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ABSTRACT

In this investigation a range of ketone biofuels produced from the alkylation of isoamyl alcohol
and isobutanol were examined as potential blending agents with Jet A-1 aviation kerosene. The
fuels were synthesised under solvent-free conditions using a Pd/C catalyst with K3POu,
previously reported for the alkylation of acetone, butanol, ethanol (ABE) fermentation
mixtures. Reasonable yields and selectivity were achieved for branched alkylation products
with up to 61 % produced from isoamyl alcohol and 64 % from isobutanol. The key aviation
fuel properties of the mixtures were tested unblended and in 50% and 20% blends with Jet A-
1 aviation kerosene. The freezing point of the fuels were all found to be below the required -
47 °C irrespective of blend or the temperature of the reaction. The energy density of the
unblended fuels ranged between 30.4-41.36 MJ/kg depending on the temperature of the
reaction and whether remaining alcohols were removed. While this is below the HHV of the
Jet A-1 used (45.69 MJ/kg) the energy density.of the 50% and 20% blends were more suitable
with the isoamyl alcohol derived fuels having a maximum HHV of 44.31 MJ/kg at 50%
blending and 44.99 MJ/kg at 20% blend with Jet A-1. The fuels derived from isoamyl alcohol
produced above 140 °C were found to satisfy the flash point criterion (>38 °C) of the Jet A-1
specification, though the isobutanol derived fuels did not, producing fuels with flash points
between 33 °C and 35 °C. The kinematic viscosity of the fuels were also tested at -20 °C.
Unblended only a few of the fuels analysed met the maximum viscosity requirement at -20 °C
of 8 mm? s, though this fuel property was improved substantially on blending with jet fuel.
This work demonstrates that ketones produced from isoamyl alcohol through a simple

alkylation have the potential to be used as blending agents with Jet A-1.



INTRODUCTION

The aviation industry contributes approximately 2% of anthropogenic greenhouse gases and
as such is under increasing global pressure to reduce carbon emissions through increasingly
strict targets.! The development of renewable aviation biofuels, suitable for blending with
aviation kerosene is therefore a key priority. Suitable aviation biofuels must possess a number
of characteristics such as a high energy density, good atomisation, an ability to be relit at
altitude though a low explosive risk on the ground, a suitably low viscosity, an extremely-low
freezing point and good chemical stability. The fuel should also be reasonably non-toxic and

be widely available.?®

While the hydroprocessing of lipids offers a suitable route to hydrocarbons, edible oils compete
with arable land, promote deforestation and are not produced in suitable quantities. A more
promising route to second generation biofuels is via fermentation of lignocellulosic biomass.’
While the technology to produce second generation bioethanol is becoming established, the
low energy density and high water. affinity of ethanol have led to the development of
alternatives such as n-butanol,® isoamyl alcohol and isobutanol.” !° Despite the increased
energy density of these compounds over ethanol, the water affinity, low flash point and low

boiling point make these unsuitable for aviation without further upgrading.

Recently the alkylation of butanol, with acetone and ethanol, has been investigated as a
potential method for the production of longer chain components more suitable for the current
fuel market.!" ABE products comprise both the nucleophilic a-carbons of the acetone and the
electrophilic a-carbons of the alcohol. These paired functionalities enable the construction of
higher alkanes from two, three and four-carbon precursors by the alkylation of acetone with
the electrophilic alcohols. The alkylation results in the formation of long-chain ketones in the

Cs to C11 range, which may be deoxygenated to paraffins suitable as components in gasoline.!?



