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In this work we analyze the simultaneous emergence of diffusnergy transport and local thermalization
in a nonequilibrium one-dimensional quantum system, assaltref integrability breaking. Specifically, we
discuss the local properties of the steady state inducetiéaynal boundary driving in X XZ spin chain with
staggered magnetic field. By means of efficient large-scaleixproduct simulations of the equation of motion
of the system, we calculate its steady state in the long-limi& We start by discussing the energy transport
supported by the system, finding it to be ballistic in thegnéble limit and diffusive when the staggered field
is finite. Subsequently we examine the reduced density tpsraf neighboring sites and find that for large
systems they are well approximated by local thermal stdt#seaunderlying Hamiltonian in the nonintegrable
regime, even for weak staggered fields. In the integrablé,liom the other hand, this behavior is lost, and
the identification of local temperatures is no longer pdssil®©ur results agree with the intuitive connection
between energy diffusion and thermalization.

I. INTRODUCTION establishing different temperatures at the two reserythies-
moelectric effects have also been obsen24).[ The use of

In recent years the interest on the physics of nonequilibthese nonequilibrium configurations thus offers the palstsib
rium quantum systems has received a major impulse due t@_stu_dy transpprt propernes of quantum systems undeifyvide
seminal developments in quantum simulation scherheg[  differing conditions, with unprecedented control.

In particular, ultracold atomic gases have emerged as some A second problem whose research has been boosted by
of the most attractive candidates to help unravel challemngi these experimental achievements with ultracold atomiegas
questions on the physics of many-body interacting quantunis the relation between thermalization and integrabil@] [
systems 3-5]. Their high degree of controllability, isola- Specifically, it was suggested that for closed quantum syste
tion from the environment, and the existence of schemes fdiaken to a nonequilibrium configuration, their local rediice
single-atom resolutiorg] 7], make them ideal to simulate the density matrices do not relax to a thermal state if the Hamil-
physics of a vast variety of systents #]. tonian is integrabled1], but tend towards a generalised Gibbs

One of the most studied areas within the community of ul-state incorporating the corresponding conservation 183s [
tracold atomic gases corresponds to the dynamics of nonequPn the other hand, several nonintegrable systems have been
librium interacting quantum system&{L1]. Since the iden- foundto relaxto a Gibbs state. A large amount of evidence in-
tification of the nature of transport supported even by &bt dicates that this is achieved by means of a mechanism known
models of condensed matter systems is far from trivial, it is2S eigenstate thermalisati®38f-37]. However, these pictures
expected that their simulation in a highly controllable ienv are still under active debat@8§-42. Moreover, thermalisa-
ronment will help resolve several open questions. In partic tion of open driven systems is much less well known, although
lar, the relation between particle and energy transpootidin bulk thermalisation in systems with nonintegrable Hamilto
a quantum system and the integrability of its Hamiltonian, a nian was found to be induced by thermal drivirg]|
though intensively studied, is not fully understood. It haen Considering the impact of integrability on the transpod an
shown that in integrable systems, the existence of noatrivi thermalization properties of quantum systems, the quesfio
(local or quasilocal) conservation laws leads to ballisbo-  whether these phenomena are directly related naturasigsri
duction, as long as such laws have a finite overlap with the cuindeed, it would be expected that a system featuring hiallist
rent operatorsi2-14]. For nonintegrable models, in which transport does not tent towards a thermal state, due to the ab
nontrivial local conservation laws are absent, it is expgct sence of scattering mechanisms which could equilibrate dif
that a diffusion equation with finite conductivity is satefi  ferent parts of the system. It is also tempting to associate
i.e. that the transport is diffusive. Even though this isdntf the relaxation towards a thermal state with diffusive trans
the result found for several models5-25], ballistic transport  port, where dissipative mechanisms due to inelastic seatte
in some nonintegrable systems has been repo2@@[, 26|, ing take place. Even though this relation between transport
or could not be ruled outlp, 17]. and thermalization appears intuitive, it has yet to be exqulo

The simulation of interacting systems in ultracold atomicFor example, just recently a connection between the relax-
gases could be determinant for establishing a definitivee rel ation towards a generalized Gibbs state and ballistic parti
tion between integrability and transpotf) 11]. A significant  cle transport has been determined in a closed quantum sys-
step towards this goal has been accomplished recentlypdue tem [44]. To establish rigorously whether a general connec-
the development of cold-atom configurations inducing parti tion between the two types of phenomena actually exists, the
cle transport through a mesoscopic channel connecting twooincidence of particular transport and thermalizati@imes
reservoirs with population imbalancg, 28]. Moreover, by  has to be shown first. In the present work we investigate the
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latter problem in a thermally-driven one-dimensional duam JS
system, extending the concept of local thermal stat8s50] ' X7 > m
to nonequilibirum configurations. As the main result of our , J 3

work, we show the coexistence of diffusive energy transport o
and local thermalization in large nonintegrable systemghé ﬁ ¢ b o 6 D d Q‘b 6 ‘
integrable regime, where ballistic energy transport eegrg

local thermalization does not occur.

The paper is organized as follows. In Sectibrwe de-  FIG. 1: (Color online) Scheme of the nonequilibrium systeos
scribe the model to be studied, corresponding to a spin chai§d- At the left (L) and right (R) boundaries of a spin chahgrmal
thermally driven at its boundaries so an energy current-is in'€servoirs of temperaturdg;g and chemical potentialstzrg induce
duced. In Sectiotiil we discuss the properties of the energy!0cal grand-canonical states on two neighboring spins.s Téads
transport resulting from a temperature imbalance acrass thtﬁ enea%cur;e_mg h(Eq.h(S)) an(:{or fslp'n fcu"e';tgl ]EEq' ((f))
spin chain, illustrating the transition between balligtid dif- = rﬁfgbl the chain. In the sc .eTJ”f;e’t ?}ﬁ OWd/romLt e left (tedpe
fusive regimes due to integrability breaking. Then we stindy right (blue) reservoir, assumirlirg > Trarg ANA/0THearg > Hearg
SectionlV the description of the thermally-driven system by
means of local thermal states, and its relation to integitgbi
Our conclusions are presented in Section and right k= R) reservoirs. Each superoperaf(p) is such

