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Abstract 

Whilst life cycle assessment (LCA) boundaries are expanded to account for negative indirect 

consequences of bioenergy such as indirect land use change (ILUC), ecosystem services such as water 

purification sometimes delivered by perennial bioenergy crops are typically neglected in LCA studies. 

Consequential LCA was applied to evaluate the significance of nutrient interception and retention on 

the environmental balance of unfertilised energy-willow planted on 50 m riparian buffer strips and 

drainage filtration zones in the Skåne region of Sweden. Excluding possible ILUC effects and 

considering oil-heat substitution, strategically planted filter willow can achieve net global warming 

potential (GWP) and eutrophication potential (EP) savings of up to 11.9 Mg CO2e and 47 kg PO4e ha-1 

yr-1, respectively, compared with a GWP saving of 14.8 Mg CO2e ha-1 yr-1 and an EP increase of 7 kg 

PO4e ha-1 yr-1 for fertilised willow. Planting willow on appropriate buffer and filter zones throughout 

Skåne could avoid 626 Mg yr-1 PO4e nutrient loading to waters.  
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Introduction  

Willow as a bioenergy feedstock 

Short rotation coppice (SRC) willow is a relatively low-input perennial bioenergy feedstock that can 

contribute to European renewable energy and GHG emission reduction targets (Fischer et al., 2007; 

EC, 2009). Sikkema et al. (2011) project that SRC energy plantations could supply up to 300 Tg of 

biomass and 4.41 EJ energy across the EU27, although there remain considerable socio-economic 

and policy barriers to deployment on such a scale (Sluka and Peck, 2015). Wide spread cultivation of 

willow and other SRC feedstocks would lead to significant landscape scale effects on ecosystem 

services, which are context (site) dependent and poorly quantified. Börjesson (1999) highlighted a 

wide range of positive environmental effects, especially water purification via nutrient buffering, that 

could be realised by strategic planting of willow in Sweden. In this paper, we evaluate the potential 

significance of such nutrient buffering effects within a quantitative life cycle assessment (LCA) 

framework.    

Bioenergy and food production 

The sustainability of bioenergy feedstock production is increasingly assessed with respect to 

implications for sustainable food production (Godfray et al., 2010). Projected increases in demand for 

agricultural commodities suggest a need to “spare” non-farmed high nature value areas from 

agricultural expansion via “sustainable intensification” (Garnett et al., 2013). Although current 

intensive crop and livestock systems may produce food with a lower GHG intensity than extensive 

systems when global land use change (LUC) is considered (Burney et al., 2010; Havlík et al., 2014), 

such systems diminish the delivery of other ecosystem services (Haas, 2000; Firbank et al., 2013), 

especially via large releases of reactive nitrogen to air and water (Dalgaard et al., 2012; Pinder et al., 

2012) that can be particularly problematic in the vicinity of large, enclosed water bodies. Kiedrzyńska 

et al. (2014) found strong positive correlations between sub-catchment agricultural intensity 

indicators and nutrient loads to the Baltic Sea.    

Thus, the appropriation of agricultural land for bioenergy feedstock production can indirectly incur 

negative environmental effects through intensification or expansion of agricultural production 

elsewhere to compensate for lost food output. Such effects are captured in consequential LCA (CLCA) 

that is increasingly being applied to evaluate bioenergy interventions (e.g. Rehl et al., 2012; Tonini et 

al., 2012; Vázquez-Rowe et al., 2014; Styles et al., 2015; Styles et al., 2016). CLCA expands system 

boundaries to account for marginal effects induced by market signals arising from system 

modifications. Indirect effects such as indirect LUC (ILUC) are uncertain, but can outweigh benefits 

such as avoided GHG emissions from fossil energy substiution (Tonini et al., 2012). Despite recent 

efforts at standardisation (Weidema et al., 2009), Zamagni et al. (2012) note that boundaries applied 

in CLCA studies are somewhat arbitrary. A focus on marginal effects associated with displaced food 

production has led to an emphasis on ILUC and intensification within CLCA accounting (Kløverpris et 

al., 2008; Mulligan et al., 2010). Less attention has been paid to possible direct and indirect 

agronomic and landscape effects arising from low-input perennial bioenergy crops, which include 

buffering of nutrient losses to water courses.  
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Nutrient buffering  

Methodological simplifications predispose CLCA studies to overlook potentially positive 

environmental consequences that may arise in certain landscape contexts, as identified using a wider 

ecosystem approach (Valentine et al., 2012; Bennett et al., 2014). Trees and other low-input 

perennial bioenergy feedstock planted within agricultural landscapes have the potential to regulate 

water flow rates and nutrient transfer from soil to water, and also to reduce soil erosion and wind 

damage (Bennett et al., 2014; Carsan et al., 2014). Default emission factors for nitrate leaching, 

phosphorus runoff and ammonia volatilization used in LCA studies are typically not calibrated to 

landscape-context-dependent hydrological and nutrient cycling parameters (Arbault et al., 2014). 

