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 

Abstract— The Energy Hub is a powerful 
conceptualisation of how to acquire, convert, and 
distribute energy resources in the smart city. However, 
uncertainties such as intermittent renewable energy 
injection present challenges to energy hub optimization. 
This paper solves the optimal energy flow of adjacent 
energy hubs to minimize the energy costs by utilizing the 
flexibility of energy resources in a smart city with uncertain 
renewable generation. It innovatively models the power 
and gas flows between hubs using chance constraints, 
thus permitting the temporary overloading acceptable on 
real energy networks. This novelty not only ensures 
system security but also helps reduce or defer network 
investment. By restricting the probability of chance 
constraints over a specific level, the energy hub 
optimization is formulated as a multi-period stochastic 
problem with the total generation cost as the objective. 
Cornish-Fisher Expansion is utilized to incorporate the 
chance constraints into the optimization, which transforms 
the stochastic problem into a deterministic problem. The 
interior-point method is then applied to resolve the 
developed model. The proposed chance-constrained 
optimization is demonstrated on a 3-hub system and 
results extensively illustrate the impact of chance 
constraints on power and gas flows. This work can benefit 
energy hub operators by maximizing renewable energy 
penetration at the lowest cost in a smart city.  

 
Index Terms—Chance-Constrained Programming, 

Cornish-Fisher Expansion, Energy Hub, Optimal Flow 

 

I. INTRODUCTION 

smart energy city enables flexible management of energy 

infrastructure to efficiently meet demand. Within a smart 

energy city, the energy hub concept can coordinate 

multiple energy carriers to optimally satisfy demand [1-5]. 

Energy hubs could increase energy system flexibility and 

exploit the unused capacity of various energy carriers. Energy 

hubs have been applied to many energy system planning and 
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operation problems in smart energy cities, such as demand 

response [6], system operations [7], and optimal power flows 

[8]. Buildings or communities in the smart energy city can be 

treated as energy hubs [1, 9] and the energy flows between 

them can be optimally scheduled to minimize energy 

transportation and exploitation costs, minimizing the energy 

costs of a smart energy city. The optimal energy flow of energy 

hub involves optimizing electricity and other carriers, such as 

natural gas and heat, which can be formulated as a multi-period 

problem. In [10-13], the optimization for multi-carrier systems 

including adjustment of the energy flows between hubs is 

investigated. 

In the aforementioned literature, the steady-state model of 

energy hub systems is utilized and optimization problems are 

all formulated as deterministic models. In reality, uncertainties 

always present in energy management, due to customer load 

and renewable energy. System thermal and voltage constraints 

may be temporarily violated if uncertain variables are 

underestimated, otherwise system operational cost will be 

prohibitively high when the impact of uncertain variables is 

overestimated [14]. Therefore, modelling and estimation of 

uncertain variables are important in optimizing energy hubs. 

Uncertainty has been included in energy hub optimization in 

previous research. In [5, 15, 16], Monte Carlo simulation is 

applied to model the uncertain inputs but the optimization 

requires much computational effort due to the large number of 

scenarios. A scenario reduction method is applied to minimise 

the number of scenarios in [17, 18]. Other methods including 

two-point estimate method (2PEM),  the point estimate method, 

and the improved 2PEM method have been applied in [19-21] 

respectively to model renewable generation in energy hub 

systems. The reality is that a certain number of scenarios may 

not completely represent the stochastic nature of uncertain 

variables, causing the results to be inaccurate.  

In contrast to scenario-based methods, chance-constrained 

programming (CCP) is a consistently robust and reliable 

approach to resolve uncertainty [22]. Each chance constraint is 

modelled by a boundary, the acceptable probability of 

constraint violation. The CCP optimization is then resolved to 

meet both normal constraints and chance constraints. Whilst the 

stochastic nature of uncertain elements can cause occasional 

system overloading, investment to meet these rare stress events 

could be prohibitively expensive. However, in reality, some 

temporary overloading is tolerable in both gas and electricity 

networks, and CCP is, therefore, a promising approach to this 

problem. CCP has been applied to power system operating 

problems, including demand response, optimal power flow, and 
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unit commitment [23], [24], and [25]. However, it has not been 

applied to the energy hub optimization problem.  

This paper formulates a novel, chance-constrained approach 

to solve the optimal energy flows for multiple energy hubs with 

uncertain renewable generation. The uncertain elements of 

solar and wind generations are simulated by fitting historical 

data to specific distributions. The power and gas flows along 

branches between adjacent hubs are modelled as chance 

constraints at specific probability levels. The optimization thus 

becomes a non-convex stochastic problem. In solving the CCP 

problem, the non-convex CCP problem is converted into a 

convex problem and linear programming is applied in [26]. The 

back-mapping approach is utilized in [22, 24], where the 

probability of chance constraints is derived by mapping them 

back to the uncertainty variables’ distributions. Non-linear 

programming is then applied to solve the optimization problem. 

A sample average approximation method is developed in [27] 

to resolve chance-constrained problems.  

This paper utilizes the Cornish-Fisher Expansion method to 

translate chance constraints into deterministic constraints so 

that deterministic programming can be applied. Because of its 

flexibility and robustness [1], the interior point method is thus 

used to solve the developed model. The CCP enables energy 

hub system reliability to be realized above a specific level with 

low costs by restricting the probability of the chance constraints 

over the predefined level. This work can benefit energy hub 

operators by maximizing renewable energy penetration at the 

lowest cost in a smart city. 

The main contributions of the paper are as follows: i) 

compared with [24] where the load uncertainties are modelled 

as random inputs in multiple hub optimization, the uncertainty 

of renewable generation is considered in multi-hub 

optimization; ii) in contrast to only treating the power flows 

between buses as chance constraints [24], both power and gas 

flows between adjacent hubs are restricted by chance 

constraints; iii) the CCP is incorporated into the energy hub 

optimization, which can better model the uncertainty 

characteristics compared with the scenario generation methods 

in [17-21] and reduce the huge computational burden caused in 

[5, 15, 16]; iv) in contrast to the approaches in [22, 24, 26, 27] 

for solving CCP, the chance constraints are mathematically 

converted into deterministic constraints through Cornish Fisher 

Expansion, and thus the deterministic programming is applied 

to solve CCP; v) the impact of chance constraints on energy hub 

system optimization is extensively investigated; vi) the 

comparison between CCP and deterministic approaches is 

quantified by using the value of expected value of perfect 

information (EVPI) and value of the stochastic solution (VSS) .  

