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Bounded-Energy-Input Convergent-State Property of
Dissipative Nonlinear Systems: An /ISS Approach

Bayu Jayawardhana, Member, IEEE, Eugene P. Ryan, and
Andrew R. Teel, Fellow, IEEE

Abstract—For a class of dissipative nonlinear systems, it is shown that an
iISS gain can be computed directly from the corresponding supply function.
The result is used to prove the convergence to zero of the state whenever the
input signal has bounded energy, where the energy functional is determined
by the supply function.

Index Terms—Dissipative nonlinear systems, integral input-to-state sta-
bility.

[. INTRODUCTION

For a linear system @ = Ax + Bu, with A Hurwitz, the following
property is elementary: if = is a solution on R+ [0,0¢) corre-
sponding to an input«w € LP for some p € [1, co) (an input of bounded
energy), then «:(t) — () as ¢ — oc. The question of nonlinear counter-
parts arises: to what extent (and for which measures of energy) does the
bounded-energy-input/convergent-state (BEICS) property hold in the
context of a finite-dimensional nonlinear system & = f(x, v) under the
0-GAS hypothesis (that is, the assumption that O is a globally asymp-
totically stable equilibrium of the associated autonomous system & =
f(2,0))? On the one hand, even in the simplest of nonlinear systems
satisfying the latter hypothesis, the BEICS property may fail to hold. In
[16], Sontag and Krichman construct an example of a 0-GAS system of
the form & = fy(x)+ v with the property that, for every = > 0, there is
an integrable function, with L' norm ||u||; < <, such that the system
admits an unbounded solution: subsequently, in [17], Teel and Hes-
panha provide an example of a system of similar structure, but with the
stronger property of 0-GES (that is, O is a globally exponentially stable
equilibrium of & = fo(x)) for which an exponentially decaying addi-
tive input u, arbitrarily small in L*, can give rise to an unbounded so-
lution. On the other hand, if # = f(z,u), with f : R" X R™ — R" lo-
cally Lipschitz and f(0,0) = 0, is integral input-to-state stable (iISS)
(see, [14]), with associated iISS gain function v (to be made precise
in due course), then it is well known that the system is 0-GAS and
has the BEICS property with respect to “integrable” (bounded-energy)
inputs, provided that integrability is defined via the energy-like func-
tional u +— [ ~v(lu(t)[|d#, in which case we say that the system has
the v-BEICS property. Theorem 1 in [2] (see, also, [1]) subsumes the
following: if the system is (a) 0-GAS and (b) dissipative with supply
function o (in short, o-dissipative) in the sense that there exist a proper,
positive-definite C'* function U of Lyapunov type and a class K func-
tion ¢ such that (VU (&), f(&,v)) < a(]|v||) for all (€, v), then the
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system is {ISS. The crucial point to bear in mind here is that the latter
result is non-constructive: the properties of 0-GAS and o -dissipativity
imply only the existence of some iISS gain function—the issue of con-
structing an iISS gain remains; the supply function ¢ is not in general
an {ISS gain function and so one cannot conclude that the system has
the o-BEICS property. The main contribution of the present technical
note is to show that the following condition:

¥V compact K CR", 3¢ >0: [|[f(&v)|| <c(l+o(|v]))
V(¢ v) € K x R™

in conjunction with 0-GAS and o -dissipativity, ensures that o is an i/ISS
gain function and so the o-BEICS property holds.

The computation of /ISS gain is pertinent to the stability analysis of
interconnected systems which contain /ISS systems and to the robust-
ness analysis of closed-loop systems. For example, the papers [1], [6]
use the knowledge of /ISS gain in its subsystem(s) to conclude the sta-
bility property of the interconnected systems. Based on the precursor
[9] to the present technical note, Wang and Weiss [18] use our main re-
sult for computing the /ISS gain in a robustness analysis of a controlled
wind turbine.

II. PRELIMINARIES

We consider nonlinear systems, with input u, of the form
@ = f(z,u), =(0)=2"€R", £(0,0)=0,

f:R" xR™ — R" locally Lipschitz. (1)
Throughout, the space of inputs is taken to be I/ := L{s.(Ry,R™),
that is, the space of measurable locally essentially bounded functions
H+ — R™.

