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Abstract: Variability and intermittency of wind is the main challenge for making a reliable wind
power forecasting (WPF). Meteorological and topological complexity makes it even harder to fit
any forecasting algorithm to one particular case. This paper presents comparison of three short
term WPF models based on three wind farms in China with different terrains and climates. The
sensitivity effects of training samples on forecasting performance are investigated in terms of
sample size, sample quality and sample time scale. Then, their adaptabilities and modeling
efficiency are also discussed under different seasonal and topographic conditions. Results show
that 1) radial basis function (RBF) and support vector machine (SVM) generally have higher
prediction accuracy than that of genetic algorithm back propagation (GA-BP), but different
models show advantages in different seasons and terrains. 2) WPF taking a month as the training
time interval can increase the accuracy of short-term WPF. 3) The change of sample number for
GA-BP and RBF is less sensitive than that of SVM. 4) GA-BP forecasting accuracy is equally
sensitive to all size of training samples. RBF and SVM have different sensibility to different size
of training samples. This study can quantitatively provide reference for choosing the appropriate
WPF model and further optimization for specific engineering cases, based on better understanding
of algorithm theory and its adaptability. In this way, WPF users can select the suitable algorithm
for different terrains and climates to achieve reliable prediction for market clearing, efficient
pricing, dispatching etc.
Key words: wind power forecasting, training sample, model efficiency, BP neural network, RBF
neural network, support vector machines
L. INTRODUCTION

As the increasing energy adequacy and environmental concerns, large-scale integration of
wind power has been contributing more to the world energy supply. After a slowdown in 2013,
wind industry set a new record for annual installations in 2014. Globally, 51,477 MW of new wind
generating capacity was added in 2014 according to the global wind market statistics released by
the Global Wind Energy Council (GWEC). The record-setting figure represents a 44% increase in

the annual market, and is a solid sign of the recovery of the industry after a rough patch in the past
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few years. Total cumulative installations stand at 369,553 MW at the end of 2014,

China is the largest wind power market worldwide and has abundant wind energy resources.
Wind power is becoming the third main power supplier in China after thermal power and hydro
power. In 2014, Chinese wind power industry maintained a robust growth. 19,810 MW of new
wind power installed capacity was added which reaching a new record. Wind power cumulative
installation capacity was 96,370 MW which accounting for 7% of the total generation capacity of
China and 27% of the global wind power installation. In 2014, wind power had 2.78% share of the
total generation in power supply. It is estimated that the wind power capacity will reach 30 GW?2.
However, the intermittent nature of wind generation creates challenges for market trading, load
management and the economic operation of power systems>*,

Reliable wind power forecasting (WPF) is one of effective ways to mitigate technological
and economic impacts on the power system, because it provides direct estimation of wind power
availability. Unfortunately, it is difficult to make an accurate prediction, especially in an area with
complex topography or meteorological environment. Currently, mean average percentage error of
the wind speed forecasting is approximately in the 8-20% range in Chinese wind farms>#!-45,
Therefore, it is important for wind farm owners, system operators, and energy suppliers to
understand how existing WPF models perform in different external conditions and to further
improve their prediction accuracy.

A great amount of literature has been devoted to short term WPF using statistical or physical
approaches. Statistical models employ weather variables from numerical weather prediction
(NWP) model to predict time series of future power generation. The relationships between
weather variables and historical power generated at a wind farm are modeled by different artificial
intelligent techniques. The algorithms include, for instance, time series analysis®’, Kalman
filtering®’, neural network (NN)'%1?, support vector machine (SVM)?-22:3¢ and relevance vector
machine (RVM)?*?*, etc. Physical models>>3* estimate wind condition at reference locations
according to the atmospheric behaving law, then transfer to power production through power
curve. It is independent of the measured historical data and can be used for both the newly built
and the operating wind farms. Commonly used methods are the analytical methods or
computational fluid dynamics (CFD) methods. For physical models, analytical method is efficient
to compute but difficult to meet accuracy requirements. Conversely, CFD method solves the
Navier-Stokes equation in every prediction process and simulates wind flow accurately. As a
sacrifice, the computational burden of CFD method makes it challenging to satisfy real-time
operation requirements.

