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Carbon-Oriented Electricity Balancing Market
for Generators and Flexible Loads

Shuang Cheng, Member, IEEE, Chenghong Gu, Member, IEEE, Xinhe Yang, Furong Li, Senior
Member

Abstract—In the transition to a low-carbon economy, the
market share for renewable energy is significantly increasing and
gradually substituting traditional energy. The high renewables
penetration results in increased balancing action volumes due to
system stability requirements. The balancing market (BM)
primarily turns down renewable generation and turns up
traditional carbon-intensive generation in response to real-time
energy imbalance. Existing dual-stage market mechanisms
conflict with the carbon reduction trajectory by implementing
balancing actions regardless of their carbon footprint. This paper
proposes a novel balancing market model by evaluating the
negative externality of carbon to coordinate the environmental
targets in both markets. Firstly, mathematical models are
formulated for key participants in the dual-stage market. The
emissions of dispatchable generators and flexible loads are
distinguished by their operation modes and flexibility types,
respectively. Carbon signals are incorporated into their bid/offer
pricing models through the carbon emission flow (CEF) model. By
integrating these incentives for carbon reduction, the dual-stage
market model is formulated to minimize economic and
environmental costs. Simulation results demonstrate that the
proposed model effectively reduces carbon emissions in the BM
and strike a balance between cost-efficiency and environmental
benefits. It enables system operators to incentivize decarbonized
energy resources in both stages.

Index Terms—Balancing market, carbon signal, decarbonized
energy resources, low carbon.

NOMENCLATURE

Indices and sets

g,Q¢ Index and set of electricity generation units
t,Qf Index and set of scheduling time

b,OB Index and set of buses

Lot Index and set of transmission lines

¢’ s’ Set of inflexible and flexible generation units
QFft Set of flexible load aggregators

Variable

Crax Carbon tax

c{ L, c{ ¢li El];es gpward and downward capacity of EV or

Cs, Coars Cear Fuel cost, variable cost and carbon emission

cost of generators

D Electricity demand

etf t Energy stored in EV or BESS at time ¢

Eg rltd Energy stored in EV or BESS at the end of its
charging period

fP, fa Active and reactive power flow through the

transmission line
pgilg , pg%’er Bid and offer prices for BM

Ptf L The shifted power of flexible load at time ¢

plt plt Maximum and minimum charging power of

max’ min
EV or BESS

P Maximum power output of generation units

prt Total shiftable volume of flexible load
submitted in the BM

Py, P, Electricity outputs of generation units in the
day-ahead dispatch and real-time balancing
process

Myiq, Mogs Bid and offer price multiplier

tr The actual continuous working time of flexible
load

[to, tenal The shiftable time interval of flexible load

Ton, Toff Startup and shutdown time for generators

U; (), U; () Head and tail bus voltage of line i, j at

distribution system

ymin ymax Bus voltage limit

vl A binary variable showing the startup state of
the flexible load

x AKDE independent variable

Agowns Aup Downward and upward volumes for generators
participating in the balancing market

T Ramp rate

) Binary variable for upward or downward
regulation

Pg Carbon intensity of electricity generation
(tCO,/MWh)

n/t DT Charging efficiency and duration of EV or
BESS

Parameter

AG Bus-electricity line and bus-generator
incidence matrix

on  poff Minimum startup and shutdown time for
gmin> ‘g min

generator g

UoS Use of system charge

Th—j»Xp—j Resistance and reactance of line b, j

u Generation efficiency

I. INTRODUCTION

g I YHE worldwide zero-carbon targets inevitably necessitate
decarbonizing the electricity system with increasing
renewable energy resources. The European Union aims

to eliminate net EU emissions by 2050, from 1990 levels [1].

To meet the target, the Commission has set an ambitious target

to raise the share of renewable energy to 40% of final

consumption by 2030, which means it grows by 20% from 2019.

To achieve net-zero emissions by 2050, the UK’s Committee of

Climate Change concluded that there is scope for the

penetration of clean energy to reach 30 - 45% of all energy

consumption in the UK by 2030 [2]. The US Energy

Information Administration also reveals that renewables grow

around one percent annually to their share of the nation’s
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electricity supply, which could be one-third of US electrical
generation in 2030 [3]. Even though the increasing share of
low-carbon  electricity  generation  brings  substantial
environmental benefits, it poses significant challenges to
network operation, planning and energy trading.

The remarkable growth of renewable energy resources (RER)
and gradual phase-out of traditional carbon-intensive plants in
the wholesale market seems to align with the decarbonization
process. Nevertheless, high RER uncertainties increase the
balancing action volumes due to system stability requirements.
The system operator (SO) needs to turn up traditional flexible
plants through balancing mechanism actions, which unwinds a
significant proportion of the market. Considering the high
carbon intensity of conventional flexible plants, total carbon
emissions accordingly increase in the balancing market. During
the early lockdown in the UK, electricity demand dropped by
around 15% compared to the previous year. It has resulted in
frequent periods of high renewable and low thermal generation,
causing enormous carbon emissions from BM actions, which
make up 15-25% of total power sector emissions.

The contradiction of high renewable penetration in the
wholesale market and considerable carbon output of BM
actions impedes the low-carbon economy. Even though
facilitating RER penetration has been deeply investigated, the
environmental trade-off between renewable shares in the
wholesale day-ahead (DA) market and decarbonized balancing
actions is generally ignored. Therefore, reasonable incentives
and market designs are required to ensure both markets are
consistent with the Net Zero carbon reduction trajectory.