that it induces a grand-canonical state of temperafueand

chemical potentigl, namely
II. MODEL OF BOUNDARY-DRIVEN SYSTEM

p2(T, W) = Z*le(*ej,HlJrHMj,jJrl)/T’ 7= Tr(e(*Ej,jJrlJrHMj,Hl)/T)’
A. Spin chain model and boundary driving 3)
when acting on two sping j + 1, with magnetization operator
We start by describing the model to be considered in théVj j+1 =07 +07 4, coupled by arXXZlocal Hamiltonian
present work, depicted in Fi@. The configuration consists of

two thermal reservoirs of different temperature and/omche € j+1= T(G)J-(G)J-‘+1+ 0}'0}’+1+AGJZGJ?+1)
ical potential, located at the two edges of a one-dimensiona (—-1)iB (4)
spin chain. Due to the imposed imbalance, the chain is driven + [(1+8j1)0f — (1+ 6j+1,N)GJZ+1].

to a nonequilibrium steady state (NESS) supporting energy 2
and/or spin currents. This setup is strongly motivated ley th The reason for using these types of dissipators is that stt lea
recent development of similar configurations in cold atomictwo sites are necessary to induce finite-temperature therma
systems27-29]. states defined by the Hamiltonian couplings of interest (i.e
We describe the chain by the spié XXZ Hamiltonian,  nearest-neighboX X Z interactions). Details of their imple-
which corresponds to an archetypical model to analyze transnentation are given in Appendix.
port and thermalization properties of low-dimensionalmua  To drive the system to a nonequilibrium configuration, we
tum systems2-24, 35, 36, 40, 51-55]. To investigate the apply these superoperators to its leftmost and rightmass pa
effect of integrability breaking, we apply a staggered mag-of spins, withtarget temper:’;\tureé't'g‘rg and Ttgrg and chem-

netic field inz direction to the |attice19, 22, 24] Thus the ical potentia|sut|—arg and utRarg for the left (L) and r|ght (R)

Hamiltonian is given by boundaries 76]. The transport and thermalization proper-
N_1 N ties of different sets of parameters are studied in the eorre
H=1Y (6%, +0%0" , +Ac%c?, ) +BY (-1)o? sponding NESSs, obtained by simulating the long-time evolu
Z P+ EE 4L T+ I . : . . :
=1 =1 tion of the system using the mixed-state time evolving block

(1) decimation algorithm§7, 58]. This method allows us to
Hereh=1, o‘j‘ (a = x,y,2) are the Pauli matrices at sife  reach system sizes much larger than those considered iin prev
N is the number of siteg is the nearest-neighbor exchange ous studies of energy transport in interacting thermatlyesh
coupling,A is the anisotropy parameter, which corresponds tespin chains $9-62]. Our implementation is based on the
the interaction strength between neighboring spin exoitat  open source Tensor Network Theory (TNT) libraBg[. We
andB is the amplitude of the staggered magnetic field. note that our study is restricted to high temperatuiies(

To study the nonequilibrium properties of the spin chaint, tA, B), given that the calculations become considerably hard
thermally driven at its boundaries, we follow the propodal o at low temperatures due to strong boundary effects and-corre
Refs. [L8, 43, 56], which allows for an efficient numerical sim- lations [56].
ulation [57, 58]. Specifically, we assume that the state of the
systemp satisfies a Lindblad master equation

dp _

dt By selecting different target temperatures and chemical po
where the first term represents the coherent dynamics, and thentials, a large variety of effects can be studied. Nanitly,
dissipatorsz(p) correspond to the effect of the lekt £ L)  Ti5q= Tig andulyg = B = O, the steady state of the system

B. Driving-induced NESSsand currents
L(p) = —i[H,p] + LL(p) + Lr(P), @)
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does not show any net energy or magnetization flow, and thek|G. 3: (Color online) Energy transport properties of ¥%Zmodel
malizes if the underlying Hamiltonian is nonintegrabd@][  with staggered magnetic field. The simulations corresporti +

If a temperature imbalance is established, a NESS with an er-5, T = © and T5, = 20. (a) Examples of energy profiles for
ergy current is induced. The local energy current atisige  two staggered magnetic fields. (b) Corresponding energiectsr

given by the expectation value of the operator as a function oN. The symbols represent the TNT results, and the
lines are guides to the eye. (c) Scaling of the r&ft*?) /AE with
Jxz = Zrz(oiy L0%0% 4 — 0i><710i20iy+l) the size of the system. The symbols are the numerical datathan
- lines represent the fits to equatior).( To perform the fit, we have
+4t%(07 yofal,, — o} j0fcf,,) (5)  discardech = 15 sites at each boundary of the chain for all values of

N considered. Larger values nfdo not modify the results, since the
energy gradient is homogeneous in the region of the chaéinesl.

; - ; ForB = 0.15, the fit givexxxz = 1455) anda = 0.98(1), and for
as obtained from the continuity equation for the energy denB: 0.30 it giveskyxy — 40.6(5) anda — 0.97(1). (d) Conductivity

sity in the_bu_lk of theXX_Z spin (_:haln ﬂ.Z]._ It only agheml- of the system as a function 8f The solid line corresponds to the fit
cal potential imbalance is considered, vwllﬂgrg = —Harg @nd Kxxz = 4.0(1.3)B~19(1),

Tt'glrg = Tt;g, spin transport at zero average magnetization and

finite [56, 64] or infinite [51] temperatures can be simulated.