The remainder of the paper is organised as follows: the 

mathematical formulations of the energy hub system with the 

power and gas network are illustrated in section II. The CCP 

problem formulation and the methodology of implementing the 

CCP for the system optimization are introduced in section III. 

Section IV introduces the concepts of EVPI and VSS. Section 

V discusses different case studies and related results, and 

section VI concludes the paper. 

II. ENERGY HUB SYSTEM MODELLING 

The mathematical model of the energy hub system is 

illustrated in this section. The equality constraints are based on 

the law of energy conservation between hubs. The inequality 

constraints arise from safe operational limits such as maximum 

converter output and maximum power injection to a single hub. 

A. Energy Hub 

Both electricity and heat demand can be satisfied by 

adjusting different energy converters in hubs according to 

optimization objectives. The energy hub used in this paper is 

equipped with energy converters, namely Combined Heat and 

Power (CHP), Ground Source Heat Pump (GSHP), and Gas 

Furnace (GF). CHP simultaneously generates heat and power, 

GF combusts gas to generate heat. GSHP coverts power to heat 

by extracting heat from the ground, and it is widely used in 

Europe and American due to its high efficiency. 

The relations between converter inputs and outputs for CHP, 

GSHP, and GF are shown in (1), (2), and (3) respectively. ηe 

and ηgh indicate the electric and thermal efficiency of CHP. The 

efficiency of GSHP is the coefficient of performance (COP). ηF 

is the efficiency of GF. PCHP, PHP, and PGF represent the energy 

injection to CHP, GSHP, and GF. The electric output 𝑃𝐶𝐻𝑃,𝐸𝑜𝑢𝑡 

and heat output 𝑃𝐶𝐻𝑃,𝐻𝑜𝑢𝑡 of CHP are quantified by (1a) and 

(1b), the outputs of GSHP 𝑃𝐻𝑃,𝑜𝑢𝑡(𝑡)  and GF 𝑃𝐺𝐹,𝑜𝑢𝑡(𝑡) are 

calculated by (2) and (3). 

𝑃𝐶𝐻𝑃,𝐸𝑜𝑢𝑡(𝑡) = 𝜂𝑒 ∙ 𝑃𝐶𝐻𝑃(𝑡)             (1a) 

𝑃𝐶𝐻𝑃,𝐻𝑜𝑢𝑡(𝑡) = 𝜂𝑡ℎ ∙ 𝑃𝐶𝐻𝑃(𝑡)             (1b) 

𝑃𝐻𝑃,𝑜𝑢𝑡(𝑡) = 𝐶𝑂𝑃 ∙ 𝑃𝐻𝑃(𝑡)                  (2) 

𝑃𝐺𝐹,𝑜𝑢𝑡(𝑡) = 𝜂𝐹 ∙ 𝑃𝐺𝐹(𝑡)                   (3) 

Heat storage is also considered to store excessive heat, which 

can be utilized later when the heat load is exorbitant. Heat 

storage is formulated in (4) [28], where Mh specifies the energy 

exchange between the hub and heat storage, Eh indicates the 

stored energy, and Eh
stb is the standby thermal loss through the 

water tank wall at the current time interval. eh
+ and eh

- are the 

charging and discharging efficiency respectively. These 

variables are a function of t, denoting the time step within a 

discretized time domain.   

𝑀ℎ(𝑡) =
1

𝑒ℎ
(𝐸ℎ(𝑡) − 𝐸ℎ(𝑡 − 1) + 𝐸ℎ

𝑠𝑡𝑏)         (4a) 

𝑒ℎ = {
𝑒ℎ
+     if  𝑀ℎ(𝑡) ≥ 0    (charging/standby)
1

𝑒ℎ
−     else                                  (discharging)

     (4b) 

 Because the storage charges when Mh is greater than 0, the 

above equation means: the stored energy at current time step t 

equals the stored energy at previous time step (t-1) plus the 

charging energy multiplied by the charging efficiency, minus 

the standby loss. This explanation also applies when the storage 

discharges. 

Additionally, renewable generation including solar 

photovoltaics and wind generation cooperates with other hub 

elements to meet demand. The output of the solar photovoltaic 

system Pso,out is quantified by multiplying solar irradiance Pso,in 

with the efficiency ηso. 

𝑃𝑠𝑜,𝑜𝑢𝑡 = 𝑃𝑠𝑜,𝑖𝑛 ∙ 𝜂𝑠𝑜                  (5) 

 The power output Pwi from wind turbines is expressed in 

terms of the wind speed vw (m/s) as shown in (6) [29], where vci, 
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vrs, and vco represents the cut-in, rated, and cut-out wind speed, 

Prated indicates the rated power. 

𝑃𝑤𝑖 = {

0,                                    if 0 < 𝑣𝑤 < 𝑣𝑐𝑖 , or 𝑣𝑤 > 𝑣𝑐𝑜

𝑃𝑟𝑎𝑡𝑒𝑑 ∙ (
𝑣𝑤−𝑣𝑐𝑖

𝑣𝑟𝑠−𝑣𝑐𝑖
) ,        if 𝑣𝑐𝑖 ≤ 𝑣𝑤 ≤ 𝑣𝑟𝑠                     

𝑃𝑟𝑎𝑡𝑒𝑑 ,                            if  𝑣𝑟𝑠 ≤ 𝑣𝑤 ≤ 𝑣𝑐𝑜                    

       (6) 

The energy hub modelled represents a community such as a 

university or hospital in a smart energy city. The schematic 

diagram of a single energy hub is shown in Fig. 1.  

