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Chance-Constrained Optimization for Multi
Energy Hub Systems in a Smart City

Da Huo, Chenghong Gu, Member, IEEE, Kang Ma, Member, IEEE, Wei Wei, Yue Xiang,
Member, IEEE, and Simon Le Blond

Abstract— The Energy Hub is a powerful
conceptualisation of how to acquire, convert, and
distribute energy resources in the smart city. However,
uncertainties such as intermittent renewable energy
injection present challenges to energy hub optimization.
This paper solves the optimal energy flow of adjacent
energy hubs to minimize the energy costs by utilizing the
flexibility of energy resources in a smart city with uncertain
renewable generation. It innovatively models the power
and gas flows between hubs using chance constraints,
thus permitting the temporary overloading acceptable on
real energy networks. This novelty not only ensures
system security but also helps reduce or defer network
investment. By restricting the probability of chance
constraints over a specific level, the energy hub
optimization is formulated as a multi-period stochastic
problem with the total generation cost as the objective.
Cornish-Fisher Expansion is utilized to incorporate the
chance constraints into the optimization, which transforms
the stochastic problem into a deterministic problem. The
interior-point method is then applied to resolve the
developed model. The proposed chance-constrained
optimization is demonstrated on a 3-hub system and
results extensively illustrate the impact of chance
constraints on power and gas flows. This work can benefit
energy hub operators by maximizing renewable energy
penetration at the lowest cost in a smart city.

Index  Terms—Chance-Constrained Programming,
Cornish-Fisher Expansion, Energy Hub, Optimal Flow

. INTRODUCTION

Asmart energy city enables flexible management of energy
infrastructure to efficiently meet demand. Within a smart

energy city, the energy hub concept can coordinate
multiple energy carriers to optimally satisfy demand [1-5].
Energy hubs could increase energy system flexibility and
exploit the unused capacity of various energy carriers. Energy
hubs have been applied to many energy system planning and
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operation problems in smart energy cities, such as demand
response [6], system operations [7], and optimal power flows
[8]. Buildings or communities in the smart energy city can be
treated as energy hubs [1, 9] and the energy flows between
them can be optimally scheduled to minimize energy
transportation and exploitation costs, minimizing the energy
costs of a smart energy city. The optimal energy flow of energy
hub involves optimizing electricity and other carriers, such as
natural gas and heat, which can be formulated as a multi-period
problem. In [10-13], the optimization for multi-carrier systems
including adjustment of the energy flows between hubs is
investigated.

In the aforementioned literature, the steady-state model of
energy hub systems is utilized and optimization problems are
all formulated as deterministic models. In reality, uncertainties
always present in energy management, due to customer load
and renewable energy. System thermal and voltage constraints
may be temporarily violated if uncertain variables are
underestimated, otherwise system operational cost will be
prohibitively high when the impact of uncertain variables is
overestimated [14]. Therefore, modelling and estimation of
uncertain variables are important in optimizing energy hubs.

Uncertainty has been included in energy hub optimization in
previous research. In [5, 15, 16], Monte Carlo simulation is
applied to model the uncertain inputs but the optimization
requires much computational effort due to the large number of
scenarios. A scenario reduction method is applied to minimise
the number of scenarios in [17, 18]. Other methods including
two-point estimate method (2PEM), the point estimate method,
and the improved 2PEM method have been applied in [19-21]
respectively to model renewable generation in energy hub
systems. The reality is that a certain number of scenarios may
not completely represent the stochastic nature of uncertain
variables, causing the results to be inaccurate.

In contrast to scenario-based methods, chance-constrained
programming (CCP) is a consistently robust and reliable
approach to resolve uncertainty [22]. Each chance constraint is
modelled by a boundary, the acceptable probability of
constraint violation. The CCP optimization is then resolved to
meet both normal constraints and chance constraints. Whilst the
stochastic nature of uncertain elements can cause occasional
system overloading, investment to meet these rare stress events
could be prohibitively expensive. However, in reality, some
temporary overloading is tolerable in both gas and electricity
networks, and CCP is, therefore, a promising approach to this
problem. CCP has been applied to power system operating
problems, including demand response, optimal power flow, and
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unit commitment [23], [24], and [25]. However, it has not been
applied to the energy hub optimization problem.

This paper formulates a novel, chance-constrained approach
to solve the optimal energy flows for multiple energy hubs with
uncertain renewable generation. The uncertain elements of
solar and wind generations are simulated by fitting historical
data to specific distributions. The power and gas flows along
branches between adjacent hubs are modelled as chance
constraints at specific probability levels. The optimization thus
becomes a non-convex stochastic problem. In solving the CCP
problem, the non-convex CCP problem is converted into a
convex problem and linear programming is applied in [26]. The
back-mapping approach is utilized in [22, 24], where the
probability of chance constraints is derived by mapping them
back to the uncertainty variables’ distributions. Non-linear
programming is then applied to solve the optimization problem.
A sample average approximation method is developed in [27]
to resolve chance-constrained problems.