Guillena and co-workers investigated the double alkylation of acetone under transition-metal
catalysed conditions.'* '* They hypothesised that two possible side reactions could occur in a
transition metal-catalysed alkylation of acetone with primary alcohols; (i) self-condensation of
the alcohol to the corresponding aldehyde (Guerbet reaction)!” and (ii) combination of acetone
to form diacetone alcohol, mesityl oxide, and other products.'® Other work on the conversion
of ABE includes their catalytic upgrading to ketones using hydrotalcite (HT) supported
copper(Il) and Pd(0) catalysts with integration of isopropanol from engineered strains of
acetobutylicum.!” The sequential condensation of butanol to Guerbet alcohol and subsequent
alkylation of acetone by the Guerbet product has been demonstrated using HT supported

ruthenium catalysts, '8!

though the corresponding ketones were only obtained in a 20 % yield.
A bimetallic HT supported Pd/Ru catalyst was shown to offer modest improvement on this

yield. Where butanol was used as the reaction medium-yield of the ketone was shown to

increase to 58%.!7

However, the straight chain ketones produced from the upgrading of these ABE mixtures
have too high freezing points to be considered for aviation, while the derived hydrocarbons are
only suitable for gasoline‘applications due to the low flash point. In this investigation the
suitability of producing ketones with superior low temperature properties was examined by
introducing branching into the ketone chain. This was achieved through the alkylation of
isobutanol and isoamyl alcohol with acetone. The key fuel parameters of both the unpurified
alcohol/ketone product mixtures and the mixtures after removal of remaining alcohol were

assessed.



EXPERIMENTAL METHODS

MATERIALS

All chemicals (isoamyl alcohol >98%, isobutanol >99%, acetone >99.9%, potassium
phosphate tribasic >98%, 5 wt% Pd/C) were purchased from Sigma Aldrich and used without
further purification.

METHODS

ALKYLATION REACTIONS

To a 350 mL stainless steel stirred pressure vessel (Parr Instruments, USA) was added 5.67g
Pd/C (5 wt% Pd) and 64.40 g K3POs4. To this was then added 1.782 mol of alcohol substrate
with 0.891 mol acetone. The vessel was then sealed -and stirring commenced at 320 rpm.
Heating was ramped to 120 °C, 140 °C or 160 °C-at a rate of 3 °C/min. The reaction was
allowed to proceed for 20 hours. On reaction, the contents of the reactor were then filtered
twice to remove all heterogeneous catalyst and base. Reactions were undertaken in triplicate
and the standard deviation calculated.

Reaction profiles were obtained by analysing aliquots obtained from the stirred pressure
vessel, using GC-MS. The GC-MS used was an Agilent 7890A Gas Chromatograph coupled
to an Agilent 5975C inert MSD with Triple Axis Detector. The machine was fitted with a
DB-FFAPnitroterapthalic-acid-modified polyethylene glycol column and a He mobile phase
(flow rate: 1.2 mL min") coupled with an Agilent 5977A inert MSD with Triple Axis
Detector. A portion of the fuel samples (approximately 50 mg) was initially dissolved in 10
mL dioxane and 1 pL of this solution was loaded onto the column, pre-heated to 150 C. This
temperature was held for 5 min and then heated to 250 °C at a rate of 4 °C min™' and then
held for 2 min. The% areas, used as a quantitative method of analysis were calculated from

the GC-FID chromatograph and compared against an internal standard.



REMOVAL OF ALCOHOLS
For isoamyl alcohol mixtures, remaining alcohols were removed via vacuum distillation by
removal of a mid boiling fraction at 70 °C (condenser inlet temperature) under a reduced
pressure of 112 mmhg. The remaining alcohols in the unpurified mixture were predominantly
found to be unreacted alcohol substrate by 'H NMR. The other fractions (lower and higher
boiling) were determined to contain negligible quantities of alcohols by 'H NMR and were

recombined to constitute ‘alcohol free’ fuels. .

An analogous process was carried out for the isobutanol mixtures however the removed

fraction was obtained at 50 °C (condenser inlet temperature), and a pressure of 112 mmhg.

FUEL PROPERTIES

Viscosities were determined in accordance with ASTM D445 using a Canon-Fenske
capillary kinematic viscometer. Temperature modulation was achieved using a refrigeration
unit. Samples within the viscometer were allowed to rest at the required temperature for a
minimum of 5 minutes prior to viscosity measurement to allow temperature equilibration. The
standard error was /foundto be lower than £0.073 mm?s™! at -20 °C, £0.128 mm?s™! at 20 °C
and £0.100 mm?s ) at 40 °C.