As indicated in Fig. 1, the demand including electricity Lele 

and heat Lth is satisfied by electricity input Pele, gas input Pgas, 

energy exchange with the storage Mh, and renewable generation 

Pre,in. The energy hub system presents multiple inputs and 

outputs, hence the coupling between hub outputs (represented 

as L) and inputs (represented as P) is formulated with a matrix 

of converter efficiencies (representing as C). The mathematical 

transformation of the energy hub in Fig. 1 is formulated in (7).  

[
𝐿𝑒𝑙𝑒(𝑡)

𝐿𝑡ℎ(𝑡) + 𝑀ℎ(𝑡)
] =

[
1 − 𝑣𝑒(𝑡) 𝜂𝑟𝑒(1 − 𝑣𝑒(𝑡)) 𝑣𝑔(𝑡)𝜂𝑒(1 − 𝑣𝑒(𝑡))

𝑣𝑒(𝑡)𝐶𝑂𝑃 𝑣𝑒(𝑡)𝜂𝑟𝑒𝐶𝑂𝑃 𝑣𝑔(𝑡)(𝜂𝑔ℎ + 𝜂𝑒𝑣𝑒(𝑡)𝐶𝑂𝑃) + 𝜂𝐹 − 𝑣𝑔(𝑡)𝜂𝐹
] ×

[

𝑃𝑒𝑙𝑒(𝑡)
𝑃𝑟𝑒,𝑖𝑛(𝑡)

𝑃𝑔𝑎𝑠(𝑡)
]                    (7) 

As indicated in (7), νe and νg are the dispatch factors of 

electricity and gas. Specifically for this hub, νe indicates the 

portion of electricity injection to GSHP relative to the total 

electricity input. Similarly, νg is the proportion of gas injected 

to CHP relative to the total gas input. 

B. Electricity Networks 

The mathematical formulations of electricity networks are 

indicated as follows [8]. The complex nodal power balance for 

node m is in (8), where Sm is the complex power injected to 

node, Smn is the complex power flow from node m to n, and N is 

the number of nodes in the power network. 

𝑆𝑚 = ∑ 𝑆𝑚𝑛
𝑁
𝑛=1                     (8) 

The complex power flow Smn is expressed in (9) in terms of 

the complex nodal voltage Vm and Vn, and the line parameters. 

𝑆𝑚𝑛 =
|𝑉𝑚|

2

𝑍̃𝑚𝑛
∗ −

𝑉𝑚𝑉𝑛
∗

𝑍𝑚𝑛
∗                    (9) 

 Assuming that the line between two nodes is represented by a 

π equivalent circuit, Zmn and Ymn respectively indicate the series 

impedance and shunt admittance. Therefore, 𝑍𝑚𝑛 is  

𝑍𝑚𝑛 = (
1

𝑍𝑚𝑛
+

𝑌𝑚𝑛

2
)
−1

               (10) 

C. Gas Networks 

The gas injection to each node follows the conservation law 

of nodal gas flow balance. The mathematical formulations of 

the gas network are illustrated as follows [8], where the nodal 

gas flow balance for node m is  

𝑄𝑚 = ∑ 𝑄𝑚𝑛
𝑁
𝑛=1                   (11) 

Where Qm indicates gas injection to node m. Qmn in (12) 

represents the gas flow between nodes m and n, which is 

expressed in terms of the upstream pressure pm, downstream 

pressure pn and kmn depend on the pipeline's physical properties. 

𝑄𝑚𝑛 = 𝑘𝑚𝑛𝑠𝑛𝑚𝑛√𝑠𝑛𝑚𝑛(𝑝𝑚
2 − 𝑝𝑛

2)             (12a) 

𝑠𝑛𝑚𝑛 = {
+1,   if 𝑝𝑚 ≥ 𝑝𝑛 
−1,                 else

             (12b) 

 The gas consumed by compressors Qcom is formulated as  

 𝑄𝑐𝑜𝑚 = 𝑘𝑐𝑜𝑚𝑄𝑚𝑛(𝑝𝑚 − 𝑝𝑘)            (13) 

 Where kcom characterizes the properties of the compressor, pm 

and pk indicate the suction and discharge pressures at the two 

sides of the compressor. Specifically, gas power flow Pmn can 

be quantified by gas flow rate Qmn and the gross heating value 

of gas (represented as GHV) as shown in (14). 

𝑃𝑚𝑛 = 𝐺𝐻𝑉 ∙ 𝑄𝑚𝑛                (14) 

III. PROBLEM FORMULATION AND METHODOLOGY 

In a systematic way, the optimal operation normally consists 

of the following steps [7, 8, 11-13]:  

i) the electricity load, heat load, and energy prices are 

normally forecasted by using historic data;  

ii) the energy output of different generation is forecast, 

where the key uncertainties are the renewable 

generation;  

iii) model the cost functions of all energy generation;  

iv) model the operation objective function, and equality and 

inequality constraints for the optimization;  

v) find an appropriate optimization approach to solve the 

model.  

However, traditional deterministic methods fail to provide a 

reliable optimal solution because the renewable generation is 

assumed to be accurately forecasted. Chance-constrained 

programming enables the optimization of the system with the 

distributions of uncertain variables explicitly represented. By 

defining a probability level for the chance constraints, solving 

the CCP means to optimize the system with safety constraints 

and chance constraints satisfied, under the condition that the 

values of uncertainty variables are randomly distributed 

according to their distributions. 

The impact of uncertain renewable generation on the energy 

hub system is modelled by chance constraints and the 

formulation of the optimization is presented in this section. 

Additionally, this section introduces the concept of 

Cornish-Fisher Expansion to convert chance constraints into 

deterministic constraints. The steps of the CCP implementation 

are at the end of this section. 

A. CCP Energy Hub Optimization Problem Formulation 

A system of three interconnected energy hubs in Fig. 2 is to 

illustrate the problem formulation. The electricity and gas 

networks supported by G1, G2, and N are embedded in the 

system to satisfy electricity and heat demand. G1 and G2 are 

generation power outputs, and N is the gas injection to the 

energy hub system. As shown in Fig. 2, heating converters 

including CHP, GSHP, and GF are installed within each hub, 

and a water tank is also contained in each hub as heat storage. A 

CHP

Gas Furnace

GSHP

Water Tank

Pele

Pgas

Pre,in Lele

Lth

 
Fig. 1.  Single energy hub 
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solar photovoltaic system and a wind farm are installed at hubs 

1 and 2 respectively.  

