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Abstract—Energy storage (ES) is playing a vital role in 
providing multiple services in several electricity markets. 
However, the benefits and risks vary across markets and 
time, which justifies the importance to optimise ES capacity 
share in different markets.   

In this paper, a novel portfolio theory based approach is 
proposed for optimally managing ES in various markets to 
maximise benefits and reduce the risk for ES owners. Three 
markets are considered, which are: energy arbitrage, 
ancillary services, and Distributed Network Operator’s 
(DNO’s) market. They are modelled based on energy cost, 
frequency response cost, and system congestion cost. 
Portfolio theory is utilised to quantify ES capacity allocated 
to each market over time for various levels of risk 
aversions. The relation between risks and expected return 
of different markets are efficiently reflected by portfolio 
theory, providing implications to storage operation. The 
extensive demonstration illustrates that the markets that 
storage can participate in are fundamentally different 
regarding to its risk aversion. In addition, the optimum 
portfolio of the markets for storage is on the efficient 
frontier, providing the maximum return at a certain risk 
aversion level. This study is particularly useful for guiding 
market participation and operation of energy storage to 
gain maximum economic return at minimum risk.  

 
Index Terms—Energy storage, portfolio, risk, electricity 

market, ancillary market, DNO’s market 

 

I. INTRODUCTION 

ITH the rollout of the smart city concept, the installed 

capacity of energy storage (ES) is on the rise [1, 2]. It is 

estimated that 100GW of ES will be required by 2020 in 

Western Europe, which would double by 2050 [3]. ES can help 

increase energy use flexibility, accommodate increasing 

intermittent generation, and make optimal use of network 

capacity. Further, large-scale ES or aggregated ES at the 

community level can not only enable energy use flexibility for 

owners but also provide more services to different electricity 

markets to realise benefits, such as various ancillary services. 

Although installed ES is encouraged to participate in different 

markets, there is limited guidance or strategies for ES owners 
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to optimally allocate their ES capacity to various markets to 

make profits.  

This paper introduces portfolio theory to allocate ES capacity 

in the energy arbitrage market, ancillary service market and 

DNO’s market to maximise benefits and reduce risk in the UK 

electricity market. Three market models are designed to 

illustrate the relationship between expected return and risk. The 

energy arbitrage market is modelled based on buying and 

selling energy price difference. The price from the ancillary 

service market for frequency response is composed of two 

parts: the availability price and the response price of the ES 

operation. The price in the DNO’s market is from congestion 

cost mitigation. Then, the portfolio theory is designed to 

determine the optimal capacity share of ES in different markets, 

aiming to lower risk and raise the expected return. Lagrange 

method is utilised to solve the optimisation to determine the 

superior portfolio.  

The main contributions of the paper are: i) it designs the 

models of different markets in which ES can participate and 

evaluates related expected return and risk; ii) it extrapolates 

portfolio theory to multi markets for optimal ES capacity share 

management; iii) it determines the optimal portfolios for ES at 

different risk aversions. 

The rest of the paper is organised as follows: Section II 

introduces the three markets: energy arbitrage, DNO’s and 

ancillary services. Section III designs the portfolio theory to 

find the optimal portfolio. Section IV illustrates the theory on a 

Grid Supply Point (GSP) area. Section V draws conclusions. 

II. MODELS FOR DIFFERENT MARKETS 

This section introduces and models the markets that ES can 

participate in to realise benefits: energy arbitrage, DNO’s 

market and ancillary service market. The ES is treated as a 

customer, which is very flexible in choose markets they would 

like to participate in and the capacity share in each time period. 

If the ES is not involved in a market, it will not obtain any 

benefits from its operation, i.e. the ES will receive zero benefits. 

It is assumed that the ES is capable to provide all services as 

originally contracted or promised, and therefore, there will be 

no the penalty for failing to provide the services at anytime. 
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Currently, ES is mainly used in a single market and the 

research is focused on ES performance and operational 

strategies within that market. However, individual ES can 

provide multiple services in electricity systems simultaneously. 

Papers [4-6] discuss ES operation in the ancillary market, such 

as reserve provision and frequency regulation. Ancillary service 

market ensures the stable operation of the electricity system 

with the provision of additional resources during normal 

operation or under certain emergent circumstances.  

There are several papers [5, 7, 8] focused on joint markets 

operation where ES is involved in multiple markets to increase 

profits. Paper [7] quantifies the impact of operational policies 

on degradation and lifespan of ES that provide different 

services. Papers [5, 8] design optimal operation for ES in two 

markets by using a bidding mechanism and multi-period model 

that collaborate with high renewable generation. Although the 

proposed method can benefit ES, the owners might not be 

willing to face high risks. Paper [9] compares the operation of 

a system with and without community ES, where substantial 

improvement on market efficiency is seen with ES usage. 

In reality, ES will also suffer risks when enjoying profits 

from different markets [10]. Based on risk classification rules 

[11], there are two key risks for ES in market participation: 

market risk and operation risk.  

 Market risk is normally from the uncertainties in interest, 

the currency exchange rate, stocks or other index prices 

change and commodity price changes [12, 13]. The energy 

price in the power market is highly volatile, which is the key 

factor causing risks for ES.  

 Operation risk has two main aspects. One is from the 

unpredictable load, which brings uncertainties for system 

congestions, producing risk for ES participation in the 

DNO’s market. Another risk is from ES owners, which is 

from various operation methods or market participation that 

can produce different profits.  
 

