) 

x Validity of approach need to be 
checked to experimental data 

Elsayed  et al.[80] 

Diffusion in porous solid 
considered while 
neglecting the inter-
particle resistance in 
vapour 

Ethanol/ Norit 
activated carbon 
RX3  

x High capability of modelling the 
adsorption process in solid 
particle. 

x Constant pressure is assumed 
over the particle surface  

Freni  et al. [105], 
Elsayed  et al. [107] 

Both mass transfer 
resistances in porous 
solid and vapour 
domains were 
considered 

Sws-1L/ water x Diffusion processes were 
considered in both solid and 
vapour phases  

Niazmand  et 
al.[116] 

 

 

 