The objective is to minimize the total system cost by 

optimally determining the power flow, gas flow, and the 

operation of each hub element over the whole operation time 

horizon with uncertain renewable. Meanwhile, the chance 

constraints on power and gas flows between adjacent hubs 

should be above the predefined probability level of confidence.  

The optimal solution is denoted as the control vector u(t), 

which contains the power and gas injection to the network and 

each hub, the voltage and pressure at each bus, the pressure of 

compressor, the power and gas flows between adjacent hubs, 

the energy exchange with the heat storage in each hub, and the 

dispatch factors for each hub. All these variables at all 

time-steps are included in the control vector u(t).  

𝑢(𝑡) = [𝑃𝑒𝑙𝑒,𝑖(𝑡), 𝑃𝑔𝑎𝑠,𝑖(𝑡), 𝑉𝑖(𝑡), 𝑃𝐺𝑖(𝑡), 𝑃𝑁(𝑡), 𝑆𝑖,𝑗(𝑡), 𝑝𝑖(𝑡),  

𝑄𝑖,𝑗(𝑡), 𝑝𝑐𝑜𝑚,𝑖(𝑡),𝑀ℎ𝑖(𝑡), 𝐸ℎ𝑖(𝑡), 𝑣𝑒,𝑖(𝑡), 𝑣𝑔,𝑖(𝑡)]  ∀𝑡, ∀𝑖     (15) 

 In (15), ‘i’ is the index number related to hubs, buses, nodes, 

and compressors. The definitions of other variables are in 

previous sections. The total cost (TC) of the electricity and gas 

generation is the objective to be minimized in terms of a 

quadratic function over whole time horizon T. It should be 

noticed that snmn in (12a) and (12b) is a binary variable, but it is 

temporarily used to calculate the gas flow Qmn in (15). Hence 

snmn is not mentioned in the decision variables. The stochastic 

programming problem is formulated in (16). 

Objective: 

 Min 𝑇𝐶 = ∑ ∑ (𝑎𝑖,𝑡 + 𝑏𝑖,𝑡𝑃𝑖,𝑡 + 𝑐𝑖𝑡𝑃𝑖,𝑡
2

𝑖∈{𝐺1,𝐺2,𝑁}
𝑇
𝑡=1 )    (16a) 

Subject to: 

{
 
 
 
 
 
 

 
 
 
 
 
 
Equality constraints: (1) − (14)                                                             
Inequality constraints:                                                                               

0 ≤ 𝑣𝑒,𝑖(𝑡) ≤ 1   0 ≤ 𝑣𝑔,𝑖(𝑡) ≤ 1                                                   (16b)

0 ≤ 𝑃𝐺,𝑖(𝑡) ≤ 𝑃𝐺,𝑖,𝑚𝑎𝑥(𝑡)      0 ≤ 𝑃𝑁(𝑡) ≤ 𝑃𝑁,𝑚𝑎𝑥(𝑡)                (16c)

0 ≤ 𝑃𝑒𝑙𝑒,𝑖(𝑡) ≤ 𝑃𝑒𝑙𝑒,𝑖,𝑚𝑎𝑥(𝑡)   0 ≤ 𝑃𝑔𝑎𝑠,𝑖(𝑡) ≤ 𝑃𝑔𝑎𝑠,𝑖,𝑚𝑎𝑥(𝑡)   (16d)

0 ≤ 𝑝𝑖(𝑡) ≤ 𝑝𝑖,𝑚𝑎𝑥(𝑡)   0 ≤ 𝑉𝑖(𝑡) ≤ 𝑉𝑖,𝑚𝑎𝑥(𝑡)                           (16e)

𝑀ℎ,𝑖,𝑚𝑖𝑛(𝑡) ≤ 𝑀ℎ,𝑖(𝑡) ≤ 𝑀ℎ,𝑖,𝑚𝑎𝑥(𝑡)                                             (16f)

𝐸ℎ,𝑖,𝑚𝑖𝑛(𝑡) ≤ 𝐸ℎ,𝑖(𝑡) ≤ 𝐸ℎ𝑖,𝑚𝑎𝑥(𝑡)                                                (16g)

𝑝𝑐𝑜𝑚,𝑖,𝑚𝑖𝑛(𝑡) ≤ 𝑝𝑐𝑜𝑚,𝑖(𝑡) ≤ 𝑝𝑐𝑜𝑚,𝑖,𝑚𝑎𝑥(𝑡)                                  (16h)

Chance constraints:                                                                                     
Pr{𝑄𝑖,𝑗(𝑡) ≤ 𝑄𝑖,𝑗

𝑚𝑎𝑥} ≥ 𝛼   Pr{𝑆𝑖,𝑗(𝑡) ≤ 𝑆𝑖,𝑗
𝑚𝑎𝑥} ≥ 𝛼                   (16i)

  

  The objective function in (16a) indicates the total cost on the 

network to be minimized over the whole time horizon, where a, 

b, and c represent the coefficient of generation cost. (16b) 

specifies the constraint on dispatch factors, which should be 

within the boundary between 0 and 1. (16c) indicates the 

constraint for total power and gas injection to the networks. 

(16d) reflects the minimum and maximum power and gas input 

to each hub. (16e) refers to the limitations of the pressure and 

voltage at each bus. (16f) denotes the limitation of heat energy 

exchange with the storage, the minimum and maximum heat 

energy that can be stored in the storage are defined in (16g). 

(16h) represents the limitation of compressor’s pressure.  

In addition to equality and inequality constraints, the chance 

constraints are also established with a confidence level of α. 

The power flows Sij and gas flows Qij between adjacent hubs are 

constrained by chance constraints in this paper, and they are 

specified in (16i), where Pr means the probability of chance 

constraints.   

