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Abstract—The dramatic increase of cyber-attacks on energy 

systems can cause huge losses, which has drawn extensive attention 

due to the fast integration of information communication 

technologies (ICTs). This issue is becoming worse with the 

integration of electricity and gas systems (IEGS), facilitated by gas 

generation and new coupling technologies. 

This paper investigates the risk and mitigation strategies for 

IEGS under false data injection attacks (FDIA) in a hierarchical 

two-stage framework. The FDIA on both electricity and gas systems 

are modelled through injecting falsified data by adversaries. To 

mitigate the adverse impacts, a novel two-stage distributionally 

robust optimization (DRO) is proposed: i) day-ahead operation to 

determine initial operation scheme and ii) real-time corrective 

operation with the realization of FDIA and renewable generation 

uncertainties. A semidefinite programming is formulated for the 

original problem and it is then solved by a convex optimization-

based algorithm. A typical IEGS is used for demonstration, which 

shows that the proposed model is effective in mitigating the risks 

caused by potential FDIA and renewable uncertainties, by optimal 

coordinating energy infrastructures and load shedding.  This work 

provides system operators with a powerful tool to operate the IEGS 

with enhanced security against malicious cyber-attacks while 

accommodating increasing renewable energy. The method can also 

be easily extended to operating  IEGS against other natural attacks. 

 
Index Terms—Cyber-attacks, distributionally robust 

optimization, false data injection attacks, integrated electricity 

and gas system, real-time operation, risk mitigation.   

 

NOMENCLATURE 

A. Indices and sets 

t, T Index and set for time periods.  

𝑏 , 𝐵  Index and set for electricity buses. 

𝑖𝑒, 𝐼𝑒 Index and set for electricity generators. 

𝑖𝑔, 𝐼𝑔 Index and set for gas wells. 

GT Index for gas turbine. 

j,  J Index and set for renewable generators.  

𝑙𝑒, 𝐿𝑒 Index and set for power lines. 

𝑙𝑔, 𝐿𝑔 Index and set for gas pipelines. 

𝑘𝑒, 𝐾𝑒 Index and set for electric loads. 

𝑘𝑔, 𝐾𝑔 Index and set for gas loads. 

B. Parameters  

AIL Attack injection level for FDIA. 

𝜆𝑖𝑒
𝑎 , 𝜆𝑖𝑒

𝑏 , 𝜆𝑖𝑒
𝑐  Cost coefficients for of electricity generator 

𝑖𝑒.  

𝜆𝑖𝑔 Cost coefficient for gas well 𝑖𝑔. 

𝜆𝑖𝑒
+ , 𝜆𝑖𝑒

−  Cost coefficient for up and down reserve of 

electricity generator 𝑖𝑒. 

𝜆𝑖𝑒
𝑟𝑒 , 𝜆𝑗

𝑟𝑒 Regulation cost coefficient for electricity 

generator 𝑖𝑒 and renewable generator j. 

𝜆𝑘𝑒
𝑙𝑠 , 𝜆𝑘𝑔

𝑙𝑠  Penalty cost coefficient for electricity and 

gas load shedding.  

𝜔𝑗
𝑠(𝑡) Forecasted output of renewable generator j 

at time t. 

𝑅𝑖𝑒
+ , 𝑅𝑖𝑒

−  Maximum up and down reserve capacity of 

electricity generator 𝑖𝑒 at time t. 

𝑅𝐺𝑇
+ , 𝑅𝐺𝑇

−  Maximum up and down reserve capacity of 

gas turbine GT at time t. 

𝑃𝑖𝑒,𝑚𝑎𝑥, 

𝑃𝑖𝑒,𝑚𝑖𝑛 

Maximum and minimum output of 

electricity generator 𝑖𝑒.   

𝑃𝑖𝑔,𝑚𝑎𝑥, 

𝑃𝑖𝑔,𝑚𝑖𝑛 

Maximum and minimum output of gas well 

𝑖𝑔.   

𝑃𝐺𝑇,𝑚𝑎𝑥, 

𝑃𝐺𝑇,𝑚𝑖𝑛 

Maximum and minimum output of gas 

turbine GT.   

𝑥𝑙𝑒  Resistance of power line 𝑙𝑒. 

𝑓𝑙𝑒,𝑚𝑎𝑥 Maximum power flow of line 𝑙𝑒. 

𝑓𝑙𝑔,𝑚𝑎𝑥 Maximum gas flow of line 𝑙𝑔. 

𝜔𝑗,𝑡
𝑠  Forecasted renewable generation at time t. 

𝑃𝑟𝑙𝑔,𝑚𝑎𝑥 , 

𝑃𝑟𝑙𝑔,𝑚𝑖𝑛 

Maximum and minimum gas pressure of 

gas pipeline 𝑙𝑔.  

𝛾𝑙𝑔 Coefficient for Weymouth equation. 

𝐷𝑙𝑔
 , 𝐿𝑙𝑔 Diameter and length of pipeline 𝑙𝑔.  

𝐹𝑙𝑔 Pipeline friction coefficient.  

𝑅 Specific gas constant. 

𝑍 Compression factor of pipeline 𝑙𝑔. 

𝜌𝑙𝑔
  Gas density.  

𝑇𝑒𝑚𝑝 Temperature.  

𝑃𝑘𝑒,𝑡 , 𝑃𝑘𝑔,𝑡 Electricity and gas load at time t. 

𝑃𝑘𝑒,𝑚𝑎𝑥
𝑙𝑠 ,  

𝑃𝑘𝑔,𝑚𝑎𝑥
𝑙𝑠  

Maximum electricity and gas load shedding 

at time t. 

𝜂𝑖𝑒,𝑡, 𝜂𝐺𝑇,𝑡 Participation factor for reserves of 

electricity generator and gas turbine at time 

t.  
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C. Variables and functions 

𝑃𝑖𝑒,𝑡
𝑠 ,𝑃𝑖𝑒,𝑡

𝑟𝑒  Scheduled and regulated output of 

electricity generator 𝑖𝑒 at time t. 

𝑃𝑖𝑔,𝑡
𝑠 ,𝑃𝑖𝑔,𝑡

𝑟𝑒  Scheduled and regulated output of gas well 

𝑖𝑔 at time t. 

𝑃𝐺𝑇,𝑡
 𝑠 , 𝑃𝐺𝑇,𝑡

 𝑟𝑒  Scheduled and regulated output of gas 

turbine GT at time t. 

𝑟𝑖𝑒,𝑡
+ , 𝑟𝑖𝑒,𝑡

−  Up and down reserve of electricity 

generator 𝑖𝑒 at time t. 

𝑟𝐺𝑇,𝑡
+ , 𝑟𝐺𝑇,𝑡

−  Up and down reserve of gas turbine GT at 

time t. 

