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Abstract: Unbalanced phase currents, which flow in transformer windings and distribution wires, cause a significant 
increase (approximately 33%) of phase energy losses in low voltage (LV, 415V) networks. However, these additional phase 
energy losses (APEL) are hard to calculate for most LV networks.  A key challenge is that these LV networks are data-
scarce, with only yearly average and maximum phase currents. To estimate the APEL for data-scarce LV networks, this 
paper proposes a statistical approach that effectively overcomes the above challenge. Firstly, the approach calculates 
APEL for a sample set of data-rich networks with year-round time-series phase current data. Secondly, features are 
extracted from these networks by considering: 1) whether the features are strongly correlated to additional phase energy 
losses; and 2) whether the features can be derived from available data (e.g. yearly average and maximum phase currents) 
from data-scarce networks. Thirdly, to approximate mappings from the features (derived in stage 2) to the APEL (derived 
in stage 1), a kernel-based regression model is developed, using the above customised features. Given any data-scarce 
network, its APEL is then estimated by applying the regression model. Cross-validation shows that the statistical approach 
incurs an average error of 13% for 90% of the data-scarce LV networks, excluding the networks with very low APEL 
values. 
 

1. Introduction 

Phase imbalance is a widespread problem in low voltage 
(415V, LV) networks in the UK and other countries [1], [2], 
[3]. According to the data from Western Power Distribution 
(WPD, a UK distribution network operator), more than 50% 
of the LV networks suffer from a notable degree of phase 
imbalance. It is common that the current on the heaviest phase 
is greater than that on the lightest phase by more than 50% 
[4]. It should be noted that even if a network has perfectly 
balanced three phases, there is still an I2R loss on the phase 
conductors because of conductor impedance. However, if the 
three phases are unbalanced, the I2R loss on the phase 
conductors would be greater than if the three phases were 
balanced. The difference is the additional phase energy loss 
(APEL).  

These unbalanced phase currents cause a significant 
increase in energy losses on the three phases of LV networks: 
1) on distribution lines, APELs  account for up to 33% of wire 
energy losses [4]; and 2) in distribution transformers, APELs 
account for up to 27% energy losses of transformer copper 
losses [4]. However, APELs are hard to calculate for most LV 
networks. A key challenge arises from the APEL estimation: 
a lack of time-series phase current data for the majority of LV 
networks that are data-scarce. These networks only have 
yearly average and maximum phase current data, collected 
once a year. 

One solution to address the data scarcity challenge is to 
deploy monitoring devices for more than 900,000 LV 
networks in the UK. However, this causes a substantial cost. 
With sufficient data collected, a number of references assess 
energy losses caused by phase imbalance. Reference [5] 
assesses the additional copper losses caused by imbalanced 
loading for LV transformers. Reference [6] evaluates energy 
losses in distribution networks with imbalanced three phases. 
The APELs are calculated for networks with full data. 
Reference [7] develops network component models (includes 
load, line, and transformers) to calculate the energy losses for 
distribution transformers and lines. The APELs are then 

derived from this model. Reference [2] develops new phase 
imbalance indices, which are then used to estimate energy 
losses. Reference [8] uses complex unbalance factor to 
evaluate the APEL.  

Reference [9] develops a combination of clustering and 
classification approach to estimate the imbalance-induced 
energy losses for data-scarce networks. However, Reference 
[9] focuses on the energy losses in the neutral and ground, 
caused by phase residual currents. Such energy losses have a 
fundamentally different mechanism from the APEL, which 
occurs on the phases. Because of the different mechanisms, 
this paper uses a completely different methodology from that 
in [9]. Compared to Reference [9] which uses a combination 
of clustering and classification, this paper develops a 
straightforward regression model using customised features. 
This model achieves a greater estimation accuracy than the 
approach in Reference [9]. 

In addition, it is popular to use the load loss factor to 
estimate the energy losses on each phase [10]. The APEL can 
be directly calculated if the energy losses on each of the three 
phases were available. However, the load loss factor k is 
suggested to be updated every month [10]. This incurs a 
prohibitively high cost to collect these data every month for 
the mass population of LV networks throughout the UK. 
Reference [11] models the correlation between the increase 
of energy losses and imbalance degrees based on three 
scenarios, e.g. 1) one phase is overloaded and the other two 
phases have light loads; 2) two phases are overloaded and the 
other phase has a light load; and 3) the three phases are 
overloaded, moderately loaded, and lightly loaded, 
respectively. Reference [12] develops a statistical approach 
to estimate energy losses in distribution components (e.g. 
distribution lines, transformer, etc.) based on load curves. 
However, Reference [12] does not assess the APEL caused 
by phase imbalance.  