Definition 2.1: Foru € U, 2° € Ry, a solution of (1) is an abso-
lutely continuous function z : [0,w) — R™, w > 0, such that

z(t) — 2(0) = /f (z(7),u(r))dr Vte0,w).

A solution is maximal if it has no proper right extension that is also a
solution. A solution is global it it exists on R4 .

The following is a consequence of the standard theory of ordinary
differential equations (see, e.g. [13]).

Proposition 2.2: For each u € U/ and 2° € R", the initial-value
problem (1) has unique maximal solution = : [0, w) — R™.

The set of continuous, strictly-increasing functions o : Ry — R4,
with a(0) = 0, is denoted by K and K, C K is the set of unbounded
functions in K. The set KL consists of all functions 7 : R+ X Ry —
Ry such that 3(-,¢) € K forall ¢ € Ry and, forall s € Ry, 3(s, ) is
decreasing and 3(s,t) — 0 ast — oc. A function o : Ry — Ry is
said to be positive definite if it is continuous, «(0) = 0 and a(s) > 0
for all s > 0.

The concept of integral input-to-state stability (iISS), introduced in
[14] and further developed in, inter alia, [2], [3] (the expository article
[15] contains a particularly succinct survey), is central to the present
technical note.

Definition 2.3: System (1) is said to be integral input-to-state stable
(iISS) if there exist functions o € K, 3 € KL and v € K (the latter
will be referred to as an iISS gain) such that, for every 2° € R™ and
for every u € U, the unique maximal solution x of (1) is global and

t

a(le®)l) < 8 (12°].1) + / -+ (llus)

0

Nds Yt €Ry. (2)

0018-9286/$26.00 © 2009 IEEE
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An immediate consequence of this definition is

(1)isiISS = (1)is 0 — GAS. 3)
Furthermore, if system (1) is ISS with gain v and we define an energy
functional on ¢ by u +— [ ~(||u(t)]|)d¢, then (1) has the BEICS
property. We record this fact in the next proposition (see [14, Proposi-
tion 6]).

Proposition 2.4: Assume (1) is {ISS with /ISS gain v € K. Let
u € U satisfy [~ ~(|Ju(t)||)dt < occ. Then, for all z° € R", the
unique global solution x of (1) satisfies #(¢) — 0 as ¢ — co.

Definition 2.5: A continuously differentiable function U : R" —
R is an iISS-Lyapunov function for system (1) if there exist functions
a1, a2 € Kso, 0 € K and a continuous, positive-definite function a3
such that the following hold:

ar ([lE) STE) < az (JlEll) VEER™, ©)
(VU f(&v)) < —as ([lEl) + o (o]
Y(¢£,v) €R" x R™. 5)

The concept of iISS admits the following elegant characterization [2]:
system (1) is ZISS if, and only if, it admits a smooth (that is, C'°°)iISS-
Lyapunov function. However, in our later analysis, we will not wish
to impose C'™ smoothness on various functions arising therein. With
this in mind and reiterating Remark I1.3 of [2], existence of an iISS
Lyapunov function is a sufficient condition for iISS (smoothness is not
required): in particular, system (1) is ZISS if it admits an /[SS-Lyapunov
function. We record this and related facts in Proposition 2.6 below,
which we preface with some terminology.
With ¢ € K, we associate an energy functional

oo

E;(u):= /(7(||u(f)||)df

0

and write U, := {u € U|E;(u) < oo}. System (1) is said to have the
BEICS property with respect to the energy functional E, (for brevity,
o-BEICS) if, for all u € U, and 2° € R™, the unique global solution
2 of (1) is such that x(¢) — 0 ast — oc.

Proposition 2.6: Assume that there exist a C'' function U : R” —
R4, functions a1, as € K+ ,0 € K and a continuous, positive-defi-
nite function «z such that (4) and (5) hold. Then

(a) system (1) is {ISS with ISS gain v = o;
(b) system (1) has the ¢-BEICS property.

