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Management in Renewable Energy System
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Jianwei Li, Shuang Cheng, Student Member, IEEE, and Minghao Xu, Member, IEEE

Abstract—The adoption of grid-connected electric vehicles
(GEVs) brings a bright prospect for promoting renewable energy.
An efficient vehicle-to-grid (V2G) scheduling scheme that can deal
with renewable energy volatility and protect vehicle batteries from
fast aging is indispensable to enable this benefit. This paper
develops a novel V2G scheduling method for consuming local
renewable energy in microgrids by using a mixed learning
framework. It is the first attempt to integrate battery protective
targets in GEVs charging management in renewable energy
systems. Battery safeguard strategies are derived via an offline
soft-run scheduling process, where V2G management is modeled
as a constrained optimization problem based on estimated
microgrid and GEVs states. Meanwhile, an online V2G regulator
is built to facilitate the real-time scheduling of GEVs' charging.
The extreme learning machine (ELM) algorithm is used to train
the established online regulator by learning rules from soft-run
strategies. The online charging coordination of GEVs is realized
by the ELM regulator based on real-time sampled microgrid
frequency. The effectiveness of the developed models is verified on
a UK microgrid with actual energy generation and consumption
data. This work can effectively enable V2G to promote local
renewable energy with battery aging mitigated, thus economically
benefiting EV owns and microgrid operators, and facilitating
decarbonization at low costs.

Index Terms—Electric vehicle, microgrid, artificial intelligence,
renewable energy, battery aging mitigation, vehicle to grid.

ABBREVIATIONS

GEVs Grid-connected EVs.

V2G Vehicle-to-grid.

ELM Extreme learning machine.
SoC State of Charge.

NOC Number of cycles.

DOD Depth of discharge.

RCC Rain-flow cycle counting.

Cu Charging urgency.

BLS Broad learning system.

REA Renewable energy absorption.
SD Standard deviation.

CCD Charging complete degree.
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NOMENCLATURE
Pyind Estimated wind power generation.
Pyotar Estimated solar power generation.
é,oad Estimated microgrid load consumption.
Puind k Estimated wind power generation at K .
Poolar k Estimated solar power generation at k .
Pload Estimated microgrid load consumption at k .
Pui V2G power and strategy of EV;.
P, Optimization variable in soft-run scheduling.
P« V2G power of EV, at k.
Cit"ta' Total lifetime capacity of the battery.
N ol Total lifetime cycles of the battery.
DoYele DOD of the battery in V2G strategy.
N vele NOC of the battery in V2G strategy.
A Cost of per battery degradation unit.
COST; Battery aging cost of EV,;.
Pye Sum of power generation of the MG.
Ry Traditional power generation.
AR, microgrid unbalanced power at k .
SoCrin Minimum limit of battery SoC value.
S0C ax Maximum limit of battery SoC value.
e Maximum V2G discharging power of EV;.
max

) ch Maximum V2G charging power of EV,;.

Socf™ Final SoC value of EV; before departure.
SoC* Preset charging requirements of EV;.
SoC; Battery SoC state of EV; at k.

Af Frequency deviation of the MG.

APy, Calculated V2G compensation power.

MG Microgrid characteristic parameter set.

ferr Frequency to power transfer function.

CU; ¢ Charging urgency of GEV, at k.

T, Remained charging period before departure.
HS, Previous five extreme points in SoC profile.
Xy ELM model training input.

Y ELM model training output.

PE, Real-time V2G power.

W Weight matrix of ELM.

C Regularization coefficient.
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l. INTRODUCTION

HE adoption of grid-connected electric vehicles (GEVS)

brings a bright prospect for the promotion of renewable
energy. However, an efficient vehicle-to-grid (V2G) scheduling
scheme that can deal with the volatility of renewable energy and
protect vehicle batteries from fast aging is indispensable to
enable this benefit [1]. Many studies have investigated V2G
management under local renewable energy penetrations. The
real-time online decision-making model is one of the most
commonly used V2G scheduling methods for its merits in
dealing with the volatility of renewable resources [2, 3]. In
online V2G scheduling, the behaviors of GEVs are scheduled
based on real-time sampled grid status instead of predictions or
historical information. A fuzzy-logic algorithm was used in [4]
to manage the penetration of GEVs by real-time sampled grid
voltage and battery energy states. Experiment results indicated
that the established regulator could schedule the V2G behaviors
of GEVs in real-time to improve power quality. In [5] and [6],
an intelligent optimization approach is developed for the
optimal vehicle charging/discharging scheduling in a grid-
connected charging station and a smart building based on multi-
modal approximate dynamic programming. The proposed
strategy exhibits a robust behavior in the presence of stochastic
arrival and departure times as well as different pricing models
and renewable energy production. Literature [7] proposed an
online V2G coordination method using a two-stage rule-based
decision-making model.