Tremendous efforts have been devoted to addressing
operation and planning problems with wide utilization of
renewables, e.g., probabilistic power flow modeling [4] and
flexible investment decision making [5]. Multiple models have
been formulated to increase renewable generation and
materialize ambitus carbon targets. Paper [6] develops a data-
driven model to analyze the operation mode variety under high
renewable shares of the energy mix. Results indicate that the
dispersion and time variation of operation mode increase with
the growth in RER penetration until saturation. To
accommodate more RER in the power system, paper [6]
concludes that sufficient flexible resources and corrective
measures are required to ensure the growing frequency of
operation mode switching in system operation. Paper [7]
construct a unit commitment model to take advantage of
demand-side flexibility (DSF) by analyzing the effects of
carbon emission trading on the generation schedule. It
integrates the carbon emission cost of generators and vehicle-
to-grid (V2G) in the unit commitment model. Results verify
that the participation of DSF in the power supply-demand
balance decreases as expected.

Reference [8] capitalize on the virtual power plant
(VPP) ,which aggregates distributed renewable energy and
controllable loads to improve the utilization capacity of
renewable energy. An optimal bidding strategy of VPP is
proposed through carbon-electricity integration trading and
user satisfaction. Reference [9] presents a demand-side
management approach for carbon footprint control. It benefits
both the demand and generation sides by supporting the carbon
policy and engaging with the demand adjustment process. Paper

[10] designs a conjectural-variations equilibrium model to
reach the equilibria in electricity, natural gas, and carbon-
emission markets. The equilibria reached in those three markets
varies with carbon-emission trading and transmission
constraints. However, limited efforts have been devoted to
managing emissions in the DA and the balancing markets
considering their conflicting goals.

Compared with extensive research of RER utilization in the
DA market, the carbon emission issues in the balancing market
are relatively under-researched [11]. There exists some research
on BM bidding strategies and settlement pricing schemes with
high RER penetration. Paper [11] analyses the fundamental
drivers and the predictability of imbalance prices in the British
balancing market. It quantitatively assesses how the key drivers,
i.e., wind deviation, solar deviation, demand forecast errors,
scarcity variables, and lagged imbalance volumes impact the
imbalance prices. Paper [12] studies the bidding behavior in the
balancing market with increasing wind and photovoltaic (PV)
by econometric analysis. Results demonstrate the impact of
updated forecasting errors of variable generation on the
imbalance price changes. Paper [13] proposes a dual-pricing
scheme by regarding controllable production units as “active”
participants and renewable units as “passive” actors. The
objective is to maximize the profits of VPPs by optimizing their
active and passive participation in the day-ahead and balancing
market, considering renewable and controllable units. Paper [14]
designs a hierarchical market structure for local microgrids to
provide ancillary services by participating in the balancing
market. It optimizes the interactive performance of distribution
system operators and microgrids by minimizing their
operational costs. Paper [15] proposes a dynamic energy
balancing cost model for the DA market to solve wind
uncertainty. It models multiple types of costs due to wind and
traditional generation uncertainty, providing an effective tool
for acquiring techno-economic benefits. However, these
models all ignore the carbon footprint of balancing actions and
only investigate their economic aspects. A large share of
renewable generation capacity leads to economic and
environmental pressures for real-time balancing. Given that the
environmental effects and balancing costs of BM actions are not
always consistent, a comprehensive analysis is of great
significance to facilitating low carbon transitions in the power
sector.

Flexible resources are the main BM measures, categorized
as generation flexibility and demand-side flexibility (DSF).
They are indispensable tools to deliver cost-effective
decarbonization in the power sector. However, they have
distinct carbon-emitting characteristics, ignored in most papers.
Existing literature emphasizes quantitatively analyzing
economic values when optimizing BM actions. Paper [16]
proposes a systematic method to evaluate the flexibility of a
given day-ahead scheduling model, considering fast ramping
units (FRU), hourly demand response (DR), and energy storage
in power system operation. The flexible resources are assessed
based on their ability to address the uncertainties linked with
wind energy production (WEP). Numerical results demonstrate
that the largest value of the proposed flexibility index is
obtained by combing FRU, hourly DR, and energy storage.
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Remarkably, among all investigated flexible resources, the

hourly DR contributes significantly to the system flexibility.

Reference [17] explores the capability of current and potential

accessible future residential DSF (e.g., EVs. Stationary

batteries and storage heaters) to reduce the energy supply costs
of a flexibility aggregator with highly penetrated RERs. Results
demonstrate that even a low saturation of flexible demand can
reduce the generation costs in microgrids. Despite the fact that
flexible resources play an important role in integrating RER and
thus achieving the carbon reduction trajectory, their carbon
intensities vary greatly. For instance, during the startup and
shutdown conditions, excessive COz is generated from flaring

[18], which is considered a major greenhouse source of utilizing

fully flexible generators.