Proof: The proof of Assertion (a) is implicit in the proof of [2,
Theorem 1]; the conjunction of Assertion (a) and Proposition 2.4 gives
Assertion (b). |

Our study now focusses on the case wherein (5) is replaced by the
weaker assumption

(VU f(&.0)) So(flvll) V(& v) €R" xR™.  (6)
To distinguish this case, we adopt some further terminology.

If there exist a C'* function U : R — R, functions a1, g € Koo
and o € IC such that (4) and (6) hold, then we say that (1) is dissipative:
we refer to o as the supply function o and (6) is said to be the associated
dissipation inequality.

Theorem 1 of [2] and [1, Lemma 1] subsume the following.

Proposition 2.7: If (1) is 0-GAS and dissipative (with supply func-
tion o), then (1) is ZISS.

In contrast with Assertion (a) of Proposition 2.6, the supply function
o associated with the hypothesis of dissipativity in Proposition 2.7 is
not, in general, an /ISS gain ~ for (1). So one cannot conclude that (1)
has the o-BEICS property; however, an inspection of the proofs of [2,
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Theorem 1, Proposition I1.5, Lemma IV.10] reveals that ¢ is indeed an
iISS gain if the function f in (1) is such that the following holds:
Yv € R™.

3> 00 [F0.0)]] < o (llol)

@)
‘We summarise this situation as follows.

Proposition 2.8: Assume that (1) is 0-GAS and dissipative with
supply function 0 € K. Assume further that f and o are such that
(7) holds. Then (1) is iISS with {ISS gain ¥ = ¢ and has the o-BEICS
property.

The condition (7) can be restrictive. For example, consider the case
where the system (1) is affine in the control, that is, for some locally
Lipschitz functions fo : R* — R"™ (with fo(0) = 0)and g : R” —

HnXm

f(&v) = fo§) +9(v V(. v) €R" xR™. (3

Assume that g(0) # 0 and that (1) is 0-GAS and dissipative with
supply function ¢ : s +— sP for some p > 1. Then (7) holds if, and
only if, p = 1. In particular, if p > 1, then we cannot conclude, via
Proposition 2.8, that inputs © € L? generate state solutions converging
to zero.

III. MAIN RESULT

In the affine-in-the-control system example above with p > 1, an
application of Young’s inequality yields the existence of a positive
constant ¢y > 0 such that || f(0,v)|| = |lg(0)v|] < |lg(0)]|||v]] <
c1(1+ |Jv]|?) for all v € R™. The main contribution of the technical
note is to extrapolate this condition and identify a condition on f under
which ¢ is an {ISS gain for (1) which, together with Proposition 2.4,
ensures the ¢-BEICS property: this we do in Theorem 3.1 below. In
the context of the above affine-in-the-control system, our main result
implies that, for all p > 1, if the system is 0-GAS and dissipative with
supply function ¢ : s +— s”, then inputs v € L¥ do indeed generate
state solutions converging to zero (see Corollary 3.6).

Theorem 3.1: Assume that (1) is 0-GAS and dissipative with supply
function ¢ € K. Assume further that f and o are such that the fol-
lowing holds.

(A) For each compact set ' C R" there exists ¢ > 0 such that

IF el <c@+o(lol) ¥Ew er xR ©)
Then (1) is {ISS with JISS gain v = ¢ and has the o-BEICS property.
We preface the proof of Theorem 3.1 with three technical lemmas,
wherein B, denotes the closed ball in R” of radius » > 0 and centred
at 0.
Lemma 3.2: Let f : R™ x R™ — R" be continuous. Then, for each

compact set J{', there exists a function px € Koo such that

If(&v) = FIEON < px (Il V(€ v) € K xR™.  (10)
Proof: Let K C R™ be compact and define px : R+ — R4 by

px(0) == 0 and
pic(a):=max {[|f(§,v) = f(£,0)]| ¢ € K,v € Ba} Va > 0.