Thus, whilst LCA is invaluable for comparing the environmental efficiency of food and bioenergy 

supply chains, it has so far been of limited use to evaluate and inform spatially explicit strategies for 

sustainable bioenergy deployment – a task increasingly addressed using the ecosystem approach 

(Maskell et al., 2013) that may neglect important upstream and downstream indirect effects.  

Aims and objectives 

The overarching aim of this work is to demonstrate how the possible water purification effect of 

willow cultivation can be quantitatively represented in LCA, and the significance of doing so on the 

overall environmental balance of bioenergy willow. Specific objectives of this paper are to: (i) 

demonstrate how the water purification (nutrient retention) effect of willow can be incorporated 

into CLCA; (ii) compare the environmental balance of unfertilised willow planted on buffer strips and 

filter zones with fertilised willow; (iii) evaluate the potential for strategically planted willow to reduce 

eutrophication at the landscape scale within the Skåne region of Sweden – a major source of 

eutrophication in the Baltic Sea (Kiedrzyńska et al., 2014).    

Materials and methods 

Skåne regional scenarios 

Skåne is a lowland agricultural region of southern Sweden, with a total area of 1,096,881 ha (Table 

S1.1). The total stream length in Skåne is 4106 km, with a further 1276 km of lake perimeter (SCB, 

2014). This translates into a theoretical maximum riparian buffer area of 47,422 ha assuming 50 m 

buffer zone width (Börjesson and Berndes, 2006). Currently, agri-environmental payments for buffer 

zones amount to 3.437 M SEK, which translates to an area of between 1,146 and 3,437 ha at 

payment rates that vary between 1000 and 3000 SEK ha-1 yr-1 (Jordbruksverket, 2014a). Thus, there is 

considerable potential to expand buffer zones in Skåne. In this paper, we consider the introduction of 

new willow buffer and filter zones on the 434,506 ha of arable land in Skåne (SCB, 2014).   

The theoretical maximum area of willow buffer strips in the agricultural landscape is determined by 

the occurrence of open waterways and the amount of arable land that lacks covered-drain systems. 

An estimation by Börjesson et al. (2002) is that the maximum area of buffer strips in Skåne amount to 

approximately 24,000 ha where nutrient-rich water from a runoff-generating area equivalent to 

some 140,000 ha can be treated. Of this area, roughly 40% could realistically be planted with willow, 

accounting for economic and policy barriers (Börjesson et al., 2002). The theoretical maximum area 

of arable land in Skåne where drainage water can be collected and used for irrigation has also been 

estimated at roughly 140,000 ha, which would require a willow vegetation filter area of 
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approximately 32,000 ha to treat (Börjesson et al., 2002). The practical potential of willow vegetation 

filters is assumed to be restricted by physical factors, such as soil type, where sandy soils are more 

suitable than heavy clay soils, and the design and size of the covered-drain systems. The maximum 

area that could be established as willow vegetation filters in Skåne is estimated at around 20% of the 

theoretical area (Börjesson et al. 2002). Thus, a “water purification” scenario was defined based on 

establishment of 9600 ha of willow buffer strips and 6400 ha of willow filter zones located within the 

Skåne arable landscape (Figure 1). This water purification scenario was compared with a “yield 

maximisation scenario” in which the same total area of 16,000 ha was planted with fertilised willow, 

but none of this planting occurred adjacent to water courses and so did not give rise to any buffering 

or filtering effect via nutrient interception and retention (a simplified assumption to illustrate the 

magnitude of the buffering effect on environmental outcomes). The environmental balance of both 

these scenarios was expressed as change in environmental burdens compared with a simplified 

baseline situation in which average nutrient leaching factors were applied to the entire arable area, 

assuming negligible buffer strip area.     
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Figure 1. Simplified schematic representation of the water purification(b)  and yield maximisation 

(c) scenarios in relation to the baseline situation (a) for Skåne arable land 
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Life cycle assessment framework 

The environmental balance of various willow cultivation strategies was evaluated based on 

attributional LCA (ALCA) of willow heat system burdens, and CLCA of environmental loading changes 

at the landscape scale, using an adapted version of the LCAD tool – essentially a farm model linked 

with LCA inventories nested within an expanded boundary CLCA framework (Styles et al., 2015a;b). 