Melting points of the fuels were determined visually by cooling of 1.5 cm?® vials of the
samples in a low temperature freezer, and periodically checking to see if the melting point had
been surpassed. The samples were allowed to rest at each temperature for a minimum of 10
minutes in order to allow equilibration of sample and freezer temperatures. All melting points

tested were found to have no more than 1 °C standard experimental error.



Energy content of fuels was determined in accordance with ASTM D3338 using an IKA C1
automatic bomb calorimeter. Approximately 0.3 g of each sample was used. The error of
measurements was found to be <0.5 %.

Flash points of each sample were determined in accordance with ASTM D56/IP 170 using a
Stanhope-Seta 99880-0 Flashcheck, tag, closed cup flash point machine. All flash point

measurements were measured to an accuracy of =1 °C or better.

RESULTS AND DISCUSSION

The products of the isoamyl alkylation (IAP) and isobutyl alkylation (IBP) were synthesised
according to literature precedent.!! The component products were determined by GC-MS
spectroscopy. In each instance, alcohol and acetone-substrates were used in a 2:1 molar ratio,

with the intention that a double alkylation product in the carbon range C11.15 would be achieved.
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Figure 1: Conversion of starting alcohol substrates for reactions at varying temperatures. Error bars

are given as standard deviation (n=3).
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Figure 2: Product distribution of the branched alcohol reactions at 120 °C, 140 °C and 160 °C, 20
h, 0.3 mol% Pd catalyst. Where a) shows isobutanol-acetone alkylation reactions and b) shows the

reaction of isoamyl alcohol. Standard devistion (n=3) are presented as error bars.

Variation of product mixture composition at different reaction temperatures was observed
(Figure 1). In the case of isobutanol-acetone alkylation, conversion of isobutanol to an
alkylated product is 66%, 54% and 71% for reaction temperatures 120, 140 and 160 °C,
respectively, showing a lower conversion at the mid-temperature than at lower or higher

temperatures. With increasing temperature, the quantity of the single alkylate, 5-methyl-2-



hexanone (as a proportion of non isobutanol products), decreases approximately linearly with
increasing temperature. This single alkylate constitutes 17 % of products at 120 °C and 10 %
at 160 °C. The opposite trend is observed for 2,7-dimethyl-4-octanone which depends on the
initial self-condensation of acetone to form mesityl oxide, which increases with increasing
temperature. It is thought that at the higher temperature there is relatively rapid self-
condensation of the acetone to form mesityl oxide, which is then available for further alkylation
with the available isobutanol. At lower temperatures, the self-condensation of acetone is-less
favoured, resulting in a longer residence time of acetone in the reaction selution, and thus

greater proliferation of the acetone-isobutanol alkylation.

In the case of isoamyl alcohol products conversion of the alcohol substrate is 54 %, 73 % and
68 % for 120, 140 and 160 °C, respectively. At the lower temperature, there is a notably lower
proportion of double alkylate products (34% of alkylate products) formed relative to shorter
chain, single alkylates such as the single alkylate, 6-methyl-2-heptanone (46% of alkylate
products). At the higher temperatures the product distribution is shifted towards double
alkylation with 68 % and 55 % 2,10-dimethyl-6-undecanone at 140 and 160 °C respectively as
opposed to 34 % at 120 °C (excluding alcohol substrate). Conversion to alkylates which are

then reduced to alcohols appears to be favoured to a small degree at higher temperatures.

Between the two alcohol substrates, conversion to double alkylates is marginally favoured at
higher temperatures, however the self condensation of acetone to a mesityl oxide intermediate

inhibits selectivity for the double alcohol-acetone coupled product.
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Scheme 1: Alkylation of isoamyl alcohol with acetone. Formation of side product (IA5)'is

shown competing with the formation of products 143, 146 and I47.
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Scheme 2: Alkylation of isobutanol with acetone. Similarly to scheme 1, the self-coupling
of acetone and subsequent production of product IB5 competes with production of products

IB3, IB6, IB7 and IBS.