These risks in the markets could cause ES to fail in bidding 

into markets. Therefore, it is essential to quantify the associated 

benefits and risks for ES when it participates in different 

markets. Paper [14] considers the risk in market prices by 

introducing a tolerance and price prediction error to 

demonstrate the operation scheduling method. Paper [15] uses 

probability functions to consider forecasting uncertainties in 

their scheduling for ES.  

 
TABLE I 

 CLASSIFICATION OF MARKET PARTICIPATION FOR ES 

 
Super-

capacitor 

Fly-

wheel 
Battery 

Compress-

ed air 

Pumped 

hydro 

FR √ √ √   

DNO √  √ √ √ 

Energy 

arbitrage 
  √ √ √ 

 

However, not all types of storage can participate in all 

markets. According to its operation time, Table I [16] 

summarises markets that different ES can patriciate in. For the 

FR market, the requested operation time is short and thus 

normally supercapacitors, batteries, high-power flywheels 

energy storage operating in seconds to minutes are called. For 

the DNO and energy arbitrage markets, batteries, pumped 

hydro, and compressed air energy storage, whose operation 

time is in minutes to hours, are used as the request operation 

time is relatively longer. 

A. Energy arbitrage market 

Price arbitrage is for storage to charge during low price 

periods and discharge during high price periods, but this 

requires a significant price difference to ensure the initial 

investment can be repaid [17, 18]. However, the uncertainty for 

energy arbitrage is from price variations, which cannot be 

predicted accurately. This is possible in all countries with a 

wholesale energy market.  

At time 𝑡, the expected return from energy arbitrage (𝐸𝑎𝑑) is 

due to price difference between the buying energy cost and the 

expected benefits of selling this energy. The risk (𝜎𝑎𝑑) in the 

energy market is the standard deviation of the predicted value 

of selling energy prices for each time.  

𝐸𝑎𝑑,𝑡 =
𝑝𝑑,𝑡−𝑝𝑐,𝑡

𝑝𝑐,𝑡
                                       (1) 

𝜎𝑎𝑑,𝑡 =
√∑ (𝑝𝑑,𝑡,𝑥−

∑ 𝑝𝑑,𝑡,𝑥
𝑛
𝑥=1

𝑛
)2𝑛

𝑥=1

𝑛
                             (2) 

where 𝑝𝑑,𝑡 is the expected energy selling price  and  the energy 

buying cost (𝑝𝑐,𝑡) for ES. 𝑝𝑑,𝑡,𝑥 represents the possible accepted 

price among the 𝑛 number of elements in 𝑝𝑑,𝑡.  

B. Distribution Network Operator’s market 

The DNO’s market is focused on the deferral of network 

investment by reducing peak energy flows. The introduction of 

ES allows the peak load on the electricity networks to be 

reduced. By providing proper peaking shaving/congestion 

management services to DNOs, ES can help save the 

investment, operation and maintenance cost of networks. In this 

paper, congestion cost saving is the only economic benefit for 

ES operation in the DNO’s market. In this market, the risk is 

from the unexpected overloading in the network because of 

uncertain demand and generation. 

Assuming the branch number in a system is 𝑁, the congestion 

cost from branch 𝑙 at the settlement period 𝑡 (𝐶𝐶𝑙,𝑡) is [19]: 

𝐶𝐶𝑙,𝑡 =
𝑇𝐶𝐶𝑡

(𝑃𝑤𝑙,𝑡−𝑃𝑛𝑙,𝑡)
                               (3) 

where 𝑃𝑤𝑙,𝑡  is the power flow on branch 𝑙  without any 

constraints; 𝑃𝑛𝑙,𝑡 is the power flow on branch 𝑙 with constraints 

and 𝑇𝐶𝐶𝑡 is the total cost change of the system. 

The Congestion Cost change (𝑇𝐶𝑖,𝑡) related to the use of ES 

at node 𝑖, at time 𝑡, is indicated as: 

𝑇𝐶𝑖,𝑡 = ∑
𝑇𝐶𝐶𝑡

𝛥P𝑙,𝑡

𝑁
𝑙=1                               (4) 

The impact of nodal demand/generation change on branch 
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flows can be quantified by the Power Transfer Distribution 

Factor (PTDF) matrix. PTDF [20] shows the fraction of energy 

transfer from one node point ( 𝑖 ) to another node point ( 𝑗 ) 
through a transmission line (𝑙). It is a sensitivity matrix of the 

line active power flow change resulting from the nodal power 

change. Ignoring line losses, the DC power flow model is used 

to determine the fraction of power flow through line (𝑖𝑗. 𝑙) based 

on the reactance of the transmission line [21]. 