ALCA boundaries included all direct system inputs from the technosphere, such as the manufacture 

and transport of all agrochemicals and diesel used in willow cultivation, all field emissions related to 

fertiliser and residue inputs, and transport and combustion of chipped willow to generate heat – but 

excluded the interception and retention of nutrient runoff from neighbouring fields which is 

regarded as a landscape-level change and thus captured in CLCA (Table 1). The ALCA functional unit is 

1 MJheat output from a gasification boiler fired by chipped willow and operating at 90% conversion 

efficiency, based on a lower heating value of 18 MJ kg-1 dry matter (DM) wood, for comparison with 

burdens from an oil-heating reference system comprising a condensing oil boiler operating at 90% 

efficiency (Ecoinvent, 2014).  

 

Table 1. Functional unit and factors considered in attributional and consequential life cycle 
assessment approaches 

 Functional unit Direct 
land use 
change 

Food 
production 

dispacement 

Possible 
indirect 
land use 
change 

Nutrient 
intercept

ion & 
retention 

Fossil fuel 
replacement 

Attributional 
LCA 

1 MJth useful 
heat output 

Yes No No No No 

Consequential 
LCA 

One year of 
baseline arable 

food production 

Yes Yes Yes Yes Yes 

 

To calculate burden changes using CLCA, a simplified baseline situation of Skåne arable production 

was represented within the LCAD tool based on six major land use categories (Table 2), derived from 

SCB (2014) land use statistics and fertiliser application rates for Skåne (Jordbruksverket, 2014b). 

Table 2. Field area, baseline nutrient requirements and yields for the six crop categories 
representing baseline arable food production in Skåne (CPP = crop protection products) 

Crop category Area N P2O5 K2O Lime CPP Diesel 

ha kg ha-1 yr-1 

Cereals 216,980 140 15 10 150 2.3 86.2 

Arable grass ley  103,274 200 40 80 150  64.7 

Oil seeds & legumes 56,850 130 20 17.5 150 1.2 99.3 

Beets & potatoes 44,602 110 25 30 150 1.3 146.9 

Other 8,977 145 25 34 150 1.2 99.3 

Fallow 3,824 0 0 0 0 0 0 
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Results were calculated and presented as changes in annual environmental loadings arising when 

land use shifts from the baseline situation to either the water purification or yield maximisation 

scenario (Figure 1), accounting for nutrient interception and retention effects. In order to consider 

displaced food production, the functional unit was one year of food production from 434,506 ha of 

arable land. It was assumed that 24% of the 16,000 ha of displaced food production moves to the 

current fallow area in Skåne, and the remainder is compensated for through either intensification on 

existing land or displacement of other agricultural production ultimately leading to agricultural 

expansion at the global agricultural frontier (Figure 1) (Styles et al., 2015b). The environmental 

intensity of displaced production was assumed to remain the same as for baseline production, except 

for possible additional ILUC burdens calculated from IPCC (2006) carbon and nitrogen fluxes 

associated with land transformation at the global agricultural frontier, accounted for over a 20-year 

transition period, as elaborated in S1.5. Uncertain ILUC burdens were expressed in relation to 0%, 

50% and 100% of the maximum net area of Skåne food production displaced by willow cultivation, 

after subtracting the baseline fallow area (i.e. a maximum net ILUC area of 12,176 ha: Figure 1). New 

or avoided (counterfactual) processes were represented as environmental debits and credits relative 

to the baseline situation (Table 1).  

Life cycle impact assessment was undertaken according to the CML (2010) method for acidification 

potential (AP), eutrophication potential (EP), fossil resource depletion potential (FRDP) and global 

warming potential (GWP) impact categories (supplementary information, S1.3). Emission factors for 

arable cultivation are largely taken from Styles et al. (2015a;b), and summarised in S1.2 and S1.4, 

respectively. Important data include GHG emission factors (IPCC, 2006), ammonia emission factors 

(Misselbrook et al., 2012), nutrient leaching factors updated for Sweden (Brandt et al., 2008; 

Johnsson et al., 2002; Withers, pers. comm., 2013) and process data from Ecoinvent v3.1 (Ecoinvent, 

2014).  