Equation (16i) indicates that the problem is formulated as a 

stochastic problem. To transform the stochastic problem to a 

deterministic problem, the quantile of chance constraints is 

calculated by Cornish-Fisher Expansion to fit the optimization, 

and (16) is thus solvable with the interior-point method. 

B. Transforming Chance Constraints to Deterministic 
Constraints 

In order to incorporate chance constraints into the 

optimization, the probability level of chance constraints is 

transferred by quantile, which reflects the inverse function of a 

stochastic variable’s Cumulative Distribution Function (CDF). 

Because of the monotone relation between the quantile and its 

inverse CDF, (16i) could be expressed by (17). 

𝑞𝑄𝑖,𝑗(𝛼𝑖) ≤ 𝑄𝑖,𝑗,𝑚𝑎𝑥         𝑞𝑆𝑖,𝑗(𝛼𝑖) ≤ 𝑆𝑖,𝑗,𝑚𝑎𝑥       (17) 

Where q is the quantile function formulated by the 

Cornish-Fisher Expansion with the utilization of cumulants. 

Five orders of cumulants are applied in this paper. The quantile 

function q in terms of probability level of α is indicated in (18) 

[30]. 

𝑞(𝛼) = 𝐴(𝛼) +
𝐴2(𝛼)−1

6
𝜅3 +

𝐴3(𝛼)−3𝐴(𝛼)

24
𝜅4 −

𝐴3(𝛼)−5𝐴(𝛼)

36
𝜅3
2 +

𝐴4(𝛼)−6𝐴2(𝛼)+3

120
𝜅5 −

𝐴4(𝛼)−5𝐴2(𝛼)+2

24
𝜅3𝜅4 +

12𝐴4(𝛼)−53𝐴2(𝛼)+17

324
𝜅3
2                  (18) 

 The symbol A in (18) indicates the quantile of standard 

normal distribution, κv represents the cumulants with order v. It 

should be noted that the quantile q and cumulants κv follow the 

form of standard measure. For a variable q with a mean value of 

µ and standard deviation of σ, the normalized form of the 

variable and the cumulants are denoted as 𝑞∗ = (𝑞 − 𝜇) 𝜎⁄  and 

𝜅𝑣
∗ = 𝜅𝑣/𝜎

𝑣 respectively. 

 In order to calculate the quantile, the chance constraints need 

to be expressed in terms of uncertainty variables and other 

variables. Taking the chance constraint Q12 restricting the gas 

flow between hub 1 and 2 as an example, at each time step they 

are expressed by the composition of control variables x and 

uncertainty variables ξ, derived from (1)-(14). The chance 

constraint of Q12 at time step t is  

𝑄1,2(𝑡) = 𝑎1𝜉𝑠𝑜𝑙𝑎𝑟(𝑡) + 𝑎2𝜉𝑤𝑖𝑛𝑑(𝑡) + 𝐶𝑜(𝑡)       (19) 
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Fig. 2.  The three-hub interconnected system.  
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Where, ζsolar and ζwind stand for the uncertainty inputs of solar 

and wind energy respectively, a1 and a2 represent the 

coefficient related to ζsolar and ζwind. Hence the two uncertain 

inputs perform linear relations with the variable gas flow 

between hub 1 and 2. Because the uncertain inputs to the energy 

hub system are linearly related to the chance constraints (power 

and gas flow between hubs), it is straightforward to obtain the 

linear relation in (19) through (1) - (14). Co(t) represents the 

polynomials containing control variables x, and it is irrelevant 

to the calculation of quantile. The first part in (19) related to the 

uncertainty inputs is expanded by the Cornish-Fisher 

Expansion to convert it to a deterministic formulation [30]. 

Assuming the uncertainty is abbreviated as Un(t), the cumulant 

for Un(t) with order v is formulated in 

𝜅𝑈𝑛(𝑡),𝑣 = 𝑎1
𝑣𝜅𝜉𝑠𝑜𝑙𝑎𝑟,𝑣(𝑡) + 𝑎2

𝑣𝜅𝜉𝑤𝑖𝑛𝑑,𝑣(𝑡)        (20) 

Where 𝜅𝜉𝑠𝑜𝑙𝑎𝑟,𝑣(𝑡) and 𝜅𝜉𝑤𝑖𝑛𝑑,𝑣(𝑡) represent the cumulants of 

variables ξsolar(t) and ξwind(t) with vth order at time step t. The 

quantile of chance constraints can, therefore, be calculated 

through (18)-(20), and applied as the deterministic form in (17). 

The formulation of other chance constraints in (16i) can be 

accordingly transferred to deterministic constraints by the 

similar expressions shown in (18) to (20). 

C. Overall Methodology 

The methodology developed to solve the chance-constrained 

energy hub optimization is described by the following steps: 

 Step 1. Acquire data: energy hub load, distributions of 

renewable generations, and system parameters. 

 Step 2. Build the optimization problem with the given 

constraints, and chance constraints formulated in (16). 

 Step 3. Initialize the control vector u(t) within the 

predefined boundary. 

 Step 4. Convert the chance constraints into deterministic 

constraints through (17)-(20). 

 Step 5. Apply the interior-point method to optimize the 

energy hub system with deterministic constraints. 

 Step 6. Determine whether the solution from step 5 satisfies 

the stopping criteria, and if not, update the control vector 

u(t) and repeat steps 4 to 5 until the stopping criterion is 

met. 

The optimization follows the general procedures of a 

heuristic algorithm, which is to update the optimal solution for 

the problem until the stopping criteria are met. However, as 

indicated in the previous section, the quantile of chance 

constraints not only depends on the probability level but also 

correlates with other control variables. Therefore, in updating 

the control variables, the chance constraints need to be 

circularly transferred to deterministic constraints at each 

iteration. The interior-point approach is then implemented to 

solve the deterministic problem to find the best solutions. 

