
        

Citation for published version:
Cheng, S, Scholes, SC, Kong, W, Gu, C & Li, F 2022, 'Carbon-Oriented Electricity Balancing Market for
Dispatchable Generators and Flexible Loads', IEEE Transactions on Power Systems, pp. 1-12.
https://doi.org/10.1109/TPWRS.2022.3229488

DOI:
10.1109/TPWRS.2022.3229488

Publication date:
2022

Document Version
Peer reviewed version

Link to publication

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
users, including reprinting/ republishing this material for advertising or promotional purposes, creating new
collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this
work in other works.

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 09. Mar. 2023

https://doi.org/10.1109/TPWRS.2022.3229488
https://doi.org/10.1109/TPWRS.2022.3229488
https://researchportal.bath.ac.uk/en/publications/68200fed-3b92-4689-affd-e17ebca9a2ee


> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK 
HERE TO EDIT) < 
 

1 

Abstract—In the transition to a low-carbon economy, the 
market share for renewable energy is significantly increasing and 
gradually substituting traditional energy. The high renewables 
penetration results in increased balancing action volumes due to 
system stability requirements. The balancing market (BM) 
primarily turns down renewable generation and turns up 
traditional carbon-intensive generation in response to real-time 
energy imbalance. Existing dual-stage market mechanisms 
conflict with the carbon reduction trajectory by implementing 
balancing actions regardless of their carbon footprint. This paper 
proposes a novel balancing market model by evaluating the 
negative externality of carbon to coordinate the environmental 
targets in both markets. Firstly, mathematical models are 
formulated for key participants in the dual-stage market. The 
emissions of dispatchable generators and flexible loads are 
distinguished by their operation modes and flexibility types, 
respectively. Carbon signals are incorporated into their bid/offer 
pricing models through the carbon emission flow (CEF) model. By 
integrating these incentives for carbon reduction, the dual-stage 
market model is formulated to minimize economic and 
environmental costs. Simulation results demonstrate that the 
proposed model effectively reduces carbon emissions in the BM 
and strike a balance between cost-efficiency and environmental 
benefits. It enables system operators to incentivize decarbonized 
energy resources in both stages. 

Index Terms—Balancing market, carbon signal, decarbonized 
energy resources, low carbon. 

NOMENCLATURE 

Indices and sets 
𝑔,Ω! Index and set of electricity generation units 
𝑡, Ω" Index and set of scheduling time 
𝑏,Ω# Index and set of buses 
𝑙, Ω$ Index and set of transmission lines 
Ω!!,Ω!" Set of inflexible and flexible generation units 
Ω%$ Set of flexible load aggregators 

 
Variable 
𝑐!"# Carbon tax 
𝑐&,(
)* , 𝑐&,+

)*  The upward and downward capacity of EV or 
BESS 

𝐶), 𝐶,-., 𝐶/-. Fuel cost, variable cost and carbon emission 
cost of generators 

𝐷 Electricity demand  
𝑒&
)* Energy stored in EV or BESS at time 𝑡 
𝐸01+
)*  Energy stored in EV or BESS at the end of its 

charging period 
𝑓$, 𝑓% Active and reactive power flow through the 

transmission line  
𝑝&'()* , 𝑝+,,-.)*  Bid and offer prices for BM 

𝑝&
)* The shifted power of flexible load at time 𝑡 

𝑝2-3
)* ,	𝑝241

)*  Maximum and minimum charging power of 
EV or BESS 

𝑃/ Maximum power output of generation units 
𝑃)* Total shiftable volume of flexible load 

submitted in the BM 
𝑃5, 𝑃. Electricity outputs of generation units in the 

day-ahead dispatch and real-time balancing 
process 

𝑀64+, 𝑀7)) Bid and offer price multiplier 
𝑡)* The actual continuous working time of flexible 

load 
[𝑡5, 𝑡01+] The shiftable time interval of flexible load 
𝑇71, 𝑇7)) Startup and shutdown time for generators 
𝑈4(𝑡), 𝑈8(𝑡) Head and tail bus voltage of line 𝑖, 𝑗 at 

distribution system 
𝑈241, 𝑈2-3 Bus voltage limit 
𝜐9
)* A binary variable showing the startup state of 

the flexible load 
𝑥 AKDE independent variable 
𝜆+7:1,	𝜆(;	 Downward and upward volumes for generators 

participating in the balancing market  
𝑟<	 Ramp rate 
𝛿	 Binary variable for upward or downward 

regulation 
𝜌/	 Carbon intensity of electricity generation 

(𝑡𝐶𝑂=/𝑀𝑊ℎ) 
𝜂)*	,𝐷𝑇 Charging efficiency and duration of EV or 

BESS 
 

Parameter 
𝐴, 𝐺 Bus-electricity line and bus-generator 

incidence matrix 
𝑇/,1'2+2 , 𝑇/,1'2

+,,  Minimum startup and shutdown time for 
generator 𝑔 

𝑈𝑜𝑆 Use of system charge 
𝑟6>8,𝑥6>8 Resistance and reactance of line 𝑏, 𝑗 
𝜇	 Generation efficiency 

I. INTRODUCTION 
HE worldwide zero-carbon targets inevitably necessitate 
decarbonizing the electricity system with increasing 
renewable energy resources. The European Union aims 

to eliminate net EU emissions by 2050, from 1990 levels [1]. 
To meet the target, the Commission has set an ambitious target 
to raise the share of renewable energy to 40% of final 
consumption by 2030, which means it grows by 20% from 2019. 
To achieve net-zero emissions by 2050, the UK’s Committee of 
Climate Change concluded that there is scope for the 
penetration of clean energy to reach 30 - 45% of all energy 
consumption in the UK by 2030 [2]. The US Energy 
Information Administration also reveals that renewables grow 
around one percent annually to their share of the nation’s 
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electricity supply, which could be one-third of US electrical 
generation in 2030 [3]. Even though the increasing share of 
low-carbon electricity generation brings substantial 
environmental benefits, it poses significant challenges to 
network operation, planning and energy trading.  

