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ABSTRACT 

Inverse gas chromatography, IGC, has been used to investigate the surface 

properties of a kaolinite clay.  Changes in enthalpies of adsorption for a 

range of probes and in the surface energies of the clays have been 

measured and the effect of calcination of the native clay as well as of 

coating with an amino- propylsilane coupling agent have been determined.  

The surface energy of the clay was lowered by calcination and further 

considerably reduced on coating with the silane.  From the retention of 

polar probes, information on the accessibility of surface sites to the probes 

and on the acid-base character of the surface was measured.  Two 

commonly used methods for quantifying these specific interactions are 

compared and yield similar results. The hydrated clay became less porous 

and less acidic after calcination while coating with the silane conferred a 

largely, though not exclusively, basic character. 

 

Keywords: Inverse Gas Chromatography;  kaolin,  calcined clay;  surface 

energy;  surface modification. 
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INTRODUCTION  

Kaolin, or china clay, is found in many parts of the world and is an important commercial 

product. Among its uses is as a mineral filler in a range of polymer composite materials. In 

these applications, an understanding of the interactions between the polymer and the clay is 

important for predicting composite performance and thus characterisation of the clay surfaces 

is needed, particularly in terms of its surface energy.  These values can be obtained by, for 

example, liquid adsorption measurements,1,2  flow microcalorimetry3 or contact angle 

measurements4 but these methods are not easily and widely applicable and the latter difficult 

to use with finely divided solids.  A number of workers have demonstrated the usefulness of 

Inverse Gas Chromatography, IGC, for investigating the surface energies of a range of 

mineral solids5. 

 In IGC the solid under investigation is packed into a column over which an inert 

carrier gas flows.  Small amounts of “probe” solvents are injected into the carrier and the 

retention time depends on the interactions between the probe and the surface.  By using 

probes with a range of properties, the nature of the surface can be defined with good accuracy.  

The technique was formerly mainly applied to polymers5,6 and this work continues7 but more 

recently IGC been used to characterise the properties of a range of surfaces including silicas 

and activated carbons8, filler materials and pigments9 – 11 and pharmaceutical agents.12, 13 

Clays are aluminosilicates with a structures14 consisting of layers of octahedral and 

tetrahedral arrangements of oxygen atoms around aluminium and silicon respectively. 

Different clays have different lattice structures; kaolinite has the octahedra and tetrahedra in a 

1:1 ratio arranged in layers15 and has the general formula Al2O3.2SiO2.2H2O.  Cation 

exchange can take place to modify the chemistry of the clay.  This is particularly prevalent for 

natural clays where some variation in composition and hence properties is expected.  
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These hydrated structures undergo rearrangement on heating to form two further widely 

used minerals16.  Above 500 ºC, dehydroxylation occurs endothermically to form metakaolin.  

By 650 ºC, approximately 90 % of the dehydroxylation is complete15.  Metakaolin has a 

highly reactive surface, probably due to an increase in the number of Lewis sites, with 

reduction in the coordination of aluminium.  On further heating, to above 980 ºC, a defect 

spinel structure arises forming ‘calcined clay’.  Calcined clay is much less reactive than 

metakaolin, but isolated hydroxyl groups are retained on the surface and may undergo 

coupling reactions15.  

In order to assist dispersion and adhesion when used as a filler in a polymer matrix, it is 

often necessary to treat the surface of the clay with a dispersion or coupling agent17.  In 

addition, extraction and processing of clays involves the use of refining and improving 

chemicals, such as floatation and bleaching agents. The effect of each of these treatments on 

the surface properties has to be taken into account in terms of the performance of the filler. 

