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Capacity Share Optimisation for Multi-
Service Energy Storage Management
under Portfolio Theory

Xiaohe Yan , Student member, IEEE, Chenghong Gu, Member, IEEE, Heather Wyman-Pain,
Student member, IEEE, Zhaoyu Wang, Member, IEEE, and Furong Li, Senior Member, IEEE

Abstract—Energy storage (ES) is playing a vital role in
providing multiple services in several electricity markets.
However, the benefits and risks vary across markets and
time, which justifies the importance to optimise ES capacity
share in different markets.

In this paper, a novel portfolio theory based approach is
proposed for optimally managing ES in various markets to
maximise benefits and reduce the risk for ES owners. Three
markets are considered, which are: energy arbitrage,
ancillary services, and Distributed Network Operator’s
(DNO’s) market. They are modelled based on energy cost,
frequency response cost, and system congestion cost.
Portfolio theory is utilised to quantify ES capacity allocated
to each market over time for various levels of risk
aversions. The relation between risks and expected return
of different markets are efficiently reflected by portfolio
theory, providing implications to storage operation. The
extensive demonstration illustrates that the markets that
storage can participate in are fundamentally different
regarding to its risk aversion. In addition, the optimum
portfolio of the markets for storage is on the efficient
frontier, providing the maximum return at a certain risk
aversion level. This study is particularly useful for guiding
market participation and operation of energy storage to
gain maximum economic return at minimum risk.

Index Terms—Energy storage, portfolio, risk, electricity
market, ancillary market, DNO’s market

I. INTRODUCTION

ITH the rollout of the smart city concept, the installed

capacity of energy storage (ES) is on the rise [1, 2]. It is
estimated that 100GW of ES will be required by 2020 in
Western Europe, which would double by 2050 [3]. ES can help
increase energy use flexibility, accommodate increasing
intermittent generation, and make optimal use of network
capacity. Further, large-scale ES or aggregated ES at the
community level can not only enable energy use flexibility for
owners but also provide more services to different electricity
markets to realise benefits, such as various ancillary services.
Although installed ES is encouraged to participate in different
markets, there is limited guidance or strategies for ES owners
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to optimally allocate their ES capacity to various markets to
make profits.

This paper introduces portfolio theory to allocate ES capacity
in the energy arbitrage market, ancillary service market and
DNO’s market to maximise benefits and reduce risk in the UK
electricity market. Three market models are designed to
illustrate the relationship between expected return and risk. The
energy arbitrage market is modelled based on buying and
selling energy price difference. The price from the ancillary
service market for frequency response is composed of two
parts: the availability price and the response price of the ES
operation. The price in the DNO’s market is from congestion
cost mitigation. Then, the portfolio theory is designed to
determine the optimal capacity share of ES in different markets,
aiming to lower risk and raise the expected return. Lagrange
method is utilised to solve the optimisation to determine the
superior portfolio.

The main contributions of the paper are: i) it designs the
models of different markets in which ES can participate and
evaluates related expected return and risk; ii) it extrapolates
portfolio theory to multi markets for optimal ES capacity share
management; iii) it determines the optimal portfolios for ES at
different risk aversions.

The rest of the paper is organised as follows: Section Il
introduces the three markets: energy arbitrage, DNO’s and
ancillary services. Section Ill designs the portfolio theory to
find the optimal portfolio. Section IV illustrates the theory on a
Grid Supply Point (GSP) area. Section V draws conclusions.