This paper utilizes the Cornish-Fisher Expansion method to
translate chance constraints into deterministic constraints so
that deterministic programming can be applied. Because of its
flexibility and robustness [1], the interior point method is thus
used to solve the developed model. The CCP enables energy
hub system reliability to be realized above a specific level with
low costs by restricting the probability of the chance constraints
over the predefined level. This work can benefit energy hub
operators by maximizing renewable energy penetration at the
lowest cost in a smart city.

The main contributions of the paper are as follows: i)
compared with [24] where the load uncertainties are modelled
as random inputs in multiple hub optimization, the uncertainty
of renewable generation is considered in multi-hub
optimization; ii) in contrast to only treating the power flows
between buses as chance constraints [24], both power and gas
flows between adjacent hubs are restricted by chance
constraints; iii) the CCP is incorporated into the energy hub
optimization, which can better model the uncertainty
characteristics compared with the scenario generation methods
in [17-21] and reduce the huge computational burden caused in
[5, 15, 16]; iv) in contrast to the approaches in [22, 24, 26, 27]
for solving CCP, the chance constraints are mathematically
converted into deterministic constraints through Cornish Fisher
Expansion, and thus the deterministic programming is applied
to solve CCP; v) the impact of chance constraints on energy hub
system optimization is extensively investigated; vi) the
comparison between CCP and deterministic approaches is
quantified by using the value of expected value of perfect
information (EVPI) and value of the stochastic solution (VSS) .

The remainder of the paper is organised as follows: the
mathematical formulations of the energy hub system with the
power and gas network are illustrated in section Il. The CCP
problem formulation and the methodology of implementing the
CCP for the system optimization are introduced in section I11.
Section IV introduces the concepts of EVPI and VSS. Section
V discusses different case studies and related results, and
section VI concludes the paper.

II. ENERGY HUB SYSTEM MODELLING

The mathematical model of the energy hub system is
illustrated in this section. The equality constraints are based on
the law of energy conservation between hubs. The inequality
constraints arise from safe operational limits such as maximum
converter output and maximum power injection to a single hub.

A. Energy Hub

Both electricity and heat demand can be satisfied by
adjusting different energy converters in hubs according to
optimization objectives. The energy hub used in this paper is
equipped with energy converters, namely Combined Heat and
Power (CHP), Ground Source Heat Pump (GSHP), and Gas
Furnace (GF). CHP simultaneously generates heat and power,
GF combusts gas to generate heat. GSHP coverts power to heat
by extracting heat from the ground, and it is widely used in
Europe and American due to its high efficiency.

The relations between converter inputs and outputs for CHP,
GSHP, and GF are shown in (1), (2), and (3) respectively. 7.
and ngn indicate the electric and thermal efficiency of CHP. The
efficiency of GSHP is the coefficient of performance (COP). #¢
is the efficiency of GF. Pchp, Prp, and Pcr represent the energy
injection to CHP, GSHP, and GF. The electric output Pcyp goue
and heat output Pcyp yoye OF CHP are quantified by (1a) and
(1b), the outputs of GSHP Pyp ,,.(t) and GF Pgp . (t) are
calculated by (2) and (3).

Peup pout (t) = Ne * Pepp () (1a)
Peup mout (£) = Nen * Pepp (t) (1b)
Pyp out (t) = COP * Pyp(t) 2
Perout(t) = np * Pop(t) 3)

Heat storage is also considered to store excessive heat, which
can be utilized later when the heat load is exorbitant. Heat
storage is formulated in (4) [28], where M, specifies the energy
exchange between the hub and heat storage, Ey indicates the
stored energy, and Eps® is the standby thermal loss through the
water tank wall at the current time interval. ey and ey are the
charging and discharging efficiency respectively. These
variables are a function of t, denoting the time step within a
discretized time domain.

My(0) = - (Ea(0) = En(t = 1) + E}")
ef if My(t) =0 (charging/standby)

eh=i

(42)

(4b)

else (discharging)

€h

Because the storage charges when My is greater than 0, the
above equation means: the stored energy at current time step t
equals the stored energy at previous time step (t-1) plus the
charging energy multiplied by the charging efficiency, minus
the standby loss. This explanation also applies when the storage
discharges.

Additionally, renewable generation including solar
photovoltaics and wind generation cooperates with other hub
elements to meet demand. The output of the solar photovoltaic
system Pso 00t i quantified by multiplying solar irradiance Psg,in
with the efficiency #so.

Pso,0ut = Pso,in *Mso (5)

The power output Py from wind turbines is expressed in
terms of the wind speed vy (M/s) as shown in (6) [29], where v,
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Fig. 1. Single energy hub

Vrs, and Ve, represents the cut-in, rated, and cut-out wind speed,
Praed indicates the rated power.
0, if0 < v, < vy, 01y, > Vg,

Vw—Vci .
Pyi =X Pratea " (M) ifvg < v, < vy (6)

Pratedr if Vrs S Vy < Vg

The energy hub modelled represents a community such as a
university or hospital in a smart energy city. The schematic
diagram of a single energy hub is shown in Fig. 1.