Among the statistical methods, artificial NN (ANN) is widely used because of its good
prediction generalization, but it is sensitive to the size of training samples and suffers from the
over-fitting problem. SVM is an effective machine learning method with small samples and can
avoid over-fitting. But it can only use a continuous symmetric kernel with positive integral

operator; the number of support vectors grows linearly with the size of training sample sets. RVM



is a nonlinear pattern recognition model with simple structure based on Bayesian theory and
marginal likelihood functions. It has no kernel function limitation and is offering excellent
generalized prediction performance with even smaller samples.

A number of studies tested and compared the performance of different WPF algorithms?®!'-33,
The results show that strong improvements of up to about 20% have been obtained by using the
data of different NWP models or ensemble models as input data for the WPF models. Artificial
neural network and vector machine methods can significantly improve the forecasting accuracy
over traditional persistence methods, especially after optimization by genetic algorithm (GA) and
particle swarm optimization (PSO). The multi-layer perceptron ANN (MLP ANN) outperforms
SVM, regression trees and random forests in short term wind speed and wind power forecasting in
Jursa and Rohrig’s study'?. But, SVM for system orders from 1 to 11 had better accuracies than
MLP ANN in Mohades’s wind speed forecasting results®¢. This above contradiction might come
from the fact that each WPF methodology might have different adaptabilities and training
characteristics towards various external conditions. So, it requires reproducing the results from
existing WPFs in extensive practical examples, particularly in wind farms with complex
topography and climate patterns. Moreover, a comprehensive understanding on the forecasting
performance in China, the largest and newly born wind power industry center, is needed. And the
influence of training samples on forecasting is also needed to investigate.

To mitigate the above problems, this paper investigates the characteristics and adaptabilities
of various WPF methodologies in three Chinese wind farms with various meteorological and
topological conditions. Three statistical WPF models including back propagation optimized by
genetic algorithm (GA-BP), Radial Basis Function (RBF), and SVM are considered for evaluation
in three Chinese wind farms with distinctive external conditions. The performances of these
models are assessed over three aspects: accuracy, adaptability and computational efficiency. The
effects of training samples on forecasting accuracy are also analyzed in terms of their sizes,
qualities and time scale. In this way, the most representative training samples can be selected for
securing the best prediction performance. This work will help wind power predictors to select the
most suitable prediction models for different terrains and climates, and it could also help to
improve model performance according to the specific characteristics.

The remainder of this paper is as follows: Section II and section III describe the operational
data from wind farms in case study and the NWP tool used to provide meteorological variables for
WPEF. Section IV and V presents a brief summary of the used WPF methods and their evaluation
criteria. Case study in section VI shows the comparison results. Finally, section VII presents a
summary of the results.

I1. DATA
In order to compare the adaptabilities of three WPF models, three wind farms in China are

taken as examples to conduct one day ahead of wind power prediction.



@ No. 1 wind farm (WF1) has 134x1.5 MW wind turbines, and is located in the coast of eastern

China with a flat terrain. The data are collected with a 5 min interval, covering 12 months from

2011.5.1 to 2012.4.30.
@ No. 2 wind farm (WF2) has 67x1.5 MW wind turbines, and is with a relatively flat terrain in

northeast China. The data are collected with a 5 min interval, covering 12 months from 2011.1.5
to 2011.12.31.

@ No. 3 wind farm (WF3) has 100x1.5 MW wind turbines, and is with a complex terrain in the
Chinese northern inland regions. The historical measurements are collected with a 5 min interval,
covering 12 months from 2011.1.5 to 2011.12.31. The met mast wind speed data are missing from
January to March, due to recording device fault. And no interpolation is conducted because there
is no available wind speed measured at other height or other met mast.

The data from wind farms include mean wind speed from met mast, the mean power output
of wind farms from SCADA (supervisory control and data acquisition) and NWP of the wind
components at the hub height of wind turbines. Met masts in all wind farms are located in the
upwind prevailing wind direction, measuring the wind speed and wind direction at hub height and
other atmosphere variables (pressure, temperature and humidity) at 10 m. The locations of these
met masts were carefully selected and assessed before wind resource assessment and wind turbine
locating by wind farm owners. So, the representative and the wake effect of met mast are
considered. The historical measurements from all wind farms have a high level of availability over
the question period. There are fewer than 4% missing operation data because of the occasional
device faults in wind farms. The missing parts are simply deleted and no interpolation process is
implemented for the missing data. Among the available data, 80% are considered as candidate
training samples and remaining 20% are used as test samples. The historical power data are
normalized by the installed capacities of respective wind farms. In this way, the specific
characteristics of the wind farms can be masked in order to make a scale-free comparison among
various wind farms.