Il. MODELS FOR DIFFERENT MARKETS

This section introduces and models the markets that ES can
participate in to realise benefits: energy arbitrage, DNO’s
market and ancillary service market. The ES is treated as a
customer, which is very flexible in choose markets they would
like to participate in and the capacity share in each time period.
If the ES is not involved in a market, it will not obtain any
benefits from its operation, i.e. the ES will receive zero benefits.
It is assumed that the ES is capable to provide all services as
originally contracted or promised, and therefore, there will be
no the penalty for failing to provide the services at anytime.
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Currently, ES is mainly used in a single market and the
research is focused on ES performance and operational
strategies within that market. However, individual ES can
provide multiple services in electricity systems simultaneously.
Papers [4-6] discuss ES operation in the ancillary market, such
as reserve provision and frequency regulation. Ancillary service
market ensures the stable operation of the electricity system
with the provision of additional resources during normal
operation or under certain emergent circumstances.
There are several papers [5, 7, 8] focused on joint markets
operation where ES is involved in multiple markets to increase
profits. Paper [7] quantifies the impact of operational policies
on degradation and lifespan of ES that provide different
services. Papers [5, 8] design optimal operation for ES in two
markets by using a bidding mechanism and multi-period model
that collaborate with high renewable generation. Although the
proposed method can benefit ES, the owners might not be
willing to face high risks. Paper [9] compares the operation of
a system with and without community ES, where substantial
improvement on market efficiency is seen with ES usage.
In reality, ES will also suffer risks when enjoying profits
from different markets [10]. Based on risk classification rules
[11], there are two key risks for ES in market participation:
market risk and operation risk.
= Market risk is normally from the uncertainties in interest,
the currency exchange rate, stocks or other index prices
change and commodity price changes [12, 13]. The energy
price in the power market is highly volatile, which is the key
factor causing risks for ES.

= Operation risk has two main aspects. One is from the
unpredictable load, which brings uncertainties for system
congestions, producing risk for ES participation in the
DNO’s market. Another risk is from ES owners, which is
from various operation methods or market participation that
can produce different profits.

These risks in the markets could cause ES to fail in bidding
into markets. Therefore, it is essential to quantify the associated
benefits and risks for ES when it participates in different
markets. Paper [14] considers the risk in market prices by
introducing a tolerance and price prediction error to
demonstrate the operation scheduling method. Paper [15] uses
probability functions to consider forecasting uncertainties in
their scheduling for ES.

TABLE |
CLASSIFICATION OF MARKET PARTICIPATION FOR ES
Super- Fly- Compress- Pumped
capa?citor WhZeI Battery edpair hyd?o
FR N N N
DNO \ \ N N
Energy N N N

arbitrage

However, not all types of storage can participate in all
markets. According to its operation time, Table | [16]
summarises markets that different ES can patriciate in. For the
FR market, the requested operation time is short and thus
normally supercapacitors, batteries, high-power flywheels

energy storage operating in seconds to minutes are called. For
the DNO and energy arbitrage markets, batteries, pumped
hydro, and compressed air energy storage, whose operation
time is in minutes to hours, are used as the request operation
time is relatively longer.

A. Energy arbitrage market

Price arbitrage is for storage to charge during low price
periods and discharge during high price periods, but this
requires a significant price difference to ensure the initial
investment can be repaid [17, 18]. However, the uncertainty for
energy arbitrage is from price variations, which cannot be
predicted accurately. This is possible in all countries with a
wholesale energy market.

At time t, the expected return from energy arbitrage (E,q) is
due to price difference between the buying energy cost and the
expected benefits of selling this energy. The risk (a,4) in the
energy market is the standard deviation of the predicted value
of selling energy prices for each time.

Pdt—Pct
Ead,t = (1)
Dt
Yr=1P
B g - Ay
Oad,t = n (2)

where p, . is the expected energy selling price and the energy
buying cost (p. ;) for ES. p, . , represents the possible accepted
price among the n number of elements in p, ..

B. Distribution Network Operator’s market

The DNO’s market is focused on the deferral of network
investment by reducing peak energy flows. The introduction of
ES allows the peak load on the electricity networks to be
reduced. By providing proper peaking shaving/congestion
management services to DNOs, ES can help save the
investment, operation and maintenance cost of networks. In this
paper, congestion cost saving is the only economic benefit for
ES operation in the DNO’s market. In this market, the risk is
from the unexpected overloading in the network because of
uncertain demand and generation.

Assuming the branch number in a system is N, the congestion
cost from branch [ at the settlement period t (CC, ;) is [19]:

TCC¢
(Pwl,t_Pnl,t)

C Cl,t = 3)

where P,;, is the power flow on branch [ without any
constraints; Py ; is the power flow on branch [ with constraints
and TCC; is the total cost change of the system.

The Congestion Cost change (T'C; ;) related to the use of ES
at node i, at time ¢, is indicated as:

N TCCt

TN (4)

=1 APy

TCi,t =

The impact of nodal demand/generation change on branch
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flows can be quantified by the Power Transfer Distribution
Factor (PTDF) matrix. PTDF [20] shows the fraction of energy
transfer from one node point (i) to another node point ()
through a transmission line (I). It is a sensitivity matrix of the
line active power flow change resulting from the nodal power
change. Ignoring line losses, the DC power flow model is used
to determine the fraction of power flow through line (ij. l) based
on the reactance of the transmission line [21].