𝑃𝑇𝐷𝐹ij.l = 
𝑋𝑖𝑖−𝑋𝑗𝑖−𝑋𝑖𝑗+𝑋𝑗𝑗

𝑋𝑖𝑗
                         (5) 

PTDF is introduced to select the most sensitive line 𝑙 
impacted by the demand change in node 𝑖 . Therefore, the 

operation of ES at node 𝑖 is highly associated with the loading 

level of line 𝑙. Accordingly, the ES output change (𝛥𝑃𝑖𝑡) in node 

𝑖 resulting from nodal power flow change (𝛥P𝑙𝑡) is:  

𝛥P𝑙𝑡 = 𝑃𝑇𝐷𝐹ij.l × 𝛥𝑃𝑖𝑡                           (6) 

The expected return from the DNO’s market ( 𝐸𝑐𝑐𝑡 ) is 

determined from the difference between the expected energy 

selling price and the energy buying cost (𝑝𝑐𝑡 ). The expected 

energy selling price is the congestion cost saving (𝐶𝐶𝑙𝑡) resulted 

from ES operation. If there is no congestion in the system, the 

expected return from this market is zero. The risk in the DNO’s 

market is the standard deviation of congestion quantity (i.e. the 

difference between each possible congestion cost and the 

average congestion cost) in each time period.  

𝐸𝑐𝑐,𝑡 =
𝐶𝐶𝑙,𝑡−𝑝𝑐,𝑡

𝑝𝑐,𝑡
                                    (7) 

𝜎𝑎𝑑,𝑡 =
√∑ (𝑇𝐶𝑖,𝑡,𝑥−

∑ 𝑇𝐶𝑖,𝑡,𝑥
𝑛
𝑥=1

𝑛
)2𝑛

𝑥=1

𝑛
                             (8) 

where 𝑇𝐶𝑖,𝑡,𝑥 represents the possible congestion cost among the 

𝑛 branches in 𝑇𝐶𝑖,𝑡 from load varying level at this time.  

C. Ancillary service markets 

In the UK, numerous ancillary service markets exist with 

several commercial frequency response markets. The Enhanced 

Frequency Response market is explicitly designed for ES [22] 

and Firm Frequency Response market is open to all providers if 

they meet the technical requirements. This paper focuses on the 

provision of frequency response (FR) with the Firm Frequency 

Response market design. FR markets are open to all members 

in the electricity system above 1MW of response through a 

competitive tender process. ES is involved with a payment 

structure reflecting its operation, which normally consists of 

two fees: the availability fee and response energy fee. FR 

markets vary across the world depending on system 

requirements, but FR is an essential resource to ensure stable 

energy network operation, to which ES can contribute. In the 

FR market, the risk comes from the customers’ behaviours, 

causing system frequency to fluctuate. 

An availability or holding fee (𝐴𝐹) is given in £/hr for any 

time the frequency response provider is available. This payment 

is given whatever the response is called upon or not during the 

time period, which is a fixed price in the UK. This fee structure 

is given in the Connection and Use of System Charges [23]. 

𝐴𝐹 = 𝐿𝐹 + 𝐻𝐹                                      (9) 

𝐿𝐹 =
𝐿𝐹𝑅×𝐶𝐴

60
                                          (10) 

𝐻𝐹 =
𝐻𝐹𝑅×𝐶𝐴

60
                                          (11) 

where 𝐿𝐹 and 𝐻𝐹 are the low frequency fee and high frequency 

fee, respectively; 𝐿𝐹𝑅 and 𝐻𝐹𝑅 are the low frequency £/MWh 

rate, high frequency £/MWh rate, and 𝐶𝐴 is the MW capability 

of the response provider for that time period. 

A response energy fee in £/MWh is given when a response is 

called upon from frequency response providers, shown in [23]. 

This response provider bids into the market with a rate for low 

frequency or high frequency excursions. ES is capable of 

delivering both responses, charging during high frequency 

events and discharging during low frequency events, depending 

on the state of charge. These payments are designed for 

generators: higher payment for increasing output and payment 

for decreasing output. 

𝑅𝐸𝑡 = 𝐶𝐴𝑃𝑡 × 𝑅𝑃𝑡                                      (12) 

𝑅𝑃𝑡 = max (
∑ (𝑀𝐼𝑃𝑒,𝑡×𝑀𝐼𝑉𝑒,𝑡)
𝐸
𝑒=1  

∑ 𝑀𝐼𝑉𝑒,𝑡
𝐸
𝑒=1

× 𝐹𝑋𝑡)                   (13) 

where, at time 𝑡, 𝑅𝐸𝑡  is the Response Energy Fee; 𝐶𝐴𝑃𝑡  and 

𝑅𝑃𝑡  are the MW capacity provided in response and the 

Response Payment rate respectively; 𝐸 is the events number; 

𝑀𝐼𝑃𝑒,𝑡 and 𝑀𝐼𝑉𝑒,𝑡 are the market index price and market index 

volume; 𝐹𝑋𝑡 is 1.25 for low frequency events or 0.75 for high 

frequency events.  

In this paper, the response energy fee is substituted into (14), 

which gives ES a negative payment for high-frequency events 

and a positive payment for low-frequency events. 

𝑅𝐸𝐹𝑡 = 𝐴𝐹 + 𝑅𝐸𝑡 = 𝐴𝐹 + 𝑝𝑑,𝑡 × 𝐹𝑋𝑡            (14) 

The expected return on energy arbitrage (𝐸𝑏𝑐) is from the 

difference between the balance price and the energy cost to 

provide this service. Since the response energy fee is constant 

in the UK, the risk is from the energy price when buying energy 

from the system. Thus, the risk is the standard deviation of the 

energy price in each period, which equals to 𝜎𝑎𝑑,𝑡.  