IV. EVPI AND VSS MODEL 

To evaluate the effect of applying stochastic programming to 

solve the optimization problem, the results from the CCP are 

compared with those from the expected value of perfect 

information (EVPI) and value of the stochastic solution (VSS), 

both of which use deterministic programming to solve the 

optimization. The EVPI calculates the maximum amount a 

decision maker is willing to pay when uncertain information is 

perfectly known [31]. By assuming the uncertainty is modelled 

by various scenarios each with a known probability, the 

wait-and-see solution (WS) is derived by summing the optimal 

solution from each scenario multiplied by probability. The 

EVPI is calculated by (21), and SS is the solution from the 

CCP. 

𝐸𝑉𝑃𝐼 = 𝑆𝑆 −𝑊𝑆                    (21) 

The VSS reflects the benefits from explicitly modelling the 

uncertain distributions. It is mathematically formulated as the 

difference between the expected value (EV) of the optimal 

solution where uncertain variables are replaced by their mean 

values and the stochastic solutions [31]. 

𝑉𝑆𝑆 = 𝐸𝑉 − 𝑆𝑆                   (22) 

V. CASE STUDY 

The approaches of deriving PDF and CDF curves are 

illustrated in this section, and the convergence behaviour of the 

optimization technique is obtained and analysed by 

implementing the CCP on an example sample. Additionally, 

two cases are demonstrated and discussed in this section to 

validate the proposed model. The energy hub system in Fig. 2 is 

applied and the simulated time horizon is set as T=24. The 

chance constraints on gas and power flows between adjacent 

hubs are separately applied to the optimization problem in the 

first and second cases to investigate the impact of different 

chance constraints on system optimization performance. The 

system setup and data acquisition are indicated as follows.  

A. Data Setup 

The uncertainty in renewable energy generation, including 

solar energy and wind energy, are modelled in this paper. The 

CCP is used in this paper because a short period of overloading 

is tolerable for energy networks between communities, and 

hence a slight error is permissible.  

Literature suggests that the characteristics of solar and wind 

energy generally follow Beta [30] and Weibull distributions 

[20]. Thus,  the probability density functions of solar and wind 

energy injection at each time step are derived by fitting the 

historical data into Beta and Weibull distributions respectively, 

the shape factors of these distributions are then estimated. The 

 
(a)                                                   (b) 

 
(c)                                                        (d) 

Fig. 3.  PDF and CDF curves of renewable energies inputs at step 9  
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cumulants are calculated based on the shape factors. The 

probability density function (PDF) curves and CDF curves of 

the solar and wind energy inputs at time step 9 are shown in Fig. 

3 as an example. Here, figures (a) and (b) denote the 

characteristics of solar input, figures (c) and (d) indicate the 

wind input’s PDF and CDF.  

In addition to renewable uncertainties, the load profiles for 

the energy hub system are modelled by [32] and [33]. The 

parameters and constraints for other elements in the energy hub 

system are taken from [8, 13, 28], which are described in 

TABLE I. The system is considered as in a per unit (p.u.) 

system and the monetary unit is assumed to be GBP (£). 

B. Derivation of PDF and CDF Curves 

The results of CCP on the 3-hub system are analyzed with 

their PDF and CDF curves. All curves are sufficiently accurate 

to observe their characteristics when 500 samples are applied. 

The change to the curves are imperceptible when more samples 

are implemented, but the computational burden is 

exponentially heavy. Therefore, 500 samples are analyzed to 

acquire the PDF and CDFs plots. Generally, the two functions 

can be obtained by the following key procedures as shown in 

Fig. 4.  

 Step 1: Implement the CCP optimization for the 3-hub 

system in terms of 500 samples, where each sample 

represents the CCP with different probabilities of chance 

constraints. For example, to acquire the PDF and CDF 

curves with chance constraint probability higher than 80%, 

the corresponding probability level of chance constraints 

equals to 80%+(n-1) *0.04% with n growing from 1 to 500. 

 Step 2: Record the optimization results, including the 

optimal operations and objective value of each sample. 

 Step 3: Build PDF and CDF curves by running 500 samples. 

C. Case 1-Gas Flows with Chance Constraints 

1) Convergence analysis of CCP 
The optimization problem (16) is formulated as a 

multi-period problem, which is non-convex. Due to the high 

complexity of the problem, the global minimum is not 

guaranteed with the used interior-point method. However, the 

interior-point method is capable of resolving the non-linear 

problem compared with the linear programming methods. To 

demonstrate that the algorithm is capable of achieving a local 

minimum when applied to CCP, a single run of the 3-hub 

system is analyzed with the probability level of the chance 

constraints set as 80%, and the convergence behaviour of the 

optimization is derived and shown in Fig. 5. It can be seen that 

the value of the objective function dramatically declines from 

iteration 1 to 5. It then slightly increases until iteration 23, the 

curve continually drops from iteration 23 to 30, and remains 

stable thereafter. It demonstrates that the optimization 

converges around iteration 41 and achieves the minimum value 

of £522.33. It is, therefore, reasonable to conclude a local 

minimum has been met. In fact, the optimization converges for 

each sample after approximately 40 iterations. Additionally, 

previous literature has proved that the interior-point method 

applied to CCP is capable of converging to a minimum solution 

when solving problems with similar complexity [1, 8, 34]. 

2) Different probability levels of chance constraints 
The maximum value of the chance constraint (i.e. the gas 

flow between adjacent hubs) is set as 0.8 p.u., and different 

probability levels of 80%, 85%, 90%, and 95% are applied to 

investigate how chance constraints affect the optimization.  

The CDF curves of the optimized total cost are shown in Fig. 

6, which are derived by optimizing 500 samples for the 3-hub 

system with the chance constraints level higher than the above 

probability levels. The optimized total costs of the three-hub 

system vary from approximately £521.5 to £527 with the 

cumulative probability changing from 0 to 1. All CDF curves 

perform similar characteristics with the optimization results 

derived from different chance constraint probability levels. 

TABLE I 
ENERGY HUB SYSTEM PARAMETERS AND CONSTRAINTS 

System parameters 

Line 1-2 Z12=0.3+j0.9 p.u., Y12=j1.5∙10-6 p.u. 

Line 1-3 Z13=0.2+j0.6 p.u., Y12=j2.5∙10-6 p.u. 