Xii_in_Xij+ij
Xij

PTDFy, = Q)

PTDF is introduced to select the most sensitive line [
impacted by the demand change in node i. Therefore, the
operation of ES at node i is highly associated with the loading
level of line 1. Accordingly, the ES output change (4P;;) in node
i resulting from nodal power flow change (4P},) is:

APlt = PTDF‘I][ X APit (6)

The expected return from the DNO’s market (E..) IS
determined from the difference between the expected energy
selling price and the energy buying cost (p.;). The expected
energy selling price is the congestion cost saving (CC;;) resulted
from ES operation. If there is no congestion in the system, the
expected return from this market is zero. The risk in the DNO’s
market is the standard deviation of congestion quantity (i.e. the
difference between each possible congestion cost and the
average congestion cost) in each time period.

_ CCLe—pct
Ecc,t - (7)
Pct
TR_1TCit
R (TG T ) g
Oad,t = n ( )

where TC; . , represents the possible congestion cost among the
n branches in TC; . from load varying level at this time.

C. Ancillary service markets

In the UK, numerous ancillary service markets exist with
several commercial frequency response markets. The Enhanced
Frequency Response market is explicitly designed for ES [22]
and Firm Frequency Response market is open to all providers if
they meet the technical requirements. This paper focuses on the
provision of frequency response (FR) with the Firm Frequency
Response market design. FR markets are open to all members
in the electricity system above 1MW of response through a
competitive tender process. ES is involved with a payment
structure reflecting its operation, which normally consists of
two fees: the availability fee and response energy fee. FR
markets vary across the world depending on system
requirements, but FR is an essential resource to ensure stable
energy network operation, to which ES can contribute. In the
FR market, the risk comes from the customers’ behaviours,
causing system frequency to fluctuate.

An availability or holding fee (AF) is given in £hr for any
time the frequency response provider is available. This payment
is given whatever the response is called upon or not during the
time period, which is a fixed price in the UK. This fee structure
is given in the Connection and Use of System Charges [23].

AF = LF + HF (9)

LF = LFRXCA (10)
60

HF - HFRXCA (11)

60

where LF and HF are the low frequency fee and high frequency
fee, respectively; LFR and HFR are the low frequency EMWh
rate, high frequency MWh rate, and CA is the MW capability
of the response provider for that time period.

A response energy fee in EMWh is given when a response is
called upon from frequency response providers, shown in [23].
This response provider bids into the market with a rate for low
frequency or high frequency excursions. ES is capable of
delivering both responses, charging during high frequency
events and discharging during low frequency events, depending
on the state of charge. These payments are designed for
generators: higher payment for increasing output and payment
for decreasing output.

RE, = CAP, X RP, (12)
Y (MIPgxMIV, )
YE MV,

RP; = max( x FX,) (13)

where, at time t, RE, is the Response Energy Fee; CAP, and
RP, are the MW capacity provided in response and the
Response Payment rate respectively; E is the events number;
MIP, . and M1V, , are the market index price and market index
volume; FX, is 1.25 for low frequency events or 0.75 for high
frequency events.

In this paper, the response energy fee is substituted into (14),
which gives ES a negative payment for high-frequency events
and a positive payment for low-frequency events.

REF, = AF + RE, = AF + py, X FX, (14)

The expected return on energy arbitrage (E,.) is from the
difference between the balance price and the energy cost to
provide this service. Since the response energy fee is constant
in the UK, the risk is from the energy price when buying energy
from the system. Thus, the risk is the standard deviation of the
energy price in each period, which equals to g, ;.

_ REFt—pct

E
be Pct

(15)
lll. PORTFOLIO THEORY

The portfolio method is introduced as an ES capacity
allocation tool to optimally divide the capacity into different



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

markets to maximise the expected return whilst minimising the
corresponding risk. The main assumptions of the portfolio
method are as follows:
+ All investors prefer the lowest available risk for the same
level of expected return and the highest available expected
return for the same level of risk.
« Investors determine optimal portfolios only based on the
expected returns, variances, and covariance of all assets.
- Investors evaluate the risk in relation to expected return.