Based on the literature review, a research question arises: 
to assess the APEL caused by phase imbalance for data-
scarce LV networks. This paper makes an original 
contribution by answering the above research question for the 
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first time. To this end, this paper develops a new customised 
statistical approach, using customised features, to assess the 
APELs for data-scarce networks. This approach learns the 
knowledge from a sample set of 800 data-rich networks (with 
time-series phase current data throughout a year), then infers 
the APELs by extrapolating the knowledge to these data-
scarce networks.  
    The customised methodology is designed to be highly 
practical for distribution network operators (DNOs), who can 
directly apply the methodology to their business areas. 
Furthermore, the APEL is one of the key inputs for the cost-
benefit analysis of phase rebalancing for data-scarce 
networks. In addition, it can help the DNOs to assess the 
additional heating caused by phase imbalance for data-scarce 
LV networks. This additional heating is one of the key 
components in analysing the thermal ratings of electric 
apparatuses (e.g. distribution transformers and lines) in data-
scarce LV networks.  

The rest of this paper is organized as follows: Section 2 
presents the methodology. Section 3 performs case studies. 
Section 4 concludes this paper. 

2. Methodology 

    The statistical approach consists of three stages. Firstly, it 
calculates the APELs for 800 data-rich networks with time-
series phase current data throughout a year. Then, features are 
selected by considering: 1) whether the features are strongly 
correlated to the APELs; and 2) whether the features can be 
obtained from data-scarce networks that only have yearly 
average and maximum phase currents. Thirdly, a regression 
model is developed to map the features (derived in Stage 2) 
to the APELs (derived in Stage 1). Given any data-scarce 
network that has the feature vector as the input, the APEL is 
estimated by applying the developed regression model.  

The flowchart of the proposed approach is shown as 
follows: 

Read phase current 
data from nnet data-

rich networks

Derive additional loss 
coefficients (as defined 

in (2))

Extract features

Estimate the additonal phase energy 
losses for data-scarce networks

Read yearly average 
and maximum phase 
currents from data-

scarce networks

Extract features

Develop a regression model

Estimate the additional loss 
coefficients for data-scarce networks

Stage 1
Stage 2
Stage 3
Stage 4

 

Fig. 1 Overview of the statistical approach 

The project “Low Voltage Network Template” provides 
time-series phase current data throughout a year from 𝑛௡௘௧ 
(𝑛௡௘௧ = 800) data-rich networks. These networks cover: 1) a 
good mixture of urban, suburban and rural areas; and 2) a 
good mixture of household, commercial and industry loads 
[4].  

 
2.1. Data processing 

 

For data-rich networks, a virtual current is defined as: 
  

𝐼௩(𝑡) = ඩ

𝐼௔(𝑡)ଶ + 𝐼௕(𝑡)ଶ + 𝐼௖(𝑡)ଶ

−3 ൬
𝐼௔(𝑡) + 𝐼௕(𝑡) + 𝐼௖(𝑡)

3
൰

ଶ  (1) 

where 𝐼௔(𝑡), 𝐼௕(𝑡), and 𝐼௖(𝑡) denote the currents on phase a, 
b and c, respectively, at time 𝑡.  

Then an additional loss coefficient is defined as: 
  

𝐿௔௖ =
1

𝑛௬
෍ 𝐼௩(𝑡)ଶ

௡೤

௧ୀଵ

 (2) 

where 𝐼௩  is defined in (1); 𝑛௬  is the length of time-series 
phase current data throughout a year. The reason for defining 
this coefficient is to normalise the sum of 𝐼௩(𝑡)ଶ for all data-
rich networks. This prevents large values of the sums of 
𝐼௩(𝑡)ଶ  from causing large root-mean-squared errors, thus 
improving the accuracy of the regression model.  