In this case, the local spin current is given by the expemtati

value of the operator imbalance 5 > T, with zero target chemical potentials.
3 = 21(a%a., — oVa¥,y) (6) Also note that from here on, the numerical values of all the
e ! iK1 energies will be quoted in ratios ofand for brevity the values

obtained from the continuity equation of the local magreetiz ©f B/T. T/T, etc. will be referred to simply &8, T, etc. in
tion operator 12, 19]. Furthermore, if there is a thermal or figures and the main text.
magnetization imbalance, arpﬂ;larg;é _HRarg so a finite mag- We start our investigation by examining the nature of the
netization is imposed to the system, magnetothermal sffectdirect energy transport through %XZ spin chain. We con-
arise, namely Seebeck and Peltier effe65-57]. This sit-  sider first the integrable case, with no staggered magnelit fi
uation is briefly discussed in Appendix for the integrable (B = 0). In Fig.2(a) we show for three interaction strengths
limit, where we show that the nature of the magnetothermad that the energy current through the system is independent
response depends on the particular formin which itis induce of its size. In addition, we show in Fig(b) that the energy
Note that in the absence of bulk energy and magnetizatioprofiles are flat in the bulk. This indicates that the energy
dissipation, the energy and spin currents are homogengousiransport is ballistic for the different interaction regimof
the corresponding NESS4]. We thus denote them d8%*4 =  theXXZmodel. This result thus provides strong evidence to
(3%%) /1? andJ® = (JP) /T respectively. support the picture of ballistic energy transport in intdge
guantum systems, as discussed in previous works by means of
different techniquesl]?, 15, 17, 21, 23, 65, 68-70]. Note that
IIl. DIRECT ENERGY TRANSPORT AND studies of energy transport in integrable systems withlsing
INTEGRABILITY site thermal driving also suggested ballistic conduction,
A=0[59 andA = 1 [71], but for much smaller systems (of

We now consider the main question of our work, focusingup to 12 sites).
on the impact of integrability breaking on the local projest Next we consider the nonintegrable case with finite stag-
of the NESS of thermally-driven systems. Thus during the resgered magnetic field. First, we note that while the simufegio
of the paper we consider chains only driven by a temperaturtor the caseB = 0 converged to the NESS quite fast, those

2/ X Y ~Z z Y X
+A1%(07_16{ 07y — 07_107 074 1),

i+1



of finite values ofB were found to be more demanding, with 10° T T T
their convergence time scaling in a formB~L. For this rea-
son we identified the amplitud&= 0.1 as approximately the
lowest one for which the NESS can be obtained with a rea- 1072 -
sonable computational effort. Thus we considered field am- =
plitudes within the range.@ < B < 0.4 for our study.
The mostimportant features of the high-temperature energy 104k .
transport of the nonintegrable system are shown inFigve
restrict the results to a single interaction strendths 1.5;
a similar qualitative behavior was found for oth&values. 10-6k
Specifically, as depicted in Fig(a), the energy profiles are
no longer flat, but acquire a ramp form that becomes steeper I é 15
asB increases. Also, as shown in Fig(b), the energy cur- r
rent is no longer independent of the size of the system, but . o .
decreases witN. Thus the energy transport is no longer bal-FIG. 4: (Color online) Spin-spin correlations of theXZ model

; i fi _ _ L _
listic. Instead, as indicated in Fig(c), it satisfies a diffusion With staggered magnetic field, fak = 1.5, N = 100, Tgrg = e
equation in the bulk, namely and Tt§rg = 20. From top to bottom, the lines correspondBe=

' 0,0.15,0.20,0.30,0.35. The field amplitud® thus increases as indi-
cated by the arrow.

XXZ
J Kxxz

AE ~ (N—zn_27 AE = (e&n-n-1N-n) — (En+1n42)
(7)

with Kxxz the energy conductivity) the number of sites dis-  tems B2, 33, 44], it becomes natural to ask whether Hamilto-
carded at each edge of the chain due to strong boundary &fjan integrability is related to such a local equilibriurotpire.
fects [18], AE the energy difference between the leftmostand Here we study these questions by analyzing the concept
rightmost pairs of sites retained, and~ 1. In addition, as  of |ocal thermalization in high-temperature thermallyjvein
shown in Fig.3(d), the energy conductivity diverges with systems. We find that the definition of local temperatures is
the staggered magnetic field agxz ~ B~> whenB — 0,  possible in these configurations, depending on the intégrab
as expected from previous calculatiod$,[22). So our re- jty of the Hamiltonian. Namely, for large nonintegrable sys
sults indicate that when the integrability of the Hamil@mi  tems local thermalization arises, while it does not for inte
is broken, the energy transport becomes diffusive. This congrable models.

clusion is consistent with recent calculations of curram a
tocorrelation functions in systems with staggered magneti
fields [21, 22, 24], and with previous studies in which the inte-
grability is broken by means of other types of couplingg [

We have therefore demonstrated, by using a transport A first point t luat ding th ibl ist
scheme different to those considered in previous work, the Irst point to evaluate regarding tneé possiole existence
existence of ballistic energy transport for an integrabderti- Of local thermal states in the NESS of the system Is whether
tonian. On the other hand, the energy transport becomes di ong-range correlations emerge. In Ref it was shown

fusive when the integrability is broken, in this case by @sta hat when boundary driving mduces_spm transport at inf
o nite temperature, long-range correlations emerge ataoter
gered magnetic field. . 2.
. L . . tion strengthd\ > 0.91. At finite temperature long-range cor-
Now we examine the thermalization regimes in the same _,_ ~
o , . relations were also found fak = 1.5. It was proposed that
nonequilibrium configurations.

We show the absence an -
emeraence of thermalization on a local scale for sufficientl ?hese results could demonstrate the absence of well-defined
9 ¥ |ocal temperatures in nonequilibrium one-dimensionalyaan

large chains with integrable and nonintegrable Hamiltogsja : g . ;
. L ) S e body systems. But interestingly, as discussed in the follow
respectively, coinciding with ballistic and diffusive egg . X . :
ing Sections of our work, this turns out not to be the case in

transport regimes. nonintegrable systems driven out of equilibrium by a thérma
imbalance. Thus it is illustrative to observe first the betiav
of spatial correlations across the system. In Bigie plot the
bulk-averaged correlation functio@gr) = (C(j,r));, with

A. Corrédation functions

IV. LOCAL THERMAL STATESAND INTEGRABILITY

An important problem regarding the nature of the NESS C(j,r) = (af05,,) — (05)(0F, ), (8)
of a driven quantum system corresponds to whether, and un-
der which conditions, it can be described by local equilib-as a function of the separatiorbetween spins. The notation
rium. If so, local temperatures and chemical potentials can.); indicates spatial average of the correlati@tg,r) with
be established, determining the simplest form in which a sysfixed r, excluding sites near the boundaries. The main obser-
tem can deviate from global equilibriun7?, 73]. In addi- vation from Fig.4 is that the correlations, which oscillate due
tion, considering the relation between relaxation to Gililkess  to the staggered field, strongly decay wBhup to two orders
states and nonlocal conservation laws in closed quantum sysf magnitude fronB =0 toB = 0.4. In addition, forB > 0 the



correlations are dD(10-°) — O(1078) for r = 15, which indi-
cates a much faster spatial decay than that of long-range cor
relations in Ref. T2]. This suggests that as the integrability-
breaking parameter gets larger, a description of the sykjem
means of local properties becomes more feasible.