As indicated in Fig. 1, the demand including electricity Lee
and heat Ly is satisfied by electricity input Peie, gas input Pgas,
energy exchange with the storage M, and renewable generation
Prein. The energy hub system presents multiple inputs and
outputs, hence the coupling between hub outputs (represented
as L) and inputs (represented as P) is formulated with a matrix
of converter efficiencies (representing as C). The mathematical
transformation of the energy hub in Fig. 1 is formulated in (7).

Lele(t)
Lep (8) + Mp ()] —

[1 —V(t) Mre(l-— 1Je(t)) vg(t)ne(l - Ue(t))

v, ()COP v, ()N, COP vy (t)(Mgn + NeVe(D)COP) + 1 — vy (D)5
Pele (t)

|:Pre,in (t):| (7)
Pgas(t)

As indicated in (7), ve and vy are the dispatch factors of
electricity and gas. Specifically for this hub, ve indicates the
portion of electricity injection to GSHP relative to the total
electricity input. Similarly, vy is the proportion of gas injected
to CHP relative to the total gas input.

B. Electricity Networks

The mathematical formulations of electricity networks are
indicated as follows [8]. The complex nodal power balance for
node m is in (8), where Sy is the complex power injected to
node, Smn is the complex power flow from node mto n, and N is
the number of nodes in the power network.

Sm = Zn=1Smn 8

The complex power flow Smn is expressed in (9) in terms of
the complex nodal voltage Vi, and Vi, and the line parameters.

Smn = IZYTIZ - Z’fﬁ 9)

mn mn

Assuming that the line between two nodes is represented by a
T equivalent circuit, Zmn and Ymn respectively indicate the series
impedance and shunt admittance. Therefore, Z,,,,, is

5 _ (L Y\ 7'
Z”m_(zmn+ 2)

(10)

C. Gas Networks

The gas injection to each node follows the conservation law
of nodal gas flow balance. The mathematical formulations of

the gas network are illustrated as follows [8], where the nodal
gas flow balance for node m is
Qm = g:l an (11)
Where Qn indicates gas injection to node m. Qmn in (12)
represents the gas flow between nodes m and n, which is
expressed in terms of the upstream pressure pm, downstream
pressure pn and kmn depend on the pipeline's physical properties.

an = kmnsnmn\/ Snmn(przn - przl) (123.)
_(+1, ifpy, =,
STt = {—1, else (12b)

The gas consumed by compressors Qcom is formulated as
Qcom = KkcomQmn (Pm — Pi) (13)
Where kcom Characterizes the properties of the compressor, pm
and py indicate the suction and discharge pressures at the two
sides of the compressor. Specifically, gas power flow Py, can
be quantified by gas flow rate Qmn and the gross heating value
of gas (represented as GHV) as shown in (14).
Pnn = GHV * Qyy (14)

Ill. PROBLEM FORMULATION AND METHODOLOGY

In a systematic way, the optimal operation normally consists
of the following steps [7, 8, 11-13]:

i) the electricity load, heat load, and energy prices are

normally forecasted by using historic data;

ii) the energy output of different generation is forecast,
where the key uncertainties are the renewable
generation;

iii) model the cost functions of all energy generation;

iv) model the operation objective function, and equality and
inequality constraints for the optimization;

v) find an appropriate optimization approach to solve the
model.

However, traditional deterministic methods fail to provide a
reliable optimal solution because the renewable generation is
assumed to be accurately forecasted. Chance-constrained
programming enables the optimization of the system with the
distributions of uncertain variables explicitly represented. By
defining a probability level for the chance constraints, solving
the CCP means to optimize the system with safety constraints
and chance constraints satisfied, under the condition that the
values of uncertainty variables are randomly distributed
according to their distributions.

The impact of uncertain renewable generation on the energy
hub system is modelled by chance constraints and the
formulation of the optimization is presented in this section.
Additionally, this section introduces the concept of
Cornish-Fisher Expansion to convert chance constraints into
deterministic constraints. The steps of the CCP implementation
are at the end of this section.

A. CCP Energy Hub Optimization Problem Formulation

A system of three interconnected energy hubs in Fig. 2 is to
illustrate the problem formulation. The electricity and gas
networks supported by G1, G2, and N are embedded in the
system to satisfy electricity and heat demand. G1 and G2 are
generation power outputs, and N is the gas injection to the
energy hub system. As shown in Fig. 2, heating converters
including CHP, GSHP, and GF are installed within each hub,
and a water tank is also contained in each hub as heat storage. A
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Fig. 2. The three-hub interconnected system.
solar photovoltaic system and a wind farm are installed at hubs
1 and 2 respectively.