Scenario CLCA results were calculated at the regional level, but also presented per hectare 

appropriated for willow cultivation. Scenario results were normalised against annual environmental 

impact category loadings across the EU25+3 (Sleeswijk et al., 2008). ALCA results per MJheat were 

normalised against annual environmental loadings per capita, based on a population of 510 million 

within the EU28 (Eurostat, 2015).   

 

Attributional LCA of willow heat   

ALCA was undertaken for three types of willow cultivation: (i) “Fertilised willow”, where willow is 

planted on fertile areas away from water courses and fertilised to obtain maximum yields; (ii) “Buffer 

willow”, in which unfertilised willow is planted on riparian buffer zones and intercepts nutrient runoff 

from neighbouring arable land; (iii) “Filter willow”, in which willow is planted in a tile-drainage 

discharge zone, intercepting drainage from neighbouring arable production (Figure 1). Table 3 

summarises key features for the different types of willow cultivation. Inputs were taken from 

González-García et al. (2012), including average annual diesel consumption for field operations of 24 

kg ha-1, herbicide application of 0.7 kg ha-1, and a typical fertiliser-N application rate of 73 kg ha-1 

(Aronsson et al., 2014). González-García et al. (2012) note that Swedish arable soils are sufficiently 

high in P and K that these nutrients are typically not applied to willow plantations. It was assumed 
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that chipped willow is transported 50 km and combusted in a heating-boiler to replace oil heating, 

reflecting typical use of woodchip for district heating systems and farm heating in Skåne. Only N 

fertiliser was applied to Fertilised willow, with the same emissions factors as for N applied to food 

crops; i.e. 0.01 for direct N2O-N, 0.02 for NH3-N, 0.23 for NO3-N, and 0.01 and 0.0075 for indirect 

N2O-N from NH3-N and NO3-N, respectively.    

Table 3. Important LCA parameters for the three types of willow cultivation 

  Fertilised willow Buffer willow Filter willow 

Fertiliser Na 

Kg ha-1 yr-1 

73 0 0 

Fertiliser Pb 0 0 0 

Fertiliser Kb 0 0 0 

Lime 0 0 0 

Herbicides 0.7 0.7 0.7 

Diesel 24 24 24 

N retentionc,d 0 70 100 

P retentionc,d 0 1.5 1.5 

DM yieldb,d Mg ha-1 yr-1 8.7 5.1 6.6 
aAronsson et al. (2014); bGonzález-García et al. (2012); cBörjesson (1999); dBörjesson 
and Berndes (2006).  

 

González-García et al. (2012) report average DM harvested yields of 6.7 and 3.9 Mg ha-1 yr-1 for 

fertilised and unfertilised willow plantations in Sweden, but this reflects use of older, lower-yielding 

willow varieties on less fertile soils (Dimitriou et al., 2011). Aronsson et al. (2014) reported yields of 

5.9 and 10.8 Mg ha-1 yr-1 for unfertilised and fertilised modern willow varieties in field trials on typical 

Swedish arable soils. Considering these data, we conservatively estimated that modern willow 

varieties on typical Swedish arable soils could yield 30% more than older plantations on poorer soils 

reported in González-García et al. (2012), with fertilised and unfertilised DM yields of 8.7 and 5.1 Mg 

ha-1 yr-1 assumed for Buffer willow and Fertilised willow, respectively (Table 3). When Filter willow 

receives nutrient-rich drainage runoff water, yields are assumed to be 30% higher than unfertilised 

willow (Börjesson and Berndes, 2006), leading to a central DM yield estimate of 6.6 Mg ha-1 yr-1 for 

Filter willow. Yields were changed ±25% to explore the sensitivity of landscape scenario results.   

When replacing annual arable crops, willow will also result in soil organic carbon (SOC) accumulation 

in the region of 0.5 Mg C ha-1 yr-1 (Börjesson, 1999; Matthews and Grogan, 2002) that is accounted 

for in ALCA (Table 1). Small annualised changes in above-ground and below-ground biomass were 

also calculated based on average standing biomass C compared with the default 5 Mg C ha-1 for 

arable crops (IPCC, 2006), and assuming a below-to-above ground biomass ratio of 33% (González-

García et al., 2012).  
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Consequential LCA of willow scenarios   

Interception and retention of runoff and drainage nutrient losses from neighbouring crop production 

was considered in the CLCA as a change from the baseline situation (Table 3). It was assumed that 

unfertilised willow cultivation does not directly contribute any anthropogenic nutrient loading (no 

direct inputs from the technosphere), but instead intercepts nutrient losses from upstream areas 

before they reach water courses. The efficiency of nitrogen retention in willow buffer strips depends 

on water flow pathways controlling the transport of nutrients through the landscape, and the width 

of the buffer zone. About 70% of the water’s N content is estimated to be removable in zones 25-50 

m wide, amounting up to 70 kg N ha-1 yr-1, provided that the willow plantation is harvested regularly 

to maintain nutrient uptake (Börjesson and Berndes, 2006) (Table 3). Thus, a 50 m wide willow buffer 

strip, where half of the width is harvested at a time, could provide a continuous high uptake of 

nutrients. A 50 m wide willow buffer zone can also retain 1.5 kg P ha-1 yr-1 (Börjesson, 1999). 