𝑓𝑙𝑒,𝑡
𝑠 , 𝑓𝑙𝑒,𝑡

𝑟𝑒   Scheduled and regulated power flow.  

𝑓𝑙𝑔,𝑡
𝑠 , 𝑓𝑙𝑔,𝑡

𝑟𝑒  Scheduled and regulated gas flow. 

𝑓𝑙𝑔,𝑡
𝑖𝑛𝑖, 𝑓𝑙𝑔,𝑡

𝑡𝑒𝑟 Gas flow from initial node and to terminal 

node of pipeline 𝑙𝑔 at time t. 

𝑃𝑟𝑙𝑔,𝑡
𝑠 , 𝑃𝑟𝑙𝑔,𝑡

𝑟𝑒   Scheduled and regulated gas pressure of gas 

pipeline 𝑙𝑔 at time t.  

𝑃𝑟𝑙𝑔,𝑡
𝑠,𝑖𝑛𝑖 

,

𝑃𝑟𝑙𝑔,𝑡
𝑠,𝑡𝑒𝑟 

 

Scheduled gas pressure of initial and 

terminal nodes of pipeline 𝑙𝑔 at time t. 

𝑃𝑟𝑙𝑔,𝑡
𝑟𝑒,𝑖𝑛𝑖 

,

𝑃𝑟𝑙𝑔,𝑡
𝑟𝑒,𝑡𝑒𝑟 

 

Regulated gas pressure of initial and 

terminal nodes of pipeline 𝑙𝑔 at time t. 

𝑃𝑘𝑒,𝑡
𝑙𝑠  Electricity load shedding at time t. 

𝑃𝑘𝑔,𝑡
𝑙𝑠  Gas load shedding at time t. 

x, y  Vectors of first and second stage variables. 

𝑃𝑓( ) Probability function. 

𝐸𝑃[ ] Expectation over distribution.  

〈 〉 Trace of matrix.  

𝜓0,𝜓𝑗 , 𝛹𝑗𝑘, 𝜏 Dual variables.  

D. Uncertainty  

𝜉𝑗,𝑡 Real-time renewable power output of j at 

time t.  

Δ𝑃𝑘𝑒,𝑡 , Δ𝑃𝑘𝑔,𝑡 , 

𝜌𝑙𝑔
𝐹  

FDIA on electricity load, gas load and gas 

density at time t. 

𝐷  Ambiguity set for FDIA and renewable 

uncertainty. 

𝜇 , Σ  Mean vector and covariance matrix for 

FDIA and renewable uncertainty. 

𝛩 Second moment matrix. 

𝑉𝑆 Polyhedral set of extreme points. 

I. INTRODUCTION 

OWER systems have evolved to be more intelligent, 

efficient and reliable with the increasing dependence on 

data communication infrastructures [1]. The information 

and communication technology (ICT) supports bidirectional 

information flows and thus enhances the optimal control of the 

physical power system with better observability and 

controllability. However, high integration and modernization of 

ICT can naturally raise threats to power system security [2]. The 

adversary can launch false data injection attacks (FDIA) to 

tamper critical data and inject falsified data, which brings 

serious challenges to state estimators, indirectly affecting 

system operation and control. In 2015, three Ukrainian regional 

power distribution companies were attacked by FDIA which 

caused power outages for 225,000 customers [3].  

Existing research of FDIA most focuses on investigating i) 

maximally launching FDIA to cause damages [4-6], ii) 

detection algorithm against FDIA [7-8] and iii) mitigation and 

protection schemes against FDIA [11-12]. As for attack 

modelling and detection, paper [4] models how an adversary 

can trigger sequential outages on targeted branches by 

identifying critical branches. A stochastic model is proposed to 

design FDIA that affects electricity market by adopting 

imperfect grid information [5]. Paper [6] proposes an FDIA that 

can be launched through the approximation on system states 

based on injection measurements. An online anomaly detection 

algorithm is used to detect FDIA based on load forecasting and 

generation scheduling [7], where the minimum attack 

magnitudes and detection thresholds are determined. A 

detection and isolation scheme is proposed in [8]  by using 

interval observer based on the physical dynamics of grids.  

State estimation is of significance in FDIA detection. 

However, malicious FDIA can be masked and hidden through 

judiciously designing residue of bad data detection [9, 10]. 

Therefore, mitigation strategy is the final barrier for protecting 

power systems provided that detection is failed. A corrective 

scheme is proposed to address overloading and uneconomic 

dispatch in [11] against the worst-case FDIA. Paper [12] 

proposes a unit commitment model by using a trilevel 

optimization model, which is converted into a bilevel mixed 

integer programming problem.  

The increasing demand growth of both power and gas 

systems, low price of natural gas resources, and conversion 

technologies between the two systems, e.g., gas-fired units and 

power-to-gas facilities, have promoted the interdependency 

between power and gas systems. Consequently, modelling and 

optimizing the two independent systems as an entity can 

facilitate the economy and security for both systems. Integrated 

electricity and gas systems (IEGS) realizes the coordination 

between energy infrastructures in both power and gas systems.   

The electricity and natural gas systems are increasingly 

independent, interconnected by many coupling technologies to 

form IEGS. Conversion technologies between the two systems 

include gas-fired units and power-to-gas facilities. Combined 

heat and power (CHP) enables the conversion of gas to both 

heat and electricity [13, 14]. Power-to-gas (P2G) facilities can 

convert excessive renewable energy to synthetic natural gas [15, 

16]. The conversion from gas to power is mainly realized by 

utilizing gas turbines [17, 18]. In some compressor stations of 

natural gas systems, electricity is used to drive compressors. 

The interdependency produces many benefits, including 

enhanced security of supply, more absorption of renewable 

energy, but there are also many adverse impacts. Cascading 

failures in one system can propagate to the other and the cyber- 

attacks on one system can affect the security of the other.  

Existing IEGS literatures on making use of its unique 

interdependency generally concentrates on i) operation under 

P 
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normal conditions, ii) security-based operation under reliability 

issues and iii) resilience enhancement and operation strategies 

under natural disasters [19-23]. Paper [19] proposes an optimal 

operation scheme for IEGS considering electricity demand 

response and the impact on the entire system is profound due to 

the strong interdependency of power and gas systems. A-low 

carbon IEGS community with heat delivery system is proposed 

in [20], where the uncertainties of renewable generation and 

demand are handled by stochastic optimization (SO). Paper [21] 

models a security-constrained unit commitment against N - k 

outages by using robust optimization (RO). Nonlinear gas flow 

is relaxed into a second-order cone problem for convexity. To 

enhance IEGS resilience, a robust network hardening strategy 

is proposed in [22], considering  natural disaster uncertainties. 