There are several economic models for determining the
portfolio based on risk and expected return, such as the index
model, arbitrage-pricing theory, and capital asset pricing
model. Single-index model is used in farm planning [24], which
measures the risk of individual assets and the combined effects
of other assets. However, this model is not accurate as it ignores
certain factors that may affect the outcome. Paper [25] applies
arbitrage pricing theory to determine the portfolio considering
the interaction of market factors and return for securities. This
method assumes all players to pursue the maximum arbitrage,
ignoring economic frictions, which is not reflective of the
reality. The capital asset pricing model is discussed in [26], but
its assumptions are strict, which assume all players in the model
know the mean-covariance matrix. There are three key reasons
for using the portfolio theory 1): it can determine the optimal
portfolio with different risk and expected return requests of ES;
2) it is accurate with reasonable assumptions; 3) risk can be
quantified from the standard deviations of various markets.

A. Expected return and risk

The expected return on the portfolio Ei,, is calculated as the
sum of the weighted profitability of each market share (E,,;)
[27]. Portfolio risk can be determined by the sum of individual
risks of each market share in the portfolio and the correlation
between any two markets, which is shown as:

Emp = WlEml + W2Em2 + ...+ WnEmn = Ti’l:1 WiEmi (16)

0,° = XL (wi0?) + X, Y- wwypioi0; (17)

i#j
M(Zmymi)-(Em)(Emr))

Pij = (18)
JEm 2@ mp21m -5 2]

where w; is the weight of each market share in the portfolio; o;
is the risk of market share m; and p;; is the correlation
coefficient between the costs of the market share m; and m’;; n
is the total number of markets that ES can participate, which is
3 here; M is the number of available datasets in each market.

B. Risk minimisation
The objective function to minimise the risks is [28]:
min(0,?) = YL, X, wiwio; (19)

s.t. ?=1 w; X E‘mi = Emp (20)

n —
=W =1

1)

(i=123) (22)
where constraint (20) is the expected return of the portfolio and
it must be equal to the target return (E,); constraint (21) is the
sum of the proportions for the market share in portfolio, which
must be equal to ‘1°, and constraint (22) is the non-negativity
condition for market share proportions.

The portfolio point, which has the lowest risks among all
portfolios, is called Global Minimum Variance portfolio
(GMV) point. It can be determined by the partial derivative of
the weight of each market share:

3(9p?)

— 2 n
S = 2nw;o;” + 2 X0, wip;;0,0;
13

(23)

C. Expected return maximisation

To determine the optimal portfolio with the lowest risks and
highest return for ES simultaneously, the utility function in
terms of expected return (E,,,,) and variance of returns (o,%) is
developed based on (19) [29]:

1
Max: U=Ep, - EAGPZ (24)
where U is utility value and A is an index of investor’s risk
aversion. This degree of risk aversion is normally in the range
of 2—-4. 3 is taken for representing average risk aversion [30],
and A > 3 means more risk averse and vice versa [31, 32]. The

constraints for (24) are the same as those in (20-22).

A

Efficient

//frontier

Indifference
curve

c .

5 Optimum

- . =

o portfolio 3

G . T —__ Efficient
2 set
e

SF———f———— e — — -
g

]

=3 Global

W minimum

variance

Y

Standard deviation
Fig. 1. Efficient frontier and efficient portfolios

With the market share ranging from 0% to 100% for the two
markets (shown at the two ends of the curve in Fig.1, a portfolio
curve is produced by the mean-variance optimisation. The
curve above the dashed line in Fig.1 is called efficient frontier.
The portfolio on the efficient frontier is called efficient portfolio,
which has both low risk and high expected return. The efficient
portfolio can be obtained by mean-variance optimisation, which
means these portfolios can minimise the risk for a given level
of return or maximise the return for a given level of risk. The
area below the frontier is called efficient set or opportunity set.
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The willingness of users to trade risk for return can be
described as indifference curve. The connection point between
the indifference curve and the efficient frontier is the optimum
portfolio for this ES.

There are three characteristics of the efficient frontier:

o It reflects high risk and high expected return;

e Itisaconvex curve;

o A smaller correlation coefficient factor between the
vectors will cause a higher degree of the curve.