The objective is to minimize the total system cost by
optimally determining the power flow, gas flow, and the
operation of each hub element over the whole operation time
horizon with uncertain renewable. Meanwhile, the chance
constraints on power and gas flows between adjacent hubs
should be above the predefined probability level of confidence.

The optimal solution is denoted as the control vector u(t),
which contains the power and gas injection to the network and
each hub, the voltage and pressure at each bus, the pressure of
compressor, the power and gas flows between adjacent hubs,
the energy exchange with the heat storage in each hub, and the
dispatch factors for each hub. All these variables at all
time-steps are included in the control vector u(t).

U(E) = [Petei(£), Pyas,i(£), Vi(), Pei (£), Py (), ;,;(0), i (1),
Qi,j (), Peom,i(£), Mhi(t), ERi(£), ve,i(£), vy, (£)] VE, Vi (15)

In (15), ‘i’ is the index number related to hubs, buses, nodes,
and compressors. The definitions of other variables are in
previous sections. The total cost (TC) of the electricity and gas
generation is the objective to be minimized in terms of a
quadratic function over whole time horizon T. It should be
noticed that snmn in (12a) and (12b) is a binary variable, but it is
temporarily used to calculate the gas flow Qmn in (15). Hence
SNmn IS NOt mentioned in the decision variables. The stochastic
programming problem is formulated in (16).

Objective:
MinTC = ¥7_; Yie(e 6, (@it + biePir + cePh)  (168)
Subject to:
Equality constraints: (1) — (14)
Inequality constraints:
0<v,;(t)<1 0<v(t) <1 (16b)
0< PG,i(t) < PG,i,max(t) 0<Py(®) < PN,max(t) (16c)

0= Pele,i(t) < Pele,i,max(t) 0= Pgas,i(t) < Pgas,i,max(t) (16d)

0< pi(t) < pi,max(t) 0= Vi(t) < Vi,max(t) (163)
My imin (€) < Mp,i(£) < Mpjmax(t) (16f)
Eh,i,min(t) < Eh,i(t) < Ehi,max(t) (16g)
pcom,i,min(t) =< pcom,i(t) < pcom,i,max(t) (16h)
Chance constraints:

Pr{Q;;(t) < Q["*} = a Pr{S;;(t) <"} > (16i)

The objective function in (16a) indicates the total cost on the
network to be minimized over the whole time horizon, where a,
b, and c represent the coefficient of generation cost. (16b)
specifies the constraint on dispatch factors, which should be
within the boundary between 0 and 1. (16¢) indicates the
constraint for total power and gas injection to the networks.
(16d) reflects the minimum and maximum power and gas input
to each hub. (16e) refers to the limitations of the pressure and
voltage at each bus. (16f) denotes the limitation of heat energy
exchange with the storage, the minimum and maximum heat
energy that can be stored in the storage are defined in (16g).
(16h) represents the limitation of compressor’s pressure.

In addition to equality and inequality constraints, the chance
constraints are also established with a confidence level of a.
The power flows S;; and gas flows Qjj between adjacent hubs are
constrained by chance constraints in this paper, and they are
specified in (16i), where Pr means the probability of chance
constraints.

Equation (16i) indicates that the problem is formulated as a
stochastic problem. To transform the stochastic problem to a
deterministic problem, the quantile of chance constraints is
calculated by Cornish-Fisher Expansion to fit the optimization,
and (16) is thus solvable with the interior-point method.

B. Transforming Chance Constraints to Deterministic
Constraints

In order to incorporate chance constraints into the
optimization, the probability level of chance constraints is
transferred by quantile, which reflects the inverse function of a
stochastic variable’s Cumulative Distribution Function (CDF).
Because of the monotone relation between the quantile and its
inverse CDF, (16i) could be expressed by (17).

qu,j(ai) = Qi,j,max qSi‘j(ai) = Si,j,max (17)

Where g is the quantile function formulated by the
Cornish-Fisher Expansion with the utilization of cumulants.
Five orders of cumulants are applied in this paper. The quantile
function q in terms of probability level of « is indicated in (18)
[30].

A%(a)-1 A3(a)-34A(a)

q(a) = A(@) + 207 ey ¢ L@,
3(0)— 40,7\ _ a2 400 \_c a2
A’ (a)-5A(a) K% + A*(a)—-6A%(a)+3 Ks — A*(a)-54%(a)+2 Kaks +
436 _53A2( J+17 120 24
124%(a) a K% (18)

324

The symbol A in (18) indicates the quantile of standard
normal distribution, xy represents the cumulants with order v. It
should be noted that the quantile q and cumulants x, follow the
form of standard measure. For a variable g with a mean value of
[ and standard deviation of o, the normalized form of the
variable and the cumulants are denoted as q* = (¢ — 1)/o and
Ky = K, /a? respectively.