B. Determination of local thermal states

coooo
SNNULH O

To determine whether the thermally driven system can be
locally described by thermal states, we proceed as follows. 10~ 1 1 1
First we calculate the reduced density operators of eaah pai 60 TN82 100
of neighboring site§j, j + 1) in the bulk of the driven system, 2.2t
which we denote af(j, j+ 1) [78. Then we find the local
two-site thermal state

FIG. 5: (Color online) Trace distance between the reducedite
operatorp, of the two central sites and two-site stat@swith tem-

. _ eratureT , for various staggered field8. The calculations
P2(j.j+1) =Z; 1 exp(— (€] 11+ W0k + 4107, 1)/Tjjea), D 22t L ggR -2
’ correspond tN = 100, Tigg — ®, Tgg = 20,A=15,3T = 1077,

Zjjy1=Tr [GXP(—(Ej,Hl + Y oJZ + “J+10?+1)/TJJ+1)} , and the final iteration of the self-consistent procedure.
(©)

with local temperaturdj j+1 and chemical potentialg; and Their difference is

Hj+1, closest tada(j, j +1). This state is identified by deter- B L . o
mining the free parametef§ j,1, Wj andp;1 that minimize {G)p — (G)o| = zgl(pl —a)| <19 |Z [P —qjl (12)
the trace distance&’ff] ) i § )
= 2|g"|D(pj,q;) < 2|g"|D(p, 0),
D(p2,p2) = }Tr[ (92—52)2} (10) whereg® is the eigenvalue ofG of maximal amplitude,
2 D(pj,q;j) is theL; distance between the probability distribu-

. o . . tions{p;} and{q;}, and where we have used that the trace
This calculation is performed self-consistently. Firstéach  gistanceD(p, o) upper-bound®(pj,q;) [74. Thus the trace
pair (j, j +1) we fix the local chemical potentials to a partic- gistance of two states upper-bounds the difference between
ular value (see Eq1()), and sweep over arange of trial tem- the corresponding expectation valuesaof observable (with
peratured j.1 (with temperature stepT), as exemplified in  finjte eigenvalues). Its calculation then constitutes d mek
Fig. 5 for the two central sites of the chain. The temperaturesjyated measure of distance to determine the closest therma
that minimize the trace distance are selected, and thersate U statep,(j, j + 1) to eachpz(j, j +1). The sole value of the
to find new values of the local chemical potentials, follog@  trace distance between both states, however, is not enough
similar minimization from a sweep over trial values. Thepro tg determine whethedy(j, j + 1) is actually thermal, since it
cess is repeated until convergence is obtained; see Appendi goes not give any indication of the relative difference tetw
for more details of this procedure. Finally, we compare expe expectation values of the two states. This is why after figdin
tation values of eacpy with those of the closest thermal state he closespa(j, j + 1), a comparison of its expectation values
found. If their difference is much smaller than the actudl va tg those off,(j, j + 1) is still required.
small),p2 corresponds to a local thermal state. Eq. () to perform our study. An intuitive justification can

A few points must be discussed before presenting our rebe drawn from considerations on global thermal states &t hig
sults. First, note that this method represents an impromémetemperaturd . For such cases, where the total density opera-
over procedures used in other works to find local temperator is
tures @3, 62, 75], which only relied on analyzing and com- L L N
paring a few expectation values to determine thermalimatio ] -

To understand why, consider two stafeando, and an ob- P =2 "exp—H/T) ~ 2N lIN a ?H +O <T> ] (13
servableG with spectral decompositio® = 3 ; gj|j)(j[. If . _ . _ .
p; = Tr(plj){j|) andq; = Tr(alj)(j|) denote the probabili- With I the identity operator ofn sites, the reduced density
ties of obtaining outcomgin a measurement @, the corre- ~ operator of siteg andj + 1 is very well approximated by

sponding expectation values are 1 1\2
lo— =€jj+1+0 (—) ]
(Glp=Tr(pG) =Y gjpj,  (G)o =Tr(aG) = 3 gjq;. l T T
] ]

~ - . 1
P, 1 +1) =Tr(pn) i j4ay = 7
(11) =Z texp(—jj11/T), (14)



with Z the corresponding local partition functioad. The 86 l l l
states of Eq.14), however, do not account for the coupling of

the pair of sitegj, j + 1) to the rest of the chain, even under -
some approximation. An initial improvement corresponds to "
assuming a mean-field (MF) coupling between the pair and "
the neighboring sites, namely T 76

0}_10] ~ (0f_1)0f +0j_4(0f), (15)

for o = x,y,z, and similarly for paif j+1, j +2). A reasoning

similar to that of Eqs.X3) and (L4) then leads to a state of the

form in Eq. @), with 66

'J'J - TA<O-JZ71>7 “jJrl = TA<O-JZ+2>7 (16) v

when considering that onlfo?) # 0 whenB > 0. Thus the FIG. 6: (Color online) Temperature profiles across the syster
coupling of the two sites of interest to the rest of the chainth® parameters of Fig. The (flat) profile ofB = 0 is not shown
motivates the inclusion of site-dependent chemical paitnt SINCE it corresponds to temperaturess.

on the local description of the NESS. To go beyond a mean-

field approximation, these are taken as fitting parameters.

