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Assessment of additional phase energy losses caused by phase imbalance for data-scarce LV networks

Lurui Fang !, Kang Ma" !

! Department of Electronic and Electrical Engineering, University of Bath, Bath, UK

"K.Ma@Bath.ac.uk

Abstract: Unbalanced phase currents, which flow in transformer windings and distribution wires, cause a significant
increase (approximately 33%) of phase energy losses in low voltage (LV, 415V) networks. However, these additional phase
energy losses (APEL) are hard to calculate for most LV networks. A key challenge is that these LV networks are data-
scarce, with only yearly average and maximum phase currents. To estimate the APEL for data-scarce LV networks, this
paper proposes a statistical approach that effectively overcomes the above challenge. Firstly, the approach calculates
APEL for a sample set of data-rich networks with year-round time-series phase current data. Secondly, features are
extracted from these networks by considering: 1) whether the features are strongly correlated to additional phase energy
losses; and 2) whether the features can be derived from available data (e.g. yearly average and maximum phase currents)
from data-scarce networks. Thirdly, to approximate mappings from the features (derived in stage 2) to the APEL (derived
in stage 1), a kernel-based regression model is developed, using the above customised features. Given any data-scarce
network, its APEL is then estimated by applying the regression model. Cross-validation shows that the statistical approach
incurs an average error of 13% for 90% of the data-scarce LV networks, excluding the networks with very low APEL

values.

1. Introduction

Phase imbalance is a widespread problem in low voltage
(415V, LV) networks in the UK and other countries [1], [2],
[3]. According to the data from Western Power Distribution
(WPD, a UK distribution network operator), more than 50%
of the LV networks suffer from a notable degree of phase
imbalance. It is common that the current on the heaviest phase
is greater than that on the lightest phase by more than 50%
[4]. It should be noted that even if a network has perfectly
balanced three phases, there is still an I°R loss on the phase
conductors because of conductor impedance. However, if the
three phases are unbalanced, the IR loss on the phase
conductors would be greater than if the three phases were
balanced. The difference is the additional phase energy loss
(APEL).

These unbalanced phase currents cause a significant
increase in energy losses on the three phases of LV networks:
1) on distribution lines, APELs account for up to 33% of wire
energy losses [4]; and 2) in distribution transformers, APELs
account for up to 27% energy losses of transformer copper
losses [4]. However, APELSs are hard to calculate for most LV
networks. A key challenge arises from the APEL estimation:
alack of time-series phase current data for the majority of LV
networks that are data-scarce. These networks only have
yearly average and maximum phase current data, collected
once a year.

One solution to address the data scarcity challenge is to
deploy monitoring devices for more than 900,000 LV
networks in the UK. However, this causes a substantial cost.
With sufficient data collected, a number of references assess
energy losses caused by phase imbalance. Reference [5]
assesses the additional copper losses caused by imbalanced
loading for LV transformers. Reference [6] evaluates energy
losses in distribution networks with imbalanced three phases.
The APELs are calculated for networks with full data.
Reference [7] develops network component models (includes
load, line, and transformers) to calculate the energy losses for
distribution transformers and lines. The APELs are then

derived from this model. Reference [2] develops new phase
imbalance indices, which are then used to estimate energy
losses. Reference [8] uses complex unbalance factor to
evaluate the APEL.

Reference [9] develops a combination of clustering and
classification approach to estimate the imbalance-induced
energy losses for data-scarce networks. However, Reference
[9] focuses on the energy losses in the neutral and ground,
caused by phase residual currents. Such energy losses have a
fundamentally different mechanism from the APEL, which
occurs on the phases. Because of the different mechanisms,
this paper uses a completely different methodology from that
in [9]. Compared to Reference [9] which uses a combination
of clustering and classification, this paper develops a
straightforward regression model using customised features.
This model achieves a greater estimation accuracy than the
approach in Reference [9].

In addition, it is popular to use the load loss factor to
estimate the energy losses on each phase [10]. The APEL can
be directly calculated if the energy losses on each of the three
phases were available. However, the load loss factor k is
suggested to be updated every month [10]. This incurs a
prohibitively high cost to collect these data every month for
the mass population of LV networks throughout the UK.
Reference [11] models the correlation between the increase
of energy losses and imbalance degrees based on three
scenarios, e.g. 1) one phase is overloaded and the other two
phases have light loads; 2) two phases are overloaded and the
other phase has a light load; and 3) the three phases are
overloaded, moderately loaded, and lightly loaded,
respectively. Reference [12] develops a statistical approach
to estimate energy losses in distribution components (e.g.
distribution lines, transformer, etc.) based on load curves.
However, Reference [12] does not assess the APEL caused
by phase imbalance.