III. NUMERICAL WEATHER PREDICTION

As wind vector is the key factor affecting the power generation characteristics of wind
turbines, the WPF models take NWP as input data and power output at wind farms as the training
targets. In this paper, the NWP data are produced and maintained at State Key Laboratory of
Alternate Electrical Power System with Renewable Energy Sources (North China Electric Power
University), in China. The maintenance of NWP system makes sure it can have a consistent run.

As NWP tool, WRF (weather research and forecasting) model predicts the time series of
NWP wind speed and wind direction at met mast location to serve as reference point. It
downscales to 6km horizontal resolution. NWP wind speed and wind direction are interpolated
from the lowest levels in WRF to a hub height of wind turbines. The time resolution of NWP is the
same as SCADA. The WRF model is initialized every day with the prediction of GFS (Global
Forecasting System). GFS is released by NCEP (National Centres for Environmental Prediction)



corresponding to the assimilation of atmospheric data at 00:00 GMT (Greenwich Mean Time).
This prediction horizon of initial field is 72 hours ahead. The NWP is available at about 7:00
GMT.

The initial field of NWP is from NCEP FNL (Final) Operational Global Analysis data, which
are calculated based on 1-degree by 1-degree grids prepared operationally every six hours. They
are from the Global Data Assimilation System (GDAS), which continuously collects observational
data from the Global Telecommunications System (GTS). The FNLs are made with the same
model which NCEP uses in the Global Forecast System (GFS), but the FNLs are prepared about
an hour or so after the GFS is initialized. The FNLs are delayed so that more observational data
can be used. The GFS is run earlier in support of time critical forecast needs, and uses the FNL
from the previous 6 hour cycle as part of its initialization®’.

The analyses are available on the surface, at 26 mandatory (and other pressure) levels from
1000 millibars to 10 millibars, in the surface boundary layer and at some sigma layers, the
tropopause and a few others. Parameters include surface pressure, sea level pressure, geopotential
height, temperature, sea surface temperature, soil values, ice cover, relative humidity, u- and v-
winds, vertical motion, vorticity and ozone?’.

IV. SUMMARY OF WPF METHODS

There are three WPF methods implemented in this paper to evaluate their performance in
wind farms mentioned above. The methods are summarized in Table I. For comparability, all
methods use the same input variables, training samples and test samples; and the wind power
forecasting horizon is 24 hours ahead. The input variables include NWP wind speed, sine of wind

direction and cosine of wind direction?8-3%40,

The samples are {Xl.,P}i:V, where input variables are X, ={ws,,wd.sin,,wd.cos,} and the

training target is the power output{P}in a wind farm. {ws,}is NWP speed;{wd.sin }is sine of

wind direction; { wd .cosl.} is cosine of wind direction; N is the sample number.

Since the training objective is to minimize the mean square error (MSE) of the network, the
fitness function is defined as the follow*.
. (1)
1 (v =,
N i=1 2
()

1tness = ————
i 1+ MSE

where ,is the desired model output or the learning target — the measured wind farm power output.

When fitness is close to 1, the requirement of network accuracy is thought to be reached.

Table I Summary of WPF methods

Forecasting Algorithm Implementing wind farm




GA-BP Back propagation artificial neural network optimized by WFI~WF3
generic algorithm

RBF Radical basis function artificial neural network WF1~ WF3

SVM Support vector machine WF1~WEF3

a. Back propagation artificial neural network optimized by generic algorithm

Back propagation (BP) neural network is a three-layer feed-forward network with a
supervised learning mechanism, introduced by Rumelhart, and McCelland in 1986. It is trained
based on an error back propagation algorithm and can learn any nonlinear mapping of input to
target.

There are two stages in BP learning process, which are input information forward

propagation and error backward propagation. During forward stage, model input variables X,

including NWP wind speed and NWP wind direction, are transferred from the input layer, and
then weighted by the hidden layer, finally to the output layer. The output of the BP network is the
predicted wind power output calculated by the sigmoid transfer function. This output result is
compared with the learning targets, which is the observed wind power. The inevitable training
error returns backward along the network path from output layer through hidden layer to input
layer so that the network parameters (connection weights and thresholds) of each layer can be
adjusted. Network parameters of BP are randomly selected in the initial iteration, and then updated
according to error response and improves the forecasting performance of the entire network.
However, this random parameter selection might result in inappropriate training scale (excessive
training or lack of training), local minimum problem or inefficient convergence, especially with
large amount of training samples.