Line 2-3 Z23=0.1+j0.4 p.u., Y12=j3.5∙10-6 p.u. 
G1 V1=1∠0o, aG1=0, bG1=10 £/p.u., cG1=0.001 £/p.u.2 

G2 aG2=0 bG2=12 £/p.u., cG2=0.0012 £/p.u.2 
Pipe lines GHV∙k12=4.5   GHV∙k13=3.0   GHV∙k23=2.0 

Compressor GHV∙kcom=0.5 

N p1=1 p.u., aN=0, bN=5 £/p.u., cN=0 £/p.u.2 
CHP ηe=0.33, ηgh=0.57 

GF 

Storage 

ηF=0.75 

Eh
stb=0.5, eh

+= eh
-=0.9 

Renewables ηso=0.117,  vci=4m/s,  vco=25m/s,  vrs=16m/s,  Prated=0.3p.u. 

Constraints 

Nodes  
m=1, 2, 3 

0.8 ≤ |Vm| ≤ 1.2 p.u. 
pm ≤ 1.2 p.u. 

G2 0 ≤  PG2 ≤4 p.u., 0 ≤ | QG2 | ≤ 4 p.u., 0 ≤ | PG2+jQG2 | ≤ 5 p.u. 

Compressor 1.2 ≤ pm/ pk ≤ 1.8 
Storage 0 ≤ Eh ≤ 6 p.u.   -3 ≤ Mh ≤ 3 p.u. 

CHP input 0 ≤ PCHP,input ≤ 1 p.u. 

GF/GSHP 0 ≤ PGSHP/GF_input ≤ 1.5 p.u. 

 

Start

For samples n=1:500

Implement the CCP scheme for the 3-hub 

system with the probability of chance 

constraints equals to 80%+(n-1)*0.04%

Record the results including the optimal 

operations and objective value for sample n  

Another n ?

No

Yes

Acquiring the PDF and CDF diagrams by 

sampling the results of the 500 samples

End
 

Fig. 4.  Flowchart of obtaining PDF and CDF curves from CCP 

 
Fig. 5.  The convergence of CCP implementing on the 3-hub system 
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Since the load is relatively high at time step 9 compared to 

other time steps, the optimal operation for the energy hub at this 

time step is of interest for further investigation. The CDF 

curves of the total gas injection to the network at time step 9 

with different chance constraints probability levels are in Fig. 7.   

Fig. 7 indicates that all of the CDF curves gradually arising 

until the cumulative probability reaches 0.2, and then the curves 

rapidly increase to the cumulative probability of 1. The CDF 

curves with different probability levels of chance constraints 

present similar variation. The CDF curves in Fig. 7 present 

completely different characteristics with the CDF curves in Fig. 

6. This is mainly due to the non-linearity between gas flow and 

the total system cost. Additionally, since the hub system 

presents high flexibility, the change of gas flows between hubs 

could lead to an unpredictable impact on the total cost. For 

example, the constraints on the quantity of gas flows could lead 

to less gas injection into the energy hub. The demand could be 

satisfied by accordingly adjusting the operations of other 

elements within the energy hub system such as discharging the 

storage or switching on other converters. Since the problem is a 

multi-period problem with high complexity, the cost of the 

adjustments is not predictable. Therefore, the CDF curves of 

the optimized total cost perform differently with the CDF curve 

of the gas flows between hubs. 

D. Case 2-Power Flows with Chance Constraints 

1) Different probability levels of chance constraints  
The power flows between adjacent hubs are restricted by the 

chance constraints for the second case. Considering system 

safety limits, the maximum power flows between hubs are 

assumed to be 50% of branch capacity. With the different 

chance constraints probability levels of 80%, 85%, 90% and 95 

%, the CDF curves of the total gas injection to the network at 

time step 9 are shown in Fig. 8, and the CDF curves of the 

optimized total cost are depicted in Fig. 9. 500 optimization 

results are sampled to derive the curves.  

As seen from Fig. 8, the total gas injection at time step 9 

varies from approximately 2.32 p.u. to 2.82 p.u.. The CDF 

curve generally spans wider when the chance constraints 

probability level is lower, and the optimal operations tend to be 

more stable with fewer variations when the probability level of 

chance constraints is higher.  

The characteristics of the CDF curves in Fig. 8 are different 

from the CDF curves in Fig. 7 in terms of shape and gradient. 

Additionally, the abscissa of the CDF curves in Fig. 7 spans 

from approximately 2 to 3, spanning greater distance compared 

with the CDF curves in Fig. 8. Hence the total gas injection to 

the network is more affected when the gas flows between hubs 

are restricted by the chance constraints.  

Conversely, the CDF curves of the optimized total cost in 

Fig. 9 present similar characteristics with the curves in Fig. 6. 

However, the abscissa of the CDF curves in Fig. 9 spans wider 

than the curves in Fig. 6, which means that the optimized total 

cost is more sensitive when the power flows between hubs are 

constrained by chance constraints. Thus, when the restriction of 

chance constraints on gas flows change to power flows, the 

impacts to the optimal operations of every element within the 

energy hub system are completely different.  

2) The optimal strategy for energy hub system 
The optimal operation of hub 1 in terms of electrical load 

over 24 hours is shown in Fig. 10, where the probability levels 

of chance constraints are set higher than 80%. As seen, the total 

electrical load represented by the histogram and power 

injection to GSHP (denoted by stars) are met by the grid power 

 
Fig. 7. Case 1-CDF curve of the total gas injection at time step 9 

 
Fig. 6.  Case 1-CDF curve of the optimized total cost  

 
Fig. 10.  Optimal strategy of hub 1 over 24 hours 

 
Fig. 8. Case 2-CDF curve of the total gas injection at time step 9 

 
Fig. 9. Case 2-CDF curve of the optimized total cost 
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(denoted by crosses), CHP output (denoted by squares), and 

solar PV output (denoted by circles). The peak loads are 1.21 

p.u. and 0.92 p.u., which appear at time steps of 8 and 20;  the 

power injections to the hub over 24 hours approximately follow 

the same variations as the load, and the maximum power 

injections are at time steps of 8 and 20 with the values of 1.55 

p.u. and 1.30 p.u. respectively. The electric output from CHP 

generally remains at 0.33 p.u. over 24 hours, which is close to 

the maximum CHP power output. Since the energy efficiency 

of the CHP is higher than those of other converters and the CHP 

is thus more profitable, it is operated at the maximum power 

over the whole time horizon.  