By the continuity of f, the function g is continuous at zero. Clearly,
pr 1s non-decreasing and so, a fortiori, is measurable (in fact, it can
be shown that g is upper semicontinuous). Therefore, the function
prc : Ry — Ry is well defined by

2a

1 .
pr(0):=0, prla):=a+ o /pK(T)dT Ya > 0.

a
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It is readily verified that px € Koo. Moreover, pi (a) > pi (a) for all
a € R4 and so (10) holds. |
Lemma 3.3: Let f : R" x R™ — R" be continuous and o € K.
Assume that (A) holds. Let w : R" — Ry be continuous and such
that, for some o € K
a(llEh) < w(§) VEeR™ (1
Then, for every continuous function 8 : (0, c0) — (0, c0), there exist
a continuous function 6 : (0,00) — (0, o0) such that

(& v) = FIEO) <6 (w(€)) 46 (w(&) o (Jlvll),

VEER"\ {0} YveR™ (12)

Proof: By continuity of f and (A), it can be verified that, for every
compact set I C R", there exists cx > 0 such that

1£(&0) — FE0)| < erx (L+a (o)) V(Ev) € K x R™.

This implies the existence of a strictly increasing sequence (¢ ) in N
such that
1£(&0) = FEO S er (T+ o (llell))  V(E0) € Be x R™.

Letbh : [0,00) — (0,00) be the continuous function that linearly
interpolates the points cx, & € N, that is

b(N) i=cr + (chp1 —cr)(A+1—-k) VXE[k—-1,k) VEEN.
Then, for all (£,v) € R® x R™
1 (& v) — F& O < bIED (L +a ([[v]])- (13)

By Lemma 3.2, there exists p1 € K such that

V(E, ’U) € B; x R™.

(& 0) = FI& O < pa (Ilo]]) (14)

Let ¢ : (0,00) — (0,00) be continuous. Denote by x1 € Koo the
inverse of the function pi € K and write b = b o a~". Define the
continuous function &; : (0,1] — (0,0) by

Hg(a) —8(a)
o (x1(6(a)))

It ¢ € By \ {0} and o]l < x1(6(w(©))) then pa([lvl]) < 6(w(€)
and so, by(14)

61(a) == bla) + Ya € (0,1].

1 (& v)=FEOI <O (w(§) <8 (w(§)) + 81 (w(&)) o ([|v]])-
If¢§ € By \ {0} and ||v|| > x1(#(w(§))) then, by (11) and (13)
1£(€v) = FE 0 <b(ED (1 + o (Jol))
<b(w(&)(L+a (o)
<6 (w() + [[p (w(&) - 8 (w(©))|
+b(w(&)e (o]

<O (w(&) + o1 (w(&)) o ([lv]]).

This establishes that

£, v) = FIE O < 6 (w(€)) + &1 (w(€)) o ([|o]])

V(€.v) € (B1\ {0}) x R™. (15)
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For every k € N, k > 2, let C', denote the compact set
Cioi={€ € R'1 < w() < k).
By Lemma 3.2, for each k& > 2, there exists pr € Koo such that

(& v) = V(£ v) € Cr x R™.

FEO < pr (ol

For every k > 2, let x € Ko denote the inverse of pr € Ko and
define the continuous function &, : [1, k] — (0,00) by

o - s
n(@) =) +

Then an argument analogous to that leading to (15) gives

(& v) = FE 0 <0 (w(§)) + ok (w(&)) o ([[v]])
V(€.v) €Ce xR™, k=2.3,....

(16)
Now, define
67 = 61(1), & := max { mﬁui] bi(a), 65—y } , k=2,3,....
a€ll.k

The sequence (8 ). S0 constructed is non-decreasing. Finally, de-
fine the function 6 : (0, 00) — (0,00) as follows:

(5((1,)::{

The function 6 is continuous, with the properties

b1(a)+65—67,
b1t (0o —8iq1) (a—k),

a€(0,1]
a€(k,k+1],keN.

and

5a) 8, Va € (0,1,
6(a) > ér(a) VYa €[l k], k=2,3,....