Paper [23] proposes a minimax-regret robust unit commitment 

model for enhancing the resilience of IEGS against the extreme 

weather obtained by spatial dynamic method.  

Leveraging between RO and SO, distributionally robust 

optimization (DRO) is widely applied in power systems to 

handle uncertainties [24-28]. SO either assumes specific 

knowledge of probability distributions or requires a large 

number of uncertainty samples, which is not always practical 

and can cause high computational burden. RO accommodates 

uncertainties in predefined uncertainty sets and considers the 

worst-case scenario, which could have extremely low 

probability and thus produces over-conservative results. DRO, 

taking the advantage of distributional information, e.g., moment 

information, deals with uncertainties within a feasible set, 

called ambiguity set. Therefore, compared with RO, DRO 

determines expected results over all possible distributions, 

which are less-conservative. Compared with SO, DRO avoids 

intensive computation, thus improving calculation efficiency. 

Paper [26] applies DRO to a risk-based optimal gas-power flow. 

An optimal scheduling of IEGS considering electricity and gas 

load uncertainties is proposed in [27].  

Due to the strong interdependency between electricity and 

gas systems in IEGS, the FDIA on either electricity or gas 

system can propagate to each other. The adverse impact can be 

exaggerated when there is high uncertain renewables in the 

electricity system. But limited effort is dedicated to studying the 

impact of FDIA on IEGS. This paper proposes a two-stage risk 

mitigation strategy to address the uneconomic operation of 

IEGS under FDIA considering renewable generation 

uncertainties. FDIA is assumed to attack both electricity and 

gas meter readings, including i) load measurement of electricity 

and gas systems and ii) gas density measurement. In the first 

stage, the day-ahead optimization determines an optimal IEGS 

scheduling scheme based on forecasted renewable generation 

without considering potential FDIA. In the second stage, both 

FDIA and renewable uncertainties are revealed, a real-time 

corrective optimization is built to minimize the attack impacts 

through load shedding and adjusting generation output. The 

original problem is converted into equivalent semidefinite 

programming (SDP) and a constraint generation algorithm 

(CGA) is adopted to solve the SDP problem. For conciseness 

and simplicity, the proposed distributionally robust FDIA 

mitigation scheme is represented by DR-FMS.  

The major contribution of this paper is as follows:  

1) It models FDIA in an IEGS for the first time, 

particularly on natural gas load and density 

measurement, where existing research only focuses on 

FDIA on electricity systems.  

2) Uncertainties of renewable resources are considered in 

the proposed model as they can worsen system 

operation conditions during FDIA, compared to existing 

FDIA papers [11,12] that ignore the impact of 

renewable uncertainties.  

3) Compared to SO and RO for modelling FDIA, the 

ambiguous distribution of DRO developed in this paper, 

which is less data-dependent and conservative, can 

better characterize uncertain variables.  

4) A two-stage FDIA mitigation scheme is proposed for 

the first time to conduct the day-ahead and real-time 

operation, which is more powerful and convenient to be 

used by system operators to ensure the efficiency and 

security of the IEGS.  

The rest of this paper is organized as follows. Section Ⅱ 

models FDIA for integrated systems.Section Ⅲ presents 

problem formulation of the DR-FMS. The DRO methodology 

regarding and associated reformulations are given in Section Ⅳ. 

Section Ⅴ demonstrates case studies and performance of the 

DR-FMS. Finally, the conclusion is given in Section Ⅵ.   

II. ATTACK MODELLING 

This section presents the attack modelling for electricity and 

gas system. State estimation is a powerful tool to detect FDIA 

by processing raw data measurements, but a successful FDIA 

can be undetectable by adversary’s stealthy design.  

A. Attacks on Electricity System 

The nonlinear relationship between state variable 𝑥  and 

measurement 𝑧  is given in (1), where ℎ(𝑥)  denotes the 

nonlinear vector function of 𝑥 and 𝑒 is the error measurement. 

Based on DC state estimation, equation (1) can be transformed 

into (2), where 𝐻 represents the Jacobian matrix.  

𝑧 = ℎ(𝑥) + 𝑒  (1) 

𝑧 = 𝐻𝑥 + 𝑒  (2) 

After the realization of FDIA, the measurement vector 𝑧 

becomes 𝑧𝑏𝑎𝑑 = 𝑧 + 𝑎, and the estimated state vector can be 

represented as  𝑥̂𝑏𝑎𝑑 = 𝑥̂ + 𝑐 where 𝑎 is attack vector and 𝑐 is 

the resulted deviation vector of state variable after FDIA. 

Accordingly, to determine the estimated state variable, 𝑥̂𝑏𝑎𝑑 

can be formulated as: 

𝑥̂𝑏𝑎𝑑 = (𝐻
′𝑊𝐻)−1𝐻′𝑊𝑧𝑏𝑎𝑑  (3) 

The largest normalized residual (LNR) can be used to detect 

and identify measurement errors by (4). If the residual is less 

than a threshold 𝜀, then the state estimate is valid without FDIA.  

𝐿𝑁𝑅 = ‖𝑧 − 𝐻𝑥̂ ‖ ≤ 𝜀  (4) 

Then, equation (5) representing LNR is given based on (3) 

and (4). Finally, equation (6) is obtained.  

𝐿𝑁𝑅 = ‖𝑧 + 𝑎 − 𝐻((𝐻′𝑊𝐻)−1𝐻′𝑊𝑧𝑏𝑎𝑑)‖  (5) 

𝐿𝑁𝑅 = ‖𝑧 − 𝐻𝑥̂ + (𝑎 − 𝐻𝑐)‖  (6) 

If 𝑎 is the linear combination of 𝐻 and 𝑐, i.e., 𝑎 = 𝐻𝑐, then 

𝐿𝑁𝑅 = ‖𝑧 − 𝐻𝑥̂‖  has no change of residual. Therefore, a 

successful FDIA is launched which can evade detection.  
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As a special case of FDIA, load measurement can be attacked 

according to [9, 10] by enforcing the sum of load attack vector 

to be zero in (7). For simplicity, the FDIA on electricity load is 

represented by EL-FDIA. Equation (8) constraints the attack 

deviation by attack injection level (AIL).  

∑Δ𝑃𝑘𝑒,𝑡
 

= 0 (7) 

−𝐴𝐼𝐿𝑘𝑒𝑃𝑘𝑒,𝑡 ≤ Δ𝑃𝑘𝑒,𝑡 ≤ 𝐴𝐼𝐿𝑘𝑒𝑃𝑘𝑒,𝑡 (8) 

B. Attack on Gas System 

The FDIA on a gas system is considered on both gas load and 

density measurement. Similar to FDIA on electricity load 

measurement, the FDIA on gas load measurement and density 

are given in (9) and (10), namely GL-FDIA and GD-FDIA. The 

changed gas density measurement results in a change of 

Weymouth coefficient 𝛾𝑙𝑔. Accordingly, the initial coefficient 

in (11) is changed to (12) under FDIA.  

