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A Statistical Approach to Estimate Imbalance-
Induced Energy Losses for Data-Scarce Low
\oltage Networks

Lurui Fang, Student Member, IEEE, Kang Ma, Member, IEEE, Ran Li, Member, IEEE, and Zhaoyu
Wang, Member, IEEE, Heng Shi

Abstract—Phase imbalance in the UK and European low
voltage (415V, LV) distribution networks causes additional energy
losses. A key barrier against understanding the imbalance-
induced energy losses is the absence of high-resolution time-series
data for LV networks. It remains a challenge to estimate
imbalance-induced energy losses in LV networks that only have
the yearly average currents of the three phases. To address this
insufficient data challenge, this paper proposes a new customized
statistical approach, named as the CCRE (Clustering,
Classification, and Range Estimation) approach. It finds a match
between the network with only the yearly average phase currents
(the data-scarce network) and a cluster of networks with time
series of phase current data (data-rich networks). Then CCRE
performs a range estimation of the imbalance-induced energy loss
for the cluster of data-rich networks that resemble the data-scarce
network. The Chebyshev’s inequality is applied to narrow down
this range, which represents the confidence interval of the
imbalance-induced energy loss for the data-scarce network. Case
studies reveal that, given such few data from the data-scarce
networks, more than 80% of these networks are classified to the
correct clusters and the confidence of the imbalance-induced
energy loss estimation is 89%.

Index Terms— energy loss, low voltage, phase imbalance, power
distribution, three-phase power

. INTRODUCTION

MBALANCE-induced energy losses in the UK and European

low voltage (415, LV) distribution networks account for up
to 35% of the energy losses on distribution wires [1]. This is
mainly due to the significant phase imbalance in the UK’s LV
networks [2], [3], [4]. Data from Western Power Distribution (a
UK distribution network operator) show that over 50% of their
LV networks have the peak current of the “heaviest” phase
exceeding that of the “lightest” phase by more than 50%, e.g.
it is common to have a peak current of 300 A on one phase and
150 A on another phase, causing the phase residual current to
be comparable to or even larger than phase currents [5]. The
phase residual current then causes an imbalance-induced energy
loss. Imbalance-induced energy losses are also widespread in
distribution networks in other countries [6], [7]. Therefore,
understanding imbalance-induced energy losses are important
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for distribution network operators (DNOSs) to evaluate the total
cost of phase imbalance and the potential benefit of phase
balancing [8], [9].

There exist a number of references that focus on imbalance-
induced energy losses. Reference [10] calculates the energy loss
on the neutral wire of overhead lines in the distribution network,
using Carson’s equations to model the lines. Reference [11]
calculates neutral energy losses, based on the ratio between the
equivalent neutral line resistance and line resistance of a
transposed three-phase line. Reference [12] calculates the
neutral energy loss caused by non-linear three-phase loads.
Reference [13] calculates the neutral energy loss in medium-
voltage distribution networks due to load imbalance. Reference
[14], [15] calculates the energy losses in distribution networks,
including energy losses on both the phases and the neutral wire.

The above references all require networks to have high-
resolution time series data (e.g., data collected every 15 minutes
or of a comparable resolution) or load curves. However, only a
small portion of LV networks, the data-rich networks, have
high-resolution time-series data, whereas the majority of LV
networks only have data collected once a year, i.e., they are
data-scarce networks. Therefore, a major challenge to
understanding imbalance-induced energy losses is the lack of
data. Existing imbalance-induced energy loss estimation
methods are not applicable to data-scarce networks.

This paper makes the following original contributions:

1) It for the first time estimates imbalance-induced energy
losses for data-scarce networks.

2) To achieve 1), this paper proposes a new customized
statistical approach named as CCRE, which consists of three
stages: Clustering, Classification, and Range Estimation.

The CCRE approach overcomes the insufficient data
challenge by finding a cluster of data-rich networks whose
features match the data-scarce network through clustering and
classification, using only the yearly average currents of the
three phases as the feature. Then this approach performs a range
estimation of the imbalance-induced energy loss for the cluster
of data-rich networks that resemble the data-scarce network.
This range is narrowed down by applying the Chebyshev’s
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inequality formula to counter the impact of outliers. This is the
confidence interval of the imbalance-induced energy loss for
the data-scarce network.

Because the yearly average phase currents are widely
available data in LV networks, this research enables the DNOs
to estimate imbalance-induced energy losses on a mass scale
across its business area, without the need to deploy high-
resolution monitoring devices. This is economically appealing
in terms of significant cost savings. According to [16], if all
UK’s 900,000 LV networks were to be made data-rich, the total
cost of deploying and maintaining pervasive monitoring
systems would be approximately two billion British pounds,
which can be saved. The proposed method enables the DNO to
evaluate a key cost of phase imbalance for the majority of the
LV networks that are data-scarce, because imbalance-induced
energy losses constitute a cost, which occurs year by year until
the three phases are rebalanced. This cost is a key input for the
cost-benefit analysis of phase balancing solutions.