In online methods, the charging behaviors of each GEV can
be dynamically scheduled because the established control
models are free of complex optimization processes [8, 9]. The
rapidity makes it possible to respond to the volatility of
renewable energy. However, predictive information and GEVs
cooperative optimization mechanism are not employed in most
online methods, and batteries may undergo extra aging cycles
because of uncoordinated scheduling [10]. According to [11],
without properly designed safeguard scheduling mechanisms,
V2G service may rapidly exhaust vehicle battery life. In a
quantitative study [12], battery useful life could be decreased to
65% after participating in bi-directional V2G management. The
concerns with accelerated battery aging have become the main
reason that keeps GEV customers from participating in V2G
services.

The studies carried out by the University of Oxford [13] and
the University of Washington [14] indicate that battery aging
occurs with its operation but can only be detected and mitigated
on a large time scale. With the development of communication
and computation technologies in recent years, many efforts
have been made to reduce battery aging by using optimization-
based scheduling methods [15, 16]. A heuristic algorithm-based
V2G scheduling method is developed in [17] to schedule the
charging behavior of GEVs in the microgrid. The V2G
scheduling is modeled as a multi-objective optimization
problem under a 24-hour time scale, and the battery aging is
mitigated by constraining the number of cycles (NOC) and
depth of discharge (DOD). In [18], V2G scheduling is modeled
as a stochastic optimization problem, and the mitigation of
battery aging is realized by setting NOC constraints. Simulation

results indicated that the total economy of the integrated
transportation-energy system could be significantly improved.
The optimization-based V2G behavior management model
achieves optimal scheduling but is not able to be deployed
online [19]. The scheduling period is as long as 5 minutes even
the most advanced computing equipment is adopted [20].
Literature [6] points out that grid demand and renewable energy
sources consist of dynamical external disturbances and with
strong transience and unpredictability, making the
optimization-based scheduling even more challenging.

The recently developed computationally efficient approaches
bring a bright perspective for ensuring V2G scheme optimality
and real-time performance. The broad learning system (BLS)
[21] and extreme learning machine (ELM) [22], are both least-
squares-based supervised learning algorithms with fast learning
and strong generalization ability. The broad learning system
(BLS) [21] paradigm has recently emerged as a
computationally efficient approach in big-data scenarios to
supervised learning. The ELM algorithm mainly focuses on
dealing with common regression problems with relatively small
datasets. Compared with BLS, ELM has better computational
efficiency and stability for conventional regression problems. It
has been widely used in engineering applications, including
industrial processes [23], complex system modeling [24], and
fault diagnosis [25]. In this study, the proposed V2G scheme
can be simplified to a multiple-input and single-output system.
Therefore, the most basic and commonly used supervised
learning method: ELM, is employed to solve the learning
problem.

Based on the above discussions, this paper develops a novel
battery safeguard V2G scheduling method for absorbing local
renewable power generation in microgrids based on a mixed
learning framework. Battery protective strategy is derived via
an offline soft-run scheduling process, where the V2G
management is modeled as a mathematical optimization
problem by utilizing the estimated microgrid and GEVs state
information. Meanwhile, an online VV2G regulator is built to
enable the real-time GEV charging behavior scheduling. The
dynamic extreme learning machine (ELM) algorithm [22] is
used to train the established online regulator by learning rules
from soft-run strategies. Online GEV charging behavior
coordination of individual GEVs is realized by the ELM
regulator based on the real-time sampled microgrid frequency
state information. The developed methods are verified on a UK
microgrid system with real power generation and consumption
data. Results indicate that the developed methods can schedule
GEVs charging online to absorb local renewable power
generation while effectively mitigating battery life loss.

The key contributions of this paper are as follows:
= |tis the first attempt to consider vehicle battery safeguard in

V2G scheduling in the microgrid with local renewable

energy penetration.

= A novel mixed learning framework is established for V2G
behavior management. Compared to existing online and
offline scheduling methods, V2G scheduling optimality and
real-time performance can be simultaneously guaranteed.