The remarkable growth of renewable energy resources (RER) 
and gradual phase-out of traditional carbon-intensive plants in 
the wholesale market seems to align with the decarbonization 
process. Nevertheless, high RER uncertainties increase the 
balancing action volumes due to system stability requirements. 
The system operator (SO) needs to turn up traditional flexible 
plants through balancing mechanism actions, which unwinds a 
significant proportion of the market. Considering the high 
carbon intensity of conventional flexible plants, total carbon 
emissions accordingly increase in the balancing market. During 
the early lockdown in the UK, electricity demand dropped by 
around 15% compared to the previous year. It has resulted in 
frequent periods of high renewable and low thermal generation, 
causing enormous carbon emissions from BM actions, which 
make up 15-25% of total power sector emissions. 

The contradiction of high renewable penetration in the 
wholesale market and considerable carbon output of BM 
actions impedes the low-carbon economy. Even though 
facilitating RER penetration has been deeply investigated, the 
environmental trade-off between renewable shares in the 
wholesale day-ahead (DA) market and decarbonized balancing 
actions is generally ignored. Therefore, reasonable incentives 
and market designs are required to ensure both markets are 
consistent with the Net Zero carbon reduction trajectory. 

Tremendous efforts have been devoted to addressing 
operation and planning problems with wide utilization of 
renewables, e.g., probabilistic power flow modeling [4] and 
flexible investment decision making [5]. Multiple models have 
been formulated to increase renewable generation and 
materialize ambitus carbon targets. Paper [6] develops a data-
driven model to analyze the operation mode variety under high 
renewable shares of the energy mix. Results indicate that the 
dispersion and time variation of operation mode increase with 
the growth in RER penetration until saturation. To 
accommodate more RER in the power system, paper [6] 
concludes that sufficient flexible resources and corrective 
measures are required to ensure the growing frequency of 
operation mode switching in system operation. Paper [7] 
construct a unit commitment model to take advantage of 
demand-side flexibility (DSF) by analyzing the effects of 
carbon emission trading on the generation schedule. It 
integrates the carbon emission cost of generators and vehicle-
to-grid (V2G) in the unit commitment model. Results verify 
that the participation of DSF in the power supply-demand 
balance decreases as expected.  

Reference [8] capitalize on the virtual power plant 
(VPP) ,which aggregates distributed renewable energy and 
controllable loads to improve the utilization capacity of 
renewable energy. An optimal bidding strategy of VPP is 
proposed through carbon-electricity integration trading and 
user satisfaction. Reference [9] presents a demand-side 
management approach for carbon footprint control. It benefits 
both the demand and generation sides by supporting the carbon 
policy and engaging with the demand adjustment process. Paper 

[10] designs a conjectural-variations equilibrium model to 
reach the equilibria in electricity, natural gas, and carbon-
emission markets. The equilibria reached in those three markets 
varies with carbon-emission trading and transmission 
constraints. However, limited efforts have been devoted to 
managing emissions in the DA and the balancing markets 
considering their conflicting goals. 

Compared with extensive research of RER utilization in the 
DA market, the carbon emission issues in the balancing market 
are relatively under-researched [11]. There exists some research 
on BM bidding strategies and settlement pricing schemes with 
high RER penetration. Paper [11] analyses the fundamental 
drivers and the predictability of imbalance prices in the British 
balancing market. It quantitatively assesses how the key drivers, 
i.e., wind deviation, solar deviation, demand forecast errors, 
scarcity variables, and lagged imbalance volumes impact the 
imbalance prices. Paper [12] studies the bidding behavior in the 
balancing market with increasing wind and photovoltaic (PV) 
by econometric analysis. Results demonstrate the impact of 
updated forecasting errors of variable generation on the 
imbalance price changes. Paper [13] proposes a dual-pricing 
scheme by regarding controllable production units as “active” 
participants and renewable units as “passive” actors. The 
objective is to maximize the profits of VPPs by optimizing their 
active and passive participation in the day-ahead and balancing 
market, considering renewable and controllable units. Paper [14] 
designs a hierarchical market structure for local microgrids to 
provide ancillary services by participating in the balancing 
market. It optimizes the interactive performance of distribution 
system operators and microgrids by minimizing their 
operational costs. Paper [15] proposes a dynamic energy 
balancing cost model for the DA market to solve wind 
uncertainty. It models multiple types of costs due to wind and 
traditional generation uncertainty, providing an effective tool 
for acquiring techno-economic benefits. However, these 
models all ignore the carbon footprint of balancing actions and 
only investigate their economic aspects. A large share of 
renewable generation capacity leads to economic and 
environmental pressures for real-time balancing. Given that the 
environmental effects and balancing costs of BM actions are not 
always consistent, a comprehensive analysis is of great 
significance to facilitating low carbon transitions in the power 
sector. 

Flexible resources are the main BM measures, categorized 
as generation flexibility and demand-side flexibility (DSF). 
They are indispensable tools to deliver cost-effective 
decarbonization in the power sector. However, they have 
distinct carbon-emitting characteristics, ignored in most papers. 
Existing literature emphasizes quantitatively analyzing 
economic values when optimizing BM actions. Paper [16] 
proposes a systematic method to evaluate the flexibility of a 
given day-ahead scheduling model, considering fast ramping 
units (FRU), hourly demand response (DR), and energy storage 
in power system operation. The flexible resources are assessed 
based on their ability to address the uncertainties linked with 
wind energy production (WEP). Numerical results demonstrate 
that the largest value of the proposed flexibility index is 
obtained by combing FRU, hourly DR, and energy storage. 
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Remarkably, among all investigated flexible resources, the 
hourly DR contributes significantly to the system flexibility. 
Reference [17] explores the capability of current and potential 
accessible future residential DSF (e.g., EVs. Stationary 
batteries and storage heaters) to reduce the energy supply costs 
of a flexibility aggregator with highly penetrated RERs. Results 
demonstrate that even a low saturation of flexible demand can 
reduce the generation costs in microgrids. Despite the fact that 
flexible resources play an important role in integrating RER and 
thus achieving the carbon reduction trajectory, their carbon 
intensities vary greatly. For instance, during the startup and 
shutdown conditions, excessive CO2 is generated from flaring 
[18], which is considered a major greenhouse source of utilizing 
fully flexible generators.  