In order to calculate the quantile, the chance constraints need
to be expressed in terms of uncertainty variables and other
variables. Taking the chance constraint Q2 restricting the gas
flow between hub 1 and 2 as an example, at each time step they
are expressed by the composition of control variables x and
uncertainty variables ¢& derived from (1)-(14). The chance
constraint of Q1 at time step t is

Q1,2 (t) = alfsolar (t) + aszind (t) + CO(t) (19)
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Where, {solar and Cuing Stand for the uncertainty inputs of solar
and wind energy respectively, a1 and a; represent the
coefficient related to (solar and Cwing. Hence the two uncertain
inputs perform linear relations with the variable gas flow
between hub 1 and 2. Because the uncertain inputs to the energy
hub system are linearly related to the chance constraints (power
and gas flow between hubs), it is straightforward to obtain the
linear relation in (19) through (1) - (14). Co(t) represents the
polynomials containing control variables x, and it is irrelevant
to the calculation of quantile. The first part in (19) related to the
uncertainty inputs is expanded by the Cornish-Fisher
Expansion to convert it to a deterministic formulation [30].
Assuming the uncertainty is abbreviated as Un(t), the cumulant
for Un(t) with order v is formulated in

Kun@w)w = all]Kfsolar,v (t) + agkfwind,v(t) (20)
Where k¢, (©)and kg . d'v(t) represent the cumulants of
variables Eorar(t) and Euing(t) With v order at time step t. The
quantile of chance constraints can, therefore, be calculated
through (18)-(20), and applied as the deterministic formin (17).
The formulation of other chance constraints in (16i) can be
accordingly transferred to deterministic constraints by the
similar expressions shown in (18) to (20).

C. Overall Methodology

The methodology developed to solve the chance-constrained
energy hub optimization is described by the following steps:

e Step 1. Acquire data: energy hub load, distributions of
renewable generations, and system parameters.

e Step 2. Build the optimization problem with the given
constraints, and chance constraints formulated in (16).

e Step 3. Initialize the control vector u(t) within the
predefined boundary.

e Step 4. Convert the chance constraints into deterministic
constraints through (17)-(20).

e Step 5. Apply the interior-point method to optimize the
energy hub system with deterministic constraints.

e Step 6. Determine whether the solution from step 5 satisfies
the stopping criteria, and if not, update the control vector
u(t) and repeat steps 4 to 5 until the stopping criterion is
met.

The optimization follows the general procedures of a
heuristic algorithm, which is to update the optimal solution for
the problem until the stopping criteria are met. However, as
indicated in the previous section, the quantile of chance
constraints not only depends on the probability level but also
correlates with other control variables. Therefore, in updating
the control variables, the chance constraints need to be
circularly transferred to deterministic constraints at each
iteration. The interior-point approach is then implemented to
solve the deterministic problem to find the best solutions.

IV. EVPIAND VSS MODEL

To evaluate the effect of applying stochastic programming to
solve the optimization problem, the results from the CCP are
compared with those from the expected value of perfect
information (EVPI) and value of the stochastic solution (VSS),
both of which use deterministic programming to solve the
optimization. The EVPI calculates the maximum amount a

decision maker is willing to pay when uncertain information is
perfectly known [31]. By assuming the uncertainty is modelled
by various scenarios each with a known probability, the
wait-and-see solution (WS) is derived by summing the optimal
solution from each scenario multiplied by probability. The
EVPI is calculated by (21), and SS is the solution from the
CCP.

EVPI =SS —WS (21)

The VSS reflects the benefits from explicitly modelling the
uncertain distributions. It is mathematically formulated as the
difference between the expected value (EV) of the optimal
solution where uncertain variables are replaced by their mean
values and the stochastic solutions [31].

VSS = EV —SS (22)

V. CASE STUDY

The approaches of deriving PDF and CDF curves are
illustrated in this section, and the convergence behaviour of the
optimization technique is obtained and analysed by
implementing the CCP on an example sample. Additionally,
two cases are demonstrated and discussed in this section to
validate the proposed model. The energy hub system in Fig. 2 is
applied and the simulated time horizon is set as T=24. The
chance constraints on gas and power flows between adjacent
hubs are separately applied to the optimization problem in the
first and second cases to investigate the impact of different
chance constraints on system optimization performance. The
system setup and data acquisition are indicated as follows.

A. Data Setup

The uncertainty in renewable energy generation, including
solar energy and wind energy, are modelled in this paper. The
CCP is used in this paper because a short period of overloading
is tolerable for energy networks between communities, and
hence a slight error is permissible.

Literature suggests that the characteristics of solar and wind
energy generally follow Beta [30] and Weibull distributions
[20]. Thus, the probability density functions of solar and wind
energy injection at each time step are derived by fitting the
historical data into Beta and Weibull distributions respectively,
the shape factors of these distributions are then estimated. The
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TABLE |
ENERGY HUB SYSTEM PARAMETERS AND CONSTRAINTS

System parameters

Line 1-2 Z1,=0.3+j0.9 p.u., Y1o=j1.5-10 p.u.