Eve_n though we do_nothaveaglobal thermal state butasy:?he strong boundary effects of the two-site drividig,[56].
tem with temperature imbalance and energy transport, we cor, particular, the temperature at the left boundary is finite
S|dgr states of Eq9]_[ for our Iopal analysis. This was further while L —s oo This results from the coupling of the two
motivated by verifying numerically that the two-site reddc

. . < leftmost spins to the rest of the chain, which has finite lo-
density operators of théX Zdriven systemgz(j, j + 1) have cal temperatures due to the finite vaIueTgﬁg. Additionally,

the form observe that aB increases the temperature profiles become
. 1 2 s o a.a steeper, an expected result since the system goes deaper int
P2=74 (|2+dlcj + dJ+10j+l+a:ZyZCJ,j+1Oi i1 ), A7) the diffusive regime. However, due to the different strérajft

boundary effects at each boundary (being stronger at low tem
with d; = (0%) andc‘j{j+1 = (0‘]"0‘;‘ 1)- Since only the terms  peratures$€)), this steepening is asymmetric, resulting in the
of Eq. (17) are generated by the exponential of E9).[(79],  different temperature profiles crossing away from the gente
using it for the local description of a nonequilibrium setup of the spin chain.
stands as a very appealing and natural choice. Finally, note Then we compare the correspondifmfof’ ;) expectation
that since the operators describing the energy currenécorrvalues of the two types of states. In Fré.we present the
spond to three neighboring sites (see E)), they are notin- comparison foix = z the results folm = x,y have the same
corporated in our two-site description. However, they $thiou features, so they are not shown. BE 0, the maximum
be included in an analysis of the reduced density operafors alifference of expectation values 4s 9%. It is significantly
more than two sites. Establishing a well motivated ansatz fodiminished forB = 0.1 (~ 2%), and becomes very small for
the description of such reduced density operators remains &8 = 0.4 (0.7%). These relative differences are consistent with
open question. the corresponding trace distance (see Eg))( Thus we con-

clude that away from the integrable limit, the NESS of the

thermally-driven system dfl = 100 spins is locally well de-

C. Impact of integrability on local thermalization scribed by thermal states of the form in E@).(Close to and

at integrability, this local description does not hold.

Now we discuss whether the two-site reduced density op- This conclusion is reinforced when looking at the magne-
erators of thermally-driven systems of a fixed system sizetization profiles of the NESS. In Fig(a) we show the stag-
namelyN = 100 spins, can be well approximated by the two-gered magnetization of the chain 8r= 0.4, along with the
site thermal states of EQQ), As described in Sectidv B, we  profiles obtained when fitting the local reduced density op-
start by identifying the local thermal stape(j, j + 1) closest  eratorsp, with different versions of Eq.9). Local thermal
to the reduced density operatps(j,j + 1) of each pair of states with zero or mean-field chemical potentials repreduc
neighboring spins of the driven chain. The determination ofthe oscillatory form of the profile. However, the staggered
the local temperature is illustrated in Figfor the two central magnetization has an additional staggering amplitude pn to
sites and various staggered magnetic fidddsNotably, the  of it, which is not captured by any of these two limits. This
trace distance between the two types of states decreases amititional residual staggering is reproduced well whemtak
gets sharper as the staggered figlshcreases. The resulting p; andy;1 as free parameters, as seen in B@). The corre-
local temperatures for each valueBére shown in Figé. As  sponding values gi; obtained for each pair of sité$, j + 1)
expected, they describe well defined linear profiles. Nate al are shown in Fig8(b). In the bulk, these chemical potentials
that the obtained temperatures at the boundaries are signiform an oscillating profile around a linearly increasingitite
cantly different to the target temperatures. This occuestdu resembling the increase of the magnetization profile.
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(cizciZH) directly obtained from the numerical simulations of driven
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FIG. 8: (Color online) (a) Comparison between expectatialues

On the other hand, for Hamiltonians close to integrability (o?) directly obtained from the numerical simulations of drivays-
the magnetization values of the NESS are much lower, antems with temperature imbalance),(and those of various two-site

cannot be reproduced even whgnandy; 1 are free param-
eters. For example, fd@ = 0.1, differences between tHe?)
values of the NESS and the states in E).rQiinimizing the
corresponding trace distance are of up to 20% (not shown).

D. Local statescloseto and at integrability

We have noted in SectiolV B that the two-site reduced
density operatorg; of the thermally-driverX XZ spin chains
have the form specified in EqLT). Since this result holds

independently of the value of the staggered magnetic field, itance is 0fO(10°6).

thermal states in Eq9J. The red dashed line refers to states with no
local chemical potential. The black solid line correspotalstates
with the mean-field chemical potentials in Eq6)(. The solid blue
(oscillating) line represents the results when ugingand 1 as
fitting parameters. (b) Values @ff minimizing the trace distance
between the two-site reduced and thermal states of gjtgst1).
The calculations correspond Bo= 0.4, and the other parameters of
Fig. 5.

effective local Hamiltonian of Eq.1@), so their trace dis-
In Fig. 9 we show the effective site-

is natural to ask whether close to and at the integrable, limitdependent couplings that minimize the corresponding trace
the system can be described locally by states of the form ddlistance for systems of sité= 100, interactior = 1.5 and

Eq. 9), but with an effective local Hamiltonian
§jj+1=Tj(0{0f 1 +0j0] 1 + A 0j0541)
(_1)1' B (18)

2

+ [(148j1)0% — 0%, 1 (1+8j11n)],

various staggered fields. Deep in the nonintegrable regime
(B=0.4),Tj ~ 1 andAj ~ 1.5 in the bulk. As the staggered
field decreases, the effective parameters notably deviate f
the values of the Hamiltonian couplings. Finally this devia
tion becomes very large in the integrable limit. In partaul

Tj ~ 0.93 andA; ~ 1.77 forB = 0 (not shown). These results

wheref; andﬁj are free fit parameters corresponding to effec-indicate, in a complementary form to that of SectidviC),

tive site-dependent hopping rates and interaction sthangg-
spectively (following the convention described in Sectibn
the numerical values df; /T are just denoted by;). We veri-

that thermally-driven strongly nonintegrable systemslare
cally described by thermal states of the underlying Hamilto
nian, while in the integrable limit such a description is not

fied that this is in fact the case for several staggered magnetvalid.

field, includingB = 0. However, since the parameté&fsand

There are, however, three specific instances of integtabili

EJ- obtained by this fitting deviate from the couplings of the that require special attention, given that they satisfyciie-

parent Hamiltonian, there is no true local thermalizatamg
no local temperatures can be assigned to the system.

ditions described above to argue the existence of locat ther
malization. These correspond to the isotroghc= 1), XX