For most LV networks, their topologies are unknown for 
the DNO. According to reference [13], loads are assumed to 
be distributed in a rectangular fashion along the LV networks. 
This results in the equivalent distribution line resistance being 
discounted to only 1/3 of the original line resistance, but the 
transformer resistance is unaffected. Therefore, the APEL is 
given by [13]：  

  
𝐸௔௟ = 𝑇 ∙ 𝐿௔௖ ∙ (

ଵ

ଷ
 𝑅஽ + 𝑅்) (3) 

where 𝑇 (𝑇 = 8760) is the number of hours throughout a 
year; 𝑅஽  is the resistance of the distribution line; 𝑅்  is the 
resistance of the transformer winding referred to the LV side.  

 The resistance values of distribution lines and 
transformers vary in different LV networks. The key output 
of this stage is the additional loss coefficient 𝐿௔௖, which will 
be used for regression later.  

 
2.2. Feature extraction 

 
To select the features, two factors are considered: 1) 

whether the features are strongly correlated to additional loss 
coefficients (derived in Section 2 – 2.1); and 2) whether the 
features can be derived from the available data (i.e. yearly 
average and maximum phase currents) from data-scarce 
networks. Based on the above principles, four features are 
selected: hypothetical virtual current, maximum current, 
hypothetical degree of phase imbalance, and root-mean-
square of unbalance ratio. 
1)  The hypothetical virtual current is given by: 

  𝐼௛௩

= ඨ𝐼௬௔
ଶ + 𝐼௬௕

ଶ + 𝐼௬௖
ଶ − 3(

𝐼௬௔ + 𝐼௬௕ + 𝐼௬௖

3
)ଶ 

(4) 

where 𝐼௬௔ , 𝐼௬௕ , 𝐼௬௖ denotes the yearly average phase currents 
on phases a, b and c, respectively. 
2)  The maximum current is given by: 

  
𝐼௠ = max ൛𝐼௬௠௔ , 𝐼௬௠௕ , 𝐼௬௠௖ൟ  (5) 

where 𝐼௬௠௔ , 𝐼௬௠௕  and 𝐼௬௠௖  denote the yearly maximum 
currents on phases a, b and c, respectively; max {… } 
indicates the maximum value of {… }. 
3)  The hypothetical degree of phase imbalance is given by:  
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𝐷𝐼𝐵௩ =
(max൛𝐼௬௔ , 𝐼௬௕ , 𝐼௬௖ൟ −

𝐼௬௔ + 𝐼௬௕ + 𝐼௬௖

3
)

𝐼௬௔ + 𝐼௬௕ + 𝐼௬௖

 (6) 

where 𝐼௬௔ , 𝐼௬௕ and 𝐼௬௖ are defined in (4). 
4)  The root-mean-square of unbalance ratio (RMS) 

Before deriving this RMS value, the positive, negative and 
zero sequence currents are given by: 

  

቎

𝐼ଵ̇

𝐼ଶ̇

𝐼଴̇

቏ =
1

3
൥
1 𝑞 𝑞ଶ

1 𝑞ଶ 𝑞
1 1 1

൩ ൦

𝐼௬௔̇

𝐼௬௕̇

𝐼௬௖
̇

൪ (7) 

where 𝑞  is 𝑒௝ଶగ ଷ⁄ ; 𝐼௬௔̇ , 𝐼௬௕̇ , 𝐼௬௖
̇  are the yearly average 

complex current values on phases a, b and c, respectively; the 
upper dot indicates that these values are complex values, 
which are 120 degrees apart from each other. 

RMS is then given by [14]: 
  

𝑅𝑀𝑆 = ටห𝐼଴̇ห
ଶ

+ ห𝐼ଶ̇ห
ଶ

ห𝐼ଵ̇ห൘  (8) 

where ห𝐼ଵ̇ห, ห𝐼ଶ̇ห and ห𝐼଴̇ห are the magnitudes of 𝐼ଵ̇, 𝐼ଶ̇ and 𝐼଴̇ , 
respectively. A feature vector consisting of the above features 
is given by: 

  
𝑓௩ = [𝐼௛௩ , 𝐼௛௠ , 𝐷𝐼𝐵௛ , 𝑅𝑀𝑆] (9) 

where 𝐼௛௩ , 𝐼௛௠ , 𝐷𝐼𝐵௛ and 𝑅𝑀𝑆 are defined in (4), (5), (6), and 
(8), respectively. 

Through the case study, a high regression accuracy is 
achieved when considering all the above features. This shows 
a strong correlation between the selected features and the 
additional loss coefficients. 
 