𝐸𝑏𝑐 =
𝑅𝐸𝐹𝑡−𝑝𝑐,𝑡

𝑝𝑐,𝑡
                                    (15) 

III. PORTFOLIO THEORY 

The portfolio method is introduced as an ES capacity 

allocation tool to optimally divide the capacity into different 
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markets to maximise the expected return whilst minimising the 

corresponding risk. The main assumptions of the portfolio 

method are as follows: 

• All investors prefer the lowest available risk for the same 

level of expected return and the highest available expected 

return for the same level of risk.  

• Investors determine optimal portfolios only based on the 

expected returns, variances, and covariance of all assets. 

• Investors evaluate the risk in relation to expected return. 
 

There are several economic models for determining the 

portfolio based on risk and expected return, such as the index 

model, arbitrage-pricing theory, and capital asset pricing 

model. Single-index model is used in farm planning [24], which 

measures the risk of individual assets and the combined effects 

of other assets. However, this model is not accurate as it ignores 

certain factors that may affect the outcome. Paper [25] applies 

arbitrage pricing theory to determine the portfolio considering 

the interaction of market factors and return for securities. This 

method assumes all players to pursue the maximum arbitrage, 

ignoring economic frictions, which is not reflective of the 

reality. The capital asset pricing model is discussed in [26], but 

its assumptions are strict, which assume all players in the model 

know the mean-covariance matrix. There are three key reasons 

for using the portfolio theory 1): it can determine the optimal 

portfolio with different risk and expected return requests of ES; 

2) it is accurate with reasonable assumptions; 3) risk can be 

quantified from the standard deviations of various markets.  

A. Expected return and risk 

The expected return on the portfolio 𝐸𝑚𝑝 is calculated as the 

sum of the weighted profitability of each market share (𝐸𝑚𝑖) 
[27]. Portfolio risk can be determined by the sum of individual 

risks of each market share in the portfolio and the correlation 

between any two markets, which is shown as: 

𝐸𝑚𝑝 = 𝑤1𝐸𝑚1 +𝑤2𝐸𝑚2 + …+𝑤𝑛𝐸𝑚𝑛 = ∑ 𝑤𝑖𝐸𝑚𝑖
𝑛
𝑖=1  (16) 

𝜎𝑝
2 = ∑ (𝑤𝑖

2𝜎𝑖
2)𝑛

𝑖=1 + ∑ ∑ 𝑤𝑖𝑤𝑗𝜌𝑖𝑗𝜎𝑖𝜎𝑗
𝑛
𝑗=1
𝑖≠𝑗

𝑛
𝑖=1      (17) 

𝜌𝑖𝑗 =
𝑀(∑𝑚𝑖𝑚′𝑗)−(∑𝑚𝑖)(∑𝑚′𝑗)

√[𝑀∑𝑚𝑖
2−(∑𝑚𝑖)

2][𝑀∑𝑚′𝑗
2−(∑𝑚′𝑗)

2]
                    (18) 

where 𝑤𝑖  is the weight of each market share in the portfolio; 𝜎𝑖 

is the risk of market share 𝑚𝑖  and 𝜌𝑖𝑗  is the correlation 

coefficient between the costs of the market share 𝑚𝑖 and 𝑚′𝑗; 𝑛 

is the total number of markets that ES can participate, which is 

3 here; 𝑀 is the number of available datasets in each market. 

B. Risk minimisation 

The objective function to minimise the risks is [28]:  

min(𝜎𝑝
2) = ∑ ∑ 𝑤𝑖𝑤𝑗𝜎𝑖𝑗

𝑛
𝑗=1

𝑛
𝑖=1                        (19) 

s.t.                 ∑ 𝑤𝑖 × 𝐸𝑚𝑖
𝑛
𝑖=1 = 𝐸𝑚𝑝                             (20) 

∑ 𝑤𝑖 = 1
𝑛
𝑖=1                                         (21) 

0 ≤ 𝑤𝑖 ≤ 1         (𝑖 = 1,2,3)                   (22) 

where constraint (20) is the expected return of the portfolio and 

it must be equal to the target return (𝐸𝑒); constraint (21) is the 

sum of the proportions for the market share in portfolio, which 

must be equal to ‘1’, and constraint (22) is the non-negativity 

condition for market share proportions. 

The portfolio point, which has the lowest risks among all 

portfolios, is called Global Minimum Variance portfolio 

(GMV) point. It can be determined by the partial derivative of 

the weight of each market share:  

𝜕(𝜎𝑝
2)

𝜕𝑤𝑖
= 2𝑛𝑤𝑖𝜎𝑖

2 + 2∑ 𝑤𝑗𝜌𝑖𝑗𝜎𝑖𝜎𝑗
𝑛
𝑖≠𝑗               (23) 

C. Expected return maximisation 

To determine the optimal portfolio with the lowest risks and 

highest return for ES simultaneously, the utility function in 

terms of expected return (𝐸𝑚𝑝) and variance of returns (𝜎𝑝
2) is 

developed based on (19) [29]: 

Max:          𝑈 = 𝐸𝑚𝑝 −
1

2
𝐴𝜎𝑝

2                             (24) 

where 𝑈  is utility value and 𝐴  is an index of investor’s risk 

aversion. This degree of risk aversion is normally in the range 

of 2–4. 3 is taken for representing  average risk aversion [30], 

and 𝐴 > 3 means more risk averse and vice versa [31, 32]. The 

constraints for (24) are the same as those in (20-22).  
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Global 
minimum 
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e
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Fig. 1. Efficient frontier and efficient portfolios 

 

With the market share ranging from 0% to 100% for the two 

markets (shown at the two ends of the curve in Fig.1, a portfolio 

curve is produced by the mean-variance optimisation. The 

curve above the dashed line in Fig.1 is called efficient frontier. 