Specifically, we found for each two-site reduced density(A = 0) and Ising { = 0, A — ) coupling limits. To explain

operator in the bulk of the system a state in E®). With

what makes these cases special, and to show that their local
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L.0Lp - - - identified with a local thermal state with Hamiltoniag; 1,
y\ (a) in spite of the integrability. We have verified this resultivin
LN our numerical simulations, finding trace distances between
LOOfF e 3 statesp,(j, j + 1) and the closesby(j, j +1) of O(10°7) in
- TN T ‘ the bulk. Add|t|onaIIy, we have confirmed thaf = 1 and
N A,— = 1 when looking for the effective Hamiltonian couplings
W that minimize the trace distance.
el Similar arguments can be derived for & and Ising lim-
' its. This is becauséoo* ;) = (a)0”, ;) # 0 and(o}0} ;) =
0.98, : , : 0 for theX X chain, and onlyofo?, ;) # O for the Ising model.
As a result, both the two-site reduced density operatorseof t
1.58 : : : . thermally-driven system and the two-site thermal states ar
' proportional to the corresponding local Hamiltonian. By an
(b) A appropriate selection of the local temperatures, the tpegy
1.54F « .L. of local states coincide.
g There is, however, a key difference between the results for
A L, - _f"| these particular integrable limits and those of nonintelgra
5ok e T Tmemem Tl z Hamiltonians studied above, which justifies our conclusion
v . that real thermalization emerges in the latter but not in the
' : - former. This is that our discussions for nonintegrable sys-
1.46 J e , , tems do extend to larger reduced density matrices. For in-
0 50 100 stance, we have verified far= 1 that wherT5; = Ti5, only
J the two-site reduced density operators correspond to derm
states with local Hamiltoniar2(Q). When more sites are taken,
FIG. 9: (Color online) Effective site-dependent Hamil@micou-  this identification is no longer possible. Namely, the trace
plings df local tyvo-site states, for diffgrent stagggre@mﬁic fiellds distance between statfs(j, j + 1, j + 2) in the bulk and the
B, and interactiod = 1.5. (a) Effective hopping;. (b) Effective  |gsest thermal sta@s(j, j+ 1, j+2) is~ 4 x 104 in addi-
coupling inz directionA;. The calculations correspond to the pa- tion, for states of four sites, the corresponding traceadiss
rameters of Fig>. The results oB =0 are not shown since they are i -, 1« 10-3, |ndeed, several expectation values of fhe
located in S|gd|f|cantly different ranges of theaxis, i.e. Tj ~ 0.93 states withn > 2 are nolc well reproduced by thermal stapes
andA; ~ 1.77in the bulk. and thus there is no thermalization. For nonintegrablesyst
this is not the case. We have verified, = 0.4 andA = 1,
that the expectation values of the reduced density operator
two-site description by thermal states of the parent Hamilt Of three and four sites are still well reproduced by thermal
nian is an artifact of their high symmetry, we take the firstca  States, with corresponding trace distances across thensyst
as an example. Here, since all the directions are complete§f O(10~°). Thus the conclusion of local thermalization for
equivalent, the two-site reduced density operae($, j + 1) nonintegrable cases is robust to considering more than two
must have the form sites.

““““

. 1

P2(j,J+1 ——(Iz+c-.- 1y ofof ) (19)
( ) 4 J'qu 17+ E. Scalingwith system size

with ¢; j+1 a local coefficient, equal for the three directians

Due to the symmetry of thé — 1 local Hamiltonian, given by Finally, we discuss the effect of the system size on its lo-

cal description by means of thermal states. For varioussize
hjji1= r(o 01+1+ 0Y0H1+ o2 GJ+1) (20) N, we obtained the effective parametgrandA; of the local
Hamiltonian of Eq. {8) for the central pair of spins, and cal-
it is easily shown that a two-site thermal state at tempegatu culated their difference to the actual Hamiltonian pararset
T has the form80Q] We consider first the integrable regirBe= 0. As shown in
Fig. 10(a), the effective couplings diverge from the couplings
- }(I2+C(T)h- 1), (21) of the parent Hamiltonian a¥ increases. This provides fur-
Tr(e e hi/Ty 4 o ther evidence that in the integrable limit, the system dads n
locally thermalize for any size, since as it becomes larger,
local description by a thermal state of the underlying Hamil
e U/T _g3UT tonian becomes increasingly worse.
C(T) = (0f0f.1) = 3 T L ST (22) The results are entirely different for the nonintegrable
regime, even for a weak staggered magnetic field. This is il-
So by selecting the temperature that satisfiééT ) = ¢j j11, lustrated for the two central spins aBd= 0.15 in Fig.10(b).
each two-site reduced density operator of the driven system Notably, as the size of the system increases)dA approach

e hij+1/T
P2(),i+1)=

with the coefficient
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x1072 large systems. Whether the transition between the two-trans
18.0 ! ! port and local thermalization regimes occurs arbitrarise
to integrability remains an open question.
16.5 |- -
(a) "
(A=A7)/A V. CONCLUSIONS
15.0 | |
. 5%_ } In the present work we studied the NESS of high-
: temperature thermally-driven one-dimensional spig-X X Z
: chains, obtained by efficient matrix product simulationse W
6.5 (r=7)/7 . focused on two distinct phenomena, namely energy diffusion
and local thermalization, which simultaneously arise fitbm
5.5 1 1 integrability breaking of the Hamiltonian.
10 15 20 25x107° Specifically, we first analyzed the energy transport sup-
Nt ported by the system when different temperatures are intbose
3 X102 at its boundaries by means of a two-site driving. The results
' ' ' ' show that the integrablé X Z model features ballistic energy
transport. On the other hand, when the integrability of the
2 (1) Hamiltonian is broken by means of a staggered magnetic field,
the energy transport becomes diffusive. Our results thos pr
vide new evidence to support this picture of energy trartspor
Ir Subsequently we studied the emergence of local thermal
(r—7)/7 states in the same thermally-driven systems. We observed
0 _ that deep in the nonintegrable regime the system is locally
. . . . descnbeq by the_rr_nal states of the _un_derlylng Hamiltonian.
0 5 10 15 20 25%10~3 Close to integrability this local description does not hfuid