2.3. Develop the regression model 
 

In this stage, a kernel-based robust linear regression model 
is developed. It approximates the mappings from the features 
(derived in Section 2.2) to the additional loss coefficients 
(derived in Section 2.1) through training on the sample set of 
the data-rich networks. Then the developed mapping is 
applied to any data-scarce LV network with the feature vector 
only to estimate its additional loss coefficient. This value is 
then converted to the APEL for the data-scarce LV network 
by applying (3). The reasons for using the kernel-based robust 
linear regression model are: 1) robust linear regression a 
classic regression method [15]; 2) it is less sensitive to 
outliers [15]; and 3) the method allows for a higher regression 
accuracy compared to alternative classical regression 
methods. The comparison will be demonstrated in case 
studies. 

In the first step, a quadratic kernel transformation is used 
to transform the feature vector from its original space to a 
vector in a high dimensional Hilbert space [16]. This is 
because the mapping in the original space is non-linear; the 
quadratic kernel transformation enables a nearly linear 
mapping in the high dimensional space. Through such a 
transformation, the regression accuracy is improved by 43% 
compared to the ordinary robust linear regression. The 
quadratic kernel transformation is given by: 

   𝑓௞௩

= [𝑘൫𝑓௩,ଵ, 𝑓௩,ଵ൯, ⋯ 𝑘൫𝑓௩,௜ , 𝑓௩,௝൯ ⋯ , 𝑘൫𝑓௩,ସ, 𝑓௩,ସ൯] 

where 𝑘൫𝑓௩,௜, 𝑓௩,௝൯ = (𝑓௩,௜
୘

 ∙ 𝑓௩,௝ + 𝑐)ଶ 
(10) 

where 𝑓௩,௜  and 𝑓௩,௝ are the 𝑖௧௛ and 𝑗௧௛ variables in the feature 
vector 𝑓௩  (as defined in (9)), respectively; c denotes a 

constant value. Based on this transformation, the feature 
vector 𝑓௩  is transformed into a high dimensional kernel 
feature vector   𝑓௞௩ . In this study,  𝑓௞௩ is a vector with 16 
variables. 

Then, a robust linear regression model is developed to 
approximate the mapping from the kernel feature vector  𝑓௞௩ 
(defined in (10)) to the additional loss coefficients 𝐿௔௖  (given 
by (2)) for data-rich networks, as given by: 

  

቎

𝐿௔௖,ଵ

⋮
𝐿௔௖,௡೙೐೟

቏ = ቎

 𝑓௞௩,ଵ

⋮
 𝑓௞௩,௡೙೐೟

቏ 𝛽 + ൥

𝜀ଵ

⋮
𝜀௡೙೐೟

൩ (11) 

where 𝐿௔௖,௜ is the additional loss coefficients for the 𝑖௧௛  data-
rich LV network, as defined in (2);  𝑓௞௩,௜  is the kernel feature 
vector with 𝑛௙  (𝑛௙ = 16) columns for the 𝑖௧௛ data-rich LV 
network; 𝛽  is a coefficient vector with 𝑛௙  rows; 𝜀௜  is the 
regression error for the 𝑖௧௛ data-rich LV network; 
𝑛௡௘௧(𝑛௡௘௧ = 800) is the number of data-rich networks.  

To obtain 𝛽 and 𝜀, an iterative algorithm is presented as 
follows: 

1) Set i = 0. The ordinary linear regression [17] is used to 
derive coefficient vector 𝛽(௜) and error vector 𝜀(௜). 

2) According to the derived error vector 𝜀(௜), weighting 
vector 𝑤௜ାଵ  are given to the training samples (data-
rich networks), as high weights are given to samples 
with low errors. This weight function is defined by: 

  
𝑤௜ାଵ =  

1

𝜀(௜)
 (12) 

3) Set 𝑖 → 𝑖 + 1. A weighed least square model is used to 
minimize: 

  
min ෍ 𝑤௜ 𝜀(௜)ଶ

 (13) 

After finding all 𝑤௜ , 𝛽
(௜) is given by: 

  
𝛽(௜) = ൫ 𝑓௞௩

்
𝑊 𝑓௞௩൯

ିଵ
 𝑓௞௩

்
𝑊𝐿௘௢  (14) 

where 𝐿௔௖ and  𝑓௞௩  are defined in (11); 𝑊  is the 
diagonal matrix of individual weights in 𝑤௜ . 
Correspondingly, a new 𝜀(௜) is derived in this step. 

4) Steps 2) and 3) are repeated until the coefficient vector 
𝛽(௜) converges.  