The portfolio on the efficient frontier is called efficient portfolio, 

which has both low risk and high expected return. The efficient 

portfolio can be obtained by mean-variance optimisation, which 

means these portfolios can minimise the risk for a given level 

of return or maximise the return for a given level of risk. The 

area below the frontier is called efficient set or opportunity set. 
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The willingness of users to trade risk for return can be 

described as indifference curve. The connection point between 

the indifference curve and the efficient frontier is the optimum 

portfolio for this ES.  

There are three characteristics of the efficient frontier: 

 It reflects high risk and high expected return; 

 It is a convex curve; 

 A smaller correlation coefficient factor between the 

vectors will cause a higher degree of the curve. 

D. Optimum portfolio 

The optimum portfolio for the objective in (24) with 

constraints (20-22) can be determined by the Lagrange function: 

𝑍 = 𝐸𝑚𝑝 −
1

2
𝐴𝜎𝑝

2 + 𝜆1(∑ 𝑤𝑖 × 𝐸𝑚𝑖
𝑛
𝑖=1 − 𝐸𝑒 ) + 𝜆2(∑ 𝑤𝑖 − 1

𝑛
𝑖=1  ) (25) 

Equation (25) can be converted into: 

𝑍 = ∑ 𝑤𝑖𝐸𝑚𝑖
𝑛
𝑖=1 −

1

2
𝐴∑ ∑ 𝑤𝑖𝑤𝑗𝜎𝑖𝑗

𝑛
𝑗=1

𝑛
𝑖=1 + 𝜆1(∑ 𝑤𝑖 × 𝐸𝑚𝑖

𝑛
𝑖=1 −

𝐸𝑒 ) + 𝜆2(∑ 𝑤𝑖 − 1
𝑛
𝑖=1  )                                                 (26) 

The optimal portfolio with the highest return can be 

calculated by the partial deviation to each variable 

{
 
 
 
 

 
 
 
 

𝜕𝑍

𝜕𝑤1
= 𝐸𝑚1 − 𝐴𝑤1𝜎1

2 − 𝐴𝑤2𝜎12 −⋯− 𝐴𝑤𝑛𝜎1n + 𝜆1𝐸𝑚1 + 𝜆2 = 0

𝜕𝑍

𝜕𝑤2
= 𝐸𝑚2 − 𝐴𝑤1𝜎12 − 𝐴𝑤2𝜎2

2 −⋯− 𝐴𝑤𝑛𝜎2n + 𝜆1𝐸𝑚2 + 𝜆2 = 0

⋯
𝜕𝑍

𝜕𝑤𝑛
= 𝐸𝑚𝑛 − 𝐴𝑤1𝜎13 − 𝐴𝑤2𝜎12 −⋯− 𝐴𝑤𝑛𝜎𝑛

2 + 𝜆1𝐸𝑚𝑛 + 𝜆2 = 0

𝜕𝑍

𝜕𝜆1
= 𝑤1𝐸𝑚1 + 𝑤2𝐸𝑚2 +⋯+𝑤n𝐸𝑚𝑛 − 𝐸𝑒 = 0

𝜕𝑍

𝜕𝜆2
= 𝑤1 + 𝑤2 +⋯+𝑤n − 1 = 0

    (27) 

These formulas in (27) can be transferred into a matrix 

form: 

{
 
 

 
 
𝐸𝑚1 −𝐴𝜎1

2 −𝐴𝜎12 ⋯ −𝐴𝜎1n 𝐸𝑚1 1

𝐸𝑚2 −𝐴𝜎21 −𝐴𝜎2
2 ⋯ −𝐴𝜎2n 𝐸𝑚2 1

⋮
𝐸𝑚𝑛
0
0

⋮
−𝐴𝜎n1
𝐸𝑚1
1  

⋮
−𝐴𝜎n2 ⋯ −𝐴𝜎𝑛

2 𝐸𝑚𝑛 1
𝐸𝑚2       ⋯    𝐸𝑚𝑛     0      0

1         ⋯      1         0      0}
 
 

 
 

×

{
  
 

  
 
1
𝑤1
𝑤2
⋮
𝑤n
𝜆1
𝜆1}
  
 

  
 

=

{
  
 

  
 
0
0
0
⋮
0
𝐸𝑒
1 }
  
 

  
 

   (28) 

Equation (28) can be simplified as: 𝐶 ∙ 𝑋 = 𝐾, where 𝐶 

is the coefficient matrix, 𝑋 is the vector of variables and 𝐾 

is the vector of constants.  

The vector of variables can be determined by inversing 

matrix 𝐶: 

𝑋 = 𝐶−1 ∙ 𝐾                                  (29) 

IV. CASE STUDY 

A. Test system and input data 

The proposed portfolio method is demonstrated in a practical 

U.K. distribution area, shown in Fig.2 [33]. This study modifies 

it by adding ES at busbar 1007. The generation on busbar 1005 

(G1) is a PV farm, which supports domestic demand on the 

other busbars during the daytime. A conventional auxiliary 

generator (G2) is located at 1005 to support the PV farm and 

the upstream grid is treated as generator G1008. 
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Fig.2. A Grid Supply Point (GSP) area test system. 
 