Therefore, GA is used to evaluate the viability of the individual neural nodes and accordingly
to direct the BP initial parameter and training process. In this way, the global search capability and
the generalization of the BP network can be improved. The modeling process of BP optimization

using GA is shown in Fig.1.
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Read-in input data and threshold

Data processing .

Error calculation
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threshold of BP

Selection operators
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Mutation operation Store the output of BP

FIG.1. Modeling process of the GA-BP neural network
b. RBF neural network

RBF neural network*’#® is a three-layer network that learns by measuring the Euclidean
distance of data. It consists of an input layer, a single nonlinear hidden layer with nodes, and a
linear output layer. There is no weight between input layer and hidden layer. This simple network
structure is an advantage of the multilayered perceptron network for efficient training and
forecasting.

During the data processing, a hidden node represents one kernel functions and the hidden
layer performs nonlinear transforms for the feature extraction. Output layer is a local kernel
function with unit normalization which giving a linear and weighted sum of all the hidden nodes
outputs. Gaussion function is generally used to quantify the relationship between the model input
and the output of the j node in the hidden layer, as shown in eq.(3). There are two parameters in
kernel function determining the range of this kernel function effect, which are center and width.

And the expected output of the network is shown in eq.(4).

|x-cf )

Y, =ff(x,.,c,,aj)w_/. “)

J=1

T , . :
where C, =[cﬂ,cj2,... c ] is the center vector of the j” neuron in the hidden layer;

>C
o= [al,oz,...,aj ]T is the width vector; w;is the weight between the ™ neuron of the hidden layer;

M is the neuron number in the hidden layer.

The weight parameter updates for minimizing the total fitting error as follow.

N 5
minerror:%Z(yi—j/,.)z )

i=1

In this paper, Matlab toolbox is used to perform the training and testing. The modeling flow



of the RBF model is shown in Fig.2.

results
for data Calculate the output

Build network
topological structure

Initializing the self-organize
algorithm

. Store the results
Seek the best learning center
Determine the width of
basis functions
Determine the weights
for learning

FIG.2. Modeling process of the RBF neural network

C. Support vector machine
The basic idea of support vector machine (SVM)# for forecasting is to map the input vector
into a high-dimensional feature space by a nonlinear mapping function, and then to perform linear

regression in the feature space. The following estimate function is used to make the prediction.
F(x)=[w-g(x))]+0 ©
where wis weight vector; b is the threshold value; ¢(X 1.) is the nonlinear mapping function.

The function approximating problem is equivalent with the minimization of the risk function
R, as shown below.

(7

&

Ly 1<
R=—|wf +e- X |y -7 (X))
2 I3
where c is the regularized constant determining the trade-off between the empirical error and the

Ly 2 o
regularization term E”W” . |U is called Vapnik’s ¢ -insensitive loss function and ¢ is a

measure for empirical error>.

0 if‘yi_f(Xi)‘Sg ®

— (X )=
‘yl £ ,)‘ ‘y,-—f(Xf)‘—g otherwise

The minimizing function can be written as the following form.

f(Xi’af’ai*)ZZ[:(ai—a,.*)k(Xi,X)+b )
i=1

where al.,a,.* are Lagrange multipliers and ¢, ><0(l.* =0, Otl.,afl.* >0 for any i=1,2,...,[ .
k (xi ,X; ) = ¢(x,. ) X ¢(xl, ) is kernel function, which needs to satisfy Mercer’s condition. In SVM,

it is generally computed by RBF kernel function as follow.



=l (10)
k(x,y) = exp(%}

By introducing the slack variables & i,é’;, the risk function R can be rewritten to the

following form. The slack variables are introduced when the data cannot be estimated under the & .
1, p 2z . (1)
R=2wlf +eX(¢i+47)
i=1

subject to:

wep(x))+b-y, <e+l] =121 (12)
(w

yi—(wd(x))-b<e+s, =121
£,.0 20 i=1,2,...1

In order to obtain the estimates of weights and threshold, a minimization function can be

obtained with Lagrange multipliers and Karush-Kuhn-Tucker conditions as follow.