In this reaction isoamyl alcohol is oxidised to the corresponding aldehyde, producing
hydrogen, this then undergoes nucleophilic attack at the a-carbon by acetone, releasing H>O to
produce IA3 (Scheme 1). The alkylated product is subsequently reduced by the ‘borrowed

hydrogen’. A competing pathway involves the condensation of acetone to produce compound
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IA4 which then undergoes alkylation via the same mechanism to yield IAS5. Compound A3
either undergoes reduction and becomes trapped as the corresponding alcohol, TA6, or
undergoes a further alkylation through nucleophilic attack at the a-carbon to produce the
double alkylate, IA7. Isobutanol undergoes an analogous reaction to that of the isoamyl alcohol
alkylation, however there is more evidence of reduction of the double alkylate, IB7, to produce

the corresponding alcohol, IB8 (Scheme 2).

Isoamyl alcohol does not exhibit the same pattern of higher efficiency at lower temperatures
with respect to alkylation with acetone under the conditions used, but rather at 140 °C. At this
temperature there is a marked propensity for the formation of the-double alkylation product,
2,10-dimethyl-6-undecanone (IA7), which accounts for 49% of the final product mixture,
compared to just 18% and 38% for the reactions run at 120 °C and 160 °C respectively.
Potentially the increase in temperature from 120.°Cto.140 °C allows for a faster oxidation of
the alcohol to the corresponding aldehyde, allowing the alkylation reaction to proceed,
however, when the temperature is increased above 140 °C to 160 °C, the reduction of the
ketone to the corresponding alcohol is expedited, effectively halting further alkylation.

To assess the efficiency/of thecatalyst the reaction profile of the alkylation reactions were
determined. The reaction profile of the isoamyl alcohol reaction at 140 °C is given in figure 3.
From the reaction profile, it is evident that most of the conversion of isoamyl alcohol occurs
within the first four hours. As expected, the reaction appears to proceed sequentially through
the initial ‘coupling of acetone and isoamyl alcohol to produce 6-methyl-2-heptanone, 1A3,
which is then available to couple with another isoamyl alcohol molecule to yield the double
alkylation product, 2,10-dimethylundecan-6-one (IA7). Whilst the production of these two
ketones occurs with obvious interdependence, the concurrently occurring reaction to produce
2,8-dimethylnonan-4-one (IA5) does not show dependence on any other product. This suggests

that acetone self-couples to produce 4-methylpentan-2-one, IA4, before coupling with isoamyl
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alcohol rather than acetone coupling with 6-methyl-2-heptanone. The production of the alcohol
derivative, 6-methyl-2-heptanol is presumably due to the reduction of the ketone, and proceeds
at the greatest rate between 1 and 2 hours, when there is the greatest availability of the ketone.
Catalyst recycle tests suggest that only a minimal amount of activity is retained (data not
shown). It is therefore likely that it is a combination of the depletion of acetone and catalyst

deactivation that causes conversion rate to slow dramatically after 4 hours.

100% @ @- - Isoamyl alcohol
_ ° @- - 2-Heptanone, 6-methyl-
%c’ 80% - © - 2-Heptanol, 6-methyl-
£ --@ - 6-Undecanone, 2,10-dimethyl
_5 60% | © --@ - 4-nonanone, 2,8-dimethyl
=
.g o
£ 40% - o--o P
] ,Q—-—Q—"Q """"""" ®
S 0% o8
k=] ° ) o)
g P - —— 8
. | R R S
0 5 10 15 20

Reaction time (hours)

Figure 3: Reaction profile for the alkylation of isoamyl alcohol at 140 °C, in a stirred

autoclave. Isoamyl alcohol 1.8mol, acetone 0.9mol, K3POy 0.3mol,0.3wt% Pd (5.783g 5wt%

dry basis Pd/C) over 20-hours.