Therefore, utilizing them indiscriminately is unlikely to align 
with the Net Zero target. To the best of the authors’ knowledge, 
there is virtually nothing in the literature to make a 
comprehensive and systematic analysis of flexible resources in 
BM considering their carbon footprint. The major drawbacks 
and gaps of the existing literature are: 1) They propose multiple 
operational methods and technologies to accommodate high 
renewable penetration, e.g., BESS and DSR. Nevertheless, the 
economic and environmental challenges embodied in the sharp 
rise in BM actions are not analyzed and solved from the market 
point of view. 2) The absorption of RER in the day-ahead (DA) 
market greatly raises BM action volumes from carbon-
insensitive flexible generators, which impedes decarbonization 
in the power sector. No quantitative models have explicitly 
striked a balance between them. 3) Most research focuses on 
ensuring cost-effective, flexible resource capacities by 
integrating multiple technologies, e.g., BESS, intermittent 
generation, and EVs. Nevertheless, no models evaluate carbon 
emissions in procuring flexible capacity to favor decarbonized 
BM actions.  

To fill the research gaps, this paper proposes a novel 
balancing mechanism to simultaneously capture the carbon 
footprint of energy resources in the dual-stage market. Unlike 
existing research, this paper will tap the potential of BM actions 
in reducing carbon emissions from a market perspective. The 
main contributions of this paper are as follows:  
• It for the first time quantitatively analyze both economic and 

environmental costs of BM actions due to high renewable 
penetration in the DA market. Existing literature emphasizes 
facilitating RER in power system operation, e.g., solving the 
unit commitment problems [8] and ensuring the high 
frequency of operation mode switching [6]. Even though 
some papers [11] [12] analyze the impact of renewables on 
the balancing mechanisms, they only investigate their 
economic values. Ignoring the environmental costs would 
run counter to the low carbon development since economical 
BM actions (e.g., flexible thermal generators) tend to have 
high carbon intensity. To coordinate the environmental 
targets in the dual-stage market, the proposed method 
classifies BM actions through their flexibility capacities and 
incorporates their carbon emissions in the balancing costs. It 
provides useful insights on evaluating the externality of 
carbon in the BM, incentivizing flexibility capacity 
compatible with Net Zero.  

• It for the first time distinguishes the generator emissions over 
normal, startup and shutdown operation in the electricity 
market. Conventionally, the carbon emission intensities of 
generators are set as constant regardless of their operation 
modes [19]. With increasing renewable supply fluctuations, 
thermal plants are more frequently started up or shut down 
in the real-time balancing market. The proposed market 
strategy utilizes EEAF (emissions estimate adjustment factor) 
to estimate the carbon emissions during the startup and 
shutdown periods.  

• It achieves the trade-off of RER penetration in the DA 
market and the BM action volumes in terms of both 
imbalance costs and carbon emissions. If the incentives for 
carbon reduction in both markets remain the same, emissions 
in balancing services are unlikely to conform to carbon 
neutrality. Existing literature [11] [20] [21] undertakes 
system balancing based on cost minimization with 
increasing intermittent renewable generation. They ignore 
the impact of high renewable penetration on the carbon-
emitting growth in BM. The proposed model integrates 
carbon signals in BM to further unlock the emission 
reduction potential.  

• It provides clear categorization and methodology for all 
flexibility services regarding carbon targets and cost 
efficiency by incorporating their carbon costs into their bids 
and offers. Most papers use DSF to address real-time 
uncertainties, bypassing their environmental contributions. 
Since flexible generators tend to have higher carbon 
intensities, existing models conflict with the carbon 
reduction trajectory by facilitating flexible generators and 
DSF indiscriminately in the electricity market. The proposed 
market design accommodates both their economic and 
environmental values when bidding in the balancing market, 
enabling system operators (SOs) to incentivize the 
decarbonized flexibility in the power sector. 
The remainder of this paper is organized as follows. Section 

II formulates the mathematical models of the key input data of 
the designed market. Section III demonstrates the market 
structure and clearing mechanisms. Section IV illustrates the 
implementation of the developed market model. Section V 
validates the efficacy of the proposed model. Section VI 
summarizes the key findings and conclusions of this paper.  

II. MATHEMATICAL FORMULATION 
This section presents the detailed mathematical formulation 

of key input data in the dual-stage market, including the 
bid/offer pricing, flexible resource modeling, and uncertainty 
analysis of net imbalance volumes (NIV).  

A. Bidding Price in the DA Market 
This paper utilizes the extended short-run marginal costs (E-

SRMC) for multiple generators to compete in the DA market. 
Generators submit their electricity generation prices based on 
their short-run marginal cost (SRMC) in the day-ahead process. 
SRMC represents the change in total generation cost from a 
small output change in units of £/MWh. Generally, SRMC is 
mainly given by the underlying fuel prices and the carbon 
emission cost [22]. E-SRMC is extended from this concept by 
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incorporating more factors, e.g., the Use of System (UoS) 
charge. It is defined as the sum of the non-fuel variable cost 
(including the transport costs, the port costs, and the average 
startup costs), the carbon price, the UoS charge and the 
efficiency-adjusted fuel cost, as shown in equation (1) [23].  

𝐸 − 𝑆𝑅𝑀𝐶 =
𝐶,
𝜇 + 𝐶3". +𝑈𝑜𝑆 + 𝐶4". ∙ 𝛾 (1)  

𝐶4". = 𝜌/ ∙ 𝑐!"# (2)  
where the first term in (1) represents the efficiency-adjusted 
fuel cost. The coal and oil prices are calculated as a three-
monthly average. The second term denotes the non-fuel 
variable cost. The third term means the UoS charge, which is 
used to recover the cost of the day-to-day operation of the 
transmission system [24] [25]. The final term denotes the 
carbon emission cost, calculated by multiplying the carbon 
density 𝜌/ of generator 𝑔	and the carbon tax 𝑐!"#. 