0 ≤ Δ𝑃𝑘𝑔,𝑡 ≤ 𝐴𝐼𝐿𝑘𝑔𝑃𝑘𝑔,𝑡  (9) 

𝜌𝑙𝑔 ≤ 𝜌𝑙𝑔
𝐹 ≤ (1 + 𝛽𝑑)𝜌𝑙𝑔  (10) 

𝛾𝑙𝑔 = (
𝜋

4
)
2 𝛼2𝐷𝑙𝑔

5

𝐿𝑙𝑔𝐹𝑙𝑔𝑅𝑍𝜌𝑙𝑔
2𝑇𝑒𝑚𝑝

 
(11) 

𝛾𝑙𝑔
𝐹 = (

𝜋

4
)
2 𝛼2𝐷𝑙𝑔

5

𝐿𝑙𝑔𝐹𝑙𝑔𝑅𝑍𝜌𝑙𝑔
𝐹 2𝑇𝑒𝑚𝑝

 
(12) 

III. TWO-STAGE RISK MITIGATION SCHEME 

The risk mitigation for IEGS under potential FDIA consists 

of: i) day-ahead operation without considering FDIA or 

renewable uncertainties and ii) real-time operation actions for a 

corrective mitigation scheme under potential FDIA with the 

realization of renewable uncertainties. The objective functions 

and associated constraints are presented in this section.  

A. DR-FMS Objective Function 

A summary of decision variables, objective functions and 

uncertainty modelled in the two stages is presented in TABLE 

Ⅰ. Equation (13) presents the day-ahead operation objective 

function in the first stage. The first four terms represent the 

generation cost of electricity and gas respectively. Reserve 

costs of electricity generators are shown in the rest. It is noted 

that the reserve capacity is prepared for FDIA and uncertainties 

from renewable resources.  

𝛤1 = min ∑ 𝜆𝑖𝑒
𝑎

𝑖𝑒∈𝐼𝑒,𝑖𝑔∈𝐼𝑔,𝑡∈𝑇

𝑃𝑖𝑒,𝑡
𝑠 2

+ 𝜆𝑖𝑒
𝑏 𝑃𝑖𝑒,𝑡

𝑠 + 𝜆𝑖𝑒
𝑐 + 𝜆𝑖𝑔𝑃𝑖𝑔,𝑡

𝑠

+ 𝜆𝑖𝑒
+𝑟𝑖𝑒,𝑡

+ + 𝜆𝑖𝑒
−𝑟𝑖𝑒,𝑡

−  

 

(13) 

The real-time objective function in the second stage is given 

in (14), which mitigates the impact against the presence of 

FDIA and renewable uncertainty. The first three terms represent 

the penalty cost for renewable generators, electricity generators 

and gas wells when regulated generation deviates from 

scheduled generation. The final two terms represent electricity 

and gas load shedding cost.  

𝛤2 = min ∑ +𝜆𝑗
𝑟𝑒|𝜔𝑗,𝑡

𝑠 − 𝜉𝑗,𝑡|

𝑖𝑒∈𝐼𝑒,𝑖𝑔∈𝐼𝑔,𝑡∈𝑇,𝑘𝑒∈𝐾𝑒,𝑘𝑔∈𝐾𝑔

+ 𝜆𝑖𝑒
𝑟𝑒|𝑃𝑖𝑒,𝑡

𝑠 − 𝑃𝑖𝑒,𝑡
𝑟𝑒 | +𝜆𝑖𝑔

𝑟𝑒 |𝑃𝑖𝑔,𝑡
𝑠 − 𝑃𝑖𝑔,𝑡

𝑟𝑒 |

+ 𝜆𝑘𝑒
𝑙𝑠 𝑃𝑘𝑒,𝑡

𝑙𝑠 + 𝜆𝑘𝑔
𝑙𝑠 𝑃𝑘𝑔,𝑡

𝑙𝑠  

 

(14) 

B. Proposed Coordinated Modelling of IEGS 

The IEGS is a tight coupling entity due to the strong 

interdependency between electricity and gas systems. 

Accordingly, the two systems should be modelled together by 

one decision maker. The modelling of IEGS in the existing 

literatures can be generally categorized into three types: i) 

Modelling from the perspective of electricity system operators, 

which overlooks the operational and security constraints of gas 

system [29, 30]. This ignorance will cause the physical gas flow 

violation due to the renewable power fluctuation and load 

variability; ii) Sequential optimization for IEGS [31, 32], which 

firstly solves the power system model for determining the 

optimal schedule for generators while neglects the operational 

constraints of gas system. Based on the obtained solution from 

power system, the gas system can be solved; and iii) Co-

optimization for IEGS which optimizes the comprehensive 

objective simultaneously [13-17].   

This paper provides a simultaneous coordinated model for 

the electricity and gas systems. Due to the different 

characteristics of electricity and gas systems, the operational 

constraints of two systems are nonrelevant. However, the two 

systems are solved interdependently with the gas turbine 

interconnected between the two systems. The gas flow through 

the gas turbine can be used to generate power flow, which is 

considered as the supplement for electricity system.  

C. Day-ahead Operation  

The day-ahead operation is implemented based on renewable 

generation forecast without FDIA risks, whose constraints are 

in (15)-(28). Constraint (15) and (16) limit the reserve capacity 

for electricity generators and gas turbine. The scheduled output 

of electricity generators and gas turbine are enforced within 

limits in (17) and (18). The linearized DC power flow is given 

in (19) and (20). Constraint (21) ensures the power balance. Gas 

well output is limited in (22). Gas pressure is limited in (23). 

Constraint (24) means the pressure at the initial node is larger 

than the terminal node since the proposed gas system has a 

radial topology. Weymouth gas equation for describing gas 

flow is shown in (25) and (26), where the coefficient is defined 

in (11). Gas turbine connects two interdependent systems as a 

coupled infrastructure. Constraint (27) presents the 

transformation from gas flow injection to power generation. 

The gas balancing condition is given in (28).  