Therefore, utilizing them indiscriminately is unlikely to align
with the Net Zero target. To the best of the authors’ knowledge,
there is virtually nothing in the literature to make a
comprehensive and systematic analysis of flexible resources in
BM considering their carbon footprint. The major drawbacks
and gaps of the existing literature are: 1) They propose multiple
operational methods and technologies to accommodate high
renewable penetration, e.g., BESS and DSR. Nevertheless, the
economic and environmental challenges embodied in the sharp
rise in BM actions are not analyzed and solved from the market
point of view. 2) The absorption of RER in the day-ahead (DA)
market greatly raises BM action volumes from carbon-
insensitive flexible generators, which impedes decarbonization
in the power sector. No quantitative models have explicitly
striked a balance between them. 3) Most research focuses on
ensuring cost-effective, flexible resource capacities by
integrating multiple technologies, e.g., BESS, intermittent
generation, and EVs. Nevertheless, no models evaluate carbon
emissions in procuring flexible capacity to favor decarbonized
BM actions.

To fill the research gaps, this paper proposes a novel
balancing mechanism to simultaneously capture the carbon
footprint of energy resources in the dual-stage market. Unlike
existing research, this paper will tap the potential of BM actions
in reducing carbon emissions from a market perspective. The
main contributions of this paper are as follows:

o It for the first time quantitatively analyze both economic and
environmental costs of BM actions due to high renewable
penetration in the DA market. Existing literature emphasizes
facilitating RER in power system operation, e.g., solving the
unit commitment problems [8] and ensuring the high
frequency of operation mode switching [6]. Even though
some papers [11] [12] analyze the impact of renewables on
the balancing mechanisms, they only investigate their
economic values. Ignoring the environmental costs would
run counter to the low carbon development since economical
BM actions (e.g., flexible thermal generators) tend to have
high carbon intensity. To coordinate the environmental
targets in the dual-stage market, the proposed method
classifies BM actions through their flexibility capacities and
incorporates their carbon emissions in the balancing costs. It
provides useful insights on evaluating the externality of
carbon in the BM, incentivizing flexibility capacity
compatible with Net Zero.

o [t for the first time distinguishes the generator emissions over
normal, startup and shutdown operation in the electricity
market. Conventionally, the carbon emission intensities of
generators are set as constant regardless of their operation
modes [19]. With increasing renewable supply fluctuations,
thermal plants are more frequently started up or shut down
in the real-time balancing market. The proposed market
strategy utilizes EEAF (emissions estimate adjustment factor)
to estimate the carbon emissions during the startup and
shutdown periods.

e It achieves the trade-off of RER penetration in the DA
market and the BM action volumes in terms of both
imbalance costs and carbon emissions. If the incentives for
carbon reduction in both markets remain the same, emissions
in balancing services are unlikely to conform to carbon
neutrality. Existing literature [11] [20] [21] undertakes
system balancing based on cost minimization with
increasing intermittent renewable generation. They ignore
the impact of high renewable penetration on the carbon-
emitting growth in BM. The proposed model integrates
carbon signals in BM to further unlock the emission
reduction potential.

e It provides clear categorization and methodology for all
flexibility services regarding carbon targets and cost
efficiency by incorporating their carbon costs into their bids
and offers. Most papers use DSF to address real-time
uncertainties, bypassing their environmental contributions.
Since flexible generators tend to have higher carbon
intensities, existing models conflict with the carbon
reduction trajectory by facilitating flexible generators and
DSF indiscriminately in the electricity market. The proposed
market design accommodates both their economic and
environmental values when bidding in the balancing market,
enabling system operators (SOs) to incentivize the
decarbonized flexibility in the power sector.

The remainder of this paper is organized as follows. Section

IT formulates the mathematical models of the key input data of

the designed market. Section III demonstrates the market

structure and clearing mechanisms. Section IV illustrates the

implementation of the developed market model. Section V

validates the efficacy of the proposed model. Section VI

summarizes the key findings and conclusions of this paper.

II. MATHEMATICAL FORMULATION

This section presents the detailed mathematical formulation
of key input data in the dual-stage market, including the
bid/offer pricing, flexible resource modeling, and uncertainty
analysis of net imbalance volumes (NIV).

A. Bidding Price in the DA Market

This paper utilizes the extended short-run marginal costs (E-
SRMC) for multiple generators to compete in the DA market.
Generators submit their electricity generation prices based on
their short-run marginal cost (SRMC) in the day-ahead process.
SRMC represents the change in total generation cost from a
small output change in units of £MWh. Generally, SRMC is
mainly given by the underlying fuel prices and the carbon
emission cost [22]. E-SRMC is extended from this concept by
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incorporating more factors, e.g., the Use of System (UoS)
charge. It is defined as the sum of the non-fuel variable cost
(including the transport costs, the port costs, and the average
startup costs), the carbon price, the UoS charge and the
efficiency-adjusted fuel cost, as shown in equation (1) [23].

C
E — SRMC =Zf+Cyar+U05+Ccar .y )

Cear = Pg * Ctax (2)
where the first term in (1) represents the efficiency-adjusted
fuel cost. The coal and oil prices are calculated as a three-
monthly average. The second term denotes the non-fuel
variable cost. The third term means the UoS charge, which is
used to recover the cost of the day-to-day operation of the
transmission system [24] [25]. The final term denotes the
carbon emission cost, calculated by multiplying the carbon
density p, of generator g and the carbon tax c;q,-

B. Flexible Resource Modelling
Flexible generators and loads can participate in the BM.

Nevertheless, their flexibility characteristics are vastly different.