Börjesson (1999) report that 33% of the N retained in willow buffer strips is denitrified. According to 

a mass balance N cycle for European agriculture presented in PBL (2011), N2O-N emissions represent 

3% of N2 emissions. Thus, for Buffer willow, it was assumed that 1% of N retained in willow buffer 

strips is emitted as N2O-N, compared with a 0.75% N2O-N emission factor for leached NO3-N (IPCC, 

2006) that finds its way into water bodies in the baseline situation.  

Retention of nutrients from tile drain outflows was also considered for the CLCA of Filter willow, 

based on Börjesson and Berndes (2006). Nitrogen retention in willow vegetation filters irrigated by 

nutrient-rich drainage water is estimated to be, on average, 100 kg N ha-1 yr-1 (Table 3). Lindroth and 

Båth (1999) show that water deficiency is often a growth-limiting factor in willow cultivation, even in 

countries like Sweden with significant precipitation throughout the year. An estimation is that 

drainage water irrigation in willow vegetation filters in Skåne will increase the biomass yield by at 

30% compared with average yields for well-managed, rain-fed willow plantations on good soils 

(Börjesson and Berndes, 2002) (Table 3). To explore the sensitivity of results to nutrient retention 

rates, nutrient retention rates for buffer and filter willow were changed ±50%.   

 

Results 

LCA results per hectare and MJth  

Willow cultivation incurs relatively small environmental burdens per MJ of useful heat output (Figure 

2). A lower energy yield per hectare means that the soil C sequestration credit, expressed as CO2e 

MJth
-1, is highest for Buffer willow despite lower soil C sequestration on a per hectare basis compared 

with higher yielding Filter and Fertilised willow (Figure 2). Normalisation indicates that fossil resource 

depletion is an environmental hotspot for oil heat, whilst eutrophication is a hotspot for willow heat, 

within the context of European environmental loadings (Figure 3). All types of willow cultivation lead 

to wood heat with substantially lower fossil resource depletion and global warming burdens 

compared with oil heat, and significantly lower acidification burdens (Figure 3). However, the 

eutrophication burden of heat generated from Fertilised willow is significantly greater than for oil 

heat.  
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Figure 2. Contribution of major processes to the global warming (top) and eutrophication (below) 
burdens of 1 MJth of willow-sourced wood heat, calculated by attributional LCA
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Figure 3. Normalised attributional LCA environmental burden scores for 1 MJth useful heat 
generated by willow wood chips sourced from Fertilised, Filter and Buffer willow plantations, 

compared with an oil heat reference system 

 

After expanding ALCA boundaries to account for avoided oil heating, willow leads to significant 

reductions in GWP loading of between 9.5 Mg CO2e ha-1 yr-1 for Buffer willow and 14.8 Mg CO2e ha-1 

yr-1 for Fertilised willow (Table 4), partly reflecting significant soil C sequestration (Figure 2). 

Eutrophication burdens for Fertilised willow are 7 kg PO4e ha-1 yr-1, owing to soil emissions (leaching) 

caused by application of fertilisers (Figure 2), compared with minor net reductions in eutrophication 

loadings for Buffer and Filter willow owing to avoided NOx emissions from oil heat fuel chains.  

Accounting for nutrient retention and applying a 0% ILUC factor in CLCA, Buffer and Filter willow 

achieve considerable reductions in eutrophication loadings, of 33.7 and 47.3 kg PO4e ha-1 yr-1, 

respectively (Table 4). Reductions in GWP loadings are marginally lower owing to denitrification N2O 

emissions. However, when 100% ILUC is considered in CLCA, Buffer and Filter willow lead to net 

increases in GWP loadings of 9.7 and 7.2 Mg CO2e ha-1 yr-1, respectively. Eutrophication burdens 

associated with ILUC offset approximately 20% of eutrophication savings through nutrient retention 

(Table 4). Acidification and resource depletion burdens and credits are unaffected by the CLCA 

methodology which assumes that the burden intensity of displaced production remains constant. 