D. Optimum portfolio
The optimum portfolio for the objective in (24) with

constraints (20-22) can be determined by the Lagrange function:

Z = Epp =540, + 2 Ty Wy X By — B ) + 1,5y wi — 1) (25)
Equation (25) can be converted into:

1
Z = Yiog Wikmi — S AXIL X wiwjoy; + A (B wi X By —
E )+ 2,0k, w;—1) (26)

The optimal portfolio with the highest return can be
calculated by the partial deviation to each variable

9z

wp = Em1 = Aw;0,% — Aw,015 — - — AW, 01, + L Epy + 2, =0
oz
;= Emz = Awy01, = Aw,0,% — - — AWnoyn + L Epp + 1, =0
:72,1 = Epp — AW 013 — AW,01, — - — AW, 0,2 + M Ep + 2, =0 (27)
2L = WiEpny + WyEpny + +++ WoEp — B¢ = 0
1
2 Wi Wyt Wy —1=0

a7,

These formulas in (27) can be transferred into a matrix
form:

Epy —Ag® —Aoy, - —Aoy, Ep 1 1 0
(Emz —Agy;  —Ag? v —Aoy, Epp 1 ] wl 8
: : : 2 K (28)
: : X{ i p=4
Epn  —Aon —Aoy, _Aanz Emn 1 Wy 0
0 Ema Enz Enn 0 0 A E
o 1 1 -1 o o W) )

Equation (28) can be simplified as: C - X = K, where C
is the coefficient matrix, X is the vector of variables and K
is the vector of constants.

The vector of variables can be determined by inversing
matrix C:

X=C"1-K (29)

IV. CASE STuDY

A. Test system and input data

The proposed portfolio method is demonstrated in a practical
U.K. distribution area, shown in Fig.2 [33]. This study modifies
it by adding ES at busbar 1007. The generation on busbar 1005
(G1) is a PV farm, which supports domestic demand on the

other busbars during the daytime. A conventional auxiliary
generator (G2) is located at 1005 to support the PV farm and
the upstream grid is treated as generator G1008.

1004 1006
1002 14| 15 |_, 23
12| |13 4 \V

1001 1003 10011 $ | 1009
o
1005 s
G1

Fig.2. A Grid Supply Point (GSP) area test system.

— 66 KV
22 KV
e 11KV

.
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o

3 6 9 12 15 18 21 24
Time

Fig.3. A daily PV output curve.

The PV peak output is 40MW and its typical daily output is
depicted in Fig. 3. The hourly PV output (B,,) is as follows [34]:

Poo =¥ X Ag X Go X [ f(GGo; 965 06) (30)
where the y is the efficiency of the PV farm; A is the array
surface area; G is the global horizontal irradiance; G,denotes
the corresponding extra-terrestrial irradiance; G Gyrepresents G
/G, with G scaled into [0, 1]; ¢, and o, can be estimated
through fitting Beta distribution into the historical hourly solar
irradiance data.
200

——System energy price
Local generation price

=150 7~ i
= / \
s /o
& 100+ y .
® pal \
g —~— —~—
o 50 W\
—
0 . . . L . . . .
3 6 9 12 15 18 21 24
Time

Fig.4. The price signal from system energy and the local generator

TABLE Il
THE PDTF MATRIX FOR GSP SYSTEM
Branch Bushar 1007 Branch Busbar 1007
No. 2 0.24 No. 16 0.34
No. 3 0.27 No. 17 0.31
No. 4 0.27 No. 23 0.26
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TABLE Il
THE PRICE, RISKS AND EXPECTED RETURN OF DIFFERENT MARKETS THROUGH TIME (£/MW)

Energy Market DNO’s Market FR Market
Cases Time Price Expected Risk Price Expected Risk Price Expected Risk
return return return

01:00 34.94 0.25 6.92 0 0 0 41.94 0.62 6.92

02:00 32.88 0.18 7.93 0 0 0 39.88 0.53 7.93

03:00 28.67 0.02 8.05 0 0 0 35.67 0.34 8.05

04:00 28.50 0.02 7.72 0 0 0 35.50 0.34 772

05:00 27.98 0.00 6.85 0 0 0 34.98 0.31 6.85

06:00 28.34 0.01 6.56 0 0 0 35.34 0.33 6.56

& o700 4155 0.49 7.34 0 0 0 4855 0.92 7.34
08:00 46.82 0.67 8.27 0 0 0 53.82 1.15 8.27