The rest of this paper is organized as follows: Section Il
presents the clustering and classification methodology. Section
Il presents the range estimation of the imbalance-induced
energy loss. Section IV performs case studies. Section V
concludes this paper.

Il. METHODOLOGY

To calculate the imbalance-induced energy loss, two
variables, phase residual currents and the impedance data, are
required as inputs. However, these two variables are not
available in the UK’s data-scarce LV networks, which take the
majority. For data-scarce networks, the protection systems (e.g.
Schneider Sepam series 20) in the substations record the yearly
average currents of the three phases [17]. On the other hand, we
have time-series phase current data collected from N (in this
case, N = 800 but the methodology supports a generic dataset)
data-rich LV substations throughout a year at an interval of 15
minutes. These substations, within Western Power Distribution
(a UK DNO)’s business area, cover a good mix of geographical
areas (urban, suburban, and rural) and customer composition
(domestic, commercial, and industrial). For example, Cardiff
city center is selected as an urban area with a large number of
commercial customers; Monmouthshire is selected as a
representative rural area [5]. These data are the deliverables of
the project “Low Voltage Network Templates”. Reference [5]
presents a detailed description of these data and this project.

To estimate the phase residual currents for any data-scarce
LV network using the available data from the 800 networks, the
CCRE approach is proposed. The reason for having the
clustering stage is to extract representative characteristics of the
phase residual currents (expressed in the form of cumulative
density functions) from the 800 data-rich networks, thus
transforming the 800 data-rich networks into a few
representative classes. Then, the purpose of the classification
stage is to find the best match between the data-scarce network
and one of the representative classes. Finally, the reason for
applying the range estimation is to account for the uncertainty
in the imbalance-induced energy loss estimation. Multiple
scenarios on the impedance are considered. The overall

flowchart of the CCRE approach is presented in Fig. 1. It should
be noted that all input current data are magnitudes only.
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Fig. 1 Overview of the CCRE approach

A. Data pre-processing
The phase residual current I,,,..(t) is a key variable. For the

800 data-rich LV networks with time series phase current data,
the time series phase residual current is given by
Iprc(t) = [Ié(t) + Il?(t) + Icz(t) - Ia(t)lb(t) (1)
- Ib (t)Ic(t) - Ia(t)lc(t)]ll2
where I1,(t), I, (t), I.(t) denote the currents on phases a, b, and
c at time t, respectively.

In reality, the time series of phase residual currents for
different LV networks have different lengths because there are
minor missing data. This paper resolves this problem by
transforming each time series of phase residual currents into a
cumulative distribution function (CDF). This is suitable
because this paper is only concerned about the imbalance-
induced energy loss over a year (this is the basis for calculating
the annual cost of the imbalance-induced energy loss), rather
than the power loss at any specific time point.

For each data-rich network, the time series of phase residual
currents are transformed into a probability density function of
the phase residual currents through kernel density estimation
(KDE) [18], asgiven by (2).

1 v I,—1,
Fu) =22y k2=l @

where I,, denotes the phase residual current; I,,(t) is the phase
residual current at time t; n denotes the sample size; h denotes
the kernel bandwidth. In this paper, the kernel function K is
chosen to be the Gaussian kernel [19], given by :

In - In(t)> _ 1 _%(ln_:ln(t))z
1(( - = @)
where h is the bandwidth, given by [18]:
1
h=106-0-n"5 (4)

where o denotes the standard deviation of the sample data; n
denotes the sample size.

For each data-rich network, its probability density function
of the phase residual currents is transformed into a CDF.
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Therefore, there are a total of 800 phase residual current CDFs
for the 800 data-rich LV networks.

B. Clustering

Agglomerative hierarchical clustering and k-means
clustering are applied to cluster these 800 phase residual current
CDFs into k clusters. The reason why we use the agglomerative
hierarchical clustering and k-means clustering is because they
are commonly used classic clustering methods [20], [21]. The
agglomerative hierarchical clustering method starts by taking
each CDF as its own cluster; then it generates higher-level
clusters by merging clusters with the least dissimilarity between
each other until eventually achieving only one cluster [20]. This
subsection presents three detailed aspects: 1) distance metrics;
2) the selection of the number of clusters, and 3) the evaluation
of clustering results.

Both Euclidean distance (ED) [16] and Jensen-Shannon
distance (JSD) [22] are applied to calculate the dissimilarity
between any two CDFs.