   

http://link.springer.com/article/10.1007%2Fs13280-016-0790-9


Climate regulation, energy provisioning and water purification: quantifying ecosystem service delivery of bioenergy willow grown on 
riparian buffer zones using life cycle assessment (2016) Ambio, A Journal of the Human Environment, Springer International, pp. 1-13 

Available online at: http://link.springer.com/article/10.1007%2Fs13280-016-0790-9  
DOI: 10.1007/s13280-016-0790-9  

Table 4: Net environmental burdens per hectare calculated using ALCA with an expanded boundary 
to consider oil heat replacement, and using CLCA with 0%, 50% and 100% indirect land use change 

(ILUC) factors 

  ILUC  CO2e PO4e SO2e MJe 

(kJe) 

 

/kJe 

Fertilised 
willow 

ALCA NA kg or MJ ha-1 yr-1 -14,765 7.0 -12.2 -172,252 

CLCA  0%  -14,765 7.0 -12.2 -172,252 
 CLCA 100%  4,348 14.5 -12.2 -172,252 

Buffer 
willow 

ALCA NA kg or MJ ha-1 yr-1 -9,513 -0.5 -9.3 -102,799 

CLCA 0%  -9,441 -33.7 -9.3 -102,799 

CLCA 100%  9,673 -26.2 -9.3 -102,799 

Filter 
willow 

ALCA NA kg or MJ ha-1 yr-1 -12,041 -0.6 -12.3 -133435 
CLCA 0%  -11,945 -47.3 -12.3 -133,435 
CLCA 100%  7,168 -39.8 -12.3 -133,435 

    

        

Skåne region consequential LCA results 

In the Water Purification scenario, environmental loadings to all four impact categories are reduced 

considerably if no ILUC is incurred (Table 5). Annual GWP loadings are reduced by 167,082 Mg CO2e, 

EP loading by 626 Mg PO4e and FRDP by 1,841 TJe. These figures represent relative changes in 

environmental loadings from arable production in Skåne of 15%, 5% and 27%, respectively (Table 5). 

Annual EP savings are dominated by avoided soil emissions (Figure 4), comprising annual reductions 

of 1,884 and 13 Mg, respectively, in N and P loading to water within Skåne. However, these 

reductions are somewhat offset by the EP burden associated with displaced production (Figure 4), 

which may be incurred in Skåne or further afield depending where compensatory production occurs 

(Figure 1). GHG emission savings are dominated by the substitution of oil heating (credit) and 

possible ILUC (burden) and are highly sensitive to the proportion of displaced food production that 

incurs ILUC (100% ILUC value displayed in Figure 4). Assuming all displaced food production drives 

ILUC at the global agricultural frontier, GHG emissions increase by 138,734 Mg yr-1 CO2e, whilst 

applying a 50% ILUC factor leads to a net GHG emission saving of just 14,174 Mg yr-1 CO2e (Table 5).  

 

 

 

 

 

 

http://link.springer.com/article/10.1007%2Fs13280-016-0790-9


Climate regulation, energy provisioning and water purification: quantifying ecosystem service delivery of bioenergy willow grown on 
riparian buffer zones using life cycle assessment (2016) Ambio, A Journal of the Human Environment, Springer International, pp. 1-13 

Available online at: http://link.springer.com/article/10.1007%2Fs13280-016-0790-9  
DOI: 10.1007/s13280-016-0790-9  

Table 5. Changes in regional annual environmental loadings under the water purification and yield 
maximisation scenarios, calculated by consequential LCA applying 0%, 50% and 100% indirect land 

use change (ILUC) factors 

  

Mg CO2e Mg PO4e Mg SO2e GJe 

0% ILUC 

Water purification -167,082 -626 -168 -1,840,851 

 
-15% -5.3% -2.8% -27% 

Yield maximisation -236,244 112 -195 -2,756,034 

 
-21% 0.9% -3.2% -40% 

50% 
ILUC 

Water purification -14,174 -566 -168 -1,840,851 

 
-1% -4.8% -2.8% -27% 

Yield maximisation -83,336 172 -195 -2,756,034 

 
-7% 1.5% -3.2% -40% 

100% 
ILUC 

Water purification 138,734 -506 -168 -1,840,851 

 
12% -4.3% -2.8% -27% 

Yield maximisation 69,572 232 -195 -2,756,034 

 
6% 2.0% -3.2% -40% 

 

In the Yield Maximisation scenario, GWP, AP and FRDP savings are greater than in the Water 

Purification scenario (Table 5). Annual GHG emissions are reduced by 236,244 Mg CO2e (21% of 

baseline emissions), whilst FRDP is reduced by 2,756 TJe (40% of baseline depletion). GHG emission 

savings are highly sensitive to ILUC factors in the Yield Maximisation scenario, though remain 

significant even when a 50% ILUC factor is applied (Table 5). However, in contrast to the Water 

Purification scenario, EP loading increases by 112 Mg PO4e annually (1% of baseline eutrophication), 

and this doubles after applying a 100% ILUC factor.   