= |t proposes a novel soft-run mechanism to establish the rule
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base for guiding online V2G management. With the
developed soft-run optimization model, optimal battery
safeguard strategies can be derived for guiding online V2G
scheduling.

= |t for the first time considers battery safeguard in online
V2G regulator by using a supervised learning method. By
learning rules from the soft-run strategy, both battery aging
mitigation and renewable energy consumption targets can
be realized in V2G scheduling.

The rest of the paper is organized as follows: The mixed
learning framework is developed in Section Il. Sections Il and
1V establish the battery safeguard soft-run optimization model
and online V2G power regulator. The performance of the
developed method is evaluated in Section V, followed by
concluding remarks in Section VI.

Il. MIXED LEARNING FRAMEWORK FOR ONLINE V2G
SCHEDULING

This section proposes a novel mixed learning framework to
realize optimal battery safeguard V2G management in
microgrid with local renewable energy penetration. As shown
in Fig. 1, in the developed mixed learning method, online V2G
strategies are cooperatively derived by a soft-run optimization
model and a real-time regulator.

X
X
» & f"l
Optimal off-line
V2G strategies

Microgrid state >> <3 T ——
; T i
TN L=
N |H““||HI\ I e T

GEVs state Soft-run optimization model

Training
input

Feature

Training output

mapping

Real-time GEVs
and grid state

Fig. 1. The established mixed learning framework for online V2G scheduling.

ELM based real-time controller Online-V2G strategies

In the first stage, optimal V2G strategies are derived by an
offline soft-run optimization model, which operates in a 'virtual'
mode. In soft-run operation mode, all the derived strategies are
stored in a rule base but not be used to schedule the charging
behavior of GEVs directly. V2G scheduling is modeled as a
mathematical optimization problem in this stage to guarantee
the optimality of the derived strategy. As shown in Fig. 1,
microgrid power balance and GEVs battery state information
are used as the input variable of the model to reflect microgrid
power balancing requirement and vehicle charging requirement
comprehensively. GEVs charging behaviors are synergistically
scheduled with battery aging mitigation as optimization target
and grid power balance state sustaining as constraints. With the
established soft-run optimization model, optimal battery
safeguard V2G strategy that can provide power balancing
service to the microgrid can be derived. The scheduled charging
behavior of GEVs under different microgrid power
consumption, renewable generation, and battery states are
stored in a rule base to direct the establishment of real-time
V2G scheduling.

An online V2G power regulator is further established in this
study based on a supervised learning method to deal with the
volatility of renewable energy. As shown in Fig. 1, to realize
battery safeguard schedule, the optimal V2G strategies derived
in the soft-run optimization model are used to train the real-time
regulator based on the ELM algorithm. Based on the real-time
sampled grid and GEVs state information, the trained online
regulator directly schedules the charging power of GEVs in
real-time for absorbing renewable power generation.
Meanwhile, with the V2G scheduling system operation, the
ELM model parameters are dynamically updated and trained by
the derived soft-run strategies to guarantee its optimal
performance.

With the cooperation between the soft-run optimization
model and the online regulator, GEVs energy storage capacity
can be better utilized to provide power balancing service to the
microgrid while mitigating its aging. The rest of the paper
mainly focuses on presenting the mathematical principle in the
established soft-run optimization model, online power regulator,
and the corresponding rules learning method.

I1l. BATTERY SAFEGUARD V2G MANAGEMENT: A SOFT-RUN
SCHEDULING MODEL

This section proposes an offline soft-run V2G behavior
optimization model to derive optimal battery safeguard
strategies for guiding real-time V2G management. The
prediction of microgrid renewable power generations, power
consumption, and GEVs charging behaviors have been well
studied in previous literature. Therefore, this section mainly
focuses on establishing a mathematical model for deriving the
optimal V2G management strategies.

A. Optimization environment and variables

In the developed soft-run V2G scheduling scheme, the
optimization target is designed to absorb renewable energy by
GEVs energy storage capacity while mitigating battery aging.
The absorption of renewable energy can be realized by setting
constraints based on the predicted renewable power generations
and power consumption. The predicted solar, wind, and grid
load consumption can be represented by the following vectors:

PWind :|:Pwind,0 I:)wind,l I:)wind,k Pwind,k+n:| (1)
Psolar :|:Psolar,0 F)solar,l solar,k Psolar,k+n:| (2)

I:)Ioad =|:Pload,0 I::ioad,l PIoad,k Pload,k+n:| (3)
Where: ﬁwind]k, I350|a,‘k , and I3|oad]k are the estimated wind
generation, solar generation, and load consumption at k . In this
study, the rolling prediction technology [26] and deep long
short-term memory algorithm [27], which has been widely used
in microgrid power generation and consumption prediction
issues, are used here to provide the prediction information for
the soft-run optimization model.