TABLE Ⅰ 

TWO-STAGE MITIGATION FRAMEWORK 

 Decision variables Objective Uncertainty treatment 

Stage Ⅰ 𝑃𝑖𝑒,𝑡
𝑠 , 𝑃𝑖𝑔,𝑡

𝑠 , 𝑃𝐺𝑇,𝑡
𝑠 , 𝑟𝑖𝑒,𝑡

+ , 𝑟𝑖𝑒,𝑡
− , 𝑟𝐺𝑇,𝑡

+ , 𝑟𝐺𝑇,𝑡
− , 

𝜃𝑙𝑒,𝑡
𝑠,𝑖𝑛𝑖 , 𝜃𝑙𝑒,𝑡

𝑠,𝑡𝑒𝑟 , 𝑓𝑙𝑒,𝑡
 𝑠 , 𝑃𝑟𝑙𝑔,𝑡

𝑠2 , 𝑓𝑙𝑔,𝑡
 𝑠  

Generation and reserve cost for electricity 

generators and gas turbine 

Renewable generation forecast 

Stage Ⅱ 𝑃𝑖𝑒,𝑡
𝑟𝑒 , 𝑃𝑖𝑔,𝑡

𝑟𝑒 , 𝑃𝐺𝑇,𝑡
𝑟𝑒 , 𝑃𝑘𝑒,𝑡

𝑙𝑠 , 𝑃𝑘𝑔,𝑡
𝑙𝑠 , 𝜃𝑙𝑒,𝑡

𝑟𝑒,𝑖𝑛𝑖 , 

𝜃𝑙𝑒,𝑡
𝑟𝑒,𝑡𝑒𝑟 , 𝑓𝑙𝑒,𝑡

 𝑟𝑒 , 𝑃𝑟𝑙𝑔,𝑡
𝑟𝑒2 , 𝑓𝑙𝑔,𝑡

 𝑟𝑒 ,   

Penalty cost for deviation of renewable, 

electricity and gas wells 

Load shedding cost 

Uncertain renewable generation, FDIA 

on electricity load, gas load and gas 

density based on moment information 
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0 ≤ 𝑟{∙},𝑡
+ ≤ 𝑅{∙}

+ , {∙} = 𝑖𝑒 , 𝐺𝑇 (15) 

0 ≤ 𝑟{∙},𝑡
− ≤ 𝑅{∙}

− , {∙} = 𝑖𝑒 , 𝐺𝑇 (16) 

𝑃{∙},𝑡
𝑠 + 𝑟{∙},𝑡

+ ≤ 𝑃{∙},𝑚𝑎𝑥, {∙} = 𝑖𝑒 , 𝐺𝑇 (17) 

𝑃{∙},𝑚𝑖𝑛 ≤ 𝑃{∙},𝑡
𝑠 − 𝑟{∙},𝑡

− , {∙} = 𝑖𝑒 , 𝐺𝑇 (18) 

𝑥𝑙𝑓𝑙𝑒,𝑡
 𝑠 = (𝜃𝑙𝑒,𝑡

𝑠,𝑖𝑛𝑖 − 𝜃𝑙𝑒,𝑡
𝑠,𝑡𝑒𝑟) (19) 

−𝑓𝑙𝑒,𝑚𝑎𝑥
𝑠 ≤ 𝑓𝑙𝑒,𝑡

 𝑠 ≤ 𝑓𝑙𝑒,𝑚𝑎𝑥
𝑠  (20) 

∑ 𝑃𝑖𝑒,𝑡
𝑠 + 𝑃𝐺𝑇,𝑡

 𝑠 +
𝑖𝑒∈𝐼𝑒

∑𝜔𝑗,𝑡
𝑠 + ∑ 𝑓𝑙𝑒,𝑡

𝑠,𝑖𝑛𝑖 −

𝑙𝑒∈𝐿𝑒

∑ 𝑓𝑙𝑒,𝑡
𝑠,𝑡𝑒𝑟

𝑙𝑒∈𝐿𝑒𝑗∈𝐽

= ∑ 𝑃𝑘𝑒,𝑡
𝑘𝑒∈𝐾𝑒

 

(21) 

𝑃𝑖𝑔,𝑚𝑖𝑛 ≤ 𝑃𝑖𝑔,𝑡
𝑠 ≤ 𝑃𝑖𝑔,𝑚𝑎𝑥 (22) 

𝑃𝑟𝑙𝑔,𝑚𝑖𝑛
2   

≤ 𝑃𝑟𝑙𝑔,𝑡
𝑠2 ≤ 𝑃𝑟𝑙𝑔,𝑚𝑎𝑥

 2  (23) 

𝑃𝑟𝑙𝑔,𝑡
𝑠,𝑖𝑛𝑖 ≥ 𝑃𝑟𝑙𝑔,𝑡

𝑠,𝑡𝑒𝑟  
 (24) 

𝑓𝑙𝑔,𝑡
 𝑠 2

= 𝛾𝑙𝑔 (𝑃𝑟𝑙𝑔,𝑡
𝑠,𝑖𝑛𝑖2 − 𝑃𝑟𝑙𝑔,𝑡

𝑠,𝑡𝑒𝑟2
 

) (25) 

0 ≤ 𝑓𝑙𝑔,𝑡
 𝑠 ≤ 𝑓𝑙𝑔,𝑚𝑎𝑥

 𝑠  (26) 

𝑃𝐺𝑇,𝑡
 𝑠 = 𝑐𝐺𝑇𝑓𝑙𝑔,𝐺𝑇

 𝑠  (27) 

∑ 𝑃𝑖𝑔,𝑡
𝑠

𝑖𝑔∈𝐼𝑔

+ ∑ 𝑓
𝑙𝑔,𝑡
𝑠,𝑖𝑛𝑖 −

𝑙𝑔∈𝐿𝑔

∑ 𝑓
𝑙𝑔,𝑡
𝑠,𝑡𝑒𝑟  

𝑙𝑔∈𝐿𝑔

= ∑ 𝑃𝑘𝑔,𝑡
𝑘𝑔∈𝐾𝑔

 (28) 

D. Real-time Risk Mitigation 

Considering potential FDIA and uncertainties of renewable 

resources, real-time risk mitigation is presented in the second 

stage to mitigate uneconomic dispatch. The approach is 

distributionally robust against FDIA and renewable uncertainty. 

The regulated generator and gas turbine output are shown in 

(29). Constraint (30) represents the electricity and gas load 

shedding limits. The limits considered in the model is based on 

the existing research [33]. The regulated power flow is 

constrained in (31) and (32). Constraint (33) presents the limits 

for gas wells. The regulated gas pressure and flow are limited 

in (34)-(37). Based on (12), the new Weymouth coefficient 𝛾𝑙𝑔
𝐹  

influenced by the attacked gas density is applied. Constraint 

(38)-(40) show that the power imbalance caused by renewable 

uncertainties should be offset by adjusting the reserves of 

generators and gas turbine. Specifically, constraint (38) ensures 

the deviation of renewable generation is within the range of up 

and down reserve limits. In (39) and (40), the adjustment factor 

𝜂𝑖𝑒,𝑡  and 𝜂𝑖𝑔,𝑡  are the regulation commitment from generators 

and gas turbine to mitigate renewable uncertainties. Constraint 

(41) presents the regulated power generation of gas turbine. 