Some clay minerals have previously been studied using IGC in an attempt to determine 

the effects of chemical modification.  Bandosz et al. studied18 the effect of introducing large 

metal polycations to form pillared smectites (a 2:1 clay) which were useful as catalysts, 

adsorbents or molecular sieves.  Alkane and alkene probes were used show that, after 

calcination, the Lewis acid sites were reduced with lower π-bonding interactions.  The study 

was extended19 to include surface polymerisation and carbonisation as well as20 the effect of 

heat treatment or high temperature reaction with propylene on taeniolites.  In other work, 

montmorillonite and bentonite21 matrices were also modified by a similar technique and the 

sorption properties of the surfaces characterised. 

Illites (another 2:1 clay) and kaolinites are important in the petrochemical industry 

since they comprise the majority of subsoils in oilfields and their wettability is related to the 

retention of heavy oils.  The surface properties of some illites from various origins were 
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measured by Saada et al. using IGC where the use of branched alkane probes allowed 

characterisation of the surface morphology22.  This was later23 extended to use a finite 

concentration technique to characterise the heterogeneity of the clay surfaces.  

Both hydrous and calcined clays are used in preparing composites with polyolefins 

and polyamides and we are engaged in a programme investigating the properties of these 

polymer composites.  Despite the work outlined above, there has been no systematic study of 

measuring the thermodynamic changes on calcination and dehydroxylation and/or the surface 

treatment of a kaolinite and the effects on mechanical properties of composites when used as a 

filler.  In this paper, we present an investigation of a kaolinite and its modification.  Two 

commonly used methods of treating IGC data to determine surface energies are compared 

using the results from the interaction of a range of probes with kaolinites.   

 

EXPERIMENTAL   

Materials:   The kaolin sample (termed here as HYC – HYdrated Clay) was a high-purity 

china clay extracted from a commercial site in Cornwall, UK and was washed and refined 

without the use of processing chemicals.  The calcined clay (termed CAC – CAlcined Clay) 

was a commercially available grade (Polestar 200R,  Imerys Minerals) which was modified 

from the original feedclay by calcining at 1100 °C.  Characterisation details of both materials 

are given in Table 1.  

 A third material, termed here CAC-Sil, was produced by silylation of the calcined 

clay.  Because of its commercial application for dispersing calcined clays in polyamide 

composites, the silane modifier used was γ-aminopropyl triethoxysilane, NH2–(CH2)3 –Si-(O-

C2H5)3 (A1100 from Witco).  The calcined clay was coated with a calculated monolayer 

amount of silane in a Steele and Cowlishaw high-speed mixer for fifteen minutes. The ethanol 



Ansari & Price IGC of Kaolinites 5 

formed as a bi-product was removed by conditioning in an air circulating oven for three days 

at 60 °C. 

To prepare packings for IGC, the clays were pressed into pellets using a press at 20 t 

pressure, then crumbled and sieved to give aggregates of 425 – 850 µm.  These were packed 

with the aid of mechanical agitation into washed stainless steel columns of ¼ in o.d.  Columns 

of length 0.90 – 1.0 m which contained 10 – 12 g of packing were used.  The columns were 

pre-conditioned in a slow flow of carrier gas at 150 °C for 24 hours, before further 

conditioning for twelve hours at the measurement temperature.   

Chromatography:  A Perkin-Elmer Autosystem XL gas chromatograph employing FID 

detection was used. The column temperature was measured to ± 0.2 °C on a Chrompack RDT 

thermometer that was calibrated against an NPL calibrated Tinsley Type 5840 platinum 

resistance thermometer.  Looped-valve tubing before the column inlet permitted the inlet 

pressure and flow to be measured to ± 0.3 cm3 min-1 with a FP-407 (Chrompack) solid state 

calibrated dual flow and pressure meter.  Oxygen-free nitrogen was used as the carrier gas and 

was passed through a Perkin-Elmer three-stage drying and purification system, before 

entering the chromatograph. The barometric pressure was measured at the beginning and end 

of each run using a BDH precision aneroid barometer;  the mean of the two was used for all 

calculations.  The instrument was located in a temperature-controlled laboratory, maintained 

at 23 °C ± 1 °C.   