(13)
Min Lag(a*,a)
(" o 1 & & .
:8;(% +ai)_lzyi(ai _ai)—'_E;;(a —a)( —aj)k(Xl,Xj)
subject to:
(14)

N

* *
Z(ai —ai)=0,0Sai,al. <c
i=1

The data points associating with Oll.,ai* #0 are called support vectors. The key idea for

SVM is to select the values of «,, 0!1.* for the data set{xl.} . That is why the training sample effects

on forecasting performance is significant to analyze.
V. EVALUATION CRITERIA

The deterministic WPFs are evaluated and compared on three aspects: prediction accuracy,
computation efficiency and model adaptability.

(1) The error criteria adopted in the performance evaluation of the deterministic WPF is
Normalized root mean square error (RMSE). It gives a more representative evaluation of the

forecasting error for the complete validation period®'->2.

2(R-P,)
Capx\/_

where, P, is actual power output measurement at time of i. P, is predicted power at time of i. Cap

(15)

RMSE =

is capacity of wind farm. » is number of model training samples.
(2) Computation efficiency: The convergence times to train the WPF models are compared.

All the cases are implemented on a computer where the configuration is CPU AMD X4830
Processor, 2.80GHz.



(3) Impacts of training samples: The impacts of training sample on forecasting accuracy are
studied in terms of sample size, sample quality and the time scale of training samples. The training
samples are built up with three time scales (year, season, and month).

(4) Model adaptability. The adaptabilities of WPF methods in different terrains and climates
are also examined by implementing each WPF model in three wind farms with distinct topography
and climate patterns.

VI. CASE STUDY
a. Training sample impacts on WPF

The GA-BP, RBF, and SVM models are adopted to conduct the short-term WPF with
different training samples in three wind farms. The effects of training samples come from three
aspects, as follow: sample number, accuracy of training sample (NWP), and time scale of training
samples. The training samples are divided into 36 groups according to NWP speed absolute error
and sample number. The summary of training samples is in Fig.3. The nomenclature of sample
number for each wind farm is as follow: “Small”-500 samples (green bar); “Medium”-2000
samples (blue bar); “Large”- 5000 samples (purple bar).

(4,18]
# Sample numer = 500 (Small)

= Sample numer = 2000 (Medium)

" Sample numer = 5000 (Large)

(3.4]

(2,2.5]

(2.5,3]
Perfect (0.75,1] (1,1.25) 7(1.25,1. 5]
Forecast {0025](02505105075] III III III
- owmn 110 11
ﬁ(\:“:, :n,:; LR LEB LNY BEE LAY BRY EAY BRX EAR BR:

— Neln e S v S8 R ®we Sos eec ———————

NWP wind speed absolute error (m/s)

Training Sample Group

FIG.3 Summary of training samples

Fig.4 shows the forecasting RMSE with different numbers of training samples. To this end,
the WPF models are established based on equivalent size of training samples. The blue curve
represents samples of 1.1#, 2.1#, 3.1#, 4.1#, ..., 12.1#. The red curve represents samples of 1.2#,
2.2#,3.2#, 4.24#,..., 12.2#. The green curve represents samples of 1.3#, 2.3#, 3.3#, 4.3#,..., 12.3#.
X-axis is the representation of NWP wind speed error; and the NWP error is increasing from left
to right. The training samples at the same x-axis position have the same NWP wind speed absolute
error level. The results show that forecasting with 2000 training samples and 5000 training
samples have very similar and relatively stable performance. Blue curves show more variable
features, no matter what WPF algorithms are considered. Interesting to see that, the forecasts with
perfect NWP (1.1#, 1.2# and 1.3#) do not obtain the best accuracy, although the curves show
slightly upward trend with the increase of NWP error level. This verifies the contradiction effects

between sample number and NWP accuracy. If the sample number cannot reach the minimum



amount that model training requires, the forecasting accuracy is decreased even the wind speed

forecasts are 100% accurate.
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FIG.4 Influence of training sample size on forecasting accuracy. (a) GA-BP in 1#wind farm, (b) RBF inl #wind
farm, (c) SVM inl #wind farm, (d) GA-BP in2 #wind farm, (¢) RBF in2 #wind farm, (f) SVM in2 #wind farm, (g)
GA-BP in3 #wind farm, (h) RBF in 3#wind farm, and (i) SVM in3 #wind farm