B. Flexible Resource Modelling 
Flexible generators and loads can participate in the BM. 

Nevertheless, their flexibility characteristics are vastly different. 
The main parameters to evaluate generation-side and demand-
side flexibilities are demonstrated below. 
1) Generation flexibility 

Conventional generators' flexibility depends on their 
generation characteristics, e.g., ramp rate. For instance, nuclear 
plants are generally regarded as inflexible since they cannot 
readily and securely be ramped up and down to keep the system 
balanced. In comparison, some high carbon-intensive 
generators (e.g., fossil-fuelled generators) are much more 
flexible and can be dispatched economically and securely. This 
paper uses the following parameters to evaluate generators’ 
flexibility as shown below:  
• Ramp rate: It is the average speed at which generators can 
increase or reduce their output between the peak and valley 
levels per hour (𝑀𝑊/ℎ ) [26]. It can be mathematically 
expressed as:  

|𝑃.!(𝑔) − 𝑃.!56(𝑔)| ≤ 𝑟/, ∀𝑔 ∈ Ω7
! . (3)  

where 𝑃.!(𝑔) is the re-dispatched power output of generator 𝑔 
at time 𝑡 during the balancing process. 
• Capacity: The regulation capacity of generating units 
denotes generators' maximum upward and downward power 
output under secure operation conditions. It can be expressed 
as: 

𝑃(+82FFFFFFFF < 𝑃9!(𝑔) − 𝑃.!(𝑔), 
𝑖𝑓	𝑃9!(𝑔) > 𝑃.!(𝑔), ∀𝑔 ∈ Ω7

! 
(4)  

𝑃:$FFFF > 𝑃.!(𝑔) − 𝑃9!(𝑔), 
𝑖𝑓	𝑃.!(𝑔) > 𝑃9!(𝑔), ∀𝑔 ∈ Ω7

! 
(5)  

where 𝑃(+82FFFFFFFF  and 𝑃:$FFFF  represent the downward and upward 
capacities, respectively. 𝑃.!(𝑔)  defines the maximum 
redispatched power output of generator 𝑔 at time 𝑡 during the 
balancing process, while 𝑃9!(𝑔) is the original production of 
generator 𝑔 that is agreed one day ahead to be delivered. 
• Startup and shutdown time: Startup time refers to the time 
between mechanical completion and the point at which the plant 
reaches its operating capability. The shutdown time represents 
the desynchronization of the generator from the grid frequency 
[27]. They can be formulated as : 

𝑇/+2 ≥ 𝑇/,1'2+2 , 𝑇/
+,, ≥ 𝑇/,1'2

+,, , ∀𝑔 ∈ Ω7! . (6)  
2) Load flexibility  

In this paper, flexible loads refer to electric vehicles (EV) 
and battery energy storage systems (BESS). They are 
aggregated to participate in the balancing market. To capture 
the characteristics of load flexibility, this paper models their 
availability (i.e., time flexibility) and adjustable capacity (i.e., 
power flexibility) as follows: 
• Time availability 

Time availability/flexibility of aggregated load denotes that 
they are shiftable during a certain interval [28]. Their energy 
consumption behaviors are modeled in equations (7) and (8). 

𝑝!
,; = J 𝜐<

,;
!

<=!5!"#>6

∙ 𝑃,; (7)  

J 𝜐<
,;

!$%&5!"#

<=!'

= 1 (8)  

where 𝑝!
,; is a continuous variable indicating the shifted power 

of flexible load at time slot 𝑡; 𝜐<
,; is a binary variable showing 

the startup state of the flexible load; 𝑡,;  denotes the actual 
continuous working time of the flexible load; 𝑃,;  is the total 
shiftable volume that flexible load aggregators submit in the 
BM; [𝑡9,  𝑡-2(]  is the shiftable time interval. Equation (7) 
demonstrates that the shifted power is equal to 𝑃,; if the time 
slot 𝑡 is within [𝑡9 + 𝑡,; − 1, 𝑡-2( − 𝑡,;]. Equation (8) indicates 
that the load can be turned on only once during the available 
working time interval. 
• Adjustable Capacity  

Power flexibility means that the load volumes are adjustable 
within a range, which is modeled as follows: 

𝑐!,:
,; = 𝑚𝑖 𝑛Q𝑝1"#

,; − 𝑝!
,; , (𝐸-2(

,; − 𝑒!
,;S /𝐷𝑇} (9)  

𝑐!,(
,; = 𝑝!

,; − 𝑝1'2
,;  (10)  

𝑒!
,; =J𝑝<

,;
!

<=6

∙ 𝜂,; ∙ 𝐷𝑇 (11)  

where 𝑒!
,;  is the total energy stored in EV or BESS; 𝑐!,:

,;  and 
𝑐!,(
,;  are the adjustable capacity. Equation (9) indicates that the 

upward consumption capacity depends on the maximum 
charging power and the energy constraints of EV and BESS. 
Equation (10) demonstrates that the downward capacity 
depends only on the minimum charging power. Equation (11) 
indicates that the total stored energy is subject to the duration 
of the charging period, efficiency and power. 

C. Carbon Emission Pricing for Flexible Resources 
Apart from the physical characteristics of flexible resources 

in the BM, their economic efficiency and carbon footprint are 
also different. This part accommodates carbon emission pricing 
for dispatchable generators and flexible loads to incentivize 
decarbonized BM actions. 
1) Flexible Generators 

Unlike the DA market in which the carbon intensity is 
directly integrated into E-SRMC, the BM accepts both bids (i.e., 
decrease in generation/downward regulation) and offers (i.e., 
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increase in generation/upward regulation) from flexible 
generators. The low carbon economy entails that the offers of 
low carbon-intensity generators are favored, while the bids of 
high carbon-intensity generators are preferred. Additionally, 
compared with normal operation, emissions have been found to 
spike, sometimes dramatically when the generators are started 
up and shut down [29] due to complicated reasons, e.g., 
‘memory effect’. The following equations are formulated for 
flexible generators to fairly capture their carbon emissions 
during normal, startup and shutdown operation.  

𝐸1(
! V∆𝑃/S = 𝐸1(

2 V∆𝑃/S + 𝐸1(
?: V∆𝑃/S + 𝐸1(

?( V∆𝑃/S (12)  

𝐶4".(
)* (∆𝑃/) = 𝐸1(

! V∆𝑃/S ∗ 𝑐!"# (13)  
where 𝐸1(

2 , 𝐸1(
?: , 	𝐸1(

?(  are the normal, startup and shutdown 
emissions of generator 𝑔 due to output variation ∆𝑃/ ; 𝐸1(

!  is 
the total carbon emissions during the BM period; 𝐶4".(

)*  is the 
carbon cost of upward or downward generation ∆𝑃. Equation 
(12) indicates the total emission from the three operation modes. 
Equation (13) calculates the total carbon emission cost. 

The generator emissions under different operation modes are 
formulated in (14)-(16).  