The main parameters to evaluate generation-side and demand-
side flexibilities are demonstrated below.
1) Generation flexibility
Conventional generators' flexibility depends on their
generation characteristics, e.g., ramp rate. For instance, nuclear
plants are generally regarded as inflexible since they cannot
readily and securely be ramped up and down to keep the system
balanced. In comparison, some high carbon-intensive
generators (e.g., fossil-fuelled generators) are much more
flexible and can be dispatched economically and securely. This
paper uses the following parameters to evaluate generators’
flexibility as shown below:
e Ramp rate: 1t is the average speed at which generators can
increase or reduce their output between the peak and valley
levels per hour (MW /h) [26]. It can be mathematically
expressed as:
IPt(g) = P (9)| <7, Vg € 0°". 3
where Pt(g) is the re-dispatched power output of generator g
at time t during the balancing process.
e Capacity: The regulation capacity of generating units
denotes generators' maximum upward and downward power
output under secure operation conditions. It can be expressed
as:
Pdown < P(f(g) - Prt(g)'
if PS(g) > Pf(g),¥g € Q"
By > BH(9) — P5(9), 5)
if Pt(g) > Pi(g),¥g € Q"
where P, and ﬁp represent the downward and upward
capacities, respectively. Pf(g) defines the maximum
redispatched power output of generator g at time t during the
balancing process, while P{(g) is the original production of
generator g that is agreed one day ahead to be delivered.
o Startup and shutdown time: Startup time refers to the time
between mechanical completion and the point at which the plant
reaches its operating capability. The shutdown time represents
the desynchronization of the generator from the grid frequency
[27]. They can be formulated as :

“)

T > Th T > T vg e 6", (6)

gmin’ fg g,min’

2) Load flexibility

In this paper, flexible loads refer to electric vehicles (EV)
and battery energy storage systems (BESS). They are
aggregated to participate in the balancing market. To capture
the characteristics of load flexibility, this paper models their
availability (i.e., time flexibility) and adjustable capacity (i.e.,
power flexibility) as follows:
e Time availability

Time availability/flexibility of aggregated load denotes that
they are shiftable during a certain interval [28]. Their energy

consumption behaviors are modeled in equations (7) and (8).
t

pli= ), ltpn ™
T=t—tp+l
tend—tf1
Z ol =1 ®)
T=tg
where ptf ! is a continuous variable indicating the shifted power
1l

of flexible load at time slot ¢; v; " is a binary variable showing
the startup state of the flexible load; t;, denotes the actual
continuous working time of the flexible load; P/ is the total
shiftable volume that flexible load aggregators submit in the
BM; [ty, tenq] is the shiftable time interval. Equation (7)
demonstrates that the shifted power is equal to P/! if the time
slot t is within [t + tr; — 1, teng — tr]. Equation (8) indicates
that the load can be turned on only once during the available
working time interval.
e Adjustable Capacity

Power flexibility means that the load volumes are adjustable
within a range, which is modeled as follows:
L =min{phax = pl', (Elyg — €l') /0T} ©

I (10)

- pmin

t
1 l
el' = pl'-nrtopr
=1

where etf "is the total energy stored in EV or BESS; c[_ lll and

cg ‘11 are the adjustable capacity. Equation (9) indicates that the

upward consumption capacity depends on the maximum
charging power and the energy constraints of EV and BESS.
Equation (10) demonstrates that the downward capacity
depends only on the minimum charging power. Equation (11)
indicates that the total stored energy is subject to the duration
of the charging period, efficiency and power.

C

fl_ Sl
Cta = Dt

(11)

C. Carbon Emission Pricing for Flexible Resources

Apart from the physical characteristics of flexible resources
in the BM, their economic efficiency and carbon footprint are
also different. This part accommodates carbon emission pricing
for dispatchable generators and flexible loads to incentivize
decarbonized BM actions.

1) Flexible Generators

Unlike the DA market in which the carbon intensity is
directly integrated into E-SRMC, the BM accepts both bids (i.e.,
decrease in generation/downward regulation) and offers (i.e.,
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increase in generation/upward regulation) from flexible
generators. The low carbon economy entails that the offers of
low carbon-intensity generators are favored, while the bids of
high carbon-intensity generators are preferred. Additionally,
compared with normal operation, emissions have been found to
spike, sometimes dramatically when the generators are started
up and shut down [29] due to complicated reasons, e.g.,
‘memory effect’. The following equations are formulated for
flexible generators to fairly capture their carbon emissions
during normal, startup and shutdown operation.

Eng(AF,) = Ex (AR + Ext (AR) + B3 (8R)  (12)
Cc?%g (ARg) = Ertng (APg) * Ctax (13)

where E,’,llg, E,Snlfq, E,Sn‘fq are the normal, startup and shutdown
emissions of generator g due to output variation AF; Efng is
the total carbon emissions during the BM period; Cfé‘;’g is the
carbon cost of upward or downward generation AP. Equation

(12) indicates the total emission from the three operation modes.

Equation (13) calculates the total carbon emission cost.
The generator emissions under different operation modes are
formulated in (14)-(16).

Equ*(AFy) = AP, * EFg (14)
EFg = (EF,,, X EEAF)/(1 — PCDE) (15)
Eng(AFy) = pg * AR, (16)

where E,S,:;Sd(Afb) (e, Exqt (AP,) or Ex (AP;)) represents

the actual carbon emissions of corresponding output increase or
reduction during periods of startup or shutdown operation; EFy
is the adjusted emission factor; EFy,  is the average emission
factor; EEAF is the emission estimate adjustment factor; PCDE
is the pollution control device treatment efficiency.