The availability constraints of GEVs is reflected in
optimization variables in the designed soft-run optimization
model, the V2G strategy of GEV; can be represented as:

P, :[0 R - PRy - PRy ()J (4)

i i,Gi
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Where: ¢; and d; are the grid-connected and departure time of
GEV,, which is used to reflect vehicle availability constraints.
When GEVs are off-grid, the corresponding V2G power is set
as 0. The optimization variable in the established soft-run
optimization model is designed as the detailed charging and
discharging power of all GEVs:

T
P =|:F)v,0 e By Pv,ni| ©)
Where: B, represents the V2G power of GEV, at k.

B. Optimization objective

In this study, the objective function is simplified to minimize
the battery degradation for all GEVs. To mitigate battery
degradation during providing power balancing services, the
cycle times and depth of discharge (DoD) of the battery should
be constrained. The rain-flow cycle counting (RCC) algorithm
has been proved effective in extracting and analyzing the aging
cycles of metal material, mechanical systems, and energy
storage systems [28, 29]. Therefore, this paper uses the RCC
algorithm to extract the aging cycles of GEV batteries during
participating in V2G service. Based on the extracted battery
cycles and corresponding DoD, the following equation is used
to calculate battery equivalent degradation cost:

li ( Nicycle Dicycle J
cosT, = 2. e (6)
2 N itotal Citotal

Where: C® and N/ are the total lifetime capacity and
total lifetime cycles throughput of GEV, battery, D¥** and
N> are DoD and aging cycles under current V2G strategy,
4, is the cost of per battery degradation unit. According to [13],
the cycle loss and capacity loss contribute the same in battery
aging. Therefore, as described in (5), the vehicle battery aging
cost is calculated by averaging the cycle loss and capacity loss.
The battery degradation cost of GEVs are computed during
optimization process, and the aging costs of all V2G
participants are summed up as the objective function:
n chycle C_cycle A’I
J.. = il e I W B @)
obj ;( Nitotal CitotalJ 2

C. Optimization constraints

In the designed soft-run optimization model, the following
constraints are set to satisfy the charging requirement of GEVs
and absorb volatile renewable energy in microgrid:

I:’ge,k = Pwind,k + Fsolar k

a4 AR = Pye « + Py x — Poad k

n
D Rk-AR 20 @®)

max max
—Bdis Bk <R

b.q —S0Ci, <SoC; , <SoC

[ [SoC™ > SoC™

= Constraint a reflects microgrid power balance requirement:
power generation Py of the microgrid, including wind
power B4 Solar power P, and traditional generator

S.T.<

max

olar *

power Rg .k » should be absorbed by GEV charging power
Pk and grid load consumption B, as more as
possible.
= Constraint b reflects the charging requirements of V2G
participants, including the constraint of battery maximum
discharging Ry’ and charging power R, permitted
minimum and maximum battery state of charge (SoC) value,
and final charging requirement SoC’®" .

D. Model solving method

This study uses the established soft-run optimization model
to derive the optimal strategies for establishing the rule base.
The global optimality but not the algorithm real-time
performance is emphasized in this step. Therefore, the
cooperative differential evolution algorithm [42], which has
been widely used in smart grid energy resource management,
V2G scheduling, and smart home energy management, is used
to solve the defined optimization model in this study.

IV. ONLINE V2G POWER REGULATOR FOR ABSORBING
VOLATILE RENEWABLE ENERGY

This section develops an online deployment method for the
soft-run V2G management strategy. Firstly, an enhanced
frequency response based microgrid state estimation model is
introduced to calculate the required V2G compensation power.
Then a V2G power regulator is built to online schedule the
charging behavior of GEVs.

A. Enhanced frequency response based microgrid state
estimation model

This part estimates the power balancing state of the microgrid
based on the enhanced frequency response method. Microgrid
power balancing can be realized by monitoring its frequency
state. The droop control is the commonly used method in
frequency regulation issues to improve microgrid energy
quality and stability [30, 31]. In the droop control method, the
operation of distributed generators and battery energy storage
devices are scheduled by the inverter only based on the real-
time sampled microgrid frequency state information. However,
because of lacking long-term (at least 12 hours) scheduling
mechanism, GEVs aging can hardly be actively mitigated by
the droop control-based VV2G scheme [32]. Therefore, this study
establishes an online regulator to schedule the charging
behavior of GEVs, where the required V2G compensation
power is calculated by utilizing real-time sampled microgrid
frequency state information based on the enhanced frequency
response method [33].