 
Fig.3. A daily PV output curve. 
  

The PV peak output is 40MW and its typical daily output is 

depicted in Fig. 3. The hourly PV output (𝑃𝑝𝑣) is as follows [34]: 

𝑃𝑝𝑣 = 𝛾 × 𝐴𝑠 × 𝐺0 × ∫ 𝑓(𝐺𝐺0; 𝜑𝐺 ; 𝜎𝐺)
1

0
             (30) 

where the 𝛾 is the efficiency of the PV farm; 𝐴𝑠  is the array 

surface area; 𝐺  is the global horizontal irradiance; 𝐺0denotes 

the corresponding extra-terrestrial irradiance; 𝐺𝐺0represents 𝐺 

/𝐺0  with 𝐺  scaled into [0, 1]; 𝜑𝐺  and 𝜎𝐺  can be estimated 

through fitting Beta distribution into the historical hourly solar 

irradiance data. 

Fig.4. The price signal from system energy and the local generator 
 

TABLE II 
THE PDTF MATRIX FOR GSP SYSTEM 

Branch Busbar 1007 Branch Busbar 1007 

No. 2 0.24  No. 16 0.34 

 No. 3 0.27  No. 17 0.31 
 No. 4 0.27  No. 23 0.26 
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The energy price is shown as the blue line in Fig.4, which is 

the energy price from G1008. The local generation price is 

indicated by the orange line. If system congestion occurs, the 

load should be supported by a local generator. Therefore, the 

energy price is the price of selling energy in the energy market 

and the price for the local generator is the selling price from the 

operation cost for congestions. 

Due to the large scale of the PTDF matrix, this section only 

illustrates that of busbar 1007 with respect to the corresponding 

branches, in Table II. The load at 1007 poses a significant 

impact, around 0.34, on branches No.16, No.17 and No.23, but 

small impact, around 0.24, on branches No.2 and No.3. The 

negative and positive values of PTDF indicate the direction of 

the impacts from the ES on branch flows are opposite. The 

negative value means the discharging of the ES on this busbar 

will produce reversed power flow on these branches.  

 

 
Fig.5. The system congestion and the branch congestion over daytime 
 

Due to the high generation of PV output, the power flows on 

No.16, No.17 and No.23 are reversed, shown by the negative 

value from 12:00 to 13:00. The load caused congestion occurs 

from 16:00 to 22:00, shown by the positive value in Fig.5. There 

are five branches experiencing congestion, branch No.23 from 

generation, branches No.2 and No.3 from the load and branches 

No.16 and No.17 from both. The highest load caused 

congestion occurs at 17:00 with 9.59MW and the maximum 

generation caused congestion is 7.91MW at 13:00.  

B. Expected return and risk for different markets 

The expected selling prices from the three markets are shown 

in Table III. It can be observed that the daily ES operation can 

be divided into four time periods based on the market 

participation numbers. In periods a and c, there are only two 

markets available for ES, and in periods b and d, there are three 

markets for ES. The highest selling price points from these three 

markets are: £60.99/MW at 21:00 in the energy market; 

£158.46/MW at 19:00 in the DNO’s market, and £67.99/MW 

at 21:00 in the FR market. In general, the risks for the energy 

market are higher with high prices but for the DNO’s market, 

since the ES owner’s behaviour in this area is unpredictable, the 

risks are typically even higher. For example, the risk for the 

DNO’s market is more than 30 from 18:00 to 19:00. In addition, 

the risks rise during daytime due to the impact of the PV output 

affects the level of congestion. In the FR market, the availability 

price for ES is fixed, £7/MW/h in our case study [7]. Since the 

risk for this availability price is zero, the risk in the FR market 

is the same as the energy market.  

Assuming the cost for the ES is the minimum energy buying 

cost, £27.98 /MW, and the expected return for different markets 

corresponding to the ES discharging is provided in Table II. The 

expected return for the energy market is smaller than the FR 

market. The DNO’s market has the highest return value, 4.66, 

at 19:00, but the expected return in the majority of periods in 

this market is zero. Since discharging and charging of the ES 

are opposite actions the expected return from charging is the 

negative value of discharging.  

TABLE III 
THE PRICE, RISKS AND EXPECTED RETURN OF DIFFERENT MARKETS THROUGH TIME (£/MW) 

 