1) Determine the number of clusters

In this paper, the number of clusters k is determined by a bi-
objective optimization model. The optimization model aims to
minimize the weighed sum of: 1) an overlap ratio; and 2) the
relative within-cluster sum of squared distances. The
optimization model is given by

mkin C-r(k) +s(k)
subjectto 2 < k < k,,, = argmax r (k)

k is an integer ()

0<srk)<1

0<stk)<l1
where C is a weighting factor (C > 0); r(k) is the overlap ratio
defined in (6); s(k), defined in (7), is the relative within-cluster
sum of squared distances as a function of k.

Now this paper defines the overlap ratio r(k). Because this
paper estimates the annual imbalance-induced energy loss
which is proportional to the sum of data-rich network’s squared
phase residual currents over a year, the clustering results are
considered “good” if different clusters are distinguishable from
each other in terms of their distributions of the sums of squared
phase residual currents over a year. In other words, each cluster
shall have a distinct distribution of the sum of squared phase
residual currents as compared to other clusters. To quantify
such a distinctiveness, the overlap ratio is defined in (6).

r(k) =n,(k)/N (6)
where k denotes the number of clusters; r (k) is the overlap ratio
as a function of k; n, is the number of data-rich networks that
have the same sum of squared phase residual currents across
different clusters (the shadow area as illustrated in Fig. 2). N
denotes the total number of data-rich networks. An illustration
of the overlap ratio is given in Fig. 2.

/\ luster 2,
/Cluster 1 ; \

Sum of squared phase residual current
throughout a year

Fig. 2 The objective overlap area

The shadow area in Fig. 2, i.e., the overlap of the two clusters
1 and 2, represents n, in (6) — this can be easily extended to k
clusters. The overlap ratio r(k) is the shadow area divided by
the total area of all clusters. When k increases from 2 to the
maximum number of clusters (800 in this case), r(k) first
increases then decreases to zero. Denote k,, as the k value

when r(k) reaches the maximum.
Now this paper defines the relative within-cluster sum of

squared distances s(k), as given by

Z;{:1 i (x;€Ecluster j)(xi - xp,j)2

= 7
stk) 2l —x,)? @
where x; denotes the ith element in cluster j; x,; is the
prototype of cluster j; x,, ; is the medoid of all elements.
2) Evaluate clustering results
After determining the number of clusters k, the
agglomerative  hierarchical ~ clustering  process s
straightforward. The results show that the agglomerative
hierarchical clustering with Euclidean distance yields the least
overlap ratio, as compared to k-means with Euclidean distance,
k-means with Jensen-Shannon distance, and agglomerative
hierarchical clustering with Jensen-Shannon distance. The
numerical results and detailed discussions are presented in
section IV (case studies). Therefore, the agglomerative
hierarchical clustering with Euclidean distance is chosen as the
method for clustering the 800 phase residual current CDFs. The
clustering output is a cluster label for each data-rich network,
indicating which cluster this network belongs to. The medoid
ofeach cluster is selected to be the prototype of this cluster [20].

Number of monitored
substations

C. Classification

Given the clustering outputs, the classification process
consists of the following steps: 1) feature vectors (input data for
classification) are determined for both the data-scarce and data-
rich networks; 2) the feature vectors and cluster labels for the
800 data-rich networks are used to train the classification model
by applying multiclass support vector machine (MSVM) and
kernel-based Adaptive Boost (kAdaBoost); MSVM and
kAdaBoost then classify the data-scarce network to an existing
cluster of data-rich networks. The classification results are
validated by 10-fold cross-validation.

1) Determine feature vector

Data-scarce networks do not have time series data and they
account for the majority of the UK’s LV networks. They only
have data collected once a year. According to [17], this paper
suggests that the yearly average currents for three phases
(Igpas Iawp and 1,,.) be chosen as the known data for data-
scarce networks: 1) DNOs can obtain them directly from
existing devices in a low-cost fashion for millions of networks
and these data do not require the deployment of any high-
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resolution monitoring device; 2) the features derived from these
data allow for a relatively high classification accuracy.

Given the yearly average phase currents, this paper proposes
a feature vector consisting of two features: the virtual average
phase residual current value I,,,,. and virtual average balanced
current value I,,.. They can be readily calculated from the
yearly average phase currents:

varc = (Iava2 + Iavb2 + Iavc2 - Iavalavb (8)
- Iavalavc - Iavalavc)llz
Ivbc = (Iava + Iavb + Iavc)/3 (9)

where 1,4, 14, and 14, denote the yearly average phase
currents. Therefore, the feature vector x; = [ Lpre, Ippc] 1S
available for the data-scarce network.

For data-rich networks, the above feature vector can be
readily derived from the time series phase residual current data
throughout a year. Therefore, each data-rich network has a
cluster ID (this is an output from the clustering stage) as its label
and a feature vector x;. Then, the feature vectors and cluster 1D
for all data-rich networks and the feature vector for the data-
scarce network are used as the input data for the classification
stage.