Normalised consequential LCA results 

Results Table 5 indicate the magnitude of environmental loading changes relative to baseline 

loadings from arable farming in Skåne, and are thus highly influenced by the magnitudes of baseline 

arable (agricultural activity) loadings. In Figure 5, annual loading changes for each scenario are 

normalised against total European environmental loadings (across all activities) for each impact 

category. Normalised results indicate that the eutrophication saving is of similar relative magnitude 

to the GHG emission saving at 0% ILUC, although still somewhat lower than the saving in resource 

depletion. Furthermore, the relative difference in performance of the two scenarios is greater for 

eutrophication than for global warming or resource depletion. Error bars representing uncertainty in 

yields and nutrient retention do not overlap for eutrophication loading changes in the Water 

Purification and Yield Maximisation scenarios, indicating that the eutrophication benefit of the Water 

Purification scenario is robust to these key uncertainties.            
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Figure 4. Processes contributing to environmental loading changes from the baseline situation for 

the Water Purification and Yield Maximisation scenarios, calculated by consequential LCA 
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Figure 5. Environmental loading changes relative to the baseline situation for the Water 

purification and Yield maximisation scenarios normalised against European loadings, applying 0% 
(left) and 100% (right) indirect land use change factors. Error bars represent combined uncertainty 

in willow yield (±25%) and nutrient retention (±50%). 

 

Discussion 

Quantifying ecosystem service benefits   

Consequential LCA provides a relevant framework to consider overall, direct and indirect, 

environmental effects of changes in land use, overcoming some of the constraints of attributional 

LCA. Plassmann (2012) highlighted the inverse relationship between soil C sequestration credits and 

productivity in product carbon footprints based on attributional LCA, which could encourage 

perverse conclusions on food and bioenergy production efficiency given the relative global scarcity of 

agricultural land and the large environmental consequences of agricultural expansion (e.g. Morton et 

al., 2006). Thus, consequential LCA provides a more comprehensive, if more uncertain, framework 

for evaluation of interventions involving land use change, as demonstrated by e.g. Tonini et al. (2012) 

and Styles et al. (2015a; 2016). However, up to now we are not aware of any studies that account for 

other ecosystem service benefits such as water purification within a consequential LCA framework. 

Water purification could also be accounted for within attributional LCA, but it would raise 

methodological questions about attribution of denitrification emissions and allocation of residual net 

burdens between energy and water purification “co-products”. 
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We demonstrate novel application of consequential LCA to quantify the environmental benefit of 

nutrient buffering delivered by bioenergy willow strategically planted within arable landscapes. 

Unfertilised willow cultivated on riparian buffer zones and tile drainage filtration areas can achieve 

greater net environmental benefit compared with randomly-sited fertilised willow cultivation, owing 

to a significant water purification effect that complements the climate regulation benefit associated 

with fossil fuel substitution. Ecosystem services such as water purification are highly dependent on 

site-specific hydrological connectivity and nutrient loading; one reason why increasing attention is 

being paid to the landscape context of bioenergy crop cultivation (Valentine et al., 2012; Bennett et 

al., 2014). Yet, such ecosystem services are rarely reflected in LCA studies that commonly rely on 

default emission factors independent of landscape context. The tools used within more holistic and 

spatially explicit ecosystem approaches are typically less quantitative than LCA, and neglect 

important indirect effects associated with displaced production that occur outside the geographic 

area of primary interest. Therefore, although challenging, time- and data-intensive, and more open 

to value-judgement than attributional LCA, integrating landscape-specific ecosystem service effects 

into consequential LCA could provide useful additional information to support sustainable land 

management and policy.  