Based on the literature review, a research question arises:
to assess the APEL caused by phase imbalance for data-
scarce LV networks. This paper makes an original
contribution by answering the above research question for the



first time. To this end, this paper develops a new customised
statistical approach, using customised features, to assess the
APELs for data-scarce networks. This approach learns the
knowledge from a sample set of 800 data-rich networks (with
time-series phase current data throughout a year), then infers
the APELs by extrapolating the knowledge to these data-
scarce networks.

The customised methodology is designed to be highly
practical for distribution network operators (DNOs), who can
directly apply the methodology to their business areas.
Furthermore, the APEL is one of the key inputs for the cost-
benefit analysis of phase rebalancing for data-scarce
networks. In addition, it can help the DNOs to assess the
additional heating caused by phase imbalance for data-scarce
LV networks. This additional heating is one of the key
components in analysing the thermal ratings of electric
apparatuses (e.g. distribution transformers and lines) in data-
scarce LV networks.

The rest of this paper is organized as follows: Section 2
presents the methodology. Section 3 performs case studies.
Section 4 concludes this paper.

2. Methodology

The statistical approach consists of three stages. Firstly, it
calculates the APELs for 800 data-rich networks with time-
series phase current data throughout a year. Then, features are
selected by considering: 1) whether the features are strongly
correlated to the APELs; and 2) whether the features can be
obtained from data-scarce networks that only have yearly
average and maximum phase currents. Thirdly, a regression
model is developed to map the features (derived in Stage 2)
to the APELs (derived in Stage 1). Given any data-scarce
network that has the feature vector as the input, the APEL is
estimated by applying the developed regression model.

The flowchart of the proposed approach is shown as
follows:

/Read phase current ,s"
| data from n,,, data- | Stage 1 ©
’JJ rich networks | Stage 2 O
Stage 3 @

Stage 4 ©
Derive additional loss
coefficients (as defined Extract features

in (2))

|/ and maximum phase |
/ /
‘ Develop a regression model | | currents from data- /

| scarce networks |

Extract features

A A4

Estimate the additional loss
coefficients for data-scarce networks

A4
Estimate the additonal phase energy
losses for data-scarce networks

Fig. 1 Overview of the statistical approach

The project “Low Voltage Network Template” provides
time-series phase current data throughout a year from n,,;
(nyer = 800) data-rich networks. These networks cover: 1) a
good mixture of urban, suburban and rural areas; and 2) a
good mixture of household, commercial and industry loads

[4].

2.1. Data processing

’,"“Read yearly average ’,"“

For data-rich networks, a virtual current is defined as:
1, (0% + I, (£)* + 1.(£)?
2

L) = ; (Ia(t) +1,(0) + L.(t) )
B 3 )
where 1,(t), I, (t), and I.(t) denote the currents on phase a,
b and c, respectively, at time t.
Then an additional loss coefficient is defined as:

ny
Lo = l Z Iv(t)z 2
ny
t=1
where I, is defined in (1); n, is the length of time-series
phase current data throughout a year. The reason for defining
this coefficient is to normalise the sum of I,(t)? for all data-
rich networks. This prevents large values of the sums of
I,(t)? from causing large root-mean-squared errors, thus
improving the accuracy of the regression model.

For most LV networks, their topologies are unknown for
the DNO. According to reference [13], loads are assumed to
be distributed in a rectangular fashion along the LV networks.
This results in the equivalent distribution line resistance being
discounted to only 1/3 of the original line resistance, but the
transformer resistance is unaffected. Therefore, the APEL is
given by [13]:

1
Eq =T Lac* G Rp + Rr) )

where T (T = 8760) is the number of hours throughout a
year; R is the resistance of the distribution line; Ry is the
resistance of the transformer winding referred to the LV side.

The resistance values of distribution lines and
transformers vary in different LV networks. The key output
of this stage is the additional loss coefficient L., which will
be used for regression later.

2.2. Feature extraction

To select the features, two factors are considered: 1)
whether the features are strongly correlated to additional loss
coefficients (derived in Section 2 — 2.1); and 2) whether the
features can be derived from the available data (i.e. yearly
average and maximum phase currents) from data-scarce
networks. Based on the above principles, four features are
selected: hypothetical virtual current, maximum current,
hypothetical degree of phase imbalance, and root-mean-
square of unbalance ratio.

1) The hypothetical virtual current is given by:

Ihv

Lg+ 1, +1 4
= L + 1" + 1,2 - 3(F—2—= gb 7%y2 )
where I

yar Iyb, Iyc denotes the yearly average phase currents

on phases a, b and c, respectively.
2) The maximum current is given by:

Im = max {Iyma,lymbrlymc} (5)

where L4, Iymp and L. denote the yearly maximum
currents on phases a, b and c, respectively; max{...}
indicates the maximum value of {... }.

3) The hypothetical degree of phase imbalance is given by:



Lo+ 1, +1
(maX{ yar yb: c} - W) (6)
Lo+ L+ 1,
where I, I, and L, are defined in (4).
4) The root-mean-square of unbalance ratio (RMS)
Before deriving this RMS value, the positive, negative and
Zero sequence currents are given by

|
L|=3 (7
Io

where q is e/?™/3 Iya, oo Lye are the yearly average
complex current values on phases a, b and c, respectively; the
upper dot indicates that these values are complex values,
which are 120 degrees apart from each other.

RMS is then given by [14]:

RM5=J|1O + 4] /|11 ®)

where |1'1|, |12| and |I;,| are the magnitudes of I}, I, and I,
respectively. A feature vector consisting of the above features
is given by:

DIB, =

N
|
w r—k

fo = Ihy, Inm, DIBy, RMS] ©

where Ip,, Inm, DIB, and RMS are defined in (4), (5), (6), and
(8), respectively.

Through the case study, a high regression accuracy is
achieved when considering all the above features. This shows
a strong correlation between the selected features and the
additional loss coefficients.

2.3. Develop the regression model

In this stage, a kernel-based robust linear regression model
is developed. It approximates the mappings from the features
(derived in Section 2.2) to the additional loss coefficients
(derived in Section 2.1) through training on the sample set of
the data-rich networks. Then the developed mapping is
applied to any data-scarce LV network with the feature vector
only to estimate its additional loss coefficient. This value is
then converted to the APEL for the data-scarce L'V network
by applying (3). The reasons for using the kernel-based robust
linear regression model are: 1) robust linear regression a
classic regression method [15]; 2) it is less sensitive to
outliers [15]; and 3) the method allows for a higher regression
accuracy compared to alternative classical regression
methods. The comparison will be demonstrated in case
studies.

In the first step, a quadratic kernel transformation is used
to transform the feature vector from its original space to a
vector in a high dimensional Hilbert space [16]. This is
because the mapping in the original space is non-linear; the
quadratic kernel transformation enables a nearly linear
mapping in the high dimensional space. Through such a
transformation, the regression accuracy is improved by 43%
compared to the ordinary robust linear regression. The
quadratic kernel transformation is given by:

fkv
= [k(fv,l! fv,l)! k(fv,i! fv,j) Ty k(fv,éh fv,4)] (10)
where k(fyi fo,1) = (Foi" * foj + €)°
where f,,; and f,, ; are the i;, and jij, variables in the feature
vector f;, (as defined in (9)), respectively; ¢ denotes a

constant value. Based on this transformation, the feature
vector f,, is transformed into a high dimensional kernel
feature vector fi,. In this study, f, is a vector with 16
variables.

Then, a robust linear regression model is developed to
approximate the mapping from the kernel feature vector f;,,
(defined in (10)) to the additional loss coefficients L, (given
by (2)) for data—rich networks, as given by:

&
: ] (1

ac 1 f kv 1
ac n f k €n
net V,Nnet net

where L, ; is the additional loss coefficients for the i, data-
rich LV network, as defined in (2); f,,; is the kernel feature
vector with ny (ny = 16) columns for the iy, data-rich LV
network; § is a coefficient vector with ng rows; g; is the
regression error for the i, data-rich LV network;
Npet(Mper = 800) is the number of data-rich networks.

To obtain § and €, an iterative algorithm is presented as

follows:

1) Seti=0. The ordinary linear regression [17] is used to
derive coefficient vector &) and error vector £®.

2) According to the derived error vector £, weighting
vector w;,; are given to the training samples (data-
rich networks), as high weights are given to samples
with low errors. This weight function is defined by:

Wit = % (12)
3) Seti— i+ 1.Aweighed least square model is used to
minimize:
minz w; e®? (13)
After finding all w;, @ is given by:
.B(i) = (fvaW fkv)_l fvaWLeo (14)

where L, and f;, are defined in (11); W is the
diagonal matrix of individual weights in w; .
Correspondingly, a new £ is derived in this step.
4) Steps 2) and 3) are repeated until the coefficient vector
BD converges.
Detailed implementations of steps 1) — 4) are presented in
[18]. After finding f, the additional loss coefficient L
for any data-scarce LV network is given by:

acs - fksv.B (15)

where L, is a scalar. fi, is the kernel feature vector of the
data-scarce network. It has ny columns. fi, is given by (10),
where f;s, replaces fi,. f is given by (14). B is a vector
with 1y rows.

2.4. Validation

In this paper, the k-fold cross-validation [19] is used to
validate our developed approach and derive the estimation
accuracy. The reasons for using k-fold cross-validation are: 1)
the cross-validation avoids using the same data to both
develop and validate the developed model; and 2) it ensures
a satisfactory tradeoff between bias and variance. In each
iteration of the cross-validation, a portion of the data-rich
networks are reserved in the validation set and are treated as
if they were data-scarce. Their APEL results are estimated by

3



applying our approach, which is trained using the rest of the
data-rich networks. However, because the networks in the
validation set are indeed data-rich networks, their accurate
APEL results can be calculated. This allows for the
comparison of the estimated APEL results against the
accurate APEL results for validation.

The k-fold cross-validation is detailed as follows. Firstly,
the additional loss coefficient L, (as defined in Section 2.1)
are derived as the accurate values for the 800 data-rich
networks. The rest steps are described in Fig.2.

Ny (Nyee=800) data-
rich networks

k equal size groups of
data-rich networks

Forj=1:k
(k=10 in this paper)

he j; of the k groups of data-rich
networks (the validation samples,
treat them as data-scarce networks
with only yearly average and
maximum phase current)

The rest k-1 groups o
data-rich networks (the
training samples)

4
Derive kernel feature Develop the regression
vectors (given by (4) model (given by

- (10) Section 2.1-2.3)

\ 4

Developed regression
model

Estimated additional
loss coefficients L, for
the validation samples

R

Fig. 2 Flowchart of k-fold cross validation

YES

This paper uses the root-mean-square error (RMSE) to
measure the regression performance. The regression
performance indicates errors between the accurate values L,
derived in Section 2.1 and the estimated values L, derived
by applying the k-fold cross-validation to the validation
samples (treat them as data-scarce networks). This error is
given by:

2
Z?net(l'ac,i - Lacs,i) (16)
Nnet

where N0 (1, = 800) is the number of validation samples.
Lgcs,i is the estimated additional phase energy loss for the
i;p, validation sample (treat it as if it were a data-scarce
network with only yearly average and maximum phase
currents); L, ; is the accurate value (derived in section 2.1)
of additional phase energy loss for the i, validation sample.
A lower e, indicates a better performance of the
developed regression model.

ermse -

2.5. Additional phase energy losses estimation for data-
scarce networks

After deriving the additional loss coefficients for data-
scarce networks, the APELs are estimated in two scenarios:
1) the resistances of distribution lines are available; and 2) the
resistances of distribution lines are unknown.

Given a data-scarce network, its APEL is given by (3),
where L, replaces L. Ly is given by (15).

For scenario 1), the APELs are directly calculated by
applying (3). For scenario 2), the APELs are calculated using
typical wire resistances for urban, suburban and rural
networks in the UK. The typical wire resistances for urban,
suburban and rural networks are 0.064Q, 0.282Q and 0.32Q,
respectively [20].

3. Case study

This section presents numerical results: 1) Section 3.1
gives the additional loss coefficients and corresponding
features for the 800 data-rich networks; 2) Section 3.2
presents the regression results; 3) Section 3.3 presents the
APEL results for data-scarce networks; and 4) a discussion is
given in Section 3.4.

3.1. Data processing and feature extraction

In this section, for the 800 data-rich LV networks, the
APEL are firstly derived and presented in Fig.3.

12
2
ZB10 .
. ]

£ 8 :
=9 . "
Sk 4 : :
<g

0

B Urban B Suburban ™ Rural

Fig. 3 The additional phase energy losses for data-rich
networks in urban, suburban and rural areas.

Fig.3 is the range of the APELs (shown in box plot) for the
800 data-rich networks. For example, the blue dot indicates
the outliers. The upper and bottom blue lines indicate the
maximum and minimum APELSs for urban LV networks. The
line in the blue box is the average APEL for urban LV
networks. The blue box indicates the range of APELs for
most urban LV networks. In Fig. 3, the average APELs are
1.79 MWh, 1.95 MWh and 1.59 MWh for LV networks in
urban, suburban and rural areas, respectively. For rural LV
networks, the average and maximum APEL account for 0.21%
and 1.21%, respectively, of the yearly distributed energy. For
suburban LV networks, the average and maximum APEL
account for 0.44% and 1.42%, respectively, of the yearly
distributed energy. For rural LV networks, the average and
maximum APEL account for 0.68% and 3.66%, respectively,
of the yearly distributed energy. Furthermore, for LV
networks in suburban and rural areas, the APEL account for
up to: 1) 33% of the total wire energy losses; and 2) 27% of
the total transformer copper losses.

Then, to develop the regression model, the additional
losses coefficients L,. and corresponding features (e.g.

4



hypothetical virtual current I, , hypothetical maximum
current Ip,,,,, Hypothetical degree of phase imbalance DIB,,
Root mean squares of unbalance ratio RMS) are derived.
Example are given as follows:

Table 1 Examples of the additional phase energy losses
coefficients and corresponding features for data-rich
networks

Lac Ihy Thm DIB, RMS
1637 8.93 413.4 0.01 0.06
5799 53.8 614.8 0.05 0.3
6492 51.9 12353 0.02 0.11
2801 32.5 508.6 0.03 0.16

5 836 8.95 330.5 0.02 0.06
Thirdly, the regression error (shown in root-mean-squared
error (RMSE) and mean-average-percentage error (MAPE))
from the kernel-based robust regression are used to validate
the choice of these features. A lower regression error
indicates a better selection of features. This validation is
performed for four scenarios: 1) only I, is used as the feature
to develop regression models; 2) Iy, and Iy,;, are used as the
features to develop regression models; 3) Iy, [hnand DIB,
are used as the features to develop regression models; 4)
excluding L, all four features in Table 1 are used as the
features to develop regression models. The validation results
are presented in Table 2.

EENLVS I NS R

Table 2 regression error in the above scenarios

Scenario | 1) 2) 3) 4
RMSE 1163 961 715 632
MAPE 41.9% 33.4% | 22.3% 19.7%

In Table 2, the RMSE and MAPE decrease with an
increasing number of features used for regression. The results
justify the choice of all the customised features in this paper.

3.2. Regression results

In this section, a kernel-based robust linear regression
model is developed. The regression accuracy is significantly
higher than that from ordinary robust linear regression.
Through k-folds validation (defined in Section 2.4), the

validation results are shown in Fig. 4 and Fig. 5.
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Fig. 4 The validation results of kernel-based robust linear
regression

x10

N
n

~

—
n

—_

o
n

=

Estimated additional loss coefficients

0.5 1 1.5 2 2.5
Accurate additional loss coefficients x10*

e

Fig. 5 The validation results of ordinary robust linear
regression

In Fig. 4 and Fig. 5, the x-axis represents the accurate
additional loss coefficients which are given by Equation (2)
for 800 data-rich LV networks. The y-axis represents the
estimated additional loss coefficients, when these data-rich
LV networks are treated as data-scarce in the k-folds
validation (shown in Section 2.4). The red line indicates if the
additional loss coefficients are perfectly estimated by
regression models. If the blue dots are closer to the red line,
it indicates a higher regression accuracy. The estimated
additional loss coefficients delivered by kernel-based robust
linear regression are much closer to the red line than that from
ordinary robust linear regression. The root-mean-squared
error (RMSE) delivered by kernel-based robust linear
regression is 632, which is 43% lower than that by ordinary
robust linear regression.

Furthermore, the kernel-based robust regression achieves a
higher regression accuracy compared to other classic
regression methods. The comparison is given as follows:

1400

1200
1000
800
600

400
200 I H
0

RMSE RMSE (for 90% LV networks)

mk-robust linear ®Linear o Tree SVR  ® Gaussian process

Fig. 6 Comparison of the regression methods

In Fig. 6, the kernel-based robust linear regression achieves
almost the same RMSE as that by the support vector machine.
However, when excluding 10% outliers (which presents
lower regression accuracies than most LV networks), the
RMSE, delivered by kernel-based robust linear regression, is
lower than that from the support vector machine by 12% and
other regression methods by up to 37%. Our methodology has
an RMSE of slightly above 400, whereas alternative methods
have RMSE values of above 500. The reduction in RMSE is
attributed to the robust linear regression, kernel
transformation and the customisation of features in our
methodology. Further, when excluding 10% outliers, the k-
robust linear regression only incurs a MAPE of 13%, i.e. on
average, the estimated APEL is only 13% away from its
accurate value. This estimation error is acceptable as these
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data-scarce LV networks only have the yearly average and
maximum phase currents. However, linear regression, tree
regression, SVR and Gaussian process regression incur
greater MAPEs of 17.3%, 32.7%, 16.5% and 23.9%,
respectively.

3.3. Assessments of additional phase energy losses for
data-scarce networks

After developing the regression model and calculating the
additional loss coefficients for data-scarce LV networks, the
APELs are derived by (3), where L, replaces Ly.. Lycs 1S
given by (15). The k-folds validation results are shown as
follows:

7

1] - wn =)

Estimated additional
[ 5]

phase energy losses(MWh)

—_

0 1 2 3 4 5 6
Accurate additional phase energy losses(MWh)

<

Fig. 7 The estimation of additional phase energy losses for
LV networks in urban areas
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Fig. 8 The estimation of additional phase energy losses for
LV networks in suburban areas
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Fig. 9 The estimation of additional phase energy losses for
LV networks in rural areas

In Fig. 7, the estimated average APEL are 1.746 MWh
(which costs £314 if the electricity price is £0.18/kWh) for
data-scarce urban LV networks. The average estimation error
is 19.14% for 90% of the urban networks. In Fig. 8, the

estimated average APEL are 1.954 MWh (which costs £352
if the electricity price is £0.18/kWh) for data-scarce suburban
LV networks. The average estimation error is 11.81% for 90%
of the suburban networks. In Fig. 9, the estimated average
APEL are 1.531MWh (which costs £276 if the electricity
price is £0.18/kWh) for data-scarce rural LV networks. The
average estimation error is 12.19% for 90% of the data-scarce
LV networks in rural areas.

The following figure presents the estimation accuracy of
the proposed approach for LV networks with different
imbalance degrees, which are defined in [21].

0.4
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Degree of phase imbalance
o °
B 9 N ©
G N G W
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. . °

200% 400% 600% 800%
Regression percentage error

Fig. 10 Regression errors for LV networks with different
degrees of imbalance

In Fig. 10, with the increase of the degree of phase
imbalance, our proposed method delivers lower percentage
error, i.e. a higher estimation accuracy is achieved for highly
imbalance LV networks. For LV networks with 0.1 or higher
degrees of phase imbalance, the average percentage
regression error is 11.7%.

3.4. Discussions

In this study, our developed approach delivers about 13%
percentage error in estimating the APEL for 90% of the data-
scarce LV networks. This error is satisfactory because the
developed approach uses minimal data (e.g. yearly average
and maximum phase currents, which exists in most LV
networks) to assess the year-round APEL for data-scarce
networks. A higher regression accuracy can be derived if
more input data are used for data-scarce networks. A trade-
off is thus required by the DNOs, i.e. the DNOs should decide
if it is worth to collect more data for a slightly higher
regression accuracy, as more input data means more costs on
data collection. In addition, for LV networks in urban area,
the estimation error of APEL is higher than that for LV
networks in suburban and rural areas by up to 50%. However,
the higher estimation error for urban networks is acceptable.
It is because according to this study urban networks
correspond to very minimal APEL (only £165.6 which
accounts for 9.5% of the APEL for rural networks), which are
not the focus for the DNOs. For the critical focus networks
(e.g. LV network which presents higher APEL in suburban
and rural areas), this study delivers significant lower
estimation errors, which are 11.81% and 12.19% for suburban
and rural networks, respectively.

To apply this method in other countries, two points should
be considered when choosing the data-rich networks: 1) there
should be at least 800 data-rich networks to be collected; and
2) these data-rich LV networks should be representative.
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They should cover a good mix of geographical areas (urban,
suburban, and rural) and customer composition (domestic,
commercial, and industrial). A higher estimation accuracy
would be achieved if the training data are more representative.

For the DNOs, this paper developed an effective and
efficient approach to assess the APEL. For 90% of the data-
scarce LV networks (excludes 10% outlier networks), the
estimation error is about 13%. In this study, it is appropriate
to exclude these 10% outliers. It is because all these outliers
have low APEL.

2z _x10*
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Accurate additional loss coefficien
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0 % 300% 600% %

Regression percentage errors
Fig. 11 Regression errors for outlier networks

In Fig. 11, the outliers are enclosed in the red box. They
present significant regression errors by up to 800%. However,
these outliers show very low APEL, which are only up to
0.3MWh ((which costs £54 additional losses if the electricity
price is £0.18/kWh)). These outliers are thus out of focuses
by the DNOs. Furthermore, for LV networks with
significantly higher APEL, this study delivers much lower
estimation errors. It is therefore appropriate to exclude these
outliers.

For data-scarce LV networks, the available data of
maximum phase currents can be directly obtained from
maximum phase current indicators. The yearly average phase
currents can be obtained through: 1) the remote telemetry unit
(RTU) device on the high voltage side of LV transformers.
The data on high voltage side are then transformed referred
to the low voltage side. 2) The relay protection device if the
device has metering function [22]. 3) The energy meters if
they record the data of the three phases separately. In addition,
a recent project, OpenLV, sponsored by Western Power
Distribution and undertaken by EA Technology, monitors a
range of LV (11kV/415V) substations and the collected data
include the average phase current values [23].

It is appropriate to use regression methods for assessing the
additional phase energy losses for data-scarce LV networks.
This is because: 1) it is common to use regression methods to
estimate or predict unknowns in both data science [17], [15]
and power systems [24], [25]. 2) Through k-fold cross-
validation, our approach delivers a satisfactory regression
accuracy, where the average percentage error is 13% for 90%
of the LV networks.

For LV networks which have high APELs (over 2.5 MWh)
throughout a year, the approach delivers an accuracy of
87.3%, which is greater than the accuracy of the methodology
from reference [9] by 23.7%. For LV networks less than 2.5
MWh APELs, this paper and reference [9] deliver similar
estimation accuracies.

For comparison, the additional energy losses are also
calculated by applying power flow analysis. However, the
power flow analysis incurs unacceptably large errors when

estimating the APELs for data-scarce LV networks. Given
any data-scarce LV network with only yearly average phase
currents and no topology, the process for calculating APEL
through power flow analysis is detailed as follows: 1)
assuming the loads are distributed in a rectangle distribution
[13], calculate the energy losses using the unbalanced yearly
average phase currents as the input. 2) Calculate the energy
losses using the balanced yearly average phase currents as the
input. 3) Calculate the APEL, which is the difference between
the energy losses obtained in Steps 2) and 3). Through
validation, when excluding 10% outliers, the power flow
analysis incurs an average MAPE of 237% in the estimation
of the APELs for the 800 LV networks. This error is
unacceptably large, proving that the power flow analysis is
not suitable for the estimation of the APELs for data-scarce
LV networks. In contrast, the methodology developed by this
paper is suitable for this task and it incurs the minimum error
compared to alternative methods.

4. Conclusions

This study resolves a previously unanswered question: to
assess the additional phase energy losses caused by phase
imbalance for data-scarce low voltage (415V, LV) networks.
To this end, a new statistical approach is developed with
customised features. The approach learns the knowledge
from 800 data-rich LV networks and then infers the additional
phase energy losses for data-scarce LV networks.

Case studies reveal that: for 90% of the data-scarce LV
networks in urban, suburban and rural areas, the average
regression accuracies are 80.6%, 88.2% and 87.8%,
respectively. These accuracies are satisfactory, as our
developed approach uses minimal data (only yearly average
and maximum phase currents) to assess the additional phase
energy losses.
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