 After conditioning, a series of ~ 0.1µL aliquots of the vapour of the probes used were 

injected by Hamilton syringe over a range of temperatures.  All probes were chromatographic 

grade (BDH). Retention times were recorded and processed by the PE-Nelson Turbochrom 

data management software.  Methane was used as a non-interacting marker to determine the 

void volume of the column. Each value reported is the result of at least three elutions agreeing 

to within experimental uncertainty. In order to confirm that the results were collected at 
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infinite dilution, injections of n-pentane were made with varying sample sizes in the range 

0.01 – 0.1µL and over a range of flow rates.  Repeated injections of volumes between 0.01 

and 0.05 µL gave retention times with no significant variation within the experimental 

uncertainty.  There was no dependence on carrier flow rates between 20 and 50 cm-3 min-1. 

 

RESULTS AND DISCUSSION 

The primary measurement in IGC is the net retention volume, Vn, given22 by 

Vn = J f (tr – t0)         (1) 

where tr is the retention time taken for the probe, t0 that for the non-interacting marker and  f 

is the carrier gas flow rate corrected to S.T.P.  J is the correction factor for pressure drop 

across the column and carrier gas compressibility, given with the column inlet and outlet 

pressures, pi and po respectively by: 
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 For solid minerals, absorption into the bulk is negligible and retention is solely due to 

adsorption onto the solid surface.  It can readily be shown24 that Vn is related to the Gibbs 

energy of adsorption for the probe onto the surface, ∆Ga°, by:   

 ∆Ga°  = - RT ln ⎟⎟
⎠
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 or     ∆Ga° = ( ) ( )[ ]constant V RT n +− ln   (2)  

where Sa  is the specific surface area of the adsorbent, Ws the weight of sample in the column, 

π is the surface pressure of the liquid probe and pg the equilibrium vapour pressure of the 

probe under standard conditions.  Using the approach of De Boer25 which has commonly been 

adopted in defining the standard states, ∆Ga° can be calculated over a series of temperatures 

from measurement of Vn and since   

∆G°a  =  ∆H°a – T ∆S°a  =   - RT ln Vn + k      (3) 
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if ∆G°a is plotted versus T, the isosteric (zero coverage) enthalpy of adsorption can be 

calculated from the intercept and the corresponding entropy change from the slope, with the 

assumption that both parameters do not depend on temperature over the range investigated. 

 This approach was applied to the three clay samples and ∆G°a calculated for each 

probe over a range of temperatures.  The values are plotted for each of the clays investigated 

in Figures 1 – 3.  The derived enthalpies and entropies of adsorption are given in Tables 2 and 

3 respectively. 

The values of ∆H°a for the native hydrated clay are comparable with previously 

published data for native kaolinites and illites.   Saada et al.22 studied three kaolinites from 

different sources, ∆Ha for hexane varying from 49 to 62 kJ mol-1 compared with 59 kJ mol-1 

found here.  The Literature values shown in Table 2 were for a heritage formation ground 

kaolinite and are in excellent agreement with the measurements reported here.  The ∆H°a for 

alkanes after calcination fell by between 9 to 13 kJ mol-1.  This reduction may be explained by 

considering the changes that occur during calcination.  On heating to > 1000 ºC, structural 

changes result in a more ordered layer structure and loss of hydroxyl groups from the surface.  

This gives a reduction in polarity and hence in the adsorption enthalpies.  The values for the 

silane coated clay showed a larger variation with the size of the alkane.  Pentane and hexane 

gave ∆H°a values comparable with CAC although they were significantly lower for heptane 

and octane.  This may signify some steric constraints on adsorption of the longer alkanes.  