To manifest the joint influence of sample number and sample accuracy, the forecasting model

is established with mixes of NWP with different wind speed forecast error. Fig.5 is the average
RMSE value of all wind farm power output forecasting. Specifically, the prediction accuracy of
GA-BP increases as the training sample number increases. It means that GA-BP algorithm has
larger demand for training samples at this stage. So, it is unsuitable for the modeling of new-built
wind farms or areas with a wide variety of weather patterns. But, continuous increase of training
samples would inversely lead to forecasting accuracy drops, and then the error levels off. This is
because excessive samples arise the over-fitting problem. For RBF, the prediction accuracy also
increases with the increase in training sample number. When the number of training samples is
less than 500, the rising slope of RBF red curves are far greater than that of GA-BP. But with more
than 500 samples, the RBF accuracy remains fairly constant. The prediction accuracy of SVM
increases with the decreasing of training samples, however, it reduces rapidly when the training
samples are less than 200. This verifies the forecasting capabilities of SVM with small amount of

samples.
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FIG. 5 RMSE of various training sample numbers

In order to investigate the relation between the model accuracy and time scale of training
samples, the training data is classified by year, season and month as time intervals. The results of
GA-BP, RBF and SVM with different time-scales training and testing are presented in Fig. 6.
Constant sample size is used in the plots. The RMSE of the three models increases with the
expanding time scale of training samples. It demonstrates that prediction models which are
established with month as time interval can improve the prediction accuracy. This is mainly
because the changing of the wind might follow specific rules in a certain month or season, which
is beneficial for the prediction to build the model for each month or season. In other words, it is
hard to grasp the meteorological features from representative samples in a long period of time
because the wind and power generation performance would behave in various ways.
15+ \wm‘/ 10 w2 \ P 225] WF3
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FIG.6 Prediction RMSE with different time scale of training samples

b. Modeling efficiency

Fig.7 is the training time with GA-BP, RBF and SVM based WPF models. Overall, the
training time of all WPF algorithms increase as the sample number increases. For GA-BP, the
training time gains linearly as the forecasting accuracy linearly increases as well. It indicates that
GA-BP sacrifices the modeling efficiency to forecasting accuracy. For RBF, the training time
increases exponentially with increase of sample number. It means that RBF is not suitable for
training with great amount of samples. Otherwise, its computational efficiency dramatically drops
and the forecasting accuracy increases mildly. The training time of SVM increases exponentially,
but its growth rate is lower than that of RBF. This validates its learning abilities and modeling

efficiency.
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FIG.7 Training time with GA-BP, RBF and SVM forecasting models

c. Adaptability to climates

Fig.8 shows the prediction RMSE of 12 months of GA-BP, RBF and SVM in three wind
farms. It is one month/season training, and one month/season prediction with error calculation.
The variation trends in each figure are consistent. It shows that the prediction accuracy in spring
(Mar., Apr., May) is lower than other seasons. This might be because that the weather in spring
fluctuates frequently that the NWP accuracy is reduced. Meanwhile, the power output is higher
due to abundant wind resources in spring, and this increases prediction error as well.
Comparatively, RBF and SVM have good prediction accuracy in spring, which show their
preferable generalization abilities. RBF does not have a higher demand for NWP accuracy,
showing better adaptability in WF3. GA-BP gets a better predictive effect in Jun. and Aug.
because of the small and stable wind conditions in summer.
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FIG. 8 Prediction RMSE of 12 months in three wind farms
d. Variability effects on predictability

Fig. 9 shows the linear dependency between three forecasting RMSEs (or predictability) and
normalized wind power variability in three wind farms. The RMSE is based on forecast horizon of
24 hours. In Eq. (16), the wind power variability is defined by the mean absolute 15 minute
gradient of the measured power time series P(t) that serves also as training targets>. It is clear to
see that larger variability leads to lower predictability, which reflects the seasonal effects on
forecasting error distribution.

Variability =|P(¢+15min)— P(¢)| (16)



045

WF2 —=—GA-BP 0.30
020{ WF1 0401 _a_RBF . WS r
SVM 0.28
0.18 035
1 0.26
~ - — "
3 0164 / 2 030 T ool
s . ] s 7 -
2 0141 —— £ 025 J £ o2l < w7
=1 T = =) = =
2 o5 I 2 020 —r 2 ] i1
2 - i I A . —
—T 0.151 e 0.18 o
oloy * .~ e o
= 0.10 -/I 0164 T
0.084 ¥
T T T T T ) 0.05 T T T T T ) 0.14 T T T T T
0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10
Mean abs 15min-gradient power (% cap.) Mean abs 15min-gradient power (% cap.) Mean abs 15min-gradient power (% cap.)