2) Classification

The classification is performed by applying two methods,
kAdaBoost and MSVM. The reason for choosing MSVM
(which uses the support vector machine as the base classifier)
is because, by finding the largest margin to separate different
classes, the performance of the support vector machine is
widely recognized [23], [24]. kAdaBoost is chosen as a
candidate because: 1) it reduces the bias of weak leaners by
combining the weak learners into a strong learner and it is
shown to be resistant against overfitting [25]; and 2) the
Gaussian  kernel  transformation  further improve the
classification accuracy.

The kAdaBoost method is a combination of the kernel
transformation and the well-established Adaptive Boost method
[25]. It consists of the following steps:

Firstly, a Gaussian kernel transformation is applied to
transform the original feature vectors x; for all networks i (both
data-rich and data-scarce) into a high-dimensional feature
space. Such a transformation improves the classification
accuracy by up to 2%. The Gaussian kernel is given by [26]

2
K(xi,jvxi,k) = exp(—%) (10)
where x; ; and x; , denote the j,, and k.,elements of network
i’s feature vector x;, respectively; o2 is the variance.

Secondly, the Adaboost.M2 model takes the transformed
feature K(x;; x;,) as the input. For AdaboostM2, it is
essentially a “boosting” method that combines a number of
weak classification models (“weak models”) into a strong
classification model (“strong model”) [27] . The strong model
is given by [22]:

- 1
H(x) = argmatht(x,y)loga— (11)
t=1 t

where h, is the weak model; a, denotes the weight parameter.
The well-established algorithm of AdaBoost.M2 is detailed in
[25].

The MSVM is the multiclass support vector machine [28],
[26]. The MSVM s essentially a one-versus-one framework
that extends the support vector machine (a binary classifier) into
a multiclass classifier [28]. For each binary classification sub-
problem, the support vector machine aims to find a separating
hyperplane in the high-dimensional feature space (as a result of
the Gaussian kernel transformation of the feature vectors) to
separate the two classes with the maximum margin [24]. The
support vector machine essentially solves an optimization
problem, as given by [29].

Nt
1 5
minzllol? +C ) e,
=1
subject to y;(o” - p(x;) + b) = 1 —¢;
€; >0
y; €{-1,1}
where o and b are the coefficient vector and the interception
term, respectively; y; is the label for training example i; ¢ (x;)
is the transformed feature vector in the high-dimensional space
for training example i. CZ}’;';1 e; is the regularization term that
reduces the generalization error, where C denotes the penalty
coefficient; N, denotes the total number of training examples;
e; represents the infringement an outlier causes. The algorithm
of MSVM is detailed in [23].

The classification process is validated by 10-fold cross-
validation. This is a well-established, popular validation
method. It is detailed in [30], [31].

The classification results from the two methods are compared
with each other in the case studies. Given the clustering and
classification model trained and the data-scarce network, the
output of the classification stage is the cluster to which this
network is classified.

(12)

111, IMBALANCE-INDUCED ENERGY LOSS RANGE
ESTIMATION

The classification stage in Section Il — C classifies the data-
scarce network into an established cluster derived in Section Il
— B. The maximum range of the imbalance-induced energy loss
for this cluster is then derived. This range is then narrowed
down to a confidence range by applying the Chebyshev’s
inequality formula. This confidence range is where the
imbalance-induced energy loss of the data-scarce network falls
at a predefined confidence level, as cross-validated in Section
IV. Detailed steps are given below.

Firstly, the imbalance-induced energy losses for these data-
rich networks are calculated for two different earthing systems,
TN-C and TN-S. The TN-C earthing system is presented in Fig.
3[32]:
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Fig. 3 The TN-C earthing system

For the TN-C earthing system, I, is the phase residual
current that flows into the transformer neutral point from the
ground [32]. The imbalance-induced energy loss is given by

Eloss = Iprc(t)z * Rg (13)
where I, denotes the phase residual current; R, is the
equivalent ground resistance, which is 0.0953 (€/km) - Length
(km).

The TN-S earthing system is shown in Fig. 4 [32]:
BN -
rlb - a
AV o7 I S S
lorep 31, [Load] [Load][Load] [Load]
a4 ) - "
= 3 3 o= EPE

________________________________

| Ground
Fig. 4 The TN-S earthing system
For the TN-S earthing system, the protective wire and the
neutral wire are separate conductors. When there is phase
imbalance, the phase residual current [,,., flows into the
transformer neutral point through the neutral conductor.
Therefore, the imbalance-induced energy loss is given by

Eloss = Iprc(t)z * Rn

where I,,,.. denotes the phase residual current; R, denotes the
neutral wire resistance.