Line 1-3 Z43=0.2+j0.6 p.u., Y12=j2.5-10 p.u.

Line 2-3 Z3=0.1+j0.4 p.u., Y12=j3.5-10 p.u.

Gl V1=1LOO, a(31=0, bg1=10 £/p.U., CG1=0.001 £/p.u.2

G, ag>=0 b(;2:12 E/p.U., Cs2=0.0012 E/p.U.2

Pipe lines GHVki;=4.5 GHV'ki3=3.0 GHV'ky;=2.0

Compressor GHVkeom=0.5

N p2=1 p.u., ax=0, by=5 £/p.u., cy=0 £/p.u.?

CHP 16=0.33, 7»=0.57

GF 7e=0.75

Storage E®=0.5, ey*=€,=0.9

Renewables 750=0.117, Vei=4m/s, Ve,=25m/s, Vis=16m/s, Praeq=0.3p.U.
Constraints

Nodes 0.8<|Vp<12pu.

m=1,2,3 pn<1.2p.u.

G, 0< Pg<4pu.,0<|Qs2|<4p.u.,0<|Pc+jQc2| <5 p.u.
Compressor 1.2 <pw/ pk<1.8

Storage 0<Es<6pu -3<Mp<3pu

CHP input 0< PCHP,input <1 p.u.

GF/GSHP 0 < PgsHpicr input < 1.5 p.u.

cumulants are calculated based on the shape factors. The
probability density function (PDF) curves and CDF curves of
the solar and wind energy inputs at time step 9 are shown in Fig.
3 as an example. Here, figures (a) and (b) denote the
characteristics of solar input, figures (c) and (d) indicate the
wind input’s PDF and CDF.

In addition to renewable uncertainties, the load profiles for
the energy hub system are modelled by [32] and [33]. The
parameters and constraints for other elements in the energy hub
system are taken from [8, 13, 28], which are described in
TABLE I. The system is considered as in a per unit (p.u.)
system and the monetary unit is assumed to be GBP (£).

B. Derivation of PDF and CDF Curves

The results of CCP on the 3-hub system are analyzed with
their PDF and CDF curves. All curves are sufficiently accurate
to observe their characteristics when 500 samples are applied.
The change to the curves are imperceptible when more samples
are implemented, but the computational burden is
exponentially heavy. Therefore, 500 samples are analyzed to
acquire the PDF and CDFs plots. Generally, the two functions
can be obtained by the following key procedures as shown in
Fig. 4.
= Step 1: Implement the CCP optimization for the 3-hub
system in terms of 500 samples, where each sample
represents the CCP with different probabilities of chance
constraints. For example, to acquire the PDF and CDF
curves with chance constraint probability higher than 80%,
the corresponding probability level of chance constraints
equals to 80%+(n-1) *0.04% with n growing from 1 to 500.

= Step 2: Record the optimization results, including the
optimal operations and objective value of each sample.

= Step 3: Build PDF and CDF curves by running 500 samples.

C. Case 1-Gas Flows with Chance Constraints

1) Convergence analysis of CCP

The optimization problem (16) is formulated as a
multi-period problem, which is non-convex. Due to the high
complexity of the problem, the global minimum is not
guaranteed with the used interior-point method. However, the
interior-point method is capable of resolving the non-linear

For samples n=1:500

+:
Implement the CCP scheme for the 3-hub
system with the probability of chance
constraints equals to 80%+(n-1)*0.04%

Record the results including the optimal
operations and objective value for sample n

Yes
nother n ?
No

Acquiring the PDF and CDF diagrams byj
sampling the results of the 500 samples

Fig. 4. Flowchart of obtaining PDF and CDF curves from CCP
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Fig. 5. The convergence of CCP implementing on the 3-hub system

problem compared with the linear programming methods. To
demonstrate that the algorithm is capable of achieving a local
minimum when applied to CCP, a single run of the 3-hub
system is analyzed with the probability level of the chance
constraints set as 80%, and the convergence behaviour of the
optimization is derived and shown in Fig. 5. It can be seen that
the value of the objective function dramatically declines from
iteration 1 to 5. It then slightly increases until iteration 23, the
curve continually drops from iteration 23 to 30, and remains
stable thereafter. It demonstrates that the optimization
converges around iteration 41 and achieves the minimum value
of £522.33. It is, therefore, reasonable to conclude a local
minimum has been met. In fact, the optimization converges for
each sample after approximately 40 iterations. Additionally,
previous literature has proved that the interior-point method
applied to CCP is capable of converging to a minimum solution
when solving problems with similar complexity [1, 8, 34].
2) Different probability levels of chance constraints

The maximum value of the chance constraint (i.e. the gas
flow between adjacent hubs) is set as 0.8 p.u., and different
probability levels of 80%, 85%, 90%, and 95% are applied to
investigate how chance constraints affect the optimization.