Cases Time 

Energy Market DNO’s Market FR Market 

Price 
Expected 

return 
Risk Price 

Expected 
return 

Risk Price 
Expected 

return 
Risk 

a 

01:00 34.94 0.25 6.92 0 0 0 41.94 0.62 6.92 

02:00 32.88 0.18 7.93 0 0 0 39.88 0.53 7.93 

03:00 28.67 0.02 8.05 0 0 0 35.67 0.34 8.05 

04:00 28.50 0.02 7.72 0 0 0 35.50 0.34 7.72 

05:00 27.98 0.00 6.85 0 0 0 34.98 0.31 6.85 

06:00 28.34 0.01 6.56 0 0 0 35.34 0.33 6.56 

07:00 41.55 0.49 7.34 0 0 0 48.55 0.92 7.34 

08:00 46.82 0.67 8.27 0 0 0 53.82 1.15 8.27 

09:00 57.87 1.07 9.19 0 0 0 64.87 1.65 9.19 

10:00 59.17 1.12 10.02 0 0 0 66.17 1.71 10.02 

11:00 56.61 1.02 11.68 0 0 0 63.61 1.59 11.68 

12:00 54.49 0.95 12.06 0 0 0 61.49 1.50 12.06 

b 
13:00 45.96 0.64 6.75 15.00 -0.46 20.00 52.96 1.12 6.75 

14:00 44.73 0.60 11.32 15.00 -0.46 40.00 51.73 1.06 11.32 

c 
15:00 44.46 0.59 9.25 0 0 0 51.46 1.05 9.25 

16:00 43.69 0.56 9.10 0 0 0 50.69 1.01 9.10 

d 

17:00 48.10 0.72 8.78 68.34 1.44 29.90 55.10 1.21 8.78 

18:00 50.47 0.80 10.98 86.84 2.10 38.36 57.47 1.32 10.98 

19:00 52.79 0.89 8.25 158.46 4.66 30.67 59.79 1.42 8.25 

20:00 56.41 1.02 9.25 146.72 4.24 28.42 63.41 1.58 9.25 

21:00 60.99 1.18 11.44 65.85 1.35 40.02 67.99 1.79 11.44 

22:00 54.66 0.95 8.48 61.35 1.19 22.12 61.66 1.51 8.48 

23:00 49.80 0.78 6.63 54.88 0.96 1.50 56.80 1.29 6.63 

a 00:00 49.02 0.75 6.24 0 0 0 56.02 1.25 6.24 
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C. 24 hours Portfolios and the lowest risk portfolios  

Based on the data in Table III, the portfolios for the markets 

that ES discharging can participate in through 24 hours are 

depicted in Fig.6. The individual curves in Fig.6 represent the 

portfolio change at different times, drawn by the weight of the 

capacity shares changing in different markets. The vertical axis 

is the value of expected return and the horizontal axis is the 

value of risks at this time whilst the curves vary with ES 

capacity share change in each market. Fig 6.1 to Fig.6.12, and 

Fig.6.24 are calculated using the data from 00:00 to 12:00 in the 

case a in Table III, where the ES can participate in two markets, 

energy and FR market. Fig 6.13 to Fig.6.14 are corresponding 

to the data in case b. Fig.6.15 to Fig.6.16 and Fig.6.17 to 

Fig.6.23 are corresponding to the data in the cases c and d 

respectively.  

Fig.6. Portfolios for discharging in 24h 
 

The GMV portfolio points for the 24 hours are the points 

which have the lowest risk based on the Risk Minimisation 

method in Section III-B. For example, at 09:00 the risk value is 

6.5 at the GMV portfolio point and the expected return value is 

1.36, which has 50% capacity in the energy market and 50% in 

the FR market.  At 23:00, to obtain the lowest risk at the GMV 

point, the ES should put 90% capacity in the DNO’s market and 

10% in the FR market, where the risk value is 1.46 and the 

expected return value is 0.98. Since the expected return from 

charging is the negative of discharging at the same time, the 

portfolios figures of charging through 24 hours are reflections 

of the discharging values about the horizontal axis. 

D. Operation guidance to maximise the expected return  

To maximise the expected return for the ES, the market share 

in the different periods and the expected return for charging and 

discharging is shown in Fig.7 and Fig.8 respectively. For the 

maximum expected return, by ignoring risk, the ES will commit 

100% capacity to whichever market produces the highest 

expected return in each period. The vertical axis shows the 

value of expected return. For discharging activity, if ES can 

participate in the DNO’s market, it can gain the highest profits, 

the expected return is around 4.5, from 17:00 to 20:00 and the 

FR market can provide highest profits during other time periods. 

For charging activity, ES can gain the highest profits if it 

charges during 13:00 to 14:00, expected return value is around 

0.46, participating in the DNO’s market and the energy market 

during other times. The negative value means in Fig.8 the ES 

operation should pay an additional price to the market for the 

services at this time. For example, the selling price in the energy 

market during 15:00 to 23:00 is negative for charging, which 

means the ES should pay the additional energy buying fee to 

the energy market if it charges during this period.  

The maximum of expected return from three markets for ES 

charging and discharging at different time are shown in Fig.7 

and Fig .8. For example, the ES can obtain benefit from DNO’s 

market during 17:00 to 20:00 if it discharges, but it will be 

punished if charging then. To ensure the maximum benefit of 

ES, the punishment is minimised if ES participates in the energy 

market. Otherwise, ES will receive a higher punishment if it 

participates in other markets.   

 

 
Fig.7. The maximised expected return and market participation for ES 
discharging  
 

  

 
Fig.8. The maximised expected return and market participation for ES 
charging  
 

Therefore, by assuming the equal potential periods for 

charging and discharging (12 hours slot respectively), the 

charging and discharging periods for ES owners without 

considering their risk aversion are shown in Fig.9 by combining 

Figs.7 and 8. Fig.9 is created as potential operation periods, 

based on the benefits from different markets for the ES.  

To maximise the expected return ES should charge between 

01:00 and 08:00, participating in the energy market, the 

expected return ranges from -0.67 to 0. Followed by 

FR
FR

DNO’s Market
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discharging from 09:00 to 12:00, taking part in the FR market, 

around 1.6 expected return. At 13:00 the ES should charge 

again, spending two hours in the DNO’s market followed by 

two hours in the energy market, with expected return values 

0.46 and -0.58 respectively. Discharging begins again at 17:00 

with the highest price in the DNO’s market with expected return 

values between 1.44 and 4.66 until 20:00 and the FR market 

around 1.5 from 21:00 to 00:00. 