Secondly, given that the clustering stage in Section Il — B has
already clustered the 800 data-rich networks into N clusters, the
maximum range [E;ossmin: Elossmax] OF the imbalance-induced
energy loss for each cluster is derived, where E;jssmin @and
E}ossmax denote the minimum imbalance-induced energy loss
and the maximum imbalance-induced energy loss, respectively.

The above maximum range is sensitive to outliers. To
counter the impact of outliers, the maximum range of the
imbalance-induced energy loss for each cluster is narrowed
down to a confidence range by applying the Chebyshev’s
inequality formula [33]. In industry, a common practice is to
remove 1 — 2% of the observed data close to the range
boundaries [34], assuming that the data follow a Gaussian
distribution. The reason why we choose the Chebyshev’s
inequality formula is that, unlike other methods, it does not
require that the data follow any particular classic distribution
(e.g. Gaussian distribution). In this paper, the imbalance-
induced energy loss results for any cluster of data-rich networks
are not assumed to follow any particular classic distribution.
Therefore, the Chebyshev’s inequality formula is suitable in
this case. The Chebyshev’s inequality formula states that the
probability of a random variable falling beyond ko from its
mean is less than 1/k?, as given by

(14)

Prob(|x — u| = ko) < 1/k? (15)

where x is the random value of the imbalance-induced energy
loss; p denotes the expectation of the imbalance-induced
energy loss; o is the standard deviation of the imbalance-
induced energy loss; k is the coefficient. Reference [35]
suggests that the coefficient k be set as 3 to remove outliers,
which means that the values falling in the interval [u — 30, u +
30] has a confidence level of 89%.

The confidence range corresponds to removing 11% of data
from the original cluster by the Chebyshev’s inequality method.
An illustration of the “tail cutting” effect is shown in Fig. 5.

89%
(confidence
range)

removed

[
»

Probability density

Imbalance-induced energy loss
Fig. 5 The distribution of example imbalance-induced energy loss for
cluster i

To implement, the distance between the imbalance-induced
energy loss of each data-rich network and the average
imbalance-induced energy loss of each cluster i is calculated.
Then, 11% of the data-rich networks in cluster i with larger
distances than the rest are removed. The resulting range of the
imbalance-induced energy loss is the 89% confidence range of
imbalance-induced energy loss for cluster i.

The choice of the 89% confidence level for the range
estimation is validated by applying a 10-fold cross-validation.
For each cluster of n data-rich networks, n number of
imbalance-induced energy loss values are randomly divided
into 10 groups of equal size. One of the ten groups of data-rich
networks is retained as the validation group, the other 9 groups
form a large training group to build a distribution of the
imbalance-induced energy loss values. This distribution is
narrowed down to the 89% confidence range by applying the
Chebyshev’s inequality formula. Then, the percentage of the
validation samples (the imbalance-induced energy loss values
within the validation group) that fall within the distribution is
calculated. This process repeats until every group has served as
the validation group once. This process outputs 10 values, i.e.
the percentages of the validation samples falling within the
distribution. These 10 values are averaged and it is found that
the average value is close to 89%. In this way, the choice of the
89% confidence level is validated.

The resulting estimation error of the imbalance-induced
energy loss is given by

error = |AL — EML|/AL (16)

where AL denotes the actual imbalance-induced energy loss
(1IBL) of the LV networks; EML is the mean value of the
estimated range of the imbalance-induced energy loss.
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IV. CASESTUDY

This section presents the numerical results. The clustering
and classification results are given in Sections IV — A and B,
respectively. The imbalance-induced energy losses are
calculated in Section IV — C. A discussion is presented in
Section IV - D.

A. Clustering

The first step of clustering is to determine the number of
clusters by solving the bi-objective optimization problem in (5).
TABLE | presents the overlap ratio (k) for different numbers
of clusters k.

TABLE |
OBJECTIVE OVERLAP RATIO COMPARISON
Number of | r(k) under the ED | r(k) under the JSD
clusters metric metric

6 3.2% 9.8%
7 3.2% 9.8%
8 3.45% 10.1%

In TABLE I, r(8) > r(7) = r(6). k = 7 is preferred over
k = 6 because the former corresponds to a lower sum of
within-cluster errors. Therefore, the number of clusters k is
chosen to be 7 for both JSD and ED metric.

Given the number of clusters k = 7, the second step is to
perform the clustering process using both k-means and
hierarchical clustering methods, based on JSD and ED distance
metrics. The results are presented in TABLE Il for comparison.

TABLE Il
CLUSTERING METHOD COMPARISON
Hierarchical
rk) Cophenet
Hierarchical JSD 9.8% 0.7733
clustering ED 3.2% 0.7845
K-means JSD 22.%
clustering ED 10.3%

In TABLE II, the Hierarchical cophenet denotes the cophenet
correlation coefficient for the Hierarchical cluster tree,
indicating how faithfully the tree represents the dissimilarities
among observations (the larger the better). Hierarchical
clustering with the ED distance metric yields the lowest overlap
ratio and a higher cophenet — this combination is therefore
chosen for clustering.