09:00 57.87 1.07 9.19 0 0 0 64.87 1.65 9.19

10:00 59.17 1.12 10.02 0 0 0 66.17 1.71 10.02

11:00 56.61 1.02 11.68 0 0 0 63.61 1.59 11.68

12:00 54.49 0.95 12.06 0 0 0 61.49 1.50 12.06

b 13:00 45.96 0.64 6.75 15.00 -0.46 20.00 52.96 1.12 6.75
14:00 44.73 0.60 11.32 15.00 -0.46 40.00 51.73 1.06 11.32

15:00 44.46 0.59 9.25 0 0 0 51.46 1.05 9.25

¢ 16:00 43.69 0.56 9.10 0 0 0 50.69 1.01 9.10
17:00 48.10 0.72 8.78 68.34 1.44 29.90 55.10 1.21 8.78

18:00 50.47 0.80 10.98 86.84 2.10 38.36 57.47 1.32 10.98

19:00 52.79 0.89 8.25 158.46 4.66 30.67 59.79 1.42 8.25

d 20:00 56.41 1.02 9.25 146.72 4.24 28.42 63.41 1.58 9.25
21:00 60.99 1.18 11.44 65.85 1.35 40.02 67.99 1.79 11.44

22:00 54.66 0.95 8.48 61.35 1.19 22.12 61.66 1.51 8.48

23:00 49.80 0.78 6.63 54.88 0.96 1.50 56.80 1.29 6.63

a 00:00 49.02 0.75 6.24 0 0 0 56.02 1.25 6.24

The energy price is shown as the blue line in Fig.4, which is
the energy price from G1008. The local generation price is
indicated by the orange line. If system congestion occurs, the
load should be supported by a local generator. Therefore, the
energy price is the price of selling energy in the energy market
and the price for the local generator is the selling price from the
operation cost for congestions.

Due to the large scale of the PTDF matrix, this section only
illustrates that of busbar 1007 with respect to the corresponding
branches, in Table II. The load at 1007 poses a significant
impact, around 0.34, on branches No.16, No.17 and No.23, but
small impact, around 0.24, on branches No.2 and No.3. The
negative and positive values of PTDF indicate the direction of
the impacts from the ES on branch flows are opposite. The
negative value means the discharging of the ES on this busbar
will produce reversed power flow on these branches.

10 — —%
[-NQ.Z-NOJIZINO.‘!B No.17 No.23 —— Total congestion| [~

w,
5 AN

e ‘ ‘] ‘] ': i L S,

MWh)

Congestion amount (|

0 3 6 9 12 15 18 21 24
Time
Fig.5. The system congestion and the branch congestion over daytime

Due to the high generation of PV output, the power flows on
No.16, No.17 and No.23 are reversed, shown by the negative
value from 12:00 to 13:00. The load caused congestion occurs
from 16:00 to 22:00, shown by the positive value in Fig.5. There
are five branches experiencing congestion, branch No.23 from
generation, branches No.2 and No.3 from the load and branches

No.16 and No.17 from both. The highest load caused
congestion occurs at 17:00 with 9.59MW and the maximum
generation caused congestion is 7.91MW at 13:00.

B. Expected return and risk for different markets

The expected selling prices from the three markets are shown
in Table I11. It can be observed that the daily ES operation can
be divided into four time periods based on the market
participation numbers. In periods a and c, there are only two
markets available for ES, and in periods b and d, there are three
markets for ES. The highest selling price points from these three
markets are: £0.99/MW at 21:00 in the energy market;
£158.46/MW at 19:00 in the DNO’s market, and £67.99/MW
at 21:00 in the FR market. In general, the risks for the energy
market are higher with high prices but for the DNO’s market,
since the ES owner’s behaviour in this area is unpredictable, the
risks are typically even higher. For example, the risk for the
DNO’s market is more than 30 from 18:00 to 19:00. In addition,
the risks rise during daytime due to the impact of the PV output
affects the level of congestion. In the FR market, the availability
price for ES is fixed, £/MW/h in our case study [7]. Since the
risk for this availability price is zero, the risk in the FR market
is the same as the energy market.