𝐸1(
?:,?(V∆𝑃/S = ∆𝑃/ ∗ 𝐸𝐹@ (14)  

𝐸𝐹@ = (𝐸𝐹"3/ × 𝐸𝐸𝐴𝐹)/(1 − 𝑃𝐶𝐷𝐸) (15)  
𝐸1(
2 V∆𝑃/S = 𝜌/ ∗ ∆𝑃/ (16)  

where 𝐸1(
?:,?(V∆𝑃/S  (i.e., 𝐸1(

?: V∆𝑃/S  or 𝐸1(
?( V∆𝑃/S ) represents 

the actual carbon emissions of corresponding output increase or 
reduction during periods of startup or shutdown operation; 𝐸𝐹@ 
is the adjusted emission factor; 𝐸𝐹"3/ is the average emission 
factor; 𝐸𝐸𝐴𝐹 is the emission estimate adjustment factor; 𝑃𝐶𝐷𝐸 
is the pollution control device treatment efficiency.  

Equation (14) represents that the actual emission change is 
the product of the adjusted emission factor 𝐸𝐹@  and the 
corresponding production deviation ∆𝑃/ . Equation (15) 
provides the emission calculation by modifying the normal 
emission factor for the abnormal periods by the efficiency of 
the control device. The carbon emission during startup and 
shutdown are calculated through the EEAF method in [30], as 
shown in equation (14) and (15). Equation (16) presents the 
carbon emission under normal operating conditions. 
2) Flexible Load  

As illustrated in Section B, the load flexibility can be 
categorized as shiftable load with flexible working time and 
adjustable load with flexible demand volumes. The total energy 
consumption for shiftable loads during the BM period remains 
unchanged regardless of the final operation schedule. Thus, 
their flexibility does not cause changes in the total greenhouse 
emissions, which can be mathematically expressed as below: 

𝐸1?; = 0 (17)  
𝐶4".)#
)* = 0 (18)  

where 𝐸1?; is the total carbon emission change of shiftable loads 
before and after BM; 𝐶4".*#

)*  is the corresponding carbon cost. 
In comparison, the adjustable load can induce a variation of 
demand consumption. Thus, the carbon emission will 
accordingly change after BM. The carbon emission flow (CEF) 

model [31] is used to denote the node carbon intensity by 
proportionally allocating the carbon emissions from the energy 
generation to the demand side, which can be expressed as 
shown in (19). 

𝑁𝐶𝐼&

=
∑ 𝑃0(𝑔) ∗ 𝜌//∈Ω𝐺 +∑ |𝑓&B|B:(&,B)∈F+

,- 𝜌&BG'2-

∑ 𝑃0(𝑔)/∈Ω𝐺 +∑ |𝑓&B|B:(&,B)∈F+
,-

 (19)  

where 𝑁𝐶𝐼& is the carbon intensity of node 𝑏; Ω&G> is the set of 
transmission lines that inject active power into bus 𝑏; 𝑃9(𝑔) is 
the power output of generator 𝑔 in the DA market; 𝜌/  is the 
emission intensity of generator 𝑔; 𝑓&B is the power flow from 
bus 𝑏  to 𝑗 ; 𝜌&BG'2-  is the branch carbon intensity, i.e., the 
emissions per 𝑀𝑊ℎ along the power flow of the line 𝑏 − 𝑗. All 
transmission lines share the same assumption that the branch 
carbon intensity 𝜌&BG'2-  outflowing from a bus is equal to the 
node carbon intensity (NCI) of that bus [31], as illustrated in 
(20). 

𝜌&BG'2- = b
𝑁𝐶𝐼& , 𝑖𝑓	𝑓&B > 0
𝑁𝐶𝐼B , 𝑖𝑓	𝑓&B < 0  (20)  

Thus, the changed carbon emissions of adjustable loads due 
to demand variation ∆𝐷& and the related costs can be calculated 
through equations (21) and (22), respectively.  

𝐸1,𝑏"; (∆𝐷&) = ∆𝐷& ∗ 𝑁𝐶𝐼& (21)  
𝐶4".*#
)* (∆𝐷&) = 𝐸1*#

! (∆𝐷&) ∗ 𝑐!"# (22)  
where 𝐸1,𝑏"; (∆𝐷&) and 𝐶4".*#

)* (∆𝐷&) are the emission and cost 
changes, respectively. 

D. Bid/offer Prices in the Balancing Market  
The real-time bid/offer prices show the desired prices to 

reduce/increase output for flexible generators or 
increase/reduce demand for flexible load aggregators in the BM. 
They are the sum of the operation and carbon costs or incentives. 
The operation cost is formulated based on the bid/offer 
multipliers that National Grid introduces in the BID3 that is an 
economic dispatch optimization tool presented in [32]. The 
carbon costs and incentives for flexible generators, shiftable 
loads and adjustable loads can be calculated through equations 
(13), (18) and (22), respectively. Considering their economic 
and environmental values, their final bid/offer prices are 
modeled in (23) and (24). 

𝑝&'()* = c
𝐶,
𝜇 + 𝐶3". +𝑈𝑜𝑆d ∗ 𝑀&'( + 𝐶4".)* (23)  

𝑝+,,-.)* = c
𝐶,
𝜇 + 𝐶3". +𝑈𝑜𝑆d ∗	𝑀+,, + 𝐶4".)* (24)  

where 𝑀&'(  and 𝑀+,,  are the bid/offer multipliers. The first 
term indicates that the operation cost is the product of SRMC 
and the multiplier. The second term denotes the carbon costs or 
incentives. To parameterize multipliers for different flexible 
resources, this paper utilizes historical data of balancing actions 
by the system operator (SO). The selected five years of data 
include bid/offer volumes and costs from 2011/12 to 2015/16 
[32]. The multipliers are calculated in different categories 
according to the flexibility types. By grouping every bid/offer 
action, they can be calculated as shown below: 

𝑀&'( =
𝑌𝑒𝑎𝑟𝑙𝑦	𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑏𝑖𝑑	𝑐𝑜𝑠𝑡
𝑌𝑒𝑎𝑟𝑙𝑦	𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑆𝑅𝑀𝐶  (25)  
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𝑀+,, =
𝑌𝑒𝑎𝑟𝑙𝑦	𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑜𝑓𝑓𝑒𝑟	𝑐𝑜𝑠𝑡
𝑌𝑒𝑎𝑟𝑙𝑦	𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑆𝑅𝑀𝐶  (26)  

E. Uncertainty of Net Imbalance Volume 
It is assumed that NIV is caused by the forecast error of 

variable generation, i.e., PV and wind. The resulting NIV can 
be positive or negative, referring to the power surplus or 
shortage, respectively. The cumulative expected method is used 
to capture the uncertain NIV to be balanced through BM, as 
shown below:  