Detailed implementations of steps 1) – 4) are presented in 
[18]. After finding 𝛽, the additional loss coefficient 𝐿௔௖௦ 
for any data-scarce LV network is given by: 

  𝐿௔௖௦ =  𝑓௞௦௩𝛽 (15) 

where 𝐿௔௖௦ is a scalar. 𝑓௞௦௩  is the kernel feature vector of the 
data-scarce network. It has 𝑛௙ columns.  𝑓௞௦௩  is given by (10), 
where  𝑓௞௦௩  replaces  𝑓௞௩ . 𝛽  is given by (14). 𝛽  is a vector 
with 𝑛௙ rows.  

 
2.4. Validation 

 
In this paper, the k-fold cross-validation [19] is used to 

validate our developed approach and derive the estimation 
accuracy. The reasons for using k-fold cross-validation are: 1) 
the cross-validation avoids using the same data to both 
develop and validate the developed model; and 2) it ensures 
a satisfactory tradeoff between bias and variance. In each 
iteration of the cross-validation, a portion of the data-rich 
networks are reserved in the validation set and are treated as 
if they were data-scarce. Their APEL results are estimated by 
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applying our approach, which is trained using the rest of the 
data-rich networks. However, because the networks in the 
validation set are indeed data-rich networks, their accurate 
APEL results can be calculated. This allows for the 
comparison of the estimated APEL results against the 
accurate APEL results for validation. 

The k-fold cross-validation is detailed as follows. Firstly, 
the additional loss coefficient 𝐿௔௖ (as defined in Section 2.1) 
are derived as the accurate values for the 800 data-rich 
networks. The rest steps are described in Fig.2.  

 

 nnet （nnet = 800）data-
rich networks

j < k ?

For j = 1:k
(k =10 in this paper)

end

k equal size groups of 
data-rich networks

The jth of the k groups of data-rich 
networks (the validation samples, 

treat them as data-scarce networks 
with only yearly average and 

maximum phase current) 

The rest k-1 groups of 
data-rich networks (the 

training samples)

Derive kernel feature 
vectors (given by (4) 

– (10))

Develop the regression 
model (given by 
Section 2.1-2.3)

Developed regression 
model

Estimated additional 
loss coefficients Lacs for 
the validation samples

YESNo

 

Fig. 2 Flowchart of k-fold cross validation    

This paper uses the root-mean-square error (RMSE) to 
measure the regression performance. The regression 
performance indicates errors between the accurate values 𝐿௔௖  
derived in Section 2.1 and the estimated values 𝐿௔௖௦ derived 
by applying the k-fold cross-validation to the validation 
samples (treat them as data-scarce networks). This error is 
given by: 

  

𝑒௥௠௦௘ =  ඨ
∑ ൫𝐿௔௖,௜ − 𝐿௔௖௦,௜൯

ଶ௡೙೐೟
௜

𝑛௡௘௧

 (16) 

where 𝑛௡௘௧(𝑛௡௘௧ = 800) is the number of validation samples. 
𝐿௔௖௦,௜ is the estimated additional phase energy loss for the 
𝑖௧௛ validation sample (treat it as if it were a data-scarce 
network with only yearly average and maximum phase 
currents); 𝐿௔௖,௜ is the  accurate value (derived in section 2.1) 
of additional phase energy loss for the 𝑖௧௛validation sample. 
A lower 𝑒௥௠௦௘  indicates a better performance of the 
developed regression model. 

 
2.5. Additional phase energy losses estimation for data-

scarce networks 

 
After deriving the additional loss coefficients for data-

scarce networks, the APELs are estimated in two scenarios: 
1) the resistances of distribution lines are available; and 2) the 
resistances of distribution lines are unknown.  

Given a data-scarce network, its APEL is given by (3), 
where 𝐿௔௖௦ replaces 𝐿௔௖ . 𝐿௔௖௦ is given by (15).  

 For scenario 1), the APELs are directly calculated by 
applying (3). For scenario 2), the APELs are calculated using 
typical wire resistances for urban, suburban and rural 
networks in the UK. The typical wire resistances for urban, 
suburban and rural networks are 0.064Ω, 0.282Ω and 0.32Ω, 
respectively [20]. 