Equation (14) represents that the actual emission change is
the product of the adjusted emission factor EF; and the
corresponding production deviation AF, . Equation (15)
provides the emission calculation by modifying the normal
emission factor for the abnormal periods by the efficiency of
the control device. The carbon emission during startup and
shutdown are calculated through the EEAF method in [30], as
shown in equation (14) and (15). Equation (16) presents the
carbon emission under normal operating conditions.

2) Flexible Load

As illustrated in Section B, the load flexibility can be
categorized as shiftable load with flexible working time and
adjustable load with flexible demand volumes. The total energy
consumption for shiftable loads during the BM period remains
unchanged regardless of the final operation schedule. Thus,
their flexibility does not cause changes in the total greenhouse
emissions, which can be mathematically expressed as below:

Esf=0 17)
Coarg =0 (18)

where E3! is the total carbon emission change of shiftable loads
before and after BM; CZy_, is the corresponding carbon cost.
In comparison, the adjustable load can induce a variation of
demand consumption. Thus, the carbon emission will
accordingly change after BM. The carbon emission flow (CEF)

model [31] is used to denote the node carbon intensity by
proportionally allocating the carbon emissions from the energy
generation to the demand side, which can be expressed as
shown in (19).
NCI,
deﬂ‘; Py (g) * Pg + Zj:(b,j)eﬂ? |fbj| pll;;_ne

ZgEQG Po(g) + Zj;(b,j)egﬁ*' |fbj|
where NCI,, is the carbon intensity of node b; Qf* is the set of
transmission lines that inject active power into bus b; Py(g) is
the power output of generator g in the DA market; p, is the
emission intensity of generator g; f; is the power flow from

(19)

bus b to j; p,ﬁji-"e is the branch carbon intensity, i.e., the

emissions per MW h along the power flow of the line b — j. All
transmission lines share the same assumption that the branch
carbon intensity p'l;j-”e outflowing from a bus is equal to the

node carbon intensity (NCI) of that bus [31], as illustrated in

(20).
Line _ {NClb, if frj >0
Poi ZANCE,  if fo; <0
Thus, the changed carbon emissions of adjustable loads due
to demand variation AD,, and the related costs can be calculated
through equations (21) and (22), respectively.

(20)

EZ,(AD,) = AD,, x NCI, (21)
Cc}:?t%al (ADb) = Eﬁnal (ADb) * Crax (22)

where Efy,(AD,) and CGt  (AD,) are the emission and cost
changes, respectively.

D. Bid/offer Prices in the Balancing Market

The real-time bid/offer prices show the desired prices to
reduce/increase  output for flexible generators or
increase/reduce demand for flexible load aggregators in the BM.
They are the sum of the operation and carbon costs or incentives.
The operation cost is formulated based on the bid/offer
multipliers that National Grid introduces in the BID3 that is an
economic dispatch optimization tool presented in [32]. The
carbon costs and incentives for flexible generators, shiftable
loads and adjustable loads can be calculated through equations
(13), (18) and (22), respectively. Considering their economic
and environmental values, their final bid/offer prices are
modeled in (23) and (24).

BM Cf BM
Pvia = E + Cvar + UoS | * Mbicl + Ccar (23)

C
f
pg}//[’er = (7 + Cvar + UOS) * Moff + Cfaﬂg (24)

where My;q and M, are the bid/offer multipliers. The first
term indicates that the operation cost is the product of SRMC
and the multiplier. The second term denotes the carbon costs or
incentives. To parameterize multipliers for different flexible
resources, this paper utilizes historical data of balancing actions
by the system operator (SO). The selected five years of data
include bid/offer volumes and costs from 2011/12 to 2015/16
[32]. The multipliers are calculated in different categories
according to the flexibility types. By grouping every bid/offer
action, they can be calculated as shown below:
Yearly average bid cost

= 2
bid ™ Yearly average SRMC 25)
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E. Uncertainty of Net Imbalance Volume

It is assumed that NIV is caused by the forecast error of
variable generation, i.e., PV and wind. The resulting NIV can
be positive or negative, referring to the power surplus or
shortage, respectively. The cumulative expected method is used
to capture the uncertain NIV to be balanced through BM, as
shown below:

NIV, , = f

0

NIV, , = f

0
where NIV, and NIV, , are the positive and negative
cumulated expected NIV at bus b, respectively; f(x) is the
probability density function (PDF) of PV and wind forecast
error; T is the duration of the scheduling time; Ca, , and Ca,, ),
are downward and upward regulating capacity from flexible
resources at bus b. The PDF of the generation forecast error is

Cad,b

x-f(x) -Tdx @7

Cau,b

x-f(x) Tdx %)

modeled as a normal distribution with zero means, i.e., N (0,
a?) [33].

III. MARKET MODEL FORMULATION

This section introduces the dual-stage framework composed
of day-ahead and balancing markets. It is assumed that both
markets operate at 30-minute intervals. In the first stage,
generation capacity is dispatched in a least-cost fashion based
on load forecasting. In the second stage, flexible generation and
demand are re-dispatched to respect additional constraints, e.g.,
network constraints and NIV uncertainties.