Assuming the cost for the ES is the minimum energy buying
cost, £27.98 /MW, and the expected return for different markets
corresponding to the ES discharging is provided in Table Il. The
expected return for the energy market is smaller than the FR
market. The DNO’s market has the highest return value, 4.66,
at 19:00, but the expected return in the majority of periods in
this market is zero. Since discharging and charging of the ES
are opposite actions the expected return from charging is the
negative value of discharging.
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C. 24 hours Portfolios and the lowest risk portfolios

Based on the data in Table I11, the portfolios for the markets
that ES discharging can participate in through 24 hours are
depicted in Fig.6. The individual curves in Fig.6 represent the
portfolio change at different times, drawn by the weight of the
capacity shares changing in different markets. The vertical axis
is the value of expected return and the horizontal axis is the
value of risks at this time whilst the curves vary with ES
capacity share change in each market. Fig 6.1 to Fig.6.12, and
Fig.6.24 are calculated using the data from 00:00 to 12:00 in the
case a in Table I11, where the ES can participate in two markets,
energy and FR market. Fig 6.13 to Fig.6.14 are corresponding
to the data in case b. Fig.6.15 to Fig.6.16 and Fig.6.17 to
Fig.6.23 are corresponding to the data in the cases ¢ and d
respectively.
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Fig.6. Portfolios for discharging in 24h

The GMV portfolio points for the 24 hours are the points
which have the lowest risk based on the Risk Minimisation
method in Section I11-B. For example, at 09:00 the risk value is
6.5 at the GMV portfolio point and the expected return value is
1.36, which has 50% capacity in the energy market and 50% in
the FR market. At 23:00, to obtain the lowest risk at the GMV
point, the ES should put 90% capacity in the DNO’s market and
10% in the FR market, where the risk value is 1.46 and the
expected return value is 0.98. Since the expected return from
charging is the negative of discharging at the same time, the
portfolios figures of charging through 24 hours are reflections
of the discharging values about the horizontal axis.

D. Operation guidance to maximise the expected return
To maximise the expected return for the ES, the market share

in the different periods and the expected return for charging and
discharging is shown in Fig.7 and Fig.8 respectively. For the
maximum expected return, by ignoring risk, the ES will commit
100% capacity to whichever market produces the highest
expected return in each period. The vertical axis shows the
value of expected return. For discharging activity, if ES can
participate in the DNO’s market, it can gain the highest profits,
the expected return is around 4.5, from 17:00 to 20:00 and the
FR market can provide highest profits during other time periods.
For charging activity, ES can gain the highest profits if it
charges during 13:00 to 14:00, expected return value is around
0.46, participating in the DNO’s market and the energy market
during other times. The negative value means in Fig.8 the ES
operation should pay an additional price to the market for the
services at this time. For example, the selling price in the energy
market during 15:00 to 23:00 is negative for charging, which
means the ES should pay the additional energy buying fee to
the energy market if it charges during this period.

The maximum of expected return from three markets for ES
charging and discharging at different time are shown in Fig.7
and Fig .8. For example, the ES can obtain benefit from DNO’s
market during 17:00 to 20:00 if it discharges, but it will be
punished if charging then. To ensure the maximum benefit of
ES, the punishment is minimised if ES participates in the energy
market. Otherwise, ES will receive a higher punishment if it
participates in other markets.
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Therefore, by assuming the equal potential periods for
charging and discharging (12 hours slot respectively), the
charging and discharging periods for ES owners without
considering their risk aversion are shown in Fig.9 by combining
Figs.7 and 8. Fig.9 is created as potential operation periods,
based on the benefits from different markets for the ES.

To maximise the expected return ES should charge between
01:00 and 08:00, participating in the energy market, the
expected return ranges from -0.67 to 0. Followed by
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discharging from 09:00 to 12:00, taking part in the FR market,
around 1.6 expected return. At 13:00 the ES should charge
again, spending two hours in the DNO’s market followed by
two hours in the energy market, with expected return values
0.46 and -0.58 respectively. Discharging begins again at 17:00
with the highest price in the DNO’s market with expected return
values between 1.44 and 4.66 until 20:00 and the FR market
around 1.5 from 21:00 to 00:00.