3. Case study 

This section presents numerical results: 1) Section 3.1 
gives the additional loss coefficients and corresponding 
features for the 800 data-rich networks; 2) Section 3.2 
presents the regression results; 3) Section 3.3 presents the 
APEL results for data-scarce networks; and 4) a discussion is 
given in Section 3.4. 

 
3.1. Data processing and feature extraction 
 

In this section, for the 800 data-rich LV networks, the 
APEL are firstly derived and presented in Fig.3.  

 

Fig. 3 The additional phase energy losses for data-rich 
networks in urban, suburban and rural areas. 

    Fig.3 is the range of the APELs (shown in box plot) for the 
800 data-rich networks. For example, the blue dot indicates 
the outliers. The upper and bottom blue lines indicate the 
maximum and minimum APELs for urban LV networks. The 
line in the blue box is the average APEL for urban LV 
networks. The blue box indicates the range of APELs for 
most urban LV networks. In Fig. 3, the average APELs are 
1.79 MWh, 1.95 MWh and 1.59 MWh for LV networks in 
urban, suburban and rural areas, respectively. For rural LV 
networks, the average and maximum APEL account for 0.21% 
and 1.21%, respectively, of the yearly distributed energy. For 
suburban LV networks, the average and maximum APEL 
account for 0.44% and 1.42%, respectively, of the yearly 
distributed energy.  For rural LV networks, the average and 
maximum APEL account for 0.68% and 3.66%, respectively, 
of the yearly distributed energy. Furthermore, for LV 
networks in suburban and rural areas, the APEL account for 
up to: 1) 33% of the total wire energy losses; and 2) 27% of 
the total transformer copper losses.  

Then, to develop the regression model, the additional 
losses coefficients 𝐿௔௖  and corresponding features (e.g. 
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hypothetical  virtual current  𝐼௛௩ , hypothetical maximum 
current 𝐼௛௠ , Hypothetical degree of phase imbalance 𝐷𝐼𝐵௩ , 
Root mean squares of unbalance ratio  𝑅𝑀𝑆 ) are derived.  
Example are given as follows: 

 
Table 1 Examples of the additional phase energy losses 
coefficients and corresponding features for data-rich 
networks 

 Lୟୡ I୦୴  I୦୫ DIB୴ RMS 
1 1637 8.93 413.4 0.01 0.06 
2 5799 53.8 614.8 0.05 0.3 
3 6492 51.9 1235.3 0.02 0.11 
4 2801 32.5 508.6 0.03 0.16 
5 836 8.95 330.5 0.02 0.06 

Thirdly, the regression error (shown in root-mean-squared 
error (RMSE) and mean-average-percentage error (MAPE)) 
from the kernel-based robust regression are used to validate 
the choice of these features. A lower regression error 
indicates a better selection of features. This validation is 
performed for four scenarios: 1) only I୦୴ is used as the feature 
to develop regression models; 2) I୦୴ and I୦୫ are used as the 
features to develop regression models; 3) I୦୴ , I୦୫and DIB୴ 
are used as the features to develop regression models; 4) 
excluding Lୟୡ , all four features in Table 1 are used as the 
features to develop regression models. The validation results 
are presented in Table 2. 

Table 2 regression error in the above scenarios 
Scenario 1) 2) 3) 4) 
RMSE 1163 961 715 632 
MAPE 41.9% 33.4% 22.3% 19.7% 
In Table 2, the RMSE and MAPE decrease with an 

increasing number of features used for regression. The results 
justify the choice of all the customised features in this paper.  

 
3.2. Regression results 

 
In this section, a kernel-based robust linear regression 

model is developed.  The regression accuracy is significantly 
higher than that from ordinary robust linear regression. 
Through k-folds validation (defined in Section 2.4), the 
validation results are shown in Fig. 4 and Fig. 5. 

 

Fig. 4 The validation results of kernel-based robust linear 
regression 

 

Fig. 5 The validation results of ordinary robust linear 
regression 

    In Fig. 4 and Fig. 5, the x-axis represents the accurate 
additional loss coefficients which are given by Equation (2) 
for 800 data-rich LV networks. The y-axis represents the 
estimated additional loss coefficients, when these data-rich 
LV networks are treated as data-scarce in the k-folds 
validation (shown in Section 2.4). The red line indicates if the 
additional loss coefficients are perfectly estimated by 
regression models. If the blue dots are closer to the red line, 
it indicates a higher regression accuracy. The estimated 
additional loss coefficients delivered by kernel-based robust 
linear regression are much closer to the red line than that from 
ordinary robust linear regression. The root-mean-squared 
error (RMSE) delivered by kernel-based robust linear 
regression is 632, which is 43% lower than that by ordinary 
robust linear regression. 