A. DA Market

To align with the actual market models that are used by most
European countries [34], this paper assumes that the
transmission network constraints and constraints on generating
units (i.e., startup, shutdown, and ramping constraints) are not
taken into account in the DA market, but solved through BM
actions. This clearing mechanism indicates that the energy
balance is satisfied as long as the total generation meets the
demand, regardless of their geographical location. Thus, the
dispatch process is formulated as a least-cost unconstrained
schedule (LCUS) problem, assuming that the power system can
deliver electricity wherever it is needed. This process can also
be considered as a merit order stack model that ranks and
dispatches available generators in order of their submitted E-
SRMC. Assuming that there are no transmission constraints, the
objective of DA dispatch is to minimize the total electricity
production cost considering power balance constraints, as
shown below:

MinCt, = Z ESRMC(g) - Pt(g),Vg € Q°, vt
g

(29)
ear
Dt = ZP(f(g),Vt eq’ (30)
g
0<P5(g9) <P(9) 31

Equation (29) minimizes the total cost of all generators based
on their E-SRMC:s for each scheduling time interval. Constraint
(30) ensures the power balance of the total generation output
and the predicted demand. Constraint (31) enforces the power
output limit of generators. According to the pay-as-clear rule,
the DA price is determined through the most expensive
generating set required to operate in each half-hour, i.e., the
highest E — SRMC(g) among those generators whose P{(g)
are more than zero.

B. Balancing market

After DA schedules, the TSO (transmission system operator)
operates a real-time redispatch process, e.g., a system balancing
market [34]. System balancing refers to the process that a TSO
ensures the energy balance in and close to real-time after the
gate closure [35], considering both network constraints and
forecast deviations in supply and demand. Deviations from the
nomination of generators in the DA market, and load
forecasting errors inevitably cause NIVs in the balancing
market. Moreover, due to constraints on the transmission
network, generation [32] should be restricted in some domains
and increased in other areas to meet boundary constraints and
maintain power balance. Therefore, the re-dispatch procedure
not only supports the power balance, but also ensures a secure
real-time operation of the power grid.

TSO aims to minimize the total balancing costs by
transforming the day-ahead optimal schedules into real-time
schedules to enable a secure grid operation. The binary variable
6 is introduced to represent the regulation types (i.e., upward or
downward) of flexible generators and DSF aggregators from a
start position, i.e., the initial day-ahead schedule and load
forecasting.

The objective function of BM is as shown in (32), i.e.,
minimizing the total cost to solve energy imbalance and system
constraints.

Min Cgy = pia - (PH(9) — P§(9))
geatFuaFL
(1-6)+ poB}//[’er
-(B'(9) - Pi(9) -6
The optimization model is subject to the operational
constraints of flexible resources and system constraints. The

former constraints have been demonstrated in equations (3)-(11)
in Section II-B, while the system constraints are shown below:

Z GbgP‘rt(g) + Z Ablfi,l; = NIVb + Dlg,Vb

(32)

geae leql (33)
e0f vteql
D GogQie)+ ) Aufih = NIV, + Di, b
geqt leql (34)
e0f vteql
re(t, )
foic: Tp—j S " Xp-j
= |U,(t)] — 2L L Vb, | (35)
() U0 J
e0f vteql
foje Xp-j = foje " To=j
Im{U;(t)} = - =L L Vb, j
YO} RG] ED

€ QB vteql
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umin < Re{U; (1)} < Uma* (38)
~Priow < Priow; < Priow, VL € O (39)

Constraints (33) and (34) ensure the nodal active and
reactive power balance, respectively. Constraints (35)-(37)
calculate the bus voltage magnitude of line b —j, while
equation (38) demonstrates the boundary of voltage capacity,
which is set to [0.95 pu, 1.05 pu]. Equation (39) illustrates the
power capacity boundary for transmission lines.

Considering constraints (35)-(36) are nonconvex [14], they
are simplified by assuming the voltage magnitude U, (t) as 1
p.u. and the bus voltage angle Im{U,(t)} as 0 rad. The
constraints can be rewritten as shown in (40)-(41).

UoS charge Shut-down time '

Generation forecast ! |

! Flexibility model !
FoTT oot | I o 1
i+ Fuel cost i : Ramp rate |
i e Variable cost ' 1+ Capacity . '
i+ Carbon cost ' E *  Start-up time E
i ' . |
i '

Generation flexibility
!
|

* Bidding price of generators
* Committed generating volume
I

Re{Uj(t)} = Re{U,(t)} — (fbp_j,t "Tp-j t qu—j,t ’
xp_;).Vh,j € OB, vt € "
Im{Uj(t)} = _(fbp—j,t "Xp-j T qu—j,t )
Tp-;).Vbh,j € OB, vt € Q"

The dual-stage market model is implemented in Fig.1. The
day-ahead dispatch market is cleared given the predicted
demand, the bidding price and committed generating volumes
of all generators. The optimal DA schedule is obtained through
Merit Order. Flexible generators and load aggregators
participate in the real-time balancing market through flexibility
models and carbon-based bid/offer prices. Respecting system
constraints and operational limits, the NIV is solved in real time
to optimally redispatch flexible generators and DSF resources
to minimize carbon emissions and balancing costs.