Constraint (42) and (43) ensure power and gas balance in the 

second stage.  

𝑃{∙},𝑡
𝑟𝑒 − 𝑟{∙},𝑡

− ≤ 𝑃{∙},𝑡
𝑟𝑒 ≤ 𝑃{∙},𝑡

𝑟𝑒 + 𝑟{∙},𝑡
+ , {∙} = 𝑖𝑒 , 𝐺𝑇 (29) 

0 ≤ 𝑃{∙},𝑡
𝑙𝑠 ≤ 𝑃{∙},𝑚𝑎𝑥

𝑙𝑠 , {∙} = 𝑘𝑒 , 𝑘𝑔 (30) 

𝑥𝑙𝑓𝑙𝑒,𝑡
 𝑟𝑒 = (𝜃𝑙𝑒,𝑡

𝑟𝑒,𝑖𝑛𝑖 − 𝜃𝑙𝑒,𝑡
𝑟𝑒,𝑡𝑒𝑟) (31) 

−𝑓𝑙𝑒,𝑚𝑎𝑥
 𝑟𝑒 ≤ 𝑓𝑙𝑒,𝑡

 𝑟𝑒 ≤ 𝑓𝑙𝑒,𝑚𝑎𝑥
 𝑟𝑒   (32) 

𝑃𝑖𝑔,𝑚𝑖𝑛 ≤ 𝑃𝑖𝑔,𝑡
𝑟𝑒 ≤ 𝑃𝑖𝑔,𝑚𝑎𝑥 (33) 

𝑃𝑟𝑙𝑔,𝑚𝑖𝑛
2   

≤ 𝑃𝑟𝑙𝑔,𝑡
𝑟𝑒2 ≤ 𝑃𝑟𝑙𝑔,𝑚𝑎𝑥

 2  (34) 

𝑃𝑟𝑙𝑔,𝑡
𝑟𝑒,𝑖𝑛𝑖 ≥ 𝑃𝑟𝑙𝑔,𝑡

𝑟𝑒,𝑡𝑒𝑟  
 (35) 

𝑓𝑙𝑔,𝑡
𝑟𝑒 2 = 𝛾𝑙𝑔

𝐹 (𝑃𝑟𝑙𝑔,𝑡
𝑟𝑒,𝑖𝑛𝑖2 − 𝑃𝑟𝑙𝑔,𝑡

𝑟𝑒,𝑡𝑒𝑟2
 
) (36) 

0 ≤ 𝑓𝑙𝑔,𝑡
𝑟𝑒 ≤ 𝑓𝑙𝑔,𝑚𝑎𝑥

  (37) 

𝑟{∙},𝑡
− ≤ 𝜂{∙},𝑡 ∑ (𝜔𝑗,𝑡

𝑠 − 𝜉𝑗,𝑡)𝑗∈𝐽 ≤ 𝑟{∙},𝑡
+ , {∙} = 𝑖𝑒 , 𝐺𝑇 (38) 

0 ≤ 𝜂{∙},𝑡 ≤ 1, {∙} = 𝑖𝑒 ,𝐺𝑇 (39) 

∑ 𝜂𝑖𝑒,𝑡 +

𝑖𝑒∈𝐼𝑒

∑ 𝜂𝑖𝑔,𝑡
𝐺𝑇

 
=

𝑖𝑔∈𝐼𝑔

1 (40) 

𝑃𝐺𝑇,𝑡
 𝑟𝑒 = 𝑐𝐺𝑇𝑓𝑙𝑔,𝐺𝑇

 𝑟𝑒  (41) 

∑ 𝑃𝑖𝑒,𝑡
𝑟𝑒 +

𝑖𝑒∈𝐼𝑒

∑𝜉𝑗,𝑡+𝑃𝐺𝑇,𝑡
 𝑟𝑒

𝑗∈𝐽

= ∑ 𝑃𝑘𝑒,𝑡 + Δ𝑃𝑘𝑒,𝑡 − 𝑃𝑘𝑒,𝑡
𝑙𝑠

 

𝑘𝑒∈𝐾𝑒

 

 

(42) 

∑ 𝑃𝑖𝑔,𝑡
𝑟𝑒

𝑖𝑔∈𝐼𝑔

+ ∑ 𝑓𝑙𝑔,𝑡
𝑟𝑒,𝑖𝑛𝑖 −

𝑙𝑔∈𝐿𝑔

∑ 𝑓𝑙𝑔,𝑡
𝑟𝑒,𝑡𝑒𝑟  

𝑙𝑔∈𝐿𝑔

= ∑ 𝑃𝑘𝑔,𝑡
𝑘𝑔∈𝐾𝑔

+ Δ𝑃𝑘𝑔,𝑡 − 𝑃𝑘𝑔,𝑡
𝑙𝑠  

(43) 

Constraint (25) contains one nonlinear term, i.e., ‘𝑓𝑙𝑔,𝑡
 𝑠 2

’ and 

constraint (36) contains two nonlinear terms, i.e., ‘𝑓𝑙𝑔,𝑡
 𝑟𝑒2’ and 

‘ 𝛾𝑙𝑔
𝐹 (𝑃𝑟𝑙𝑔,𝑡

𝑖𝑛𝑖2 − 𝑃𝑟𝑙𝑔,𝑡
𝑡𝑒𝑟2

 
) ’. They need to be linearized for 

obtaining convex functions and guaranteeing global optimal 

solutions. A sufficiently large constant 𝑀𝑙𝑔  can be used to 

linearize ‘𝛾𝑙𝑔
𝐹 (𝑃𝑟𝑙𝑔,𝑡

𝑖𝑛𝑖2 − 𝑃𝑟𝑙𝑔,𝑡
𝑡𝑒𝑟2

 
)’, shown in (44) and (45). The 

bilinear term ‘𝑓𝑙𝑔,𝑡
 𝑠 2

’ can be linearized by piecewise linear 

approximation by separating nonlinear function into pieces.  

Readers are referred to [34] for details. It should be noted that 

‘𝑃𝑟𝑙𝑔,𝑡
𝑖𝑛𝑖2’ does not require linearization since it is regarded as 

squared form throughout the paper.  