FIG. 9 Correlation between variability and predictability (RMSE) in 12 months.

Adaptability to the terrains
The average RMSE of every model is shown in Table II. The three models meet the

i

requirement of RMSE less than 20%. SVM has better prediction average accuracy of 10.54% in
WF1 and 14.87% in WF2. This is because that both wind farms are flat and have complete met
mast data as well as better NWP data. Due to the topological complexity of WF3 and lack of
partial met mast data, the prediction performance of three models is all a little worse. Relatively,
RBF has better prediction accuracy of 18.76% in WF3, owing to its strong adaptability.

On the whole, RBF and SVM have a more accurate prediction than GA-BP. SVM is suitable
for the wind farms with flat terrains and precise NWP data, especially coastal areas, whilst RBF

shows advantages in those with complex terrains and worse NWP data.

Table II Monthly average RMSE of GA-BP, RBF and SVM models in WF1, WF2 and WF3

WF1 WEF2 WEF3
Model

RMSE/% RMSE/% RMSE/%
GA-BP 10.92 15.87 19.99
RBF 10.67 15.98 18.76
SVM 10.54 14.87 18.90

Fig.10 shows the predictive and actual value of wind farm power output with the three
models over one random day (288 time moments). Except for GA-BP model in WF2 shown in
Fig.10 (b), other prediction curves are primarily in accordance with the actual value, and the error
between the predictive and the actual power output is small. However, three models, especially
GA-BP, cannot track the sharp power changes accurately. This is related to the features of model
learning as well as the NWP accuracy. For GA-BP, it has the drawback of becoming trapped into

the local minimum. Although it can be improved by GA, it requires further optimization.



Actual Power
—— GA-BP

200 - (a) WF1

Power(MW)

0 50 100 150 200 250 300
Moment

FIG.10 24-h horizon predictive and actual value of wind farms power output in wind farms on one
random day in (a) WF1, (b) WF2, and (c) WF3.
VII. CONCLUSION

In this paper, GA-BP, RBF and SVM methods are established and analyzed for prediction
accuracy, computation efficiency and model adaptability. Based on the case study in China,
following conclusions can be drawn:

(1) Training sample effects. GA-BP and RBF have similar interaction effects from training
sample number on forecasting accuracy. The prediction accuracy increases with the increase in
training sample number. The change of sample number is less sensitive than that of SVM. GA-BP
forecasting accuracy is equally sensitive to all size of training samples. With small training sample,
the rising slope of RBF red curves is far greater than that of GA-BP. But with more samples, RBF
accuracy remains constant. The prediction accuracy of SVM increases with the decreasing of
training samples, however, it reduces rapidly with large training samples.

(2) The size of the training sample for different forecasting algorithm has such a distinctive
influence on forecasting performance. According to the training sample analysis in this paper, it is
suggested that:

e Atleast 7000-8000 samples should be used for GA-BP model training.

o At least 800-1000 samples should be used for RBF model training to obtain an
accuracy-efficiency balanced result. Around 7000 training samples can produce better
accuracy, but the effect is marginal and the training time is increased.

e Atleast 400-600 samples should be used for SVM model training.



e To convert from sample number to calendar time, one has to use the proper sampling time
and subtract the amount of unusable data due to missing measurements, invalid data,
maintenance and curtailment, and 10-min samples would work the same way as hourly
samples.

(3) Model adaptability to the terrains. SVM is suitable for the wind farms with flat terrains
and precise NWP data, especially coastal areas. Whilst RBF shows advantages in those wind
farms with complex terrain and worse NWP data.

(4) Model adaptability to climates. RBF and SVM have good prediction accuracy in spring,
while GA-BP is more suitable for summer. It is suggested to combine these three models
depending on different seasons to increase the wind power prediction accuracy.

(5) Model computation efficiency. SVM modeling requires less training samples and better
NWP with high computational efficiency. It is suitable for the modeling of new-built wind farms
or areas with various weather conditions. The RBF model is not suitable for training samples with
too much data; otherwise its computational efficiency is too low. GA-BP with lower
computational efficiency demands for larger training samples making it unsuitable for the
modeling of new-built wind farms or areas with a variety of weather conditions.

(6) Overall, RBF and SVM have better prediction performance than GA-BP, and prediction
models which are established with one month samples at a time can improve short-term wind
power prediction accuracy.
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