N-1 the system sizes attainable with our simulations. Howewver,
scaling analysis withN suggests the emergence of local ther-
FIG. 10: (Color online) Scaling of the difference of effeetiand ~ Malization for very large sizes in such a regime. Finally, in
real exchange couplingdj and anisotropyd) with the system size, the integrable limit the system is not well described by loca
for the central sites anfl = 1.5. (a) For integrable regim& = 0.  thermal states of the underlying Hamiltonian (except f@wa f
The solid lines are guides to the eye. (b) For nonintegradinre  symmetric limits). In fact, this description becomes waaise
with B = 0.15. The solid lines are the corresponding linear fifs:- the system size increases.
A)/A= 1-%16(8)’\‘71 —6(13) x 10~*, and(t 1) /T = 0.49(4)N"* — These results represent the first concrete connection be-
3(6) x 10~". The calculations correspond to the parameters ofFig. tveen the integrability of a Hamiltonian and the emergerice o
corresponding local thermal states in a global noneqilibr
setup. More importantly, they suggest a close connectien be
tween transport and thermalization properties. This has be
T andA respectively. For the sizes attainable with our numeryecently established for integrable closed systegdk [Here
ical simulations, this approach is very well approximatgd b e show, for open boundary-driven configurations, that en-
N1, as indicated by the fits shown in Fig(b). This is con-  ergy diffusion and local thermalization emerge in the same
sistent with havingt = T andA = A in the thermodynamic  (nonintegrable) regime for large chains, the latter beirngem
limit, since the errors of the size-independent term of ttee fi gysceptible to the system size. Thus it is natural to expect t
are larger than their actual value, as indicated in the oapti an intimate relation between the two phenomena exists. A
of the figure. These Scaling results show that systems abose Hgorous proof of such a relation is still required_
integrability will tend to a local thermal description givey We conclude by commenting on a connection between our
their underlying Hamiltonian for sufficiently large sizes. results and a recent numerical study of energy transpanein t
For the regime of parameters considered, we have estab-XZ model P1]. There, two semi-infinite spin chains, ini-
lished coincident transport and thermalization phenomendially in thermal states of different temperaturg's and TR,
depending on the integrability of the model. Namely, ballis are coupled through a single site. As the system evolves in
tic energy transport occurs in the integrable regime, witege time, the energy current at the interface between both shain
system displays a total absence of local thermalizatioilewh saturates rapidly in the integrable limit, while it does not
diffusive energy transport and local thermalization eraérg  (in the accessible timescales) when the Hamiltonian costai
the nonintegrable regime. For the system sizes simulaied, t staggered magnetic fields. This led to the conjecture theat th
former is clearly identified for weak staggered magneticifiel relaxation of the energy current to a steady-state valuddvou
while the latter is not. However, a scaling analysis of trealo  only occur for nonzero Drude weights. Additionally, even if
properties of the NESS suggests that even there, energy dihe current at the interface reaches a steady-state vélee, t
fusion and local thermalization occur simultaneously feryw ~ energy profile does not, given that the system is closed. Thus
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in the ballistic regime the current “is not determined by lo- If we express the matrig in the form

cal temperature gradients”, but has the foftiTt) — f(TR)

for some functionf. Our research is consistent with this ob-

servation, by indicating that in the ballistic regime it istn

actually possible to provide a sensible definition of loeaht

peratures. Itwould be interesting to study local thernadien  \yith g9 — 1 (single-site identity)g? = 07, 02 = 0 anda® =

in the setup of Ref.41], or other driving schemes, to check 5y HhON — n o M0 i

the generaﬁty of theZqLalitative results%ve have found. gité:r;it\;vsl;h-g N 1/:4:(0% %02 ) t.h.e ba5|§ elements fortwo
ying 4(Q" QM) = dn, it is easily shown that

1 15
d=7 Y Cum0pt @07 =3 CQ",  (A4)
n=0

n1,n>=0

d = CoQ% + 1O + C4Q* + C5Q°, (A5)
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n=

We now use the “diagonal” superoperator to define the matrix
form of the superoperatatg inducing the thermal statgs.
First we exprespg in the Q" basis,

. . o with p, the components on each basis element. So the matrix
Appendix A: Two-site thermal driving representations of the superoperators satisfy

To drive the system out of equilibrium by a tempera- ZCm(Lg'ag)m,nCnZO, > Pm(Le)mnPn =0,  (A9)
ture imbalance, we use the so-called two-site bath opera- ™" mn

tors [18, 43, 56]. These operators are designed to induce - : I
Gibbs state of a given target temperature and chemical pote%g%row’nntga?"“’w' Using Eqs. 42), (A4) and (8) it is
tial on a pair of isolated spins with Hamiltonidn= ¢; » and

total magnetization operat = o + 05. So we wish to find Cn=4Y potr(VQV M), (AL0)
a superoperatofg (p) which satisfies the equation m

Ls(ps) =0, (A1) Repl_acing this result in the left equality of EQAY), it is
obtained that

with a Gibbs statpg at temperatur& and chemical potential " .
u being the only eigenvector ofg with zero eigenvalue, all > pi (z (R, (Lg g)m‘an,j> pj =0, (A11)
the other eigenvalues beingl. This particular choice of the LIooamn '

driving leads to the fastest convergencepto[18]. To build
the superoperatafg, we start by diagonalizing the thermal
state of the target temperature,

where we have defined the matrix elements

R, = %tr(VTQiVQJ). (A12)
_yt
Ps =V dV. (A2) Comparing the second equality of EGAY) and Eq. A11),

with d = diag(do,dy,d,d3) a diagonal matrix. Now we V& finally obtain

build the “diagonal” superoperatai§ %, whose only zero- L = R c09R (A13)
eigenvalue eigenstatedsi.e. ’

' which relates the matrix forms of the “diagonal” and comglet
£3%9(d) = 0. (A3)  superoperators.
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FIG. 11: (Color online) Scheme of the magnetothermal effawt

duced in boundary-driven systems with a finite average ntagne 7
tion. (a) Peltier effect, in which an energy current is ingdidy a —b
magnetic imbalancepﬁ1rg > p{Larg) with no temperature imbalance