𝑓𝑙𝑔,𝑡
 𝑟𝑒2 ≤ (𝑃𝑟𝑙𝑔,𝑡

𝑟𝑒,𝑖𝑛𝑖2 − 𝑃𝑟𝑙𝑔,𝑡
𝑟𝑒,𝑡𝑒𝑟2) + (1 − 𝛾𝑙𝑔

𝐹 )𝑀𝑙𝑔 (44) 

𝑓𝑙𝑔,𝑡
 𝑟𝑒2 ≥ (𝑃𝑟𝑙𝑔,𝑡

𝑟𝑒,𝑖𝑛𝑖2 − 𝑃𝑟𝑙𝑔,𝑡
𝑟𝑒,𝑡𝑒𝑟2) + (1 − 𝛾𝑙𝑔

𝐹 )𝑀𝑙𝑔 (45) 

IV. METHODOLOGY 

The two-stage DR-FMS is a minmax DRO problem, which 

is solved by the SDP based model. Firstly, the linear DRO 

problem is represented by a compact matrix form. Then, the 

family of possible uncertainty distributions for FDIA and 

renewable uncertainties is defined by an ambiguity set. Finally, 

the dual problem of DR-FMS is formulated, solved by CGA.  

A. Formulation in Brevity  

Matrices and vectors are used to represent the original 

problem for notation abbreviation. The objective function (46) 

represents (13) and (14) to minimize the sum of the first-stage 

objective 𝑐′𝑥  and the expected second-stage objective 

𝐸𝑃𝑓[𝑄(𝑥, 𝜉)]. The random parameter 𝜉 is used to represent both 

Δ𝑃𝑘 and 𝜉𝑗, which is sampled from a family of distributions 𝑃𝑓.   

min
𝑥∈𝑋

𝑐′𝑥 + sup
𝑃𝑓∈𝐷𝜉,𝜉=Δ𝑃𝑘,𝜉𝑗 

𝐸𝑃𝑓[𝑄(𝑥, 𝜉)] (46) 

                        s.t. 𝐴𝑥 ≤ 𝑏,  (47) 

𝑄(𝑥, 𝜉) = min
𝑦
𝑓′𝑦 (48) 
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                        s.t. 𝐸𝑥 + 𝐹𝑦 + 𝐺𝜉 ≤ ℎ,  (49) 

The first-stage constraints are shown in (47). Equation (48) 

and (49) represent the recourse function, where vector f denotes 

the coefficient of (14).  

B. Ambiguity Set for DR-FMS 

The uncertainties of FDIA and renewable power generation 

can be captured by ambiguity sets that define a family of 

distributions. Based on limited historical data, moment 

information, i.e., mean and covariance are obtained to construc 

empirical point-estimates. The proposed ambiguity set is given 

in (50) to characterize both uncertain FDIA and renewable 

generation, which guarantees i) the integral of distribution of 𝜉  
is 1, and ii) the second moments are known.  

𝐷  =

{
 

 

𝑓(𝜉 )||

 
P{𝜉 } = 1

E{𝜉 } = 𝜇 
E{𝜉 (𝜉 )

′} = Σ + 𝜇 (𝜇 )
′

 }
 

 

 

 

 

(50) 

 

 

The ambiguity set used to characterize uncertain variables is 

composed of mean and covariance information. Intuitively, a 

certain set of mean vector and covariance matrix contains all 

possible probability distributions. Fig. 1 depicts the bivariate 

distribution for EL-FDIA on two buses with a fixed mean and 

covariance information. In this case, DRO searches for the 

distribution that cause the worst-case solution. Fig. 1 only 

shows one possible distribution, but other distributions can have 

different shape due to the ignorance of higher order moment 

information, e.g., kurtosis and skewness. 

C. Equivalent Dual Form 

To obtain a ‘min’ form of the second-stage problem, dual 

reformulation is required for the inner problem ‘min sup 

𝐸𝑃𝑓[𝑄(𝑥, 𝜉)]’. The second-stage problem 𝐸𝑃𝑓[𝑄(𝑥, 𝜉)]  is an 

infinite-dimensional linear problem and the primal form is 

given in (51)-(55).  

𝑆(𝑥)𝑝𝑟𝑖𝑚𝑎𝑙 = max
𝑃𝑓∈𝐷𝜉 

 
∫𝑄(𝑥, 𝜉)
 

𝛯

𝑃𝑓(𝜉)𝑑𝜉 (51) 

s.t. 𝑃𝑓(𝜉) ≥ 0, ∀𝜉 ∈ 𝛯 (52) 

∫𝑃𝑓(𝜉)𝑑𝜉 = 1
 

𝛯

 (53) 

∫ 𝜉 
𝑚𝑃𝑓(𝜉)𝑑𝜉 = 𝜇𝑚

 

𝛯
, m=1,2, …, 𝛯 (54) 

∫ 𝜉 
𝑚𝜉 

𝑛𝑃𝑓(𝜉)𝑑𝜉 = 𝛴𝑚𝑛 + 𝜇𝑚𝜇𝑛
 

𝛯
, m, n=1,2, …, 𝛯 (55) 

For tractability, the primal form needs to be recast as (56)-

(57), where 𝜓0, 𝜓𝑗 and 𝛹𝑗𝑘 are dual variables associated with 

constraints (29) to (43), and 𝛩 represents Σ + 𝜇 (𝜇)
′. When the 

weak duality holds, 𝑆(𝑥)𝑝𝑟𝑖𝑚𝑎𝑙 ≤ 𝑆(𝑥)𝑑𝑢𝑎𝑙 . However, (55) 

ensures that the strong duality holds when 𝛩 is strictly positive 

definite and thus 𝑆(𝑥)𝑝𝑟𝑖𝑚𝑎𝑙 = 𝑆(𝑥)𝑑𝑢𝑎𝑙  [35]. Accordingly, 

now the problem with an infinite number of variables is 

transformed into one with a finite number of variables (56)-(57), 

which is easier to solve.  

𝑆(𝑥)𝑑𝑢𝑎𝑙 = min
𝛹,𝜓,𝜓0

〈𝛹′𝛩〉 + 𝜓′ 𝜇 + 𝜓0 (56) 

s.t. (𝜉)′𝛹𝜉 + 𝜓′𝜉 + 𝜓0 ≥ 𝑄(𝑥, 𝜉) 

∀𝜉 ∈ 𝛯 
(57) 

The new compact form of DR-FMS is:  

min
𝑥∈𝑋

𝑐′𝑥 + 𝑆(𝑥)𝑑𝑢𝑎𝑙 (58) 

D. SDP Reformulation 

Problem (58) is a semi-infinite-dimensional program which 

contains an infinite number of constraints. Thus, it is required 

to be transformed into a closed form [36]. By introducing the 

new dual variable 𝜏, a positive quadratic function in (59) can be 

obtained from (48). 𝑉𝑆 denotes the polyhedral set of extreme 

points and 𝑁𝑣 is the set of vertices of feasible region in 𝑉𝑆.  

max
𝑢∈𝑉𝑆

𝜏′(𝑏 − 𝐸𝑥 − 𝐺𝜉 
 ) (59) 