In view of (15) and (16), it follows that (12) holds. |
Lemma 3.4: Let f : R" x R™ — R" be locally Lipschitz with
7(0,0) = 0 and ¢ € K. Assume (A) holds and (1) is 0-GAS. For
every ¢ > 0, there exists a continuous positive-definite function « :
Ry — Ry and a C! function W : R™ — Ry such that W(0) = 0,
W (x) > 0 for x # 0 and, for all ({,v) € R x R™
W), f(&v)) < —a(llEll) +=a (lv]) - (17)
Remark 3.5: The function W in Lemma 3.4 is not necessarily
proper; that is, its sublevel sets are not necessarily compact.

Proof: The 0-GAS property implies that there exist a smooth V' :
R" — R4, VV(0) = 0 and functions aq, a2, a3 € Koo such that

a1 (Ilelh < V(&) < aa (el
(VV(6), f(£.0)) < —as (|I€])

} VE e R (18)

(see, for example, [10]). Define ¢4 : R+ — Ry by
da(a) = max {|VV(E)]| € € R*, V(¢) < a} Va € Ry.

By the continuity of VV/, the function &4 is continuous at zero. The
function &4 is non-decreasing and so we may define a continuous func-
tion as : Ry — R4+ by
2a
1 [.
as(0) =0, as(a)=— /044(7')(17' Ya > 0.
a

a
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Moreover, a4 is non- decreasing with as(a) > au(a) forall a € R4
and ||[VV (§)]| < aa(V (€)) forall ¢ € R™. Now define the continuous
function 6 : (0,00) — (0,00) by

a3 (a;l(a))

#(a) = min {a, 2a1(a)

} Ya € (0,00)
in which case, we have

(V)8 (V(E)< sas (03 (V(E))
s (1€l Ve € R™.

IVVOIN 6 (V(E)) S
1
<50 (19)

By Lemma 3.3, there exists a continuous function § : (0,00) —
(0, 00) such that, for all (¢,v) € (R™\ {0}) x R™

1f(€.v) = FEO <6V + (V) o). (20)
Let = > 0 and define a continuous function x € K by
£(0) =0, k(a)=min {a, m} Va € (0,00).
It follows that, for all £ € R™ \ {0}
ooy s e SIVVEON8 (V(E)
RVIENITVOIS (V) < Sy srey S& @D

Define the function W : R — Ry by W(¢) == [© w(r)dr,
which is C*. Since V(0) = 0, VV(0) = 0 and x(0) = 0, it follows
that W (0) = 0 and VW (0) = 0. Since  and V are positive definite,
it follows that W (&) > 0 for all £ # 0.

Invoking (18), (19), (20) and (21), we have

(VIWW(&). f(&,v))
= (VIO (VVI(E), f(& 0))
S EVEDIIVVQIIIFE, v) =
- '(/’ §) s (ll€l)
< w(VIONIVVOII (V(E) +
— K (Y/ (&) s (ll€l)

<~ 5n V() as (il +

FEO

s (V&) (llolD]

za ([lvlD (22)
for all ({,v) € R™ \ {0} x R™.
Since (VW (0), f(0,v)) = 0 for all v € R™, (22) holds for all
(§,v) € R" x R™. The proof is completed by setting
1 . > n
a(a) := 5 min {x (V) as (InlD [l7ll < a.n € R"}.
|
Proof of Theorem 3.1: By dissipativity of (1), there exist a C"' func-
tionV : R" — Ry, a1,a2 € Ko and o € K such that
} (23)

ar ([l < V(&) < ax ([IE]l) V€ e R,

(VV(E), £(&0)) <o (llof]) V(€ v) € R" x R™.
By Lemma 3.4, there exists a continuous positive-definite function « :
R+ — Ry and W € C'(R",Ry) such that W(0) = 0, W(z) > 0
for  # 0 and (17) holds.

Define the C* function U : R® — Ry by U(&) = (1/2)(V(€) +
W(g)) for all £ € R™. Setting s = «/2 and invoking (17) together
with the second of inequalities (23), we conclude that (5) holds. For
each a € Ry, define ay(a) := min{W(&)| ||¢]| < a} and as(a) :=
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max{W(&)| [|€]] € a}. Then a; := (&1 + @4)/2 and a3 := (G2 +
w5 )/2 are K functions satisfying (4). An application of Proposition
2.6 completes the proof. g

Recalling Proposition 2.8 and the discussion in the paragraph there-
after, the following fact is known: if the system (1) is affine in the con-
trol, 0-GAS and dissipative with supply function ¢ : s — s, then (1) is
iISS and has the BEICS property with respect to the L' energy func-
tional u — [ [[u(t)||d#. The following corollary extends this result
and, as a special case, establishes the BEICS property with respect to
the L? energy functional for all 1 < p < oo.