6 Energy FR DNO's Energy DNQ's FR
Market Market Market Market Market Market
. e .

=

Expected return
N

[ r—" 1 m 1 T TR R S N S
2 3 4 5 86 9 10 11 12 13 14‘\5—15, 17 18 19 20 21 22 23 24

Charging Disharging Charging Disharging

-2

Fig.9. Suggested operation and markets participation for ES

E. Optimum portfolio considering risk aversion

If ES owners’ risk aversion is considered, the optimum
portfolio can be determined by the risk aversion or their
expected return during each period. Assuming there are two
types of ES owners, A and B, who have different risk aversion
levels. The portfolio for them will not change responding to the
ES capacity. ES owner A prefers lower, but safer returns and
ES owner B prefers higher but risky returns, where the risk
aversion for them are assumed to be g, = 0.46 and gz = 0.74.
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Taking two cases for demonstration at 08:00 and 14:00, where
ES has two markets and three markets portfolios respectively.
Based on the Lagrange function expressed in equations (25-29),
the optimum portfolios for these two ES owners at 08:00 are
determined in Fig. 10. For Storage A, its optimum point is with
50% of capacity in the energy market and 50% in the FR
market. The expected return value for this ES is E, = 0.66 at
this time period. For Storage B, it should put 80% capacity into
the energy market and 20% into the FR market, with an
expected return of Ep = 0.91.

At 14:00, the portfolio of ES with different risk aversion, the
results are shown in Fig.11. Storage B has 30% capacity in the
energy market and 70% in the FR market. Since the risk
aversion of Storage A is o, = 0.46, if the expected return is still
kept as E, = 0.66, it should put 35% of capacity in the energy
market, 40% in the FR market and 20% in the DNO’s market.
The optimal portfolio for this storage is to put 35% of the

capacity in FR market and 65% in energy market which can
make a higher return from E, to E, = 0.74.
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F. Performance comparison

This part compares the benefits from the portfolio theory with
those from the approach assuming that the storage can only
participate in one market: DNO’s market (Scenario 1), energy
market (Scenario 2) or FR market (Scenario 3). The results from
the comparison for Storage A at 14:00 pm are in TABLE IV.

TABLE IV
COMPARISON BETWEEN PROPOSED PORTFOLIO AND SCENARIOS
APPROACHES FOR STORAGE A

Portfolio Scenario 1 Scenario2  Scenario 3
Theory (DNO’s) (Energy) (FR)
DNO’s o o o o
market share 0% 100% 0% 0%
Energy 65% 0% 100% 0%
market share
FR 350 0% 0% 100%
market share
Expected
return 0.74 0.23 0.54 0.95
Risk 0.46 0.52 0.38 0.97

At this time, the proposed portfolio theory generates higher
expected return than putting 100% ES capacity in the DNO’s
market or the energy market. The expected return is two times
higher than that from Scenario 1, i.e. 100% capacity in DNO’s
market. Although the risk is small in Scenario 2, compared with
the proposed portfolio theory, the Storage A prefers higher risk
for increased benefits. On the other hand, although the expected
return in Scenario 3 is 30% higher than that from the portfolio
theory, the risk is more than two times higher, with the value
0.97, which is not acceptable for Storage A.

V. CONCLUSION

This paper designs a new portfolio theory for optimal ES
capacity allocation in three markets: energy arbitrage, ancillary
services, and Distributed Network Operator’s (DNO’s) market.
It can help ES owners raise their expected profits and reduce
risk. Through extensive demonstration, the following key
findings are obtained:

» The risks and expected return of different markets can be
efficiently reflected in the portfolio theory, which provides
more options for ES to gain benefits;
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= The risks and expected return from different markets are
converted to price signals for ES to allocate the capacity share
in the three markets.

= The markets ES can participate in are different regarding its
risk aversion. Although the expected DNO’s market is high,

ES cannot put all capacity in this market considering the

associated high risks;
= The optimum portfolio among the markets for ES capacity

share is on the efficient frontier, which provides the maximum
return for the ES at a certain risk aversion level.

This work is beneficial for ES to manage profits and risks by
participating in different markets. In addition, it provides a solid
basis for further dynamic ES operation in the local energy
market to enhance the benefits for both ES owners and network
operators. There are many important areas to be studied in
market modelling, algorithm design, market uncertainty for
storage optimisation. The authors will focus on: 1) designing
dynamic storage operation in the local energy market to
enhance the benefits of both storage owners and network
operators; 2) developing robust optimisation based algorithm to
include uncertainties in market prices and reliability
characteristics that can affect decision making for storage; 3)
comparing the potential of different storage in participating in
markets using the portfolio theory, such as EVs, large-scale
energy storage, aggregators, etc.; 4) conducting more extensive
comparison on the benefits from the proposed approach with
other approaches.
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