Furthermore, the kernel-based robust regression achieves a 
higher regression accuracy compared to other classic 
regression methods. The comparison is given as follows: 

 

Fig. 6 Comparison of the regression methods 

In Fig. 6, the kernel-based robust linear regression achieves 
almost the same RMSE as that by the support vector machine. 
However, when excluding 10% outliers (which presents 
lower regression accuracies than most LV networks), the 
RMSE, delivered by kernel-based robust linear regression, is 
lower than that from the support vector machine by 12% and 
other regression methods by up to 37%. Our methodology has 
an RMSE of slightly above 400, whereas alternative methods 
have RMSE values of above 500. The reduction in RMSE is 
attributed to the robust linear regression, kernel 
transformation and the customisation of features in our 
methodology. Further, when excluding 10% outliers, the k-
robust linear regression only incurs a MAPE of 13%, i.e. on 
average, the estimated APEL is only 13% away from its 
accurate value. This estimation error is acceptable as these 
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data-scarce LV networks only have the yearly average and 
maximum phase currents. However, linear regression, tree 
regression, SVR and Gaussian process regression incur 
greater MAPEs of 17.3%, 32.7%, 16.5% and 23.9%, 
respectively.  

 
3.3. Assessments of additional phase energy losses for 

data-scarce networks 
 

    After developing the regression model and calculating the 
additional loss coefficients for data-scarce LV networks, the 
APELs are derived by (3), where 𝐿௔௖௦  replaces 𝐿௔௖ . 𝐿௔௖௦  is 
given by (15). The k-folds validation results are shown as 
follows: 

 

Fig. 7 The estimation of additional phase energy losses for 
LV networks in urban areas 

 

Fig. 8 The estimation of additional phase energy losses for 
LV networks in suburban areas 

 

Fig. 9 The estimation of additional phase energy losses for 
LV networks in rural areas 

In Fig. 7, the estimated average APEL are 1.746 MWh 
(which costs £314 if the electricity price is £0.18/kWh) for 
data-scarce urban LV networks. The average estimation error 
is 19.14% for 90% of the urban networks.  In Fig. 8, the 

estimated average APEL are 1.954 MWh (which costs £352 
if the electricity price is £0.18/kWh) for data-scarce suburban 
LV networks. The average estimation error is 11.81% for 90% 
of the suburban networks. In Fig. 9, the estimated average 
APEL are 1.531MWh (which costs £276 if the electricity 
price is £0.18/kWh) for data-scarce rural LV networks. The 
average estimation error is 12.19% for 90% of the data-scarce 
LV networks in rural areas.   

The following figure presents the estimation accuracy of 
the proposed approach for LV networks with different 
imbalance degrees, which are defined in [21]. 

 

Fig. 10 Regression errors for LV networks with different 
degrees of imbalance 

    In Fig. 10, with the increase of the degree of phase 
imbalance, our proposed method delivers lower percentage 
error, i.e. a higher estimation accuracy is achieved for highly 
imbalance LV networks. For LV networks with 0.1 or higher 
degrees of phase imbalance, the average percentage 
regression error is 11.7%.  

 
3.4. Discussions 

 
In this study, our developed approach delivers about 13% 

percentage error in estimating the APEL for 90% of the data-
scarce LV networks. This error is satisfactory because the 
developed approach uses minimal data (e.g. yearly average 
and maximum phase currents, which exists in most LV 
networks) to assess the year-round APEL for data-scarce 
networks. A higher regression accuracy can be derived if 
more input data are used for data-scarce networks.  A trade-
off is thus required by the DNOs, i.e. the DNOs should decide 
if it is worth to collect more data for a slightly higher 
regression accuracy, as more input data means more costs on 
data collection.  In addition, for LV networks in urban area, 
the estimation error of APEL is higher than that for LV 
networks in suburban and rural areas by up to 50%. However, 
the higher estimation error for urban networks is acceptable. 
It is because according to this study urban networks 
correspond to very minimal APEL (only £165.6 which 
accounts for 9.5% of the APEL for rural networks), which are 
not the focus for the DNOs. For the critical focus networks 
(e.g. LV network which presents higher APEL in suburban 
and rural areas), this study delivers significant lower 
estimation errors, which are 11.81% and 12.19% for suburban 
and rural networks, respectively.  