This last suggestion is also supported by the ∆S°a values.  There is little variation for the 

adsorption of pentane but a greater loss of entropy is involved in the adsorption of the longer 

alkanes on the hydrated clays than the dehydrated versions presumably due to the stronger 

interactions restricting the number of adoptable sites and conformations on the surface. 
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 Following the approach pioneered by Fowkes26 the surface energy of the solid, γs can 

be split into two components, one due to van der Waals or dispersion forces, γs
d, and one due 

to other specific interactions such as polar, acid-base etc., γs
sp 

γs
d = γs

d  +  γs
sp          (4) 

The non-specific or dispersive component of the substrate surface energy, γs
d, can be 

calculated from the elution data for saturated hydrocarbon probes, which are assumed to 

interact only by dispersion intermolecular forces.  The free energy change for the adsorption 

of a single methylene group, ∆G°a
, CH2, is found from the difference in free energies of 

adsorption for succeeding alkanes in an homologous series 

∆G°a
, CH2  =  RT ln ⎟

⎟
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where n is the number of carbons in the linear alkane.  γs
d can then be calculated from27, 28  

γs
d = 
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where N is Avogadro’s number; γCH2 is the surface tension of a hypothetical surface 

containing only methylene groups and aCH2  is the cross-sectional area of a methylene group 

(≈ 0.06 nm2).  Thus at constant temperature, for a series of alkane probes, a plot RT ln (Vn) 

versus the number of carbon atoms should give a straight line from which ∆G°a
,CH2  can be 

found.  It is clear that this will not give an exact value of γs
d under all circumstances since, for 

example, aCH2 will be somewhat temperature dependent.  However, comparison of relative 

results across a series of systems should allow reasonable conclusions as to the surface 

behaviour to be made and this has become an accepted method for comparing surface 

adsorptions10, 29, 30 .  The plot for HYC is shown in Figure 4.  Those for CAC and CAC-Sil are 

very similar in appearance and are given in Figures S1 and S2 of supplementary material to 
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this paper.  All show the expected linear relationship and the values of γs
d calculated are given 

in Table 4. 

 The results were comparable to the lowest data of Saada et al.22, recorded for a finely 

ground clay.  These authors suggested that at least some of the variation in retention resulted 

from differences in surface area and porosity.  The kaolinites studied by Saada et al. had 

surface areas ranging from 14 to 40 m2g-1 compared with 8.8 m2g-1 for the HYC used here; 

clays with high surface areas are more porous and may retain small probes more strongly 

leading to higher surface free energy results.  They postulated that lower results for agraded 

(processed) clays were due to a more uniform surface.  The lower results in this work for 

CAC compared with HYC, support this suggestion.  

The value of γs
d  represents the interaction of the surface with an alkane and hence is a 

measure of how easily the surface can polarise the probe.  At the infinite dilution conditions 

involved in this IGC work, the probes will interact most strongly with the high surface energy 

sites so, for a heterogeneous surface, the γs
d results will predominantly reflect these, rather 

than being an average across the whole surface.   

 As detailed above, after calcination the surface structure of kaolinite is altered with 

high-energy hydroxyl sites being removed.  This is reflected in the reduction in the measured 

surface free energy.  Clay surfaces are strongly acidic, related to layer defects and hydroxyl 

and oxygen atoms in the aluminate structures and silicate layers31.  Strong Lewis acids are 

formed by cations of interlayer materials and this has led to a range of applications, for 

example in chemical synthesis32.  On calcination, these sites are altered as the interlayered 

structure collapses and a proportion of the highest energy surface sites are removed. However, 

there is still some hydroxyl functionality present so that a relatively high energy surface 

remains. 
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 A markedly greater lowering of γs
d occurs on treatment with the aminosilane.  

Alkoxysilanes react primarily with hydroxyl functionality.  The reduction in γs
d clearly bears 

this out.  For this silane, reaction of the basic amine with the acidic surface might be expected.  

However, the chain length is short and so reaction only at one end of the molecule is possible, 

that of the silane terminus being favoured.  An completely alkane-like surface would have a 

γs
d  of 30 – 35 mJ sm-2 so that it is clear that some functionality remains on the surface, albeit 

at a greatly reduced energy compared with CAC. 