The CDF curves of the optimized total cost are shown in Fig.
6, which are derived by optimizing 500 samples for the 3-hub
system with the chance constraints level higher than the above
probability levels. The optimized total costs of the three-hub
system vary from approximately £521.5 to £527 with the
cumulative probability changing from 0 to 1. All CDF curves
perform similar characteristics with the optimization results
derived from different chance constraint probability levels.
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Fig. 7. Case 1-CDF curve of the total gas injection at time step 9

Since the load is relatively high at time step 9 compared to
other time steps, the optimal operation for the energy hub at this
time step is of interest for further investigation. The CDF
curves of the total gas injection to the network at time step 9
with different chance constraints probability levels are in Fig. 7.

Fig. 7 indicates that all of the CDF curves gradually arising
until the cumulative probability reaches 0.2, and then the curves
rapidly increase to the cumulative probability of 1. The CDF
curves with different probability levels of chance constraints
present similar variation. The CDF curves in Fig. 7 present
completely different characteristics with the CDF curves in Fig.
6. This is mainly due to the non-linearity between gas flow and
the total system cost. Additionally, since the hub system
presents high flexibility, the change of gas flows between hubs
could lead to an unpredictable impact on the total cost. For
example, the constraints on the quantity of gas flows could lead
to less gas injection into the energy hub. The demand could be
satisfied by accordingly adjusting the operations of other
elements within the energy hub system such as discharging the
storage or switching on other converters. Since the problem is a
multi-period problem with high complexity, the cost of the
adjustments is not predictable. Therefore, the CDF curves of
the optimized total cost perform differently with the CDF curve
of the gas flows between hubs.

D. Case 2-Power Flows with Chance Constraints

1) Different probability levels of chance constraints

The power flows between adjacent hubs are restricted by the
chance constraints for the second case. Considering system
safety limits, the maximum power flows between hubs are
assumed to be 50% of branch capacity. With the different
chance constraints probability levels of 80%, 85%, 90% and 95
%, the CDF curves of the total gas injection to the network at
time step 9 are shown in Fig. 8, and the CDF curves of the
optimized total cost are depicted in Fig. 9. 500 optimization
results are sampled to derive the curves.

As seen from Fig. 8, the total gas injection at time step 9
varies from approximately 2.32 p.u. to 2.82 p.u.. The CDF
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Fig. 8. Case 2-CDF curve of the total gas injection at time step 9
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Fig. 9. Case 2-CDF curve of the optimized total cost

curve generally spans wider when the chance constraints
probability level is lower, and the optimal operations tend to be
more stable with fewer variations when the probability level of
chance constraints is higher.

The characteristics of the CDF curves in Fig. 8 are different
from the CDF curves in Fig. 7 in terms of shape and gradient.
Additionally, the abscissa of the CDF curves in Fig. 7 spans
from approximately 2 to 3, spanning greater distance compared
with the CDF curves in Fig. 8. Hence the total gas injection to
the network is more affected when the gas flows between hubs
are restricted by the chance constraints.

Conversely, the CDF curves of the optimized total cost in
Fig. 9 present similar characteristics with the curves in Fig. 6.
However, the abscissa of the CDF curves in Fig. 9 spans wider
than the curves in Fig. 6, which means that the optimized total
cost is more sensitive when the power flows between hubs are
constrained by chance constraints. Thus, when the restriction of
chance constraints on gas flows change to power flows, the
impacts to the optimal operations of every element within the
energy hub system are completely different.

2) The optimal strategy for energy hub system

The optimal operation of hub 1 in terms of electrical load
over 24 hours is shown in Fig. 10, where the probability levels
of chance constraints are set higher than 80%. As seen, the total
electrical load represented by the histogram and power
injection to GSHP (denoted by stars) are met by the grid power
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Fig. 10. Optimal strategy of hub 1 over 24 hours
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Fig. 11. Dispatch factors under different chance constraints probability
(denoted by crosses), CHP output (denoted by squares), and
solar PV output (denoted by circles). The peak loads are 1.21
p.u. and 0.92 p.u., which appear at time steps of 8 and 20; the
power injections to the hub over 24 hours approximately follow
the same variations as the load, and the maximum power
injections are at time steps of 8 and 20 with the values of 1.55
p.u. and 1.30 p.u. respectively. The electric output from CHP
generally remains at 0.33 p.u. over 24 hours, which is close to
the maximum CHP power output. Since the energy efficiency
of the CHP is higher than those of other converters and the CHP
is thus more profitable, it is operated at the maximum power
over the whole time horizon.