 

 
Fig.9. Suggested operation and markets participation for ES 
 

E. Optimum portfolio considering risk aversion 

If ES owners’ risk aversion is considered, the optimum 

portfolio can be determined by the risk aversion or their 

expected return during each period. Assuming there are two 

types of ES owners, A and B, who have different risk aversion 

levels. The portfolio for them will not change responding to the 

ES capacity. ES owner A prefers lower, but safer returns and 

ES owner B prefers higher but risky returns, where the risk 

aversion for them are assumed to be 𝜎𝐴 = 0.46 and 𝜎𝐵 = 0.74. 
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Fig.10. Optimal portfolio for different aversion of the storages at 08:00 

 

Taking two cases for demonstration at 08:00 and 14:00, where 

ES has two markets and three markets portfolios respectively. 

Based on the Lagrange function expressed in equations (25-29), 

the optimum portfolios for these two ES owners at 08:00 are 

determined in Fig. 10. For Storage A, its optimum point is with 

50% of capacity in the energy market and 50% in the FR 

market. The expected return value for this ES is 𝐸𝐴 = 0.66 at 

this time period. For Storage B, it should put 80% capacity into 

the energy market and 20% into the FR market, with an 

expected return of  𝐸𝐵 = 0.91.  
At 14:00, the portfolio of ES with different risk aversion, the 

results are shown in Fig.11. Storage B has 30% capacity in the 

energy market and 70% in the FR market. Since the risk 

aversion of Storage A is 𝜎𝐴 = 0.46, if the expected return is still 

kept as 𝐸𝐴 = 0.66, it should put 35% of capacity in the energy 

market, 40% in the FR market and 20% in the DNO’s market. 

The optimal portfolio for this storage is to put 35% of the 

capacity in FR market and 65% in energy market which can 

make a higher return from 𝐸𝐴 to 𝐸𝐴
′ = 0.74. 
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Fig.11. Optimal portfolio for different aversion of the storages at 14:00 

F. Performance comparison 

This part compares the benefits from the portfolio theory with 

those from the approach assuming that the storage can only 

participate in one market: DNO’s market (Scenario 1), energy 

market (Scenario 2) or FR market (Scenario 3). The results from 

the comparison for Storage A at 14:00 pm are in TABLE IV. 
 

TABLE IV 
COMPARISON BETWEEN PROPOSED PORTFOLIO AND SCENARIOS 

APPROACHES FOR STORAGE A 
 

 Portfolio 

Theory 

Scenario 1 

(DNO’s) 

Scenario 2 

(Energy) 

Scenario 3 

(FR) 

DNO’s 

market share 
0% 100% 0% 0% 

Energy 
market share 

65% 0% 100% 0% 

FR  

market share 
35% 0% 0% 100% 

Expected 
return 

0.74 0.23 0.54 0.95 

Risk 0.46 0.52 0.38 0.97 

 

 At this time, the proposed portfolio theory generates higher 

expected return than putting 100% ES capacity in the DNO’s 

market or the energy market. The expected return is two times 

higher than that from Scenario 1, i.e. 100% capacity in DNO’s 

market. Although the risk is small in Scenario 2, compared with 

the proposed portfolio theory, the Storage A prefers higher risk 

for increased benefits. On the other hand, although the expected 

return in Scenario 3 is 30% higher than that from the portfolio 

theory, the risk is more than two times higher, with the value 

0.97, which is not acceptable for Storage A. 

V. CONCLUSION 

This paper designs a new portfolio theory for optimal ES 

capacity allocation in three markets: energy arbitrage, ancillary 

services, and Distributed Network Operator’s (DNO’s) market. 

It can help ES owners raise their expected profits and reduce 

risk. Through extensive demonstration, the following key 

findings are obtained: 

 The risks and expected return of different markets can be 

efficiently reflected in the portfolio theory, which provides 

more options for ES to gain benefits; 
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 The risks and expected return from different markets are 

converted to price signals for ES to allocate the capacity share 

in the three markets. 

 The markets ES can participate in are different regarding its 

risk aversion. Although the expected DNO’s market is high, 

ES cannot put all capacity in this market considering the 

associated high risks; 

 The optimum portfolio among the markets for ES capacity 

share is on the efficient frontier, which provides the maximum 

return for the ES at a certain risk aversion level. 

This work is beneficial for ES to manage profits and risks by 

participating in different markets. In addition, it provides a solid 

basis for further dynamic ES operation in the local energy 

market to enhance the benefits for both ES owners and network 

operators. There are many important areas to be studied in 

market modelling, algorithm design, market uncertainty for 

storage optimisation. The authors will focus on: 1) designing 

dynamic storage operation in the local energy market to 

enhance the benefits of both storage owners and network 

operators; 2) developing robust optimisation based algorithm to 

include uncertainties in market prices and reliability 

characteristics that can affect decision making for storage; 3) 

comparing the potential of different storage in participating in 

markets using the portfolio theory, such as EVs, large-scale 

energy storage, aggregators, etc.; 4) conducting more extensive 

comparison on the benefits from the proposed approach with 

other approaches. 
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