All remaining acetone was removed from the resulting fuel mixtures through distillation
resulting in the isoamyl product (IAP) and isobutanol product (IBP) fuels. These ketone/alcohol

mixtures were blended with aviation kerosene (Jet A-1) and the fuel properties examined.
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Figure 4: Higher heating values of the isoamyl (IAP) and isobutyl (IBP) fuel products and
their blends (100%,.50% and 20% with Jet A-1) where a) is the fuel mixtures including the

alcohols b) shows the HHV of the fuel blends where the parent alcohols have been removed.
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Figure 5: Flash point of the isoamyl (IAP) and isobutyl (IBP) fuel products and their
blends (100%,.50% and 20% with Jet A-1) where a) is the fuel mixtures including the
alcohols b) shows the flash point of the fuel blends where the parent alcohols have been

removed.
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Figure 6: Freeze point of the isoamyl (IAP) and isobutyl (IBP) fuel products and their
blends (100%, 50% and 20% with Jet A-1) where a) is the fuel mixtures including the
alcohols b) shows the freeze point of the fuel blends where the parent alcohols have been
removed.

The gravimetric energy density is an important metric, as it directly affects the efficiency
obtained by using a particular fuel. The Jet A-1 specification stipulates a minimum lower

heating value (LHV) of 42.8 MJ/kg. The higher heating value of Jet A-1 used in this study was
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found to be 45.69 MJ/kg. Of the two alcohol derived fuels, isoamyl alcohol derivatives achieve
the greatest energy density, with IAP140 without removal of substrate alcohol, exhibiting a
HHYV of 39.28 MJ/kg, corresponding to the higher level of double alkylated species (figure 3).
When the remaining alcohol was removed, IAP160 exhibited a slightly higher HHV of
41.359 MJ/kg. The highest value shown by isobutanol derived fuels without removal of
substrate alcohol is that of IBP120 at 36.21 MJ/kg however when the alcohol was removed,
IBP160 exhibited the highest HHV at 40.760 MJ/kg. When substrate alcohols are removed, a
positive correlation between reaction temperature and product mixture gravimetric energy
content is observed. Removal of the alcohol substrates, in all cases, acts to'increase the energy
density of the product mixtures.

The closed cup flash point is a key metric with aviation fuel, the Jet A-1 specification
stipulates that this temperature should be higher~than=38 °C. The Jet A-1 used in this
investigation was found to have a flash point'of 43 °C (Figure 5). Of the synthetic, alcohol
derived fuels, IAP140 and IAP160 were the only fuels to satisfy this criterion exhibiting flash
point temperatures of 49 °C and 45 °C respectively. IAP120 exhibited a flash point of 33 °C
when unblended with Jet A-1,rising to 36 °C at a 20 % blend level. Of the IBP fuels, IBP120
exhibited the lowest value, of 33 °C, with IBP140 and IBP160 both possessing flash point
temperatures of 35 °C. IBP fuels do not therefore, satisfy the flash point criterion of the Jet A-1
specification. Upon removing the parent alcohols the flash point is increased for the majority
of the samples, particularly in the case of [AP120, where unreacted substrate was depressing
the flash point of the product mixture to below room temperature however, after substrate
removal, the flash point was only increased to 29 °C. IBP140 without removal of remaining
substrates did not satisfy the flash point criterion for jet fuel, however with removal it surpasses

the required value, exhibiting a flash point of 46 °C for the unbnlended product mixture.
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Excitingly, both the fuels with and without alcohols had extremely low freezing points with
the unblended fuels all having a melting point between -68 °C and -78 °C (figure 6). This is a
significant improvement on the straight chain ketones that fall between -43 °C — 14 °C (table
1). This dramatic improvement in the low temperature properties, is presumably attributable to
the presence of branching in the constituent molecules. This branching acts to disrupt
intermolecular interactions and thus suppresses the melting point temperature improving the

cold flow characteristics.

Table 1 Fuel properties of straight chain ketone and alkane derivatives, the flash points and
melting points were obtained from the Scifinder database,?” kinematic viscosity was

experimentally determined.