The V2G compensation power can be calculated by the
following equation:

APeeg = feer (AF,MG) )
Where: Af and AP are frequency deviation and V2G
compensation power. MG is the characteristic parameter set
of microgrid, foer is system frequency deviation to power
fluctuation transfer function [33].

The frequency deviations and the calculated V2G power
requirement profile by the enhanced frequency response model
are shown in Fig. 2. In Zone A, the microgrid frequency is lower
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than 50Hz, indicating that renewable generation is not enough
to cover consumption. Therefore, the V2G compensation power
is negative to guide GEVs to discharge for providing auxiliary
power. Conversely, when power generation is higher than
consumption, microgrid frequency is higher than 50 Hz. As
shown in Zone B, the estimated V2G consumption power is all
positive, guiding GEVs to charge for absorbing renewable
generation as much as possible. When grid frequency slightly
fluctuates around 50 Hz in Zone C, the V2G compensation
power is kept at 0 to prevent vehicle batteries from undergoing
shallow cycles. In the established online V2G regulator, the
value of V2G compensation power is calculated based on the
frequency fluctuation of the microgrid. The more violent the
frequency deviations, the higher the absolute value of the
calculated V2G compensation power.

_ 502 (a) ‘ | ‘ 3
§50.1 3 : 1 A -i
EO | PEiadW W 3
= 49.9 | E
498F .1 . . . . 3
500 10‘1]0 1500 2000 2500 3000 3500
Time (s)
1 1 T T T T T
2 0sf® ]
&
5 OF
z
£ 05 b
Zone A ] Zone‘B . . _Zolng C |
) 500 1000 1500 2000 2500 3000 3500
Time (s)

Fig. 2. Calculated VV2G power requirement by the enhanced frequency response
model. (a) Frequency deviations; (b) estimated V2G compensation power
profile.

B. Supervised learning based V2G power regulator

This part establishes an online V2G power regulator by
supervised learning the rules in the soft-run optimization model.
Instead of the whole fleet, the charging and discharging
behavior of individual GEVs are selected as the scheduling
output variable to simplify rules learning process and regulator
deployment. To ensure the online power regulator can satisfy
the charging requirement of GEVSs, the concept of charging
urgency (CU) is further defined here to describe the dynamic
battery state of V2G participants:
Q;+(S0C;  —SoC;*")

max
I:)i,ch ik

Where: CU;, is the quantified charging urgency of GEV, at
k, T, is the remained charging period before departure.

The value of CU is limited within 0% to 100% when system
operation is normal. The higher the value of CU, the more the
charging urgency is required for GEV, the less the available
V2G energy storage capacity for grid power balancing. In real-
time V2G regulator, CU; , is used as an input to ensure that the
charging requirement of GEVs can be timely satisfied.
Meanwhile, to mitigate battery aging in providing V2G services,
historical charging and discharging behaviors of GEVs in the
previous scheduling period are also considered in the
established regulator. The previous five extreme points [29],
which reflect battery number of cycles and depth of discharge

x100% (10)

CUi,k =

information, are extracted from GEVs SoC profile:
HS, =[S, S2 S5, ] (11)
The training objective of the real-time regulator is to
calculate V2G power for an individual GEV based on its
charging requirement, battery state, and grid power balance
state. Accordingly, model input X and output Y are
constructed as:

X, ={CUy HS, APy | (12)
Y, ={PE} (13)
Where: PE, is calculated the real-time V2G power for
individual GEV.
The training of the ELM algorithm-based online V2G power
regulator can be depicted by:
min E||W II? +%||\7W -y |1
ERLxm
Where: W and Y are the weight and output matrix of ELM, C
is the regularization coefficient. The Tikhonov regularization

[34] method is used in this study to update the parameters of
ELM:

(14)

-1
w* =[\7T\7+éj 7Ty (15)

The parameter of the real-time regulator should be
dynamically updated by learning the latest rules in the soft-run
model to ensure the optimal performance. The online sequential
dynamic training method is used here to enable dynamic
parameter updating in ELM model, which can be realized by
the following equations:

. _
Wie1 =Wy + K1V (Yior = YieaWe ) (16)

—T — —T -1 _
Ky =Ky _KkYk+l(| +Yk4lKYk+1) YeaKe (A7)

Where: K, = (Y, Y,) ™" is the algorithm gain initialized by (14).
When the latest V2G strategies Y,,; from the optimization-
based model are generated, the parameters in the online
regulator are dynamically updated with (16) ~ (17) to achieve
the best performance. With the dynamic training, the
established real-time regulator can accurately reproduce the
derived V2G strategies in the optimization-based method.