Corollary 3.6: Assume that system (1) is affine in the control,
0-GAS and dissipative with supply function o : s — [’ 9(z)dz for
some ¥ € K. Then (1) is iISS with {ISS gain v = ¢ and has the
o-BEICS property.

Proof: In view of Theorem 3.1, it suffices to show that property
(A) holds. Since (1) is affine in the control, there exist locally Lipschitz
fo: R — R", with fo(0) = 0,and ¢ : R® — R™*™ such that (8)
holds. Let the compact set ' C R" be arbitrary. Then there exists
co > 0 such that ||fo(€)]] < co and ||g(&)]| < co forall &€ € K.
Therefore, || f(&,v)]| < co(1+ |[v]]) forall (€,v) € K x R™.

Letcy > 0. Then ||f(€,v)|| < co(14c1) forall (€,v) € K x B,,.
On the other hand, if ||v|| > ¢1, we have

[l

L P(z)dz

I(er)

1

1
WTI)U(”UH)-

ol <ex+

<eci +

Thus, using ¢ = co(1 + 1 + 1/9(cyr))

Il S e@talel) ¥Er) € K xR

This completes the proof. |
Example 3.7: Consider system (1) with

- R? - R? = 2, V) — —&
fH x R R 5(671/) (£1$£251) |:£1—E§+£21/ .

For U : £ — 2||€||*, we have

(VU(E), f(&,v)) = —4€5 + 48w <v* V(Ev) eR* X R.

2
S = s,

Thus, the system is dissipative with supply function o :

Moreover, an application of LaSalle’s invariance principle confirms
that the system is 0-GAS. By Corollary 3.6, it follows that the system
is {ISS with {ISS gain v = ¢ and has the BEICS property with respect
to the L? energy functional u — fox u?(t)dt. We remark that it is not
clear if one can invoke Proposition 2.7 to arrive at the same conclusion.

Next, we highlight further consequences of Theorem 3.1.

IV. WEAKLY ZERO-DETECTABLE SYSTEMS

Here, we investigate a situation which, in essence, is intermediate
between satisfaction of the iISS inequality (5) and the dissipation in-
equality (6) (see (24) below).

Let i : R” — R’ be continuous, with 2(0) = 0. As in [2], system
(1) is said to be weakly zero-detectable with respect to h if the following
holds: if  is a global solution of & = f(x,0) with the property that
h(x(t)) = 0 forall ¢t € Ry, then hm z(t) = 0.

Corollary 4.1: Let f : R™ x H’" — R" be locally Lipschitz and
h : R™ — R’ continuous, with f(0, 0) = 0 = 1(0). Assume that there
exist functions «y, a2 € Koo, 0 € K, a continuous positive-definite
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function o and a C'! function U : R® — Ry such that (4) holds and,
for all ({,v) € R™ x R™

(VU(&), f(&v) < —a (IR + o (llo]]) - 24
Assume further that f and o satisfy (A) and that (1) is weakly zero-
detectable with respect to &. Then (1) is {ISS with i{ISS gain v = ¢ and
has the o-BEICS property.

Proof: In view of Theorem 3.1, it suffices to show that (1) is
0-GAS. From (4) and (24), we may infer that the zero state is a stable
equilibrium of & = f(x,0) and so, for each °, the unique maximal
solution x of the initial-value problem is global. It remains to show that
the zero state is a globally attractive equilibrium of & = f(x,0): this
is a consequence of (24) in conjunction with weak zero-detectability
hypothesis and the LaSalle invariance principle [11]. ]

The next result identifies a situation in which one may conclude the
iISS and BEICS properties without positing dissipativity a priori.