3) Sensitivity analysis 
By assuming that the power flows between hubs are 

restricted by chance constraints, the probability levels of 

chance constraints are set to be 80%, 82%… to 99.9%. The 

optimal dispatch factors of the three hubs at time step 9 under 

these probability levels are shown in Fig. 11. Figures (a) and (b) 

indicate the variations of νe and νg under different chance 

constraint probabilities, with the horizontal and vertical axis 

representing the chance constraint probability and the value of 

dispatch factors. The diamonds, stars, and circles represent the 

dispatch factors of hubs 1, 2, and 3 respectively. As seen, the 

dispatch factors νe of hubs 1 and 3 remain flat when the 

probability changes and the dispatch factor of hub 2 shows 

irregular variations. Moreover, the changing probability levels 

hardly affect the dispatch factors νg of the three hubs because 

the profits from the CHP are higher than those of the GF.  

4) Importance of CCP 
To highlight the importance of CCP and compare its results 

with those from deterministic approaches, EVPI and VSS are 

calculated by solving the same 3-hub system optimization with 

deterministic constraints. In other words, the maximum power 

flows between hubs are restricted to be lower than 50% of the 

capacity with 100% certainty. The value of WS is calculated by 

using scenario methods, where the probability of each scenario 

is assumed to be perfectly known. Scenario-generating 

methods are used in [5, 15-21], and hence the EVPI can be used 

to measure the impact between using CCP and scenario 

methods to solve an energy hub optimization problem with 

uncertainties. 

In this paper, WS is derived by applying the 2PEM in [19, 

20] to solve the energy hub optimization with uncertainties. In 

terms of system total cost, WS and EV are calculated as 

£524.02 and £522.92 respectively. The solution of CCP (SS) is 

£527.96 when the probability level of chance constraints is set 

at 99.99% (100% is not possible because the quantile derived 

through Cornish-Fisher Expansion will be infinite).  The EVPI 

and VSS are £3.94 and £5.04 by using (21) and (22). The EVPI 

indicates that the difference between optimized system costs 

from CCP and 2PEM is £3.94, and the VSS suggests that there 

is an extra cost of £5.04 due to uncertainties. 

E. Comparison between the Two Cases 

The PDF diagrams of the optimized objective derived from 

the two cases are shown in Fig. 12, where both the probability 

levels of chance constraints are set as 80%. The upper and 

lower diagrams represent the distributions of probability 

densities for case 1 and 2 respectively. The possible optimized 

total cost varies from £521.31 to £527.45 in case 1, and £522.39 

to £528.10 in case 2. The span of the possible optimization 

results in case 1 is wider compared with the results derived 

from case 2. Additionally, the expense derived from case 2 is 

holistically higher than the expense in case 1.  

It is observed from the lower diagram in Fig. 12 that, the PDF 

curve derived from case 2 presents relatively high fluctuations 

around £524 and £528 in addition to the high probability 

density around the total cost of £523. On the other hand, the 

probability density for the upper PDF curve is generally 

centralized around the total cost of £523, which shows 

stabilized characteristics. Therefore, by comparing the total 

 
 (a)                                                        (b) 

Fig. 11.  Dispatch factors under different chance constraints probability  
 

 

 
Fig. 13.  CDF curves of Maximum energy level for two cases 

 
Fig. 12.  PDF diagrams of the optimized total cost with the probability of 
chance constraints higher than 80% derived from the two cases 



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

 

costs of the two cases, it suggests that the energy hub system 

tends to be more unstable and system cost is comparatively 

high when the power flows between hubs are restricted by 

chance constraints. Thus, the system should be carefully 

operated with the electricity power flows limited by chance 

constraints.  

Since the heat storage is equipped within the energy hub 

system and optimized by CCP, the impacts of chance 

constraints to the operations of heat storages are investigated. 

The optimal operation of the heat storage in hub 1 is studied as 

an example. The energy level of heat storage quantifies the 

percentage of energy stored in it divided by its capacity, and the 

CDF curves of the maximum energy level of heat storage in hub 

1 with different chance constraints probability levels are shown 

in Fig. 13. The upper and lower CDF curves are derived from 

case 1 and 2 respectively. As seen in Fig. 13, the CDF curves 

perform similar variation tendency for each individual case. 

However, the differences between the CDF curves in case 2 are 

more distinct compared to case 1, and the CDF curves have a 

broader span in case 2. It could be seen that the energy hub 

system tends to be more unstable when the chance constraints 

limit the power flows between hubs.  

The results also suggest that the capacity of heat storage 

should be accordingly extended when the power flows between 

hubs are restricted by chance constraints since the maximum 

energy level in case 2 is higher than case 1. 

VI. CONCLUSION 

To model the intelligent operations of smart energy city with 

uncertainties, this paper applies the energy hub concept to 

optimize community renewable energy resources with 

uncertainty parameters. Chance-constrained programming is 

applied in this paper to solve the optimal energy flow problem 

for the energy hub system. The main findings are as follows: 

 The uncertain elements of the energy hub system should be 

appropriately modelled since the stochastic nature can 

significantly affect energy hub system operations and costs. 

 Chance-constrained programming is effective in optimizing 

energy hubs with uncertain factors, enabling the realistic 

operation of the energy hub system with minimum costs.  

 Results demonstrate that chance constraints on power flows 

have a relatively high impact on energy hub system 

optimization. The results could be more unstable compared 

with the case of modelling gas flows with chance 

constraints. 

Future work will incorporate other optimization schemes 

existing in smart energy cities, such as demand response and 

unit commitment by chance-constrained programming into the 

energy hub optimization. Additionally, the correlations of input 

random variables, such as wind outputs, will be considered as 

well by joint distributions in energy hub optimization.  
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