V. SIMULATION ENVIRONMENT AND RESULTS ANALYSIS

In this section, the configuration and the data sources of the
studied microgrid and renewable power generation system are
described firstly. Then, the qualitative and quantitative analyses
are carried out to evaluate the power balancing and battery anti-
aging performances of the developed V2G scheduling methods.

A. Data set and simulation environment

A microgrid that consists of local renewable, conventional
generator, GEVs, and domestic load is employed to verify the
developed V2G scheduling method. As shown in Fig. 3,
photovoltaic (PV) array and wind generator are connected to
the microgrid AC bus through inverters, while household loads
and conventional generators are connected to AC bus directly
to sustain power balance states. Based on the real-time sampled
microgrid frequency state information, the charging and
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discharging behavior of GEVs are coordinated by the V2G
scheduling system. The corresponding V2G strategies are
realized by the smart charging pile between GEVs and
microgrids. In this study, targets of V2G scheduling are
assumed to absorb local renewable generation and mitigate
vehicle battery aging. Therefore, the effect of the power
purchase from the main grid is not considered and the microgrid
is assumed to operate under off-grid mode.

\\ ! -
-
PVarray  Inverter

— =
s BE— + =0
/i\—>E}—) Electric vehicle with V2G

) control
Wind generator Inverter

e —tate

E ocoo Household load

J J
Generator
Fig. 3. The topology of the studied microgrid with renewable energy resources
and GEVs.

The detailed parameters and characteristics of the tested
microgrid system are further illustrated in Table I. The
characteristic of conventional power plants is simulated by the
dynamic model presented in [35], and the generators are
modeled by linearized swing equations. The energy
consumption and renewable power generation states of the
microgrid are simulated based on the open-access power system
operation data [36] provided by Western Power Distribution,
UK. The national household travel survey data [37] is employed
to simulate the charging behavior of V2G participants, and the
Monte Carlo simulation model [38] is used to simulate GEVs
availability states. The power conversions processes between
the energy generation, consumption, and storage devices are
modeled as a steady-state conversion model described in [39].
The power flows between different sectors in the microgrid are
simulated to verify the effectiveness of the developed V2G
management method.

TABLE I. CONFIGURATION OF THE STUDIED MICROGRID SYSTEM.

Category Parameters Value
Number of vehicles 300
Battery capacity 60 kWh
GEa\lt/tseand Minimum battery SoC value 20%
Y Maximum battery SoC value 95%
Maximum Crate 1C
Demand peak 4.6 MW
Microarid Wind farm rated capacity 6 MW
9 PV array rated power 5 MW
Conventional generator rated power 55 MW

The proposed work is implemented on a high-performance
workstation equipped with 2xE5-2690v4 processors. The soft-
run model and the training of the online regulator are
programmed with MATLAB, and the real-time VV2G regulation
is realized in Simulink to facilitate its hardware deployment.

B. Power balancing and battery anti-aging performance of
V2G scheduling

Grid load, solar generation, and wind generation power

profiles within 30 working days in the studied microgrid system
are shown in Fig. 4. The first peak appears in the period of 08:00
to 10:00, and the maximum grid load level reaches 3.5 MW at
around 09:00 because of the rise of commercial power
consumption, as shown in (a). The second peak is from 17:00
to 20:00 because of the aggregated use of cooking and heating
appliance in households. Without energy storage capacity,
microgrid needs to trade with the main grid frequently to satisfy
the power requirement of consumers. The solar generation
profiles are shown in (b), most of which peak in the period of
11:00 to 12:00 when the valley of grid load profile appears.
Without GEVs penetration, the generated power cannot be fully
consumed by the grid and the abundant power will be wasted.
The wind profile is not as regular as solar profiles, as shown in
(c); however, the power generation value in the evening is
generally higher than that of in the daytime. However, grid
power consumption valleys also appear in this period, and the
minimum load is only 1 MW in the early morning. The
uncoordinated charging behavior of GEVs makes the situation
worse: grid peak load will be further raised in the period of
08:00 to 10:00 and 17:00 to 20:00 after the connection of GEVS,
while after 24:00 most GEVs will be fully charged.
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Fig. 4. Microgrid (a) load, (b) solar generation, and (c) wind generation power
profiles within 30 working days.
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Based on the above microgrid topology, renewable
generation, power consumption, and availability of GEVs, V2G
scheduling is carried out to improve energy utilization
efficiency. Performances of three different V2G schemes,
including conventional rule-based method [4] (Case 1),
optimization-based [17] method (Case 2), and the developed
mixed learning method (Case 3), are compared in this section.