(40)

(41)

LTI
) Carbon emission pricing E
i model for flexible generator |
i Real time bid/offer prices E
i based on multipliers |

1) Optimal dispatch

v N for flexible
. - N . enerators and
Merit Order y . ) System Constrained g
Day-ah . 4 - \ .
a.y ahead Optimal Schedule |/ Real t@e \ Real-time Schedule DSF resources
dlspatch = —— \‘ Balancmg ;‘)_ ________________________ =
Market " Market y |  2) Minimized
. i e I balancing costs
A I ; Carbon emission pricing ! . and carbon
I | E model for flexible load ¢ ! emissions
Demand forecast Demand flexibility - ) !
T !—Real time bid/offer prices i _I
oo momodo oo . | based on multipliers 1| Uncertainty of Net
¢ Flexibility model i 'socococssscocssscsosoosd Imbalance Volume
t+  Time availability |
!« Adjustable Capacity !

Fig. 1. Implementation of the proposed dual-stage market model

IV. CASE STuDY

A. Test System Description and Modelling Parameters

The presented dual-stage market model is verified on a
modified IEEE 39-bus system. The power system is supplied
by coal-fired, OCGT (open cycle gas turbine), oil-fired, nuclear,
PV, offshore and onshore wind, and biomass generating units.
The total generation capacity is 8000 MW, while the average
predicted demand is 6254.2 MW. The aggregated shiftable
loads are located at buses 1-5, while the fully adjustable loads
are at buses 6-10. Their parameters are listed in Table I-II. The
predicted daily generation curves of PV, offshore and onshore
wind turbines are shown in Fig. 2. The offshore and onshore
wind generators dominate the overall renewable energy supply.
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Fig. 2. Day-ahead forecast power of PV, offshore and onshore wind turbines

TABLEI
PARAMETERS OF ADJUSTABLE LOAD
Parameter ALl AL2 AL3 AL4 ALS
Upperadjustable 50, 4 500 440 500

limits (MW)
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Lower adjustable
limits (MW) -200 -300 -500 -440 -500
TABLEII
PARAMETERS OF SHIFTABLE LOAD
Parameter SL1 SL2 SL3 SL4 SLS
Power (MW) 200 350 500 440 450
Energy (MWh) 40 50 30 40 30
Available period
(half hour-half hour) 8-20 12-40 10-36 8-44 12-40

B. Bid-offer Pairs in the Dual Markets

The E-SRMC for thermal and renewable generators are
calculated according to equation (1) and demonstrated in Table
III. The table shows that E-SRMC consists of efficiency-
adjusted fuel cost, non-fuel variable cost, UoS and carbon price.
The non-fuel variable cost for PV and wind are calculated by
referring to the Renewables Obligation Annual Report [36].
In terms of other generators, their variable costs are defined
from the renewable energy subsidies as illustrated in
Electricity Generation Costs [37]. It is assumed that the UoS
charge is the same for all generators. Since the fuel cost and the
variable cost for PV and wind generating units are zero, they
have very low bidding prices in the DA market. Developed
from E-SRMC and empirical multipliers, the bid/offer prices in
the BM are time-variant. They do not reflect any imbalance
exposure but would reflect fuel, variable and carbon costs, etc.
Since the downward regulation of fully flexible generators
contributes to carbon reduction, the final bid price paid to SO is
lower than that without considering carbon emissions over
rescheduling. Comparably, the final offer price that these
generators would be paid by SO to increase their output exceeds
the offer price bypassing carbon costs in the BM. WTs do not
participate in the BM as fully flexible resources. Instead, they
only have the capability to reduce generation with a loss of
Renewable Obligation Certificates (ROCs).

TABLE III
E-SRMC FOR DIFFERENT GENERATION TYPES IN THE DA MARKET
Generator Efficiency-  Non-Fuel TNUoS Carbon E-
adjusted variable (£/MWh) price SRMC
fuel cost cost EMW  (£/MW
(£/MWh) (£/MWh) h) h)
Coal G1 2.22 3.38 1.53 16 23.13
OCGT G2 2.88 0.08 1.53 8 12.49
0Oil G3 15.38 1 1.53 15 329
Nuclear G4 0 2.5 1.53 0.02 4.05
Onshore 0 -42.45 1.53 0.02 -40.9
wind G5
Offshore 0 -86.45 1.53 0.02 -84.9
wind G6
PV G7 0 -86.37 1.53 0.1 -84.74
Biomass 0 1.4 1.53 1.8 4.74
G8

C. Dispatch and Redispatch Results

Based on the PDF of predicted demand errors, the net
imbalance volumes are simulated based on the PDF of
generation forecast errors with variable regulating capacities.
Fig. 3. demonstrates the cumulative expected NIV with varying
regulating capacities and different forecast errors, i.e., sigma o.
As the standard deviations of the normally distributed forecast
errors increase, the cumulative expected NIV also grows

remarkably, especially when the downward regulating capacity
varies between 3 MW to 30 MW.
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Fig. 3. Cumulative expected NIV with different forecast errors

Setting o as 3 [28], Fig. 4. demonstrates the DA prices with
variable renewable shares in the total energy mix. Higher
renewable penetration remarkably reduces the DA price as
expected, especially during the time slots of [1,7], [11,18], and
[40,48]. Results explicitly indicate the contribution of different
proportions of renewable penetration to the DA price reduction.
For instance, with the penetration rate increasing from 90% to
100%, the average DA system price falls mainly due to that the
price reduction over the time periods of [30,31], [41,42] and
[45,47].
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Fig. 4. DA price with variable renewable penetrations

S

The redispatch results in the BM reflect real-time supply and
demand. If the power system is short of supply (i.e., positive
NIV), the SO will accept more offers (including upward
generation and flexible load reduction) than bids. More bids
will be accepted at negative NIV when the system is long.