𝑁𝐼𝑉$,& = m 𝑥 ∙ 𝑓(𝑥) ∙ 𝑇𝑑𝑥
H"&,+

9
 

(27)  

𝑁𝐼𝑉2,& = m 𝑥 ∙ 𝑓(𝑥)
H"/,+

9
∙ 𝑇𝑑𝑥 

(28)  

where 𝑁𝐼𝑉$,&  and 𝑁𝐼𝑉2,&  are the positive and negative 
cumulated expected NIV at bus 𝑏 , respectively; 𝑓(𝑥)  is the 
probability density function (PDF) of PV and wind forecast 
error; 𝑇 is the duration of the scheduling time; 𝐶𝑎(,& and 𝐶𝑎:,& 
are downward and upward regulating capacity from flexible 
resources at bus 𝑏. The PDF of the generation forecast error is 
modeled as a normal distribution with zero means, i.e., 𝑁V0，
𝜎IS [33]. 

III. MARKET MODEL FORMULATION 
This section introduces the dual-stage framework composed 

of day-ahead and balancing markets. It is assumed that both 
markets operate at 30-minute intervals. In the first stage, 
generation capacity is dispatched in a least-cost fashion based 
on load forecasting. In the second stage, flexible generation and 
demand are re-dispatched to respect additional constraints, e.g., 
network constraints and NIV uncertainties.  

A. DA Market 
To align with the actual market models that are used by most 

European countries [34], this paper assumes that the 
transmission network constraints and constraints on generating 
units (i.e., startup, shutdown, and ramping constraints) are not 
taken into account in the DA market, but solved through BM 
actions. This clearing mechanism indicates that the energy 
balance is satisfied as long as the total generation meets the 
demand, regardless of their geographical location. Thus, the 
dispatch process is formulated as a least-cost unconstrained 
schedule (LCUS) problem, assuming that the power system can 
deliver electricity wherever it is needed. This process can also 
be considered as a merit order stack model that ranks and 
dispatches available generators in order of their submitted E-
SRMC. Assuming that there are no transmission constraints, the 
objective of DA dispatch is to minimize the total electricity 
production cost considering power balance constraints, as 
shown below: 
𝑀𝑖𝑛	𝐶JK! =J𝐸𝑆𝑅𝑀𝐶(𝑔) ∙

/

𝑃9!(𝑔), ∀𝑔 ∈ Ω7 , ∀𝑡

∈ Ω𝑇 
(29)  

𝐷! =J𝑃9!(𝑔)
/

, ∀𝑡 ∈ Ω𝑇 (30)  

0 ≤ 𝑃9!(𝑔) ≤ 𝑃F(𝑔) (31)  

Equation (29) minimizes the total cost of all generators based 
on their E-SRMCs for each scheduling time interval. Constraint 
(30) ensures the power balance of the total generation output 
and the predicted demand. Constraint (31) enforces the power 
output limit of generators. According to the pay-as-clear rule, 
the DA price is determined through the most expensive 
generating set required to operate in each half-hour, i.e., the 
highest 𝐸 − 𝑆𝑅𝑀𝐶(𝑔) among those generators whose 𝑃9!(𝑔) 
are more than zero. 

B. Balancing market 
After DA schedules, the TSO (transmission system operator) 

operates a real-time redispatch process, e.g., a system balancing 
market [34]. System balancing refers to the process that a TSO 
ensures the energy balance in and close to real-time after the 
gate closure [35], considering both network constraints and 
forecast deviations in supply and demand. Deviations from the 
nomination of generators in the DA market, and load 
forecasting errors inevitably cause NIVs in the balancing 
market. Moreover, due to constraints on the transmission 
network, generation [32] should be restricted in some domains 
and increased in other areas to meet boundary constraints and 
maintain power balance. Therefore, the re-dispatch procedure 
not only supports the power balance, but also ensures a secure 
real-time operation of the power grid.  

TSO aims to minimize the total balancing costs by 
transforming the day-ahead optimal schedules into real-time 
schedules to enable a secure grid operation. The binary variable 
𝛿 is introduced to represent the regulation types (i.e., upward or 
downward) of flexible generators and DSF aggregators from a 
start position, i.e., the initial day-ahead schedule and load 
forecasting.  

The objective function of BM is as shown in (32), i.e., 
minimizing the total cost to solve energy imbalance and system 
constraints. 
𝑀𝑖𝑛	𝐶)*! = J 𝑝&'()* ∙

/∈L0!∪L!,

V𝑃.!(𝑔) − 𝑃9!(𝑔)S

∙ (1 − 𝛿) + 𝑝+,,-.)*

∙ V𝑃.!(𝑔) − 𝑃9!(𝑔)S ∙ 𝛿 

(32)  

The optimization model is subject to the operational 
constraints of flexible resources and system constraints. The 
former constraints have been demonstrated in equations (3)-(11) 
in Section II-B, while the system constraints are shown below: 

J 𝐺&/𝑃.!(𝑔)
/∈F0

+ J 𝐴&;𝑓;,!
$

;∈F,
= 𝑁𝐼𝑉& +𝐷&! , ∀𝑏

∈ Ω) , ∀𝑡 ∈ Ω𝑇 
(33)  

J 𝐺&/𝑄.!(𝑔)
/∈F0

+ J 𝐴&;𝑓;,!
%

;∈F,
= 𝑁𝐼𝑉& +𝐷&! , ∀𝑏

∈ Ω) , ∀𝑡 ∈ Ω𝑇 
(34)  

𝑅𝑒Q𝑈B(𝑡)s

= |𝑈&(𝑡)| −
𝑓&5B,!
$ ∙ 𝑟&5B + 𝑓&5B,!

% ∙ 𝑥&5B
|𝑈&(𝑡)|

, ∀𝑏, 𝑗

∈ Ω) , ∀𝑡 ∈ Ω𝑇 

(35)  

𝐼𝑚Q𝑈B(𝑡)s = −
𝑓&5B,!
$ ∙ 𝑥&5B − 𝑓&5B,!