The objective of V2G management is to maximize the
renewable energy absorption (REA) rate in the scheduling
period. Fig. 5 (a) compares REA rates under different scenarios
of renewable power generation and fleet scales. Fluctuation of
renewable power generation impacts of scheduling algorithm
performance directly. REA rate of the developed mixed
learning method is compared with conventional optimization-
based method under different renewable generation forecasting
error states. Both the optimization-based and mixed learning
models achieve satisfactory performance with accurate
prediction information. The REA rates reach 98.4% and 97.2%,
indicating the effectiveness of V2G scheduling. The
optimization-based model and mixed learning model can keep
stable before the forecasting error reaches 4%, and the REA
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rates are generally kept above 92%. However, with the
prediction error further increasing, the REA rate decreases
dramatically. When forecasting error reaches 10%, the REA
rate in the optimization-based method is only 60.7%. The
microgrid REA rate can still be kept to 90.2% in the mixed
learning method, validating its robustness under uncertain
renewable generations and power consumption.
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Fig. 5. V2G renewable energy absorption rates under different (a) renewable
power generation states and (b) fleet scales.

REA rate of the developed mixed learning method is
compared with conventional rule-based method under different
fleet scales in Fig. 5 (b). With the decrease of fleet scale, the
microgrid REA rate gradually declines because the available
energy storage capacity is limited. After fleet scale decreases
by 20%, energy storage capacity cannot fully absorb renewable
power generation. Therefore, V2G scheduling REA rate
dramatically decreases in the simulation. Compared to the
conventional rule-based method, the mixed learning method
can better adapt to the change of fleet scale. The reason is that
regulator hyper-parameter can be updated by the optimization
and rules learning processes flexibly. When fleet scale
decreases by 50%, REA rate in the rule-based method is only
72.1%. While with the mixed learning method, the above
number can be improved to 83.7%, which validates its
robustness under the change of fleet scale.

Battery aging cycles of GEV fleet under different DoD
ranges in V2G services under three cases are compared in Fig.
6. GEVs are un-coordinately scheduled to respond to renewable
energy and grid demand fluctuations in the rule-based method.
Vehicle batteries undergo around 2325 and 1352 shallow cycles
under 0%~5% and 5%~15% DoDs. Compared to the rule-based
method, shallow battery cycles can be reduced by 74.3% and
64.1% in optimization-based and mixed learning methods,
which validate the battery protective performance.
Optimization-based and mixed learning methods also reduce
battery cycles with high (25%~35% and higher than 35%)
DoDs. More than 57.2% and 39.3% deep battery cycles can be
avoided after the optimization-based and mixed learning
methods are deployed, which validates the effectiveness of the
battery anti-aging mechanism. The developed mixed learning
method achieves a similar battery protective performance
compared with the optimization-based method. It should be
figured out that vehicle batteries still experience 12.8% more
cycles in the mixed learning method. The reason is that the

improvement of REA rates is also emphasized in the developed
scheme.
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Fig. 6. Battery aging cycles of GEV fleet under different DoD ranges in V2G
services.
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Table Il summarizes the average power balancing and battery
aging mitigation performance of three cases in 30 working days.
The wind, solar, and load average prediction error in the
simulation period can be generally limited to 8.15%, 6.57%,
and 9.74%, respectively. In this study, to guarantee system
stability, the scheduling interval in Case 1 to 3 are setas 1s,
300 s, and 1 s, respectively. In terms of algorithm computation
speed, the average simulation time of the optimization-based
method is as long as 232.7 s due to the complex optimization
mechanism. GEVs charging behavior can be directly scheduled
based on the rules but free of optimization processes in the rule-
based method. Therefore, the simulation time in Case 1 can be
shortened to 0.12 s. The simulation time of the soft-run
optimization model is 665.5 s, much longer than in Case 2. The
reason is that a shorter scheduling interval is adopted to better
deal with the volatility of renewable power generation. It should
be figured out that the strategies derived by the soft-run
optimization model are used to train the ELM-based regulator
but not to schedule the charging behavior of GEVs directly.
Therefore, the developed mixed learning method achieves a
similar calculation speed as the fuzzy logic method by realizing
online V2G scheduling through the online regulator.