Fig. 6 and Fig. 7 visualize how distinguishable the seven
clusters are under: 1) hierarchical clustering with ED metric; 2)
hierarchical clustering with JSD metric; 3) k-means with ED
metric; and 4) k-means with JSD metric.
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Fig. 6 Hierarchical (left) and K-means (right) clustering results with ED
metric
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Fig. 7 Hierarchical (left) and K-means (right) results with JSD metric

In these diagrams, each cluster is resembled as a bar. Fig. 6
and Fig. 7 show that hierarchical clustering with the ED
distance metric yields the most distinguishable seven clusters
as compared to other methods.

The phase residual current CDFs of the data-rich networks
within each cluster are plotted as a heat map in Fig. 8.
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Fig. 8 The heat map of the squared phase residual current CDFs of the data-
rich networks within each cluster

In Fig. 8, the diagram is separated into seven intervals by six
vertical white lines, where each interval corresponds to a cluster
(from Cluster 1 in the left to Cluster 7 in the right). Each blue-
yellow vertical line represents the phase residual current CDF
ofadata-rich network belonging to the cluster. Each red vertical
line represents each cluster’s prototype. This figure
demonstrates that each cluster has its own phase residual
current CDF tendency, which is distinctive from other clusters.
In addition, Cluster 1 accounts for 1.09% of the data-rich
networks in this study; Clusters 2 — 7 account for 15.25%, 49%,
23.96%, 6.72%, 2.72%, and 1.27% of the data-rich networks,
respectively.
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B. Classification

According to Section Il — C, the virtual average balanced
current and virtual average phase residual current are the
features used for classification in this sub-section. This feature
is derived from yearly average currents of three phases
(Iava, Lawy @nd I,,,c), recorded once a year by a relay protection
metering function. The distribution of the features for each
cluster is plotted in Fig. 9.
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Fig. 9 Data-rich networks’ feature distribution
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Fig. 9 shows that the features for different clusters overlap to
a large extent. This overlap reflects the data scarcity, i.e., the
available feature is rather limited.

From case studies, we find that the Gaussian-kernel-based
MSVM and kAdaBoost achieve higher classification accuracies
than alternative classification methods such as Kk-Nearest
Neighbours (KNN) and decision tree. The comparison of the
classification accuracies is presented in Fig. 10.
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Fig. 10 The classification results comparison of different methods
From Fig. 10, the MSVM achieves the highest classification
accuracy of 82%, followed by kAdaBoost which achieves a
classification accuracy of 81.7% and adaptive boost (AdaBoost)
which achieves 79.5% accuracy. KNN and decision tree
achieve 78.4% and 77.7% accuracies, respectively. In

comparison, a blind guess would give an accuracy of only
14.29%.
The confusion matrices for the classification results by
MSVM and kAdaBoost are presented in Fig. 11.
MSVM
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Fig. 11 Confusion matrices for the M(S\)/M and kAdaBoost methods

The confusion matrices in Fig. 11 demonstrate the
classification accuracies in details. For instance, for the MSVM
classification, column two shows that the data-scarce network
which should be classified into Cluster 2 has 5% probability of
being misclassified into Cluster 1, 22% probability of being
misclassified into Cluster 3.

Both classification methods only require virtual average
balanced current and virtual average phase residual current,
derived from the yearly average currents of three phases
(Iava lavp @nd I, ), as the feature from data-scarce LV

networks. This means it can be implemented in a cost-effective
manner using existing devices only.

For example, a data-scarce network has the yearly average
phase currents [luq. lovp Lave]l = [219.1A,182.4A, 224 1A] .
These data are transformed into a feature vector x; =
[Lybe: Lopre] = [208.5A,39.4A]. Given this feature vector, this
data-scarce network is classified into Cluster 4 by applying
either MSVM or kAdaBoost.

C. Imbalance-induced energy losses estimation

The resistance of the path on which the phase residual current
flows is affected by many factors, including the length of the
path, the resistivity of the cables and the ground, ambient
condition, and the topology, etc. To account for the complicated
nature, this paper considers multiple scenarios on the resistance
and estimates the imbalance-induced energy losses for these
scenarios. According to [36], the length of the UK’s LV
networks normally ranges from 0.9 kmto 2.1 km; the resistivity
of the ground is 0.0953 Q/km; the resistivity of the neutral
conductor ranges from 0.168 Q /km to 0.320 Q /km. Therefore,
for TN-C earthing system, the ground resistance R,, varies from
0.0858 Q to 0.2001 Q; for TN-S earthing system, the neutral
conductor resistance R,, varies from 0.1512 Q to 0.6720 Q;