Fuel Flash Point Melting Point Kinematic viscosity @
¢ P -20°C (mm?s7)
6-Undecanone 88 14 solid
4-Nonanone 62 -16 solid
2-Heptanone 41 -42 2.09
Undecane 62 -26 4.02
Nonane 31 -53 1.98
Heptane -4 91 1.24

The kinematic viscosity of the novel fuels was measured at -20 °C, 20 °C and 40 °C (figure
7 and 8). The viscosity of the unblended AP fuels is significantly above the minimum specified
at -20 °C in the Jet A-1 specification. IAP140 exhibits the highest viscosity having a kinematic
viscosity of 31.7 mm?®s™!, with IAP160 slightly less viscous at 21.3 mm?s™ and IAP 120 less
viscous again with a viscosity of 11.3 mm?s™!. This trend of varying viscosity reflects pattern

of substrate conversion to higher molecular weight products.
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In the case of Isoamyl alcohol, a significant reduction in the viscosity of product mixtures
was achieved by removal of remaining alcohol substrate, with [AP140 and IAP160 showing a
reduction in viscosity of approximately 15mm?s™!. Upon blending with jet fuel, an expected
suppression of viscosity was observed, with values gravitating towards that of Jet A-1.

The opposite relationship with conversion is observed in the viscosities of the three IBP
mixtures, with IBP120, which shows the highest conversion to the higher MW products,
exhibiting the lowest low temperature viscosity of the three fuels, with a:viscosity of
12.6 mm’s™! compared to those of IBP140 and IBP160 with viscosities of 16.8 mm?s™! and
16.4 mm?s™! respectively. Whilst IBP120 exhibits a lower viscosity than“its higher reaction
temperature equivalents, it is still well above the maximum allowed viscosity in the Jet A-1

standard.
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Figure 7: Kinematic viscosity of the isoamyl products (IAP) and the isoamyl fuel products

with the alcohols removed (IAP-a), and their blends (100%, 50% and 20% with Jet A-1) in

the temperature range -20 °C — 40 °C.
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Figure §: Kinematic viscosity of the isobutyl products (IBP) and the isobutyl fuel products

with the alcohols removed (IBP-a), and their blends (100%, 50% and 20% with Jet A-1) in

the temperature range -20 °C — 40

°C.
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With unreacted alcohols left in situ, these fuels exceed the maximum allowed viscosity at -
20 °C, arguably the maximum value for jet fuel is descriptive of conventional aviation
kerosene, and that a slightly higher viscosity would not have a substantial detrimental effect on
performance. Issues with pump wear and maintenance would have to be addressed as well as
optimising fuel atomisation within the engine, however these should not be such great
challenges so as to preclude the use of otherwise suitable aviation fuels. Alternatively the
viscosity can be reduced by blending. The kinematic viscosity of all the fuels tested.was
reduced to between 7-9 mm? s’ at the 50% blend level, while at a 20 % blend level, all the
product mixtures satisfy the Jet A-1 criterion. Where remaining aleohols are temoved however,
IAP160 and IBP120 were observed to satisfy the viscosity criterion for jet fuel, without

blending and all fuels except IBP160 showed a reduction in.viscosity at -20 °C.

CONCLUSIONS

The solvent-free alkylation of branched alcohols with acetone resulted in complex mixtures of
branched ketone fuels. These fuels-were.demonstrated to have superior low temperature
properties in comparison to the straight chain ketones or the straight chain hydrocarbon
derivatives and as such were deemed suitable for use as blending agents in aviation fuel. The
conversions observed with the system used ranged between 54-73% for isoamyl alcohol
derived products and 53-86% for isobutanol derived products with the Pd/C catalyst found to
deactivate entirely after two uses. The energy density of isoamyl alcohol derivatives was found
to be up to 39.3 MJ/Kg whilst isobutanol derivatives possess energy densities up to
36.1 MJ/Kg, while this lower that the allowable specification with blending this was increased
substantially. The flash point temperatures were found to be between 44 °C and 49 °C for
isoamyl alcohol derivatives, and slightly lower for isobutanol derivatives with values between
35°C and 39 °C. Kinematic viscosities exhibited by the novel fuels were higher than the

specification maximum for Jet A-1, exhibiting values of between 11.26 mm?s! and
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31.73 mm?s’! for isoamyl alcohol derivatives and between 12.56 mm?s™! and 16.84 mm?s™! for
the isobutanol products. Removal of the parent alcohols from the fuel mix improved both the

kinematic viscosity and flash points of the fuels.