Limitations  

The landscape scenarios studied here involved simplifications, such as that all nutrient applications to 

cropland were in the form of synthetic fertiliser rather than manures, and small areas of existing 

buffer strips on arable land in Skåne were ignored. Regional average fertiliser application rates may 

vary somewhat around the values reported by Jordbruksverket (2014b). Whilst these factors may 

affect the baseline environmental loadings and thus percentage loading changes in the scenarios, 

they do not have a significant influence on the absolute loading changes or normalised loading 

changes. Of greater importance is uncertainty over N and P retention rates of willow under different 

conditions. There is a need to investigate retention rates for willow, and alternative vegetation, 

planted on riparian buffer zones.  

McKay (2011) noted that overall sediment losses are likely to be considerably lower for willow than 

for conventional arable agriculture, notwithstanding peak loss rates during harvesting and grub-up. 

Soil carbon sequestration and nutrient retention effects accounted for in this study may capture 

some of the environmental effects likely to be associated with sediment trapping, which could give 

rise to significant additional environmental credits for buffer willow cultivation. Whilst we assumed 

that willow was cultivated exclusively on mineral soils, significant GHG and eutrophication credits 

could be achieved via reduced mineralisation if willow replaces annual cultivation on peat soils, 

based on IPCC (2006) CO2 and N2O emission factors for peat soils under trees and annual cropping. 

Willow could also ameliorate stream peak flow and thus mitigate against flood risk. On the other 

hand, Berg (2002) highlight the value of open habitat corridors along streams, which can be 

detrimentally impacted by willow cultivation. 

Ultimately, it is impossible to fully capture all ecosystem service effects in LCA, which will always 

involve simplifications, omissions and assumptions. Results presented here emphasise the value of 

capturing at least some major ecosystem service effects in LCA to inform sustainable land, climate 

and energy policy – so long as assumptions are transparently documented, and uncertainty and 
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limitations acknowledged. As with all modelling approaches, the value of expanding LCA in this way 

will be to establish and contextualise cause-effect relationships that inform management and policy 

decisions, rather than to provide definitive numbers.   

Water quality versus climate change 

Unlike global warming burdens, eutrophication burdens attributable to willow cultivation are not 

offset by fossil fuel substitution (e.g. Tonini et al., 2012; Styles et al., 2015), leading to an important 

trade-off for fertilised willow cultivation in the form of higher overall eutrophication burdens. 

Strategic cultivation of unfertilised willow on buffer strips or filter zones avoids this trade-off, and in 

fact generates eutrophication credits, but at the expense of smaller savings in fossil fuel use and GHG 

emission compared with fertilised willow. Highly uncertain ILUC effects could negate GHG abatement 

by willow bioenergy, but results presented in this study were based on high rates of food production 

displacement to the global agricultural frontier – representing a worst case scenario. In the longer 

term, erosion protection and sheltering effects offered by trees could support adjacent arable 

cropping (Kort, 1988; Austin, 2014), mitigating food production displacement. Normalisation against 

European environmental loadings suggests that the relative eutrophication savings are greater than 

the relative GHG emission increases that could occur under worst case ILUC scenarios. 

Eutrophication is a major regional problem in Skåne and Baltic receiving waters, and the nitrogen 

cycle is the second most critically impacted planetary system according to Rockström et al. (2014), 

after biodiversity loss and ahead of climate change. Thus, eutrophication savings associated with 

strategically planted willow merit considerable attention (weighting) with respect to Skåne land use 

policy, and the eutrophication balance of bioenergy production more widely merits further scrutiny, 

alongside more extensively studied GHG balances.             

Conclusion 

Intensive arable agriculture is inherently leaky in terms of nutrient cycling (Pinder et al., 2012), and is 

often the dominant land use on fertile lowland plains where it is responsible for large eutrophication 

loadings to surface waters. Hitherto, consequential LCA studies of bioenergy systems have 

emphasised uncertain ILUC effects attributable to food production displacement, which Berndes et 

al. (2013) argue has distracted policy makers from genuine long-term GHG mitigation that can be 

achieved by bioenergy deployment. Our study highlights that, by also accounting for wider 

landscape-scale environmental effects within consequential LCA, a multi-dimensional case can be 

made for appropriately sited bioenergy production in the context of sustainable land management, 

environmental quality and renewable energy objectives. Specifically, our results indicate that willow 

cultivation on buffer and filter zones complements, rather than competes with, sustainable 

intensification of food production. It also represents a potentially profitable use of riparian buffer 

zones that may allow farmers to claim agri-environmental payments under the buffer scheme. 

Quantification of the water purification service delivered by strategically planted willow is an 

important step towards possible incentivisation, e.g. through payment for ecosystem service 

delivery.   
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