% ∙ 𝑟&5B
|𝑈&(𝑡)|

, ∀𝑏, 𝑗

∈ Ω) , ∀𝑡 ∈ Ω𝑇 
(36)  
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t𝑈B(𝑡)t = u𝑅𝑒Q𝑈B(𝑡)s
I + 𝐼𝑚Q𝑈B(𝑡)s

I, ∀𝑗 ∈ Ω) (37)  

𝑈1'2 ≤ 𝑅𝑒Q𝑈B(𝑡)s ≤ 𝑈1"# (38)  
−𝑃,;+8FFFFFFF ≤ 𝑃,;+8;

! ≤ 𝑃,;+8FFFFFFF, ∀𝑙 ∈ ΩG (39)  
Constraints (33) and (34) ensure the nodal active and 

reactive power balance, respectively. Constraints (35)-(37) 
calculate the bus voltage magnitude of line 𝑏 − 𝑗 , while 
equation (38) demonstrates the boundary of voltage capacity, 
which is set to [0.95 pu, 1.05 pu]. Equation (39) illustrates the 
power capacity boundary for transmission lines.  

Considering constraints (35)-(36) are nonconvex [14], they 
are simplified by assuming the voltage magnitude 𝑈&(𝑡) as 1 
p.u. and the bus voltage angle 𝐼𝑚{𝑈&(𝑡)}  as 0 rad. The 
constraints can be rewritten as shown in (40)-(41). 

𝑅𝑒Q𝑈B(𝑡)s = 𝑅𝑒{𝑈&(𝑡)} − (𝑓&5B,!
$ ∙ 𝑟&5B + 𝑓&5B,!

% ∙
𝑥&5B) ,∀𝑏, 𝑗 ∈ Ω) , ∀𝑡 ∈ Ω𝑇 

(40)  

𝐼𝑚Q𝑈B(𝑡)s = −(𝑓&5B,!
$ ∙ 𝑥&5B − 𝑓&5B,!

% ∙
𝑟&5B) ,∀𝑏, 𝑗 ∈ Ω) , ∀𝑡 ∈ Ω𝑇 

(41)  

The dual-stage market model is implemented in Fig.1. The 
day-ahead dispatch market is cleared given the predicted 
demand, the bidding price and committed generating volumes 
of all generators. The optimal DA schedule is obtained through 
Merit Order. Flexible generators and load aggregators 
participate in the real-time balancing market through flexibility 
models and carbon-based bid/offer prices. Respecting system 
constraints and operational limits, the NIV is solved in real time 
to optimally redispatch flexible generators and DSF resources 
to minimize carbon emissions and balancing costs.

 
Fig. 1. Implementation of the proposed dual-stage market model 

IV. CASE STUDY 
A. Test System Description and Modelling Parameters  

The presented dual-stage market model is verified on a 
modified IEEE 39-bus system. The power system is supplied 
by coal-fired, OCGT (open cycle gas turbine), oil-fired, nuclear, 
PV, offshore and onshore wind, and biomass generating units. 
The total generation capacity is 8000 MW, while the average 
predicted demand is 6254.2 MW. The aggregated shiftable 
loads are located at buses 1-5, while the fully adjustable loads 
are at buses 6-10. Their parameters are listed in Table I-II. The 
predicted daily generation curves of PV, offshore and onshore 
wind turbines are shown in Fig. 2. The offshore and onshore 
wind generators dominate the overall renewable energy supply. 

 
Fig. 2. Day-ahead forecast power of PV, offshore and onshore wind turbines 
 

TABLE I 
PARAMETERS OF ADJUSTABLE LOAD 

Parameter AL1 AL2 AL3 AL4 AL5 
Upper adjustable 

limits (MW) 500 400 500 440 500 
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Lower adjustable 
limits (MW) -200 -300 -500 -440 -500 

 
TABLE II 

PARAMETERS OF SHIFTABLE LOAD 
Parameter SL1 SL2 SL3 SL4 SL5 

Power (MW) 200 350 500 440 450 
Energy (MWh) 40 50 30 40 30 

Available period 
(half hour-half hour) 8-20 12-40 10-36 8-44 12-40 

B. Bid-offer Pairs in the Dual Markets 
The E-SRMC for thermal and renewable generators are 

calculated according to equation (1) and demonstrated in Table 
III. The table shows that E-SRMC consists of efficiency-
adjusted fuel cost, non-fuel variable cost, UoS and carbon price. 
The non-fuel variable cost for PV and wind are calculated by 
referring to the Renewables Obligation Annual Report [36]. 
In terms of other generators, their variable costs are defined 
from the renewable energy subsidies as illustrated in 
Electricity Generation Costs [37]. It is assumed that the UoS 
charge is the same for all generators. Since the fuel cost and the 
variable cost for PV and wind generating units are zero, they 
have very low bidding prices in the DA market. Developed 
from E-SRMC and empirical multipliers, the bid/offer prices in 
the BM are time-variant. They do not reflect any imbalance 
exposure but would reflect fuel, variable and carbon costs, etc. 
Since the downward regulation of fully flexible generators 
contributes to carbon reduction, the final bid price paid to SO is 
lower than that without considering carbon emissions over 
rescheduling. Comparably, the final offer price that these 
generators would be paid by SO to increase their output exceeds 
the offer price bypassing carbon costs in the BM. WTs do not 
participate in the BM as fully flexible resources. Instead, they 
only have the capability to reduce generation with a loss of 
Renewable Obligation Certificates (ROCs). 

TABLE III 
E-SRMC FOR DIFFERENT GENERATION TYPES IN THE DA MARKET 

Generator Efficiency-
adjusted 
fuel cost 
(£/MWh) 

Non-Fuel 
variable 

cost 
(£/MWh) 

TNUoS 
(£/MWh) 

Carbon 
price 

(£/MW
h) 

E-
SRMC 
(£/MW

h) 
Coal G1 2.22 3.38 1.53 16 23.13 

OCGT G2 2.88 0.08 1.53 8 12.49 
Oil G3 15.38 1 1.53 15 32.9 

Nuclear G4 0 2.5 1.53 0.02 4.05 
Onshore 
wind G5 

0 -42.45 1.53 0.02 -40.9 

Offshore 
wind G6 

0 -86.45 1.53 0.02 -84.9 

PV G7 0 -86.37 1.53 0.1 -84.74 
Biomass 

G8 
0 1.4 1.53 1.8 4.74 

C. Dispatch and Redispatch Results 
Based on the PDF of predicted demand errors, the net 

imbalance volumes are simulated based on the PDF of 
generation forecast errors with variable regulating capacities. 
Fig. 3. demonstrates the cumulative expected NIV with varying 
regulating capacities and different forecast errors, i.e., sigma 𝜎. 
As the standard deviations of the normally distributed forecast 
errors increase, the cumulative expected NIV also grows 

remarkably, especially when the downward regulating capacity 
varies between 3 MW to 30 MW.  