ACKNOWLEDGEMENTS

The authors would like to thank both the EPSRC for funding this work through the Doctoral
Training Centre at the Centre for Sustainable Chemical Technologies (EP/G03768X/1), and to
Roger and Sue Whorrod for their kind endowment to the University resulting in the Whorrod
Fellowship in Sustainable Chemical Technologies held by the corresponding author. The data
generated through the course of this study is freely available and can be accessed online at

DOIxxx

REFERENCES

1. Penner, J.; Lister, D.H.; Griggs D.J:; Dokken D. J.; McFarland, M. IPCC Special
report, aviation and the global atmosphere: 1999. ISBN 92-9169

2. Blakey S; Rye L; CW, W., P Combust. Inst. 2011; Vol. 33.

3. Lefebvre, A., Gas Turbine Combustion. Taylor and Francis: Oxford, 1999.

4. Gardner, L.; Whyte, R:'B., Gas Turbine Fuels in Design of Modern Turbine
Combustors. Academic Press Ltd: 1990.

5. Armstrong, F. W.; Allen, J. E.; Denning, R. M., Fuel-related issues concerning the
future of aviation. Proc. I. Mech. G. 1997, 211, 1-11.

6. Ministry of Defence Standard 91-91: Turbine fuel, kerosene type, Jet A-1, Nato code
F35, 2011.

7. Himmel, M. E.; Ding, S.-Y.; Johnson, D. K.; Adney, W. S.; Nimlos, M. R.; Brady, J.

Wi Foust, T. D., Science 2007, 315, (5813), 804-807.

Rowbotham, J. S.; Greenwell, H. C.; Adcock, M. Biofuels 2014, 5, (4), 365-368.

9. Su, H.; Jiang, J.; Lu, Q.; Zhao, Z.; Xie, T.; Zhao, H.; Wang, M. Microb. Cell Fact.
2015, 14, (1), 16.

10. Higashide, W.; Li, Y.; Yang, Y.; Liao, J. Appl. Environ. Microbiol. 2011, 77, (8),
2727 - 2733.

11. Anbarasan, P.; Baer, Z. C.; Sreekumar, S.; Gross, E.; Binder, J. B.; Blanch, H. W_;
Clark, D. S.; Toste, F. D., Nature 2012, 491, (7423), 235-239.

12. Kwon, M. S.; Kim, N.; Seo, S. H.; Park, I. S.; Cheedrala, R. K.; Park, J. Angew.
Chem. Int. Edit. 2005, 44, (42), 6913-6915.

13. Guillena, G.; Ramon, D. J.; Yus, M. Angew. Chem.-Int. Edit. 2007, 46, (14), 2358-
2364.

14. Carlini, C.; Macinai, A.; Galletti, A. M. R.; Sbrana, G., J. Mol. Catal. A-Chem. 2004,
212, (1-2), 65-70.

o

22



15.

16.

17.

18.

19.

20.

21.

22.

Hamid, M. H. S. A_; Slatford, P. A.; Williams, J. M. J. Adv. Syn. Cat. 2007, 349, (10),
1555-1575.

Salvapati, G. S.; Ramanamurty, K. V.; Janardanarao, M. J. Mol. Catal. 1989, 54, (1),
9-30.

Sreekumar, S.; Baer, Z. C.; Gross, E.; Padmanaban, S.; Goulas, K.; Gunbas, G.;
Alayoglu, S.; Blanch, H. W.; Clark, D. S.; Toste, F. D. ChemSusChem 2014, 7, (9),
2445-8.

Debecker, D. P.; Gaigneaux, E. M.; Busca, G. Chem. Eur. J. 2009, 15, (16), 3920-
3935.

Likhar, P. R.; Arundhathi, R.; Kantam, M. L.; Prathima, P. S. Eur. J Org. Chem.
2009, (31), 5383-5389.

Mitsudome, T.; Mikami, Y.; Ebata, K.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K.,
Chem. Comm. 2008, (39), 4804-4806.

Motokura, K.; Nishimura, D.; Mori, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K., J. Am.
Chem. Soc. 2004, 126, (18), 5662-5663.

Scifinder Scholar web version [internet]. American Chemical Society (US); c2008
[updated 2015; cited 2015]. Available from https://scifinder.cas.org

23