 To calculate the γs
sp contribution from Equation (4), a selection of other non-alkane 

probes was used at 100 ºC.  Two methods have been used in the Literature to determine the 

specific interaction parameters.   

 In the first method28, it is assumed that the dispersive components are given by 

∆Ga  = 2 (γs
dγL

d)½                    (7) 

where γs
d and γL

d are the surface energies for the solid and probe liquid respectively.  From 

Equations (3) and (5), this is equivalent to 

 - RT lnVn = 2N (γs
d) ½ a(γL

d) ½ + constant      (8) 

so that by plotting RT lnVn against a(γL
d) ½ the slope corresponds to the response of a non-

polar (alkane) probe.  If a polar probe is used, with an equivalent value of a(γL
d) ½, the 

deviation from the alkane line on the RTlnVn axis will be equivalent to ∆Gºspecific.  This 

method requires knowledge of the probe surface tension and its contact area, a.  These are not 

always readily obtained but in this work the data for the probes were taken from data by 

Shultz and Lavielle33.   

A second, empirical method for estimating specific interactions was also applied, as 

suggested by Saint-Flour and Papirer34. 35.  In this, ∆Gºa  is plotted against the saturated vapour 

pressure of the probe liquid, pº, which is readily obtained from literature. The results for the 

alkane probes are again used to determine a reference line.  Given the nature of the alkanes, pº 
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is a reflection of the strength of dispersion forces.  Deviations from the line will be due to 

specific interaction energies and the difference between probes allows estimation of the 

interaction type and strength.  While there are difficulties in assigning exact quantitative 

significance to the values obtained, useful comparative information can be obtained.  In 

particular, use of probes with acidic (acceptor), basic (donor) and amphoteric properties 

allows conclusions to be drawn on the nature of the solid.   

The plots arising from these two treatments for HYC hydrated clay are shown in 

Figures 5 and 6.  The resulting interaction energies are shown in Table 5.  Agreement between 

the two methods used was generally good except for the amphoteric probes acetone and ethyl 

acetate.  Values arising from the ‘log Pº’ plot were somewhat lower although the trends in 

both data sets were the same.  Reasons for the non-agreement probably arise from 

uncertainties in the values of a and γL
d at the temperature of measurement. While the vapour 

pressure method does not give absolute measures of the interaction energies, the data is more 

readily available for a range of probes and should allow comparison of a set of results for 

different surfaces.  The method was therefore used for the two other clays studied and the 

results are also shown in Table 4.  

Generally, interactions with polar probes on CAC were lower than for HYC or could 

not be detected within our experimental protocols either giving extremely long retention times 

or very broad and heavily skewed peaks, making determination of the precise retention time 

impossible.  Those polar probes not detected were either retained over an excessive period, or 

underwent some chemisorption at the surface, and could not be removed.  THF and diethyl 

ether are highly basic probes while acetone and ethyl acetate have both acid and base 

character.  Given the highly acidic nature of the clays, it is perhaps not surprising that these 

compounds interacted very strongly with the surfaces.   
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There are negative apparent interaction energies for cyclohexane and carbon 

tetrachloride, implying lower interaction than with the corresponding alkane.  In the former 

case, the nature of the interactions interactions would be the same and the lower value is 

presumably due to steric factors preventing the bulkier cyclohexane from accessing sites that 

are available to the linear compound.  The same argument can be made for the relatively 

bulky CCl4 probe. Thus the results for these probes may reflect changes in the morphology of 

the surface in addition to changes in its chemical nature. The degree of porosity and/or 

intercalation would be lower in the treated clays.  Depending on its orientation at the surface, 

chloroform could also present a surface area similar to that of CCl4. 