3) Sensitivity analysis

By assuming that the power flows between hubs are
restricted by chance constraints, the probability levels of
chance constraints are set to be 80%, 82%... to 99.9%. The
optimal dispatch factors of the three hubs at time step 9 under
these probability levels are shown in Fig. 11. Figures (a) and (b)
indicate the variations of ve and vy under different chance
constraint probabilities, with the horizontal and vertical axis
representing the chance constraint probability and the value of
dispatch factors. The diamonds, stars, and circles represent the
dispatch factors of hubs 1, 2, and 3 respectively. As seen, the
dispatch factors ve of hubs 1 and 3 remain flat when the
probability changes and the dispatch factor of hub 2 shows
irregular variations. Moreover, the changing probability levels
hardly affect the dispatch factors vg of the three hubs because
the profits from the CHP are higher than those of the GF.

4) Importance of CCP

To highlight the importance of CCP and compare its results
with those from deterministic approaches, EVPI and VSS are
calculated by solving the same 3-hub system optimization with
deterministic constraints. In other words, the maximum power
flows between hubs are restricted to be lower than 50% of the
capacity with 100% certainty. The value of WS is calculated by
using scenario methods, where the probability of each scenario
is assumed to be perfectly known. Scenario-generating
methods are used in [5, 15-21], and hence the EVPI can be used
to measure the impact between using CCP and scenario
methods to solve an energy hub optimization problem with
uncertainties.

In this paper, WS is derived by applying the 2PEM in [19,
20] to solve the energy hub optimization with uncertainties. In
terms of system total cost, WS and EV are calculated as
£524.02 and £522.92 respectively. The solution of CCP (SS) is
£527.96 when the probability level of chance constraints is set
at 99.99% (100% is not possible because the quantile derived
through Cornish-Fisher Expansion will be infinite). The EVPI
and VSS are £3.94 and £5.04 by using (21) and (22). The EVPI
indicates that the difference between optimized system costs
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Fig. 12. PDF diagrams of the optimized total cost with the probability of
chance constraints higher than 80% derived from the two cases
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from CCP and 2PEM is £3.94, and the VSS suggests that there
is an extra cost of £5.04 due to uncertainties.

E. Comparison between the Two Cases

The PDF diagrams of the optimized objective derived from
the two cases are shown in Fig. 12, where both the probability
levels of chance constraints are set as 80%. The upper and
lower diagrams represent the distributions of probability
densities for case 1 and 2 respectively. The possible optimized
total cost varies from £521.31 to £527.45 in case 1, and £522.39
to £528.10 in case 2. The span of the possible optimization
results in case 1 is wider compared with the results derived
from case 2. Additionally, the expense derived from case 2 is
holistically higher than the expense in case 1.

It is observed from the lower diagram in Fig. 12 that, the PDF
curve derived from case 2 presents relatively high fluctuations
around £524 and £528 in addition to the high probability
density around the total cost of £5623. On the other hand, the
probability density for the upper PDF curve is generally
centralized around the total cost of £523, which shows
stabilized characteristics. Therefore, by comparing the total
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costs of the two cases, it suggests that the energy hub system
tends to be more unstable and system cost is comparatively
high when the power flows between hubs are restricted by
chance constraints. Thus, the system should be carefully
operated with the electricity power flows limited by chance
constraints.

Since the heat storage is equipped within the energy hub
system and optimized by CCP, the impacts of chance
constraints to the operations of heat storages are investigated.
The optimal operation of the heat storage in hub 1 is studied as
an example. The energy level of heat storage quantifies the
percentage of energy stored in it divided by its capacity, and the
CDF curves of the maximum energy level of heat storage in hub
1 with different chance constraints probability levels are shown
in Fig. 13. The upper and lower CDF curves are derived from
case 1 and 2 respectively. As seen in Fig. 13, the CDF curves
perform similar variation tendency for each individual case.
However, the differences between the CDF curves in case 2 are
more distinct compared to case 1, and the CDF curves have a
broader span in case 2. It could be seen that the energy hub
system tends to be more unstable when the chance constraints
limit the power flows between hubs.

The results also suggest that the capacity of heat storage
should be accordingly extended when the power flows between
hubs are restricted by chance constraints since the maximum
energy level in case 2 is higher than case 1.

VI. CONCLUSION

To model the intelligent operations of smart energy city with
uncertainties, this paper applies the energy hub concept to
optimize community renewable energy resources with
uncertainty parameters. Chance-constrained programming is
applied in this paper to solve the optimal energy flow problem
for the energy hub system. The main findings are as follows:
= The uncertain elements of the energy hub system should be
appropriately modelled since the stochastic nature can
significantly affect energy hub system operations and costs.

= Chance-constrained programming is effective in optimizing
energy hubs with uncertain factors, enabling the realistic
operation of the energy hub system with minimum costs.

= Results demonstrate that chance constraints on power flows
have a relatively high impact on energy hub system
optimization. The results could be more unstable compared
with the case of modelling gas flows with chance
constraints.

Future work will incorporate other optimization schemes
existing in smart energy cities, such as demand response and
unit commitment by chance-constrained programming into the
energy hub optimization. Additionally, the correlations of input
random variables, such as wind outputs, will be considered as
well by joint distributions in energy hub optimization.
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