For the TN-C earthing system, the confidence range of the
imbalance-induced energy losses for each cluster is plotted in
Fig. 12:
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Fig. 12 The confidence range of the imbalance-induced energy losses of TN-C
earthing system for the clusters

For example, when the ground resistance is 0.143 Q (a length
of 1.5 km, which is the average length of the UK’s LV
networks), for Cluster 1, the confidence range of the imbalance-
induced energy losses is [54 kWh, 76 kWh] per year. The
confidence ranges of the imbalance-induced energy losses for
Clusters 2 — 7 are [328 kWh, 1,163 kWh], [1,457 kWh, 4,271
kwh], [4,601 kWh, 8,638 kWh], [10,005 kWh, 16,345 kWh],
[16,904 kWh, 26,615 kWh], and [26,914 kWh, 41,405 kWh]
per year, respectively.

Given an estimation of 900,000 networks throughout the UK
and an average electricity price of £ 0.18/kWh, the phase
imbalance situation causes 3.01 x 10° to 6.02x 10 MWh of
imbalance-induced energy losses each year, worth £451.2m to
£903.0m per annum.

For TN-S earthing system, the neutral conductor resistance
R, varies from 0.1512 Q to 0.6720 Q. The confidence range of
the imbalance-induced energy losses for each cluster is plotted
in Fig. 13:

Imbalance-induced energy loss
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Fig. 13 The confidence range of the imbalance-induced energy losses
of TN-S earthing system for the clusters

For example, if the neutral conductor resistance is 0.252 Q
(with a length of 1.5 km and a resistivity of 0.163 Q/km), for
Cluster 1, the confidence range of the imbalance-induced
energy losses is [94 kWh, 135 kWh] per year. The confidence
ranges of the imbalance-induced energy losses for Clusters 2 —
7 are [578 kwWh, 2,050 kWh], [2,569 kWh, 7,531 kWh], [8,114
kWh, 15,233 kwh], [17,644 kWh, 28,824 kWh], [29,809 kWh,
46,934 kWh], and [47,461 kWh, 73,016 kWh] per year,
respectively.

Given an estimation of 900,000 networks throughout the UK
and an average electricity price of £ 0.18/kWh, the phase
imbalance situation causes 5.3 x 10° to 1.06x 107 MWh of
imbalance-induced energy losses each year, worth £795.3m to
£1,592m per annum.

This paper applies a 10-fold cross-validation to validate the
confidence range of the annual imbalance-induced energy loss.
The cross-validation results show that 9% of the data-rich
networks that belong to Cluster 2 fall beyond the confidence
range of Cluster 2; 11%, 12%, and 11% of the data-rich
networks that belong to Clusters 3, 4, and 5 falls beyond the
respective confidence range of the cluster. Clusters 1, 6, and 7
have 5, 15, and 6 data-rich networks, respectively — too few
networks that it is not suitable to remove any data from them.
Therefore, the confidence ranges of Clusters 1, 6, and 7 are the
maximum range of these clusters.

The same example in Section IV — B is used. Its estimated
imbalance-induced energy loss is within a confidence range of
[1,074 kWh, 2,131 kWh] per year, with a confidence level of
89%.

TABLE Il presents a few examples showing the estimation
errors:

In TABLE l11, the first three examples are classified into the

T Ly

o

The last three examples are classified to the correct clusters,
resulting in errors of less than 20%.

D. Discussion

To estimate the imbalance-induced energy loss, the proposed
CCRE approach only requires the yearly average phase currents
as the feature from data-scarce networks. This feature can be
readily obtained from existing LV networks. This renders the
CCRE approach applicability to the majority of the UK’s LV
networks that are data-scarce, without the need for high-
resolution monitoring devices on neutral wires.

In this paper, the 800 CDFs of the phase residual current /,,,..
are used as the input data for clustering. The energy loss is
proportional to the square of the phase residual current, i.e. I7,..
However, the reason why the CDFs of I,,,.. are used as the input
data instead of the CDFs of I7,. is because the latter would
increase the data dispersion from 0 — 300 to 0 — 90,000. This
expands the range of the CDFs to a level too wide for clustering.
Furthermore, the clustering results show that the former results
in an overlap ratio as low as 3.2%, whereas the latter results in
an overlap ratio of more than 20%. Therefore, the former is
much better than the latter as the input data for clustering.

The CCRE approach is designed to be generic. To apply the
CCRE approach to other countries, it would require the
following two groups of input data for the country in question:
1) the time-series phase current data monitored throughout a
year from at least hundreds of data-rich LV networks (these data
are used as the training data); and 2) the yearly average phase
currents for the data-scarce network (these limited data are
called the feature). The more representative the training data
are, the more accurate the estimated phase residual current for
the data-scarce network is.