 Specific interaction energies for the alkenes hexene and octene for CAC were 

approximately half of those compared with HYC and those for CAC-Sil even lower.  These 

probes are Lewis bases through π-interaction and the trend of results indicates a lowering of 

the acidic nature of the surface with treatment.   

 On silane treatment specific interactions change from acidic, electron acceptor-type to 

those of basic, electron donor-type.  Thus specific interaction results for the acids, carbon 

tetrachloride and chloroform were negative for CAC and positive for CAC-Sil. Results for the 

alkenes showed the opposite effect, with a reduction in specific interaction energy on surface 

modification.  These data are consistent with the presence of some functional amine group at 

the mineral surface.  It is also known that some siloxane functionality is introduced due to 

hydrolysis of the triethoxysilane.  In other work36 we have shown that surface modification 

with long chain alkyl carboxylic acids effectively produces and alkane-like layer at the 

surface with γs
d values in the region of 30 mJ m-2.  These surface modifications have a large 

influence on the performance of the clays as fillers in a thermoplastic composite and results in 

this area will be described in a separate publication.37. 
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CONCLUSIONS 

Our results further validate the use of IGC for the study of the surface properties of finely 

divided solids.  Changes to the surface structure and properties of a native kaolinite clay have 

been measured as a result of calcination and of coating with an aminopropylsilane coupling 

agent.  The enthalpies of adsorption of alkane probes and the dispersive component of surface 

free energy were reduced by calcination and further considerably reduced on coating with the 

silane.  By investigating the retention of polar probes, information on the accessibility of 

surface sites to the probes and on the acid-base character of the surface was measured.  The 

hydrated clay became less porous and less acidic on calcinations while coating with the silane 

conferred a largely, though not exclusively, basic character.   
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Table 1:   Composition and structure of clay minerals used for IGC 

 
  HYC CAC / CAC-Sil 

XRD analysis (%) Kaolinite 98 Amorphous 
 Quartz 2 - 
BET Surface area 
(m2 g-1) 

 8.8 7.0 

Particle size (wt.%) > 10 µm 0 5 
 > 5 µm 2 15 
 < 2 µm 82 49 
Composition (wt.%) SiO2 46.2 55.8 
 Al2O3 39.2 41.0 
 Fe2O3 0.23 0.59 
 TiO2 0.09 0.06 
 CaO 0.06 0.01 
 MgO 0.07 0.19 
 K2O 0.21 2.21 
 Na2O 0.09 0.01 
 Loss on ignition 13.8 0.30 

 

 

 

 
Table 2:  Comparison of the adsorption enthalpies for alkanes on kaolinites.  

 Enthalpy of Adsorption (kJ mol-1) 
 

Probe HYC CAC CAC-Sil Kaolinite* Illite* 

Pentane 48 ± 3 35 ± 2 44 ± 2 50 42 
Hexane 59 ± 4 46 ± 4 45 ± 1 62 51 
Heptane 69 ± 4 58 ± 3 52 ± 1 69 65 
Octane 81 ± 5 73 ± 4 59 ± 1 79  
 
*Results from Ref. 22  

 



Ansari & Price IGC of Kaolinites 17 

 
 

Table 3:  Entropies of adsorption for alkanes on kaolinites.  

 Entropy of Adsorption (J K-1 mol-1) 
 

Probe HYC CAC CAC-Sil 

Pentane - 90 ± 7 -70 ± 5 -90 ± 6 
Hexane -110 ± 8 -87 ± 5 -83 ± 6 
Heptane -122 ± 8 -106 ± 6 -95 ± 6 
Octane -142 ± 9 -133 ± 8 -105 ± 7 

 

 

 

 

Table 4: Comparison of the dispersive surface free energy for kaolinites. 