(Tsrg = Ttxg = T). (b) Seebeck effect, in which a spin current is
induced by a temperature imbalandg > T, with no magne-

tization imbalance g = Wrg = H). The arrows indicate spin and
energy currents. The solid lines represent magnetizatidreaergy 1 ' ' '
profiles. 30

4_

JXXZ

100

FIG. 12: (Color online) Transport properties induced by agma
netization imbalance across &XZ chain, with finite magnetiza-
tion. The results correspond {@q/Tisrg = 0.5, Ko/ Tilg = 0.7
anthEL;rg = 100. The left panels show the spin (a) and energy cur-
Here we briefly show the range of physics accessible withents (b), as a function dfl. The right panels correspond to the
the two-site driving scheme. In particular we examine themagnetization (c) and energy profiles (d), fot= 1.5 andN = 100.
emergence of magnetothermal effects, depicted in Fig.
motivated by the recent implementation of a thermoelectric

heat engine in a boundary-driven configuration of ultracold L . . .
atoms pP9. We consider only the integrable limit of the N€OUS magnetization on the system, it is also possible to in-

Hamiltonian @ = 0), and illustrate how the nature of these dUce @ spin current by means of a temperature imbalance, a
effects may depend on the form in which they are induced. phenomenon known as Seebeck effect. We have verified that

L R L _ R : X
We first describe how an energy current can be induceéﬂ"hert‘)Ttarg > Tiarg aNd lrg = Ltl)taflg >0, sho t_h((ajre |sdtempera
through the system in the absence of a temperature imbalandd"® Put N0 magnetization imbalance, the induced tranggort
ie When'l'tgrg: Ttgrg! which corresponds to the Peltier effect. SPI and energy is ballistic for the integrable Hamiltoniém
This response emerges when imposing a finite mc'zlgnetizati(}ﬁoth V\:ceak arr]'d stLong |n:]eract[ons. S;ncehth(;)rfz;ultsﬁhwe th
on the spin chain, which breaks the symmetry between up an; me form than those shown in P or the Peitier eflect,
down spins, in addition to a magnetization imbalance. Fer ex!-€: flat magnetizationand energy profiles in the bulk ane-siz
ample, if the chemical potentials of the two boundary reser-'nqrehpeesr;dre:; Clltjsrrzgtmsbtr?set)r/a?;etﬂg: Srljl(()jv(\e"r].the two-site driving
voirs satisfy pk R, > 0, a positive and homogeneous u U u WO-SIte ariving
Whiarg 7 Hrarg P g scheme used here, ballistic magnetothermal responses exis

magnetization is induced in the bulk of the chain, favoring: :
the energy current carried by spins up. A net flow of energy" th€ integrableXXZ model, for both weakly- and strongly-

results, in addition to the spin current directly inducedy Interacting regimesgs, 66].
magnetization imbalance. As shown in Fig®(a) and (b),
these currents are independent of the size of the system, in
both the weakly- and the strongly-interacting regimes. iAdd
tionally, the magnetization and energy profiles are flat & th
bulk, as shown in Figsl2(c) and (d) respectively. Thus the
induced spin transport is ballistic, as expected from thigefin In SectionlV B we briefly described how to determine local
overlap between the spin and (conserved) energy current opemperatures and chemical potentials of the thermallyedri
erators 2], as well as the (magnetothermal) energy transportspin chain. Now we present more details of this self-coestst
Importantly, a Peltier response can be induced in alternacalculation.
tive ways. Namely, the symmetry between up and down spins We start by comparing the two-site reduced density opera-
could be broken by applying a homogeneous magnetic fieltor P2(j, j +1) of each pair of neighboring sites with thermal
along the system. This would induce a component of thestatesp, of the form in Eq. @), with the mean-field chemi-
heat current given by the product of the magnetic field and theal potentials of Eq.1(6) and trial temperatures within a range

Appendix B: Magnetothermal effects

Appendix C: Obtaining local temperatures and chemical
potentials

spin currentlS, being ballistic for weak interactiongy| < 1)
and diffusive in the strongly-interacting regima|(> 1) [54].

[Tmin, Tmax], Separated by a stef. Then we select the tem-
peraturesT; j1 that minimize the trace distance of EG.0(

Thus the nature of the magnetothermal response of the systefi@r each pair. This step is exemplified for the central sifes o

depends on the particular form in which it is induced.

particular spin chain in Figl3(a) (blue solid line); in this case,

Using the two-site driving to impose a finite and homoge-the temperature selectedis y_; = 74.51. Subsequently, we
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FIG. 13: (Color online) Trace distance between the twoqsitiiced
density operatop,(%y, % + 1) and two-site thermal states with
trial temperature%f%_%+l and chemical potentlals% andp%H. The
results correspond to a system wih= 0.4 and the parameters of
Fig. 5. (&) Sweep over temperature for three iteratibas 1,2, 3 of
the self-consistent process. Iteratioa: 1 corresponds to the mean-
field chemical potentials of EqL6). (b) Sweep over chemical poten-
tial of site % + 1 for various fixed potentials of sit%, for iteration
k=1. No more iterations are depicted here, since they giveaimes

trace distances than thoselof 1.

12

compare statefz(j, j + 1) to thermal statep, with the se-
lected temperatures and trial chemical poteniiglandp;1
within a rang€{pmin, Mmax] (Separated by a steju), again by
means of the trace distance. This is illustrated in E&fjb) for

the central sites of the chain, where for different fixed ealu

of Hy we show the corresponding trace distances for a sweep

overpy ;. We then select the valueéa%,u%ﬂ) that mini-

mize D(p2,P2); in the example they ar@.019,0.002). This
corresponds to the first iteratiok £ 1) of the process. Af-
terwards, with the obtained values of chemical potentiaés,
select a new temperature for each pair of sites by means of the
same process, and then we identify new values of chemical
potentials. This corresponds to the second iteratioa @),

for which a large decrease of the minimal trace distancds-is o
served with respect to the first iteration (see black dashed |

of Fig. 13(a)). The procedure is repeated until the values of
temperatures and chemical potentials remain unaltered whe
increasing the number of iterations, up to the accuracyngive
by the step®T anddyu selected. In the example of Fig3 this

has been already achieved with the third iteratioe:-(3), for
which the values oD(p2, p2) are the same than those of the
second iteration (see the symbols of Fi§(a)).
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