Without respect of the carbon footprint of balancing actions,
the redispatch results of the traditional market model are as
shown in Fig. 5, including generators G1-G8, shiftable loads
SL1-SLS, and fully adjustable loads AL1-ALS5. They are
painted in different colors in the bar graph to show their
contributions to real-time energy balance. NIV is demonstrated
through the line chart. As shown in the figure, when NIV is
positive, coal generator G1, OCGT G2, oil generator G3, fully
adjustable loads AL3, AL4, ALS, and shiftable loads SL2 are
the main resources to make up the shortfall. In comparison,
OCGT G2, oil generator G3, biomass generator G8, and
shiftable loads SL2, SL3, SL4 mainly contribute to balancing
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negative NIV. Due to the time distribution features of shiftable
loads and their carbon-neutral footprint, they are frequently
dispatched over the time slot [9,40].
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mmSL3 mmSL4 SLS ALI1 AL2 mmAL3 AL4 mmALS -e=NIV

Fig. 5. Balancing actions with no carbon signals in the traditional market model

Considering the diversity of balancing actions in carbon
emissions, the redispatch results in the BM are as shown in Fig.
6. It can be found in the figure that adjustable and shiftable
loads are more frequently used to compensate for bi-directional
NIV. The bids of carbon-intensive generators ( i.e., coal-fueled
generator G1 and oil-fueled generator G3) are more likely to be
accepted at negative NIV. At the same time, their offers are
disfavored at positive NIV. Compared to the traditional BM, the
volumes of offers for the environmental-friendly nuclear
generator G4 are increased, while bids are reduced. In terms of
renewables, PV generator G7 is non-dispatchable in the BM.
Wind generators G5 and G6 only possess the capacity for
downregulation. The accepted bids are reduced due to their
negative impacts on carbon reduction.
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Fig. 6. Balancing actions considering carbon signals in the proposed market
model

Fig. 7. demonstrates the volume changes of accepted
bids/offers in the proposed market compared to the traditional
market. It can be seen that in the proposed market, more offers
are accepted for G4, G8, while more bids are accepted for G1,
G2, AL1, AL2, AL3, AL4, ALS over the whole scheduling
period. It suggests that the proposed market model prefers
upward regulation of nuclear and biomass generation and
downward output regulation of coal and OCGT generation.
Additionally,  the proposed BM shows bi-directional
preferences in G3, G7, SL1, SL2, SL3, SL4, SL5, depending on
the scheduling time slots.

The carbon cost variance from the proposed market model is
demonstrated in Fig. 8 to verify the performance of the
proposed market model from a carbon point of view. As shown
in Fig. 8, the carbon cost reduction varies over the scheduling
period, with the highest values of nearly 20 m£ at time points
24 and 35. At time points 6, 14, 28, and 41, the emission costs
show marginal declines, less than one m£. Over the scheduling

time points 4, 5, 6, 8, 28, and 47, G1, G3, AL4, and ALS
increase the carbon cost slightly. OCGT G2, Oil generator G3,
wind generator G4, biomass generator G8 provide the greatest
contribution to carbon reduction in the BM.
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Fig. 7. Volume changes of accepted bids/offers in the proposed market
compared to the traditional market
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Fig. 8. Carbon cost reduction of the proposed market model

Table IV presents the total cost variance of the proposed BM
mechanism and the traditional model. It verifies both the
economical and environmental performances of the proposed
market model. It can be found that the balancing cost of
generators increases by 159.10 m£, while their carbon cost
drops by 294.14 m£. The total cost of generators in BM
decreases by 135.04 m£. Flexible loads' balancing and carbon
costs do not change significantly, with -0.16 m£ and 2.04 m£,
respectively. Their total cost increases by 1.88 m£. Overall, the
total balancing cost of all participants increase by 158.94 m£,
while the total carbon cost decreases by 134.84 m£. Results
suggest that the proposed BM mechanism outperforms the
traditional model by striking a balance between cost-efficiency
and environmental benefits.

TABLE IV
TOTAL COST VARIANCE OF THE PROPOSED MARKET MODEL

Cost variance Generators Flexible loads All Participants
Balalzzg)g cost 159.10 -0.16 158.94
Carbon cost (m£) -294.14 2.04 -292.10
Total cost (m£) -135.04 1.88 -134.84

V. CONCLUSION

High renewable penetration in the wholesale electricity
market and resulting carbon-intensive balancing actions have
conflicting environmental impacts. To coordinate the emissions
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reduction in both markets, this paper designs a novel market
model that optimizes the economic and environmental costs of
balancing actions in response to intermittent and uncertain
generation. Unlike existing operation models, it leverages
market measures to decarbonize the power sector by integrating
real-time carbon signals into the bidding strategy. The
performance of the proposed method is validated in a modified
39-bus power system. Results show that the total emissions
from balancing services are transparently reduced by
coordinating dispatchable generators, fully adjustable loads and
shiftable loads. The proposed market model strikes the
appropriate balance between climate ambition and the
requirement to deliver cost-effective decarbonization of the
power sector. It enables SOs to apply carbon factors in
balancing services procurement and dispatch.
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