 

 Dispersive Component  of Surface Free Energy (mJ m-2) 

Temp. (°C) HYC CAC CAC-Sil Kaolinite* 
 

80 165 ± 5 139 ± 4 64 ± 2 154 – 211 
90 156 ± 6 137 ± 3 58 ± 2  
100 149 ± 5 132 ± 3 63 ± 3 167 – 201 
110   65 ± 3   
120 151 ± 4 130 ± 2 58 ± 2 156 – 212 
130   56 ± 2  
140 147 ± 5 130 ± 3 56 ± 3 160 – 217 

 

*  Results from Ref. 22   
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Table 5:  Specific interaction energies* for polar probes on clays. 

 

 Variation in free energy of adsorption from the alkane line 
(∆Gsp) (kJ mol-1) 

 
Probe HYC 

(a(γl 
d )1/2 plot) 

HYC 
(log Po plot) 

CAC 
(log Po  plot) 

CAC-Sil 
(log Po  plot) 

Chloroform 5.1  ± 0.4 5.0  ± 0.4 -2.7 4.1 
Tetrachloromethane -4.8  ± 0.4 -4.9  ± 0.4 - 2.1 ± 0.3 2.2 
THF 21.5 ± 1.0 18.2  ± 0.9 NPD  
Acetone 8.5  ± 0.3 4.3  ± 0.3 NPD NPD 
Ethyl acetate 7.1  ± 0.4 5.1 ± 0.4 NPD NPD 
Diethyl ether 13.7 ± 0.8 12.2  ± 0.9 NPD  
Cyclohexane --- -7.9 ± 0.5 -4.3 ± 0.6 -2.5 
Pentene   4.9 ± 0.6 1.8 
Hexene  8.6 ± 0.4 4.0 ± 0.4 1.8 
Octene  8.8 ± 0.4 3.8 ± 0.4 1.8 

 

*  NPD = no peak detected, 
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CAPTIONS FOR FIGURES 

 

Figure 1:   Plot of  ∆G°a versus temperature for HYC to determine ∆H°a    

 

Figure 2:   Plot of ∆G°a versus temperature for CAC to determine ∆H°a     

 

Figure 3:   Plot of ∆ Ga versus temperature for CAC-Sil to determine ∆H°a        

 

Figure 4:   Plot of RTlnVn versus number of carbon atoms (from alkane probes) for HYC to 

determine γs
d   

 

Figure 5:   Plot of ∆ Ga versus a (γl 
d )1/2 for HYC to determine specific interaction energies. 

 

Figure 6:   Plot of ∆ Ga versus log Pº for HYC to determine specific interaction energies.   

 

Figure 7: Plot of ∆Ga versus log Pº for CAC-Sil 

 

 

 

 

Supplementary data 

 

Figure S1:   Plot of RTlnVn versus number of carbon atoms (from alkane probes) for CAC.            

 

Figure S2:   Plot of RTlnVn versus number of carbon atoms (from alkane probes) for CAC-

Sil.  

 

Figure S3:   Plot of ∆Ga versus log Po for CAC to determine specific interaction energies.    
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Figure 1:   Plot of  ∆G°a versus temperature for HYC to determine ∆H°a    
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Figure 2:   Plot of ∆G°a versus temperature for CAC to determine ∆H°a     
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Figure 3:   Plot of ∆ Ga versus temperature for CAC-Sil to determine ∆H°a        
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Figure 4:   Plot of RTlnVn versus number of carbon atoms (from alkane probes) for HYC to determine γs
d   
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Figure 5:   Plot of ∆ Ga versus a (γl 
d )1/2 for HYC to determine specific interaction energies. 
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Figure 6:   Plot of ∆ Ga versus log Pº for HYC to determine specific interaction energies.   
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Figure 7: Plot of ∆Ga versus log Pº for CAC-Sil 
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Figure S1:   Plot of RTlnVn versus number of carbon atoms (from alkane probes) for CAC.            
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Figure S2:   Plot of RTlnVn versus number of carbon atoms (from alkane probes) for CAC-Sil.  
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Figure S3:   Plot of ∆Ga versus log Po for CAC to determine specific interaction energies.    
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