𝑉𝑆 = {𝜏|𝐹′𝜏 = 𝑓, 𝜏 ≤ 0} (60) 

(𝜉)′𝛹𝜉 + (𝜓 + 𝐺′𝜏𝑖)′𝜉  + 𝜓0 − (ℎ − 𝐸𝑥)𝜏
𝑖 ≥ 0 

∀𝜉 ∈ 𝛯, i =1,2, …, 𝑁𝑣 
(61) 

In summary, the SDP form of DR-FMS is as follow, which 

is the master problem. 

min
𝑥,𝛹,𝜓,𝜓0

𝑐′𝑥 + 〈𝛹′𝛩〉 + 𝜓′𝜇 + 𝜓0  

[
𝜉
1
]
′

[
𝛹

1

2
(𝜓 + 𝐺′𝜏𝑖)

1

2
 (𝜓 + 𝐺′𝜏𝑖)′ 𝜓0 − (ℎ − 𝐸𝑥)

′𝜏𝑖
] [
𝜉
1
] ⪰ 0 

∀𝜉 ∈ 𝛯, i =1,2, …, 𝑁𝑣, 𝑥 ∈ 𝑋, ∀𝜏𝑖 ∈ 𝑉𝑆 

(62) 

         
Fig. 2.  Flowchart of constrained generation algorithm.   

 

        

 
Fig. 1.  An example of bivariate distribution for FDIA on two buses. 
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E. Constraint Generation Algorithm 

 A large number of constraints with infinite cardinality of 𝑉𝑆 

cause high computational burden. CGA initially enumerates a 

subset of vertices and incorporates more vertices step by step. 

This relaxation method can efficiently solve the proposed 

problem, which is separated into a master and sub problem in 

(62) and (63). The flowchart of the CGA is given in Fig. 2.   
(𝜉𝑠
 )′𝛹𝜉𝑠

 + 𝜓′𝜉𝑠
  + 𝜓0 − (ℎ − 𝐸𝑥 − 𝐺𝜉𝑠

 )′𝜏  ≥ 0      (63)       

s.t. ∀𝜉 ∈ 𝛯, 𝜏 ∈ 𝑉𝑆 

V. CASE STUDIES 

A combined IEEE 30-bus electricity system and a 6-node gas 

system is used to test the effectiveness of the DR-FMS through 

the extensive case studies. In the case studies, three types of 

FDIA are considered, namely EL-FDIA, GL-FDIA and GD-

FDIA, which represent FDIA on electricity load, gas load and 

gas density, respectively. For EL-FDIA, the total load is 

unchanged, which is the fundamental condition of FDIA for 

evading the detection. The modelling of EL-FDIA is discussed 

in section Ⅱ-A, which can be also found in [9, 11, 37]. The 

following 10 cases are considered:  

Case 1: Single-stage deterministic optimization for IEGS 

without considering FDIA or renewable uncertainty. 

Case 2: RO based FMS with three types of FDIA (AIL =5%). 

Case 3: Case 2 considering renewable uncertainty (AIL =5%). 

Case 4: Two-stage DR-FMS considering FDIA on electricity 

load (AIL =5%). 

Case 5: Case 4 considering FDIA on both gas and electricity 

load (AIL =5%). 

Case 6: Case 5 considering FDIA on gas density (AIL =5%). 

Case 7: Case 6 considering renewable uncertainty (AIL =5%). 

Case 8-10: Case 7 with AIL =10%, 15% and 20%. 

In case 3 and 7, the addition of renewable uncertainty is 

considered and the AIL is still 5% as case 2 and 4. The proposed 

test network is shown in Fig. 3, which contains 30 buses, 6 

electricity generators, 2 renewable generators, 2 gas wells, 21 

electricity loads and 3 gas loads.  The renewable generators are 

connected to bus 22 and 25 with 60MW for each output. 

Parameters of electricity generators, gas wells are given in 

TABLEs Ⅱ and Ⅲ, which can be found in [38]. 

The method for case 1 is a deterministic global optimization 

for solving linear programming. The reasons for not using 

metaheuristic optimization methods are: i) The deterministic 

linear programming problem solved by deterministic global 

optimization and metaheuristic optimization methods have 

similar results [39-41]; ii) The focus of this paper is to address 

FDIA and design mitigation schemes. The deterministic 

optimization method in case 1 is only used for comparison; iii) 

In practice, system operators implement economic dispatch 

after the data-filtering by state estimators,  which requires high 

computational efficiency;; and iv) Metaheuristic methods, such 

as genetic algorithm and particle swarm optimization, easily 

converge prematurely and could be trapped into a local 

minimum, particularly with complex problems [42]. 

It should be noted that the DR-FMS considers the worst-case 

uncertainty distribution for both FDIA and renewable energy 

from all candidate distributions. Based on the partial 

distributional information, i.e., mean value vector and 

covariance matrix, DR-FMS can test all possible distributions 

modelled by moment information. Accordingly, this worst-

distribution oriented mitigation scheme is a data-driven 

approach and actually tests a variety of scenarios.  

A. Studies on Economic Performance 

Firstly, the economic performance for all 10 cases under 

different combinations of uncertainties is shown in TABLE Ⅳ. 

Case 10 has the highest total cost, i.e., $132000, which is 21% 

higher than that of case 1, since EL-FDIA and GD-FDIA are 

comprehensively considered with the highest AIL. Case 1 has 

the lowest economic result since the deterministic model is 

applied. In addition to the only consideration of FDIA by case 

2, in case 3, when renewable uncertainty is further considered, 

the expected total cost increases by 4%. The total economic cost 

of case 3 is $13080, higher than that in case 4. The main reasons 

are: i) case 3 considers all three types of FDIA while case 4 only 

considers EL-FDIA; ii) case 3 considers renewable uncertainty 

while case 4 does not, iii) case 3 is implemented under RO, 

which provides more conservative solutions even in the single-

stage framework. For case 4, the second stage of DR-FMS 

considers corrective actions for the day-ahead operation, which 

accounts for a small portion of the total cost. The big portion of 

cost is from the first stage, because generation costs for 

electricity generators and gas wells are considered. From cases 

4 to 10, two-stage DRO is applied, where different types of 

TABLE Ⅱ 

PARAMETERS OF GAS WELLS 

Node No. 
𝑃𝑖𝑔,𝑚𝑎𝑥 

(kcf/h) 

𝑃𝑖𝑔,𝑚𝑖𝑛 

(kcf/h) 
𝜆𝑖𝑔 

4 35 10 2.2 

6 70 20 2 

 

TABLE Ⅲ 

GENERATOR PARAMETERS 

Bus 

No. 

𝑃𝑖𝑒,𝑚𝑖