This paper considers phase residual current profiles and there
is a fundamental difference between a load profile and a phase
residual current profile. The former depends on the number of
customers and types of customers, whereas the latter depends
on how evenly (or unevenly) customers are allocated across the
three phases. Because urban, suburban, and rural areas have
very different customer densities and types of customers, their
load profiles are different — the classification of load profiles
into these four areas is justified. However, different types of
areas may have the same degree of phase imbalance, i.e.
customers in these areas are allocated in the same uneven

TABLE Il
EXAMPLE OF THE CCRE ESTIMATION ERROR

lvpre lvbe Correct Actual 11BL Classified Estimated range of R

@ | @ cluster (KWh) cluster lIBL (kWhg) Estimation error
1 87.3 324 5 24 520 6 29,809 — 46,934 61.15%
2 19.7 336 3 3,096 2 577 — 2,050 55.91%
3 98.0 407 6 38,350 5 17,644 — 28,824 40.92%
4 17.8 38.1 2 1,692 2 577 — 2,050 19.33%
5 59.9 177 4 9,580 4 8,114 — 15,233 18.29%
6 145 181 7 54,386 7 47,461 - 73,016 13.79%

wrong clusters, resulting in substantial errors of more than 40%.

fashion, thus resulting in similar phase residual current profiles.
On the other hand, two networks in the same type of areas (e.g.
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urban) may have very different degrees of phase imbalance,
resulting in vastly different phase residual current profiles.
Therefore, the division into urban, suburban, and rural areas is
not applicable in this paper.

There can be full current measurements from high-voltage
(132 kv / 33 kV) and medium-voltage (33 kV / 11 kV)
distribution substations as well as customer billing data.
However, these measurements are not normally available from
low-voltage (11 / 0.415 kV, LV) substations downwards
(inclusive), because of the prohibitively high cost to monitor
millions of LV networks. Furthermore, even if smart meter data
were available for all customers (which is not the case in the
UK now), which phase each customer is connected to is still
unknown [37], [38]. Because of the above field limitations,
state estimation cannot be performed for LV networks.

The load loss factor method is popular for calculating energy
losses. However, it is not suitable in this paper, because it
requires the average phase residual current and the maximum
phase residual current as the input data, which are not available
for data-scarce LV networks. Furthermore, the load loss factor
is suggested to be updated every month to minimize the error of
the estimation [39]. For the data-scarce networks, the cost to
update the load loss factors for 900,000 LV networks every
month would be unimaginably high.

Increasing available features would improve the accuracy of
the classification. If the sum or average of the phase residual
currents over a year were known for data-scarce networks, the
CCRE approach would achieve an accuracy of 96.8%, much
higher than if only the average phase residual currents are
known. However, increasing features pose more requirements
on the monitoring of the LV networks, resulting in more costs.

Phase imbalance causes two costs: 1) the imbalance-induced
energy loss; and 2) the additional network investment cost.
These two costs are required to be estimated for a cost benefit
analysis of any phase balancing project. This paper finds out
whether the 1% cost element is significant or not and how
significant it is for both highly phase-imbalanced LV networks
and not-so-imbalanced LV networks. Furthermore, this paper
calculates the 1% cost for one year only. In reality, this cost
occurs year by year until the three phases are fully balanced.
Future work will be to perform a full cost-benefit analysis for
phase balancing solutions considering the above two benefits
together, the lack of data in LV networks, and the uncertainty
associated with the phase balancing capability.

V. CONCLUSIONS

This paper addresses an unsolved problem faced by utility
companies, i.e., estimating imbalance-induced energy losses for
data-scarce low voltage (415V, LV) networks with only the
yearly average phase currents data.

The 800 LV data-rich networks with full time-series of phase
currents data are clustered into 7 clusters, where each cluster
represents networks of similar phase residual current profiles.
Then, at the classification stage, cross-validation results show
that nearly 82% of the data-scarce networks are classified to the
correct clusters. The confidence interval of the imbalance-
induced energy loss for the data-scarce network is derived at a

confidence level of 89%. The proposed methodology enables
distribution network operators to evaluate a key cost of phase
imbalance. This cost serves as a necessary input for the
appraisal of the benefit from phase balancing.

APPENDIX

The phase residual current is the vector sum of the phase
currents:

Lype=T,+1, +1, an
In the absence of phasor measurements, it is assumed that the
phase currents are 120° apart from each other. Therefore,
Lo = 1,€080° + jl, sin 0" +1, cos —120°
+ jI, sin —120° +I. cos 120°
+jI.sin120°
11 N3 3

= (Ia - Elb - Elc) +](71c - 7111)

2
11y 3 3
|I rc| = (Ia__lb__1c> + £Ic_£1b
b 2 2 2 2 (19)

J&+ﬁ+@—h%—hh—hh

where I,,... is the phase residual current; I, I, and I denote the
magnitudes of the phase currents.

(18)
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