The rule-based approach can respond to the microgrid power
fluctuation in real-time, its REA rate reaches 97.5%, and
netload standard deviation (SD) can be limited to 0.42 on
average within the simulation period. However, batteries
undergo 5265 cycles because lacking collaborative scheduling
mechanisms between different GEVs. Compared with the rule-
based method, battery aging cycles are reduced to 1512 in the
optimization-based method. However, because of the large
scheduling intervals, only 73.2% of renewable generation can
be absorbed and microgrid net load SD reaches 0.86. The
developed mixed learning method can improve both the power
balancing and battery anti-aging performance. As shown in
Table Il, more than 94.6% renewable power generation can be
absorbed while battery cycles can be limited to 2295,
highlighting the effectiveness of the established online
coordinator. The aging model in [13] is further used here to
quantify average battery life loss GEVs in different V2G
methods. Compared to the rule-based method, the average
battery life loss of each V2G participant can be reduced by 50.5%
in the optimization-based method. The developed mixed
learning method achieves a similar battery safeguard
performance compared with the optimization-based method.
Vehicle battery life loss can be limited to 4.57x1072, which
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validates the battery anti-aging performance of the developed
methods. Meanwhile, it should be figured out that the
developed mixed learning method can strictly satisfy the
charging requirement of V2G participants. Compared to the
rule-based method, the charging complete degree (CCD) can be
improved from -4.2% to 3.7% with the defined charging
urgency concept in the training process of the online regulator.

Table 1. Quantitative performance comparison of different V2G scheduling
methods in 30 working days.

Case 1: Case 2: Case 3:
Scenario Rule-based Optimization- Mixed learning
method based model method
Scheduling interval 1s 300s 1s
Calculation time 0.12s 232.7s 665.55/0.16s
REA rate (%) 97.5 73.2 94.6
Netload SD 0.42 0.68 0.51
Battery cycles 5265 1512 2295
Average life loss (%) 8.33 x 1072 412 x 1072 457 x 1072
CCD rate (%) -4.2 25 3.7

It should be noted that this paper focuses on the consumption
of local renewable energy by GEVs in microgrids but ignores
the power purchase from the main grid. Both the V2G
scheduling model and microgrid operation mechanism are
designed and simulated by assuming that the microgrid is in off-
grid mode. However, large-scale wind and solar power plants
connected to transmission networks are also of great
significance to improving microgrid security and efficiency.
Future work will be conducted on V2G scheduling that
considers energy mobility and trading between the microgrid
and the main grid.

VI. CONCLUSION

A battery safeguard V2G scheduling method is developed for
managing GEVs charging in microgrids with local renewable
energy penetrations in this paper. The consumption of volatile
renewable energy and the mitigation of battery aging are
addressed by establishing a mixed learning V2G scheduling
framework. The optimal online GEVs charging strategies are
derived from the cooperation between the soft-run optimization
model and online V2G power regulator. Through extensive
simulations on a microgrid system with real power generation
and consumption data, the key findings are:
= Benefiting from the cooperative optimization mechanism,
the battery anti-aging strategy can be derived from the soft-
run V2G behavior management model. The established
ELM algorithm-based regulator can accurately reproduce
the derived strategies in the soft-run model. Compared to
the conventional online scheduling method, battery aging
cycles can be effectively mitigated in V2G service.

= The built online V2G power regulator can schedule the
charging power of GEVs in real-time for responding to the
volatility of renewable power generation. Compared to the
optimization-based method, the REA rate can be
significantly improved.

= The supervised learning model has strong extrapolation
capability, which makes it possible to respond to uncertain

input beyond the training dataset. Owing to the
extrapolation capability of the ELM model, the established
online regulator can better deal with the uncertainty of
renewable energies.

To summarize, the developed behavior learning framework
inherits the merit of optimization-based and rule-based methods.
The online strategies can effectively guide GEVs to provide
battery safeguard power balancing V2G services to microgrids.
In this way, they can economically benefit EV owns and
microgrid operators, and facilitate decarbonization at low costs.
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