 
Fig. 3. Cumulative expected NIV with different forecast errors 

Setting 𝜎 as 3 [28], Fig. 4. demonstrates the DA prices with 
variable renewable shares in the total energy mix. Higher 
renewable penetration remarkably reduces the DA price as 
expected, especially during the time slots of [1,7], [11,18], and 
[40,48]. Results explicitly indicate the contribution of different 
proportions of renewable penetration to the DA price reduction. 
For instance, with the penetration rate increasing from 90% to 
100%, the average DA system price falls mainly due to that the 
price reduction over the time periods of [30,31], [41,42] and 
[45,47]. 

 
Fig. 4. DA price with variable renewable penetrations 

The redispatch results in the BM reflect real-time supply and 
demand. If the power system is short of supply (i.e., positive 
NIV), the SO will accept more offers (including upward 
generation and flexible load reduction) than bids. More bids 
will be accepted at negative NIV when the system is long.  

Without respect of the carbon footprint of balancing actions, 
the redispatch results of the traditional market model are as 
shown in Fig. 5, including generators G1-G8, shiftable loads 
SL1-SL5, and fully adjustable loads AL1-AL5. They are 
painted in different colors in the bar graph to show their 
contributions to real-time energy balance. NIV is demonstrated 
through the line chart. As shown in the figure, when NIV is 
positive, coal generator G1, OCGT G2, oil generator G3, fully 
adjustable loads AL3, AL4, AL5, and shiftable loads SL2 are 
the main resources to make up the shortfall. In comparison, 
OCGT G2, oil generator G3, biomass generator G8, and 
shiftable loads SL2, SL3, SL4 mainly contribute to balancing 
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negative NIV. Due to the time distribution features of shiftable 
loads and their carbon-neutral footprint, they are frequently 
dispatched over the time slot [9,40]. 

 
Fig. 5. Balancing actions with no carbon signals in the traditional market model 

Considering the diversity of balancing actions in carbon 
emissions, the redispatch results in the BM are as shown in Fig. 
6. It can be found in the figure that adjustable and shiftable 
loads are more frequently used to compensate for bi-directional 
NIV. The bids of carbon-intensive generators ( i.e., coal-fueled 
generator G1 and oil-fueled generator G3) are more likely to be 
accepted at negative NIV. At the same time, their offers are 
disfavored at positive NIV. Compared to the traditional BM, the 
volumes of offers for the environmental-friendly nuclear 
generator G4 are increased, while bids are reduced. In terms of 
renewables, PV generator G7 is non-dispatchable in the BM. 
Wind generators G5 and G6 only possess the capacity for 
downregulation. The accepted bids are reduced due to their 
negative impacts on carbon reduction. 

 
Fig. 6. Balancing actions considering carbon signals in the proposed market 
model 

Fig. 7. demonstrates the volume changes of accepted 
bids/offers in the proposed market compared to the traditional 
market. It can be seen that in the proposed market, more offers 
are accepted for G4, G8, while more bids are accepted for G1, 
G2, AL1, AL2, AL3, AL4, AL5 over the whole scheduling 
period. It suggests that the proposed market model prefers 
upward regulation of nuclear and biomass generation and 
downward output regulation of coal and OCGT generation. 
Additionally, the proposed BM shows bi-directional 
preferences in G3, G7, SL1, SL2, SL3, SL4, SL5, depending on 
the scheduling time slots. 

The carbon cost variance from the proposed market model is 
demonstrated in Fig. 8 to verify the performance of the 
proposed market model from a carbon point of view. As shown 
in Fig. 8, the carbon cost reduction varies over the scheduling 
period, with the highest values of nearly 20 m£ at time points 
24 and 35. At time points 6, 14, 28, and 41, the emission costs 
show marginal declines, less than one m£. Over the scheduling 

time points 4, 5, 6, 8, 28, and 47, G1, G3, AL4, and AL5 
increase the carbon cost slightly. OCGT G2, Oil generator G3, 
wind generator G4, biomass generator G8 provide the greatest 
contribution to carbon reduction in the BM.  

 
Fig. 7. Volume changes of accepted bids/offers in the proposed market 
compared to the traditional market 

 
Fig. 8. Carbon cost reduction of the proposed market model 

Table IV presents the total cost variance of the proposed BM 
mechanism and the traditional model. It verifies both the 
economical and environmental performances of the proposed 
market model. It can be found that the balancing cost of 
generators increases by 159.10 m£, while their carbon cost 
drops by 294.14 m£. The total cost of generators in BM 
decreases by 135.04 m£. Flexible loads' balancing and carbon 
costs do not change significantly, with -0.16 m£ and 2.04 m£, 
respectively. Their total cost increases by 1.88 m£. Overall, the 
total balancing cost of all participants increase by 158.94 m£, 
while the total carbon cost decreases by 134.84 m£. Results 
suggest that the proposed BM mechanism outperforms the 
traditional model by striking a balance between cost-efficiency 
and environmental benefits. 

TABLE IV 
TOTAL COST VARIANCE OF THE PROPOSED MARKET MODEL 

Cost variance Generators Flexible loads All Participants 
Balancing cost 

(m£) 159.10 -0.16 158.94 

Carbon cost (m£) -294.14 2.04 -292.10 

Total cost (m£) -135.04 1.88 -134.84 

V. CONCLUSION 
High renewable penetration in the wholesale electricity 

market and resulting carbon-intensive balancing actions have 
conflicting environmental impacts. To coordinate the emissions 
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reduction in both markets, this paper designs a novel market 
model that optimizes the economic and environmental costs of 
balancing actions in response to intermittent and uncertain 
generation. Unlike existing operation models, it leverages 
market measures to decarbonize the power sector by integrating 
real-time carbon signals into the bidding strategy. The 
performance of the proposed method is validated in a modified 
39-bus power system. Results show that the total emissions 
from balancing services are transparently reduced by 
coordinating dispatchable generators, fully adjustable loads and 
shiftable loads. The proposed market model strikes the 
appropriate balance between climate ambition and the 
requirement to deliver cost-effective decarbonization of the 
power sector. It enables SOs to apply carbon factors in 
balancing services procurement and dispatch. 
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