Corollary 4.2: Assume that system (1) is affine in the control, that
is, for some locally Lipschitz functions fo : R — R™ and g : R" —
R™*™, (8) holds. Let ¥ € K., and define 0 € K. and ¥ € Koo
by o(s) := [ ¥(z)dz and ¢(s) := [ 97" (z)dz. Assume that there
exist functions oy, s € Ko and a C* function U : R™ — R, such
that (4) holds and

(VU(E), fo(€)) + ¥ (IR(E)I) <0 VEeR” (25)

where i : R™ — R™ is given by h(¢) = (VU (€))T g(€). Assume fur-
ther that (1) is weakly zero-detectable with respect to h. Then, system
(1) is {ISS with {ISS gain v = ¢ and has the BEICS property with re-
spect to the energy functional E,.

Proof: By the argument (mutatis mutandis) used in the proof of
Corollary 4.1, it follows, via (4), (25) and the weak zero-detectability
hypothesis, that (1) is 0-GAS. To see that (1) is dissipative with supply
function ¢ = ~, note that

(VU(). f(&.v)) = (VU(E). fo(£)) +{VU(E), g(&)v)
(VU©), fo(O)) + 1ROl
(

VU(E), fo(€)) + ¢ (IO + o (llv]])

<
<
<o(llvl) V(& v) €R" x R™
wherein generalized Young’s inequality is used to obtain the second
inequality and (25) ensures the last inequality. Therefore, (1) is dissi-
pative with storage function o . Invoking Corollary 3.6, the result fol-
lows. ]
Example 4.3: Consider again the system in Example 3.7, with
f(&v) = fo(&) + g(§)v and

fo: R®> — HQa §= (EHE?) = |:£1__£2§3:|’
0

g:R =R, (=(6,6)— [E
2

LetU : € = 2||¢|I* and h 2 (&1.&2) = € = (VU(€), 9()) = 4€.
Then it is evident that the system is weakly zero-detectable with respect
to h. Moreover

(VU(€), fol€)) = —4& = — |h(&)] /4 VEER®

and so (25) holds with v

15 57 /4
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Invoking Corollary 4.2, we arrive at the same conclusion as in Ex-
ample 3.7: the system is iISS with /ISS gain o : s — s and has the
o-BEICS property

The final result establishes that, if (8) holds with bounded ¢ and
globally Lipschitz fy and 0 is a globally exponentially stable stable
equilibrium of # = fo(x), then, for each p € (1,0c), the system
has the BEICS property with respect to the L? energy functional u +—
S uth)lPat.

Corollary 4.4: Let system (1) be affine in the control, that is, for
some functions fo : R" — R™ and g : R* — R™*™, (8) holds. As-
sume further that fo is globally Lipschitz, ¢ is locally Lipschitz and
bounded, and the system is 0-GES (that is, 0 is a globally exponen-
tially stable equilibrium of the system & = fo(x)). Then, for each
p € (1,00),(1)isiISS with {/ISS gain o : s — s? and has the ¢-BEICS
property.

Proof: By the global Lipschitz property of fy and global expo-
nential stability of & = fo(x), there exista C'* function V : R™ — R,
and positive constants a1, az, a3, a4 > 0 such that

arlE]l* < V(€) < azll€]”,

(VV(&), fo(&)) £ —azV (§)
IVVOI < as/V(E)

(see, for example, [4]). Invoking boundedness of g, we may infer the
existence of as > 0 such that

Ve € R”

|7 v g < wvV@ veer.

Let p € (1,0c) be arbitrary and define ag := a3 ' /a?. Now define
the function U : R" — Ry by U(€) := (2as/p)(V(€£))?/? in which
case, (4) holds with

n /2 n /2
2<L6a'1/ » 2@6([;/ »
ap s | ———— s, awis— | ——— | s,
p p

The function U is C'! with

vU(0) =0,
VU (€) =ag (V()P™?VV(e) VE#0,
VU] < asas (V(E)P? veeR"

Moreover, for all £ € R™, we have

(VU(E). £o(€)) < —asas V(€)' = — (L”O )

as

and, on defining b : R™ — R™ by h(¢) := (VU (€))7 g(€)

7 p71
()l Sasas (V(£)™ V2= <ﬂ> Ve € R,

5

Therefore, we arrive at

(VUE), fo(&)) + (O[T <0 Ve eR".