To apply this method in other countries, two points should 
be considered when choosing the data-rich networks: 1) there 
should be at least 800 data-rich networks to be collected; and 
2) these data-rich LV networks should be representative. 
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They should cover a good mix of geographical areas (urban, 
suburban, and rural) and customer composition (domestic, 
commercial, and industrial). A higher estimation accuracy 
would be achieved if the training data are more representative. 

For the DNOs, this paper developed an effective and 
efficient approach to assess the APEL. For 90% of the data-
scarce LV networks (excludes 10% outlier networks), the 
estimation error is about 13%. In this study, it is appropriate 
to exclude these 10% outliers. It is because all these outliers 
have low APEL.  

 

Fig. 11 Regression errors for outlier networks 

In Fig. 11, the outliers are enclosed in the red box. They 
present significant regression errors by up to 800%. However, 
these outliers show very low APEL, which are only up to 
0.3MWh ((which costs £54 additional losses if the electricity 
price is £0.18/kWh)). These outliers are thus out of focuses 
by the DNOs. Furthermore, for LV networks with 
significantly higher APEL, this study delivers much lower 
estimation errors. It is therefore appropriate to exclude these 
outliers.  

For data-scarce LV networks, the available data of 
maximum phase currents can be directly obtained from 
maximum phase current indicators. The yearly average phase 
currents can be obtained through: 1) the remote telemetry unit 
(RTU) device on the high voltage side of LV transformers. 
The data on high voltage side are then transformed referred 
to the low voltage side.  2) The relay protection device if the 
device has metering function [22]. 3) The energy meters if 
they record the data of the three phases separately. In addition, 
a recent project, OpenLV, sponsored by Western Power 
Distribution and undertaken by EA Technology, monitors a 
range of LV (11kV/415V) substations and the collected data 
include the average phase current values [23]. 

It is appropriate to use regression methods for assessing the 
additional phase energy losses for data-scarce LV networks. 
This is because: 1) it is common to use regression methods to 
estimate or predict unknowns in both data science [17], [15] 
and power systems [24], [25]. 2) Through k-fold cross-
validation, our approach delivers a satisfactory regression 
accuracy, where the average percentage error is 13% for 90% 
of the LV networks.  

For LV networks which have high APELs (over 2.5 MWh) 
throughout a year, the approach delivers an accuracy of 
87.3%, which is greater than the accuracy of the methodology 
from reference [9] by 23.7%. For LV networks less than 2.5 
MWh APELs, this paper and reference [9] deliver similar 
estimation accuracies.  

For comparison, the additional energy losses are also 
calculated by applying power flow analysis. However, the 
power flow analysis incurs unacceptably large errors when 

estimating the APELs for data-scarce LV networks. Given 
any data-scarce LV network with only yearly average phase 
currents and no topology, the process for calculating APEL 
through power flow analysis is detailed as follows: 1) 
assuming the loads are distributed in a rectangle distribution 
[13], calculate the energy losses using the unbalanced yearly 
average phase currents as the input. 2) Calculate the energy 
losses using the balanced yearly average phase currents as the 
input. 3) Calculate the APEL, which is the difference between 
the energy losses obtained in Steps 2) and 3). Through 
validation, when excluding 10% outliers, the power flow 
analysis incurs an average MAPE of 237% in the estimation 
of the APELs for the 800 LV networks. This error is 
unacceptably large, proving that the power flow analysis is 
not suitable for the estimation of the APELs for data-scarce 
LV networks. In contrast, the methodology developed by this 
paper is suitable for this task and it incurs the minimum error 
compared to alternative methods.  

4. Conclusions 

This study resolves a previously unanswered question: to 
assess the additional phase energy losses caused by phase 
imbalance for data-scarce low voltage (415V, LV) networks. 
To this end, a new statistical approach is developed with 
customised features. The approach learns the knowledge 
from 800 data-rich LV networks and then infers the additional 
phase energy losses for data-scarce LV networks.  

  Case studies reveal that: for 90% of the data-scarce LV 
networks in urban, suburban and rural areas, the average 
regression accuracies are 80.6%, 88.2% and 87.8%, 
respectively. These accuracies are satisfactory, as our 
developed approach uses minimal data (only yearly average 
and maximum phase currents) to assess the additional phase 
energy losses.  
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