Defining ¥/ € Koo by ¥(s) := psP ™!, the functions ¢ and ¢ in Corol-
lary42are o : s — s” and ¥ : s — (1/p)?/ P~V (p — 1)s?/ (P71,
Since p > 1, ¥([|R(E)]]) < |A(E)|[P/®P~Y for all € € R". This im-
plies that (25) holds.

Noting that the 0-GES property trivially implies weak zero-de-
tectability with respect to &, an application of Corollary 4.2 establishes
the /ISS property with {ISS gain o : s — sP. ]
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V. DISCUSSION

In view of recent results on L” -input state-convergence, we conclude
with some remarks on the various assumptions on [5], f that are used
in [7], [8], [12], in relation to (A).

In [7], [8], using arguments based on infinite-dimensional systems
theory, it is shown that if (1) is 0-GAS and satisfies (24) with o« = o :
s +— s then (1) has the BEICS property with respect to ¢, = L*
inputs, provided that f satisfies:

(A1) For each compact set k' C R", there exist ¢, c2 > 0 such
that, for all £, € K,v € R™

1£(&v) = f(n,0)]| < (e + c2||vl|P) [I€ = nl- (26)
(A2) For each fixed n € R", there exist ¢3, ca > 0 such that
1 (n,v)]] < cs 4 cal|v]|P Vv € R™. (27)

This resultis subsumed by Corollary 4.1 since (A1) and (A2) imply (A).
Indeed, let K C R" be compact and fix € K. Using Assumptions
(A1) and (A2), there exist constants ¢, o, ¢z, ca > 0 such that, for all
((,v) € K x R™

17 < NFEv) = fon o)l + (1 (s )l

(cr + e[l 1€ = nll + (s + callv]]”)

IN

whence (A). On the other hand, it is clear that (A) does not imply (A1)
and (A2).
Interpreted in the restricted context of systems of form (1), in [12]
the assumption imposed on f takes the form:
(A3) For each compact set X' C R"™ there exists & > 0 such that

v|| V(Ev) € K xR, (28)
Under this assumption on f and imposing the 0-GAS hypothesis, the
following is implicit in the main result of [12]: if u € L?,1 < p < oo
and the unique maximal solution x of (1) is global with non-empty
w-limitset, then z(¢) — 0 ast — oo (we remark that the latter assump-
tion of non-emptiness of the w-limit set does not hold in the case of the
counter-example constructed in [17]). Clearly, (A3) is more restrictive
than (A): it is readily verified that (A3) implies (A) (with ¢ = id) and
it is clear that (A) does not imply (A3). However, it is difficult to make
direct comparisons between the main result of the present technical
note (Theorem 3.1) and that of [12] because dissipativity of (1) is not
posited in the latter.
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An ODE Comparison Theorem With Application
in the Optimal Exit Time Control Problem

Wei Zhang and Jianghai Hu, Member, IEEE

Abstract—The optimal exit time control (OETC) problem tries to find the
feedback control law with a reasonable cost that can keep the system state
inside a certain subset of the state space, called the safe set, for the longest
time under random perturbations. The symmetry property of its solutions
has been proved previously when the state dimension is higher than one. In
this note, a comparison theorem is established that compares the solutions
to two ODEs arising in the 1-D OETC problem. The symmetry of solutions
to the 1-D OETC problem is proved using this comparison theorem. An
example is presented to show how the symmetry result can help to solve the
OETC problem analytically in certain cases.

Index Terms—Differential equations, stochastic optimal control, uncer-
tain systems.

[. INTRODUCTION

Safety is a critical issue in many engineering problems, such as in-
telligent transportation systems [1], [2], control of Unmanned Aerial
Vehicles (UAV) [3], chemical processes, etc. In these problems, the
system state is typically required to stay inside a certain subset of the
state space called the safe ser. Whenever the state exits from the safe
set, costly procedures need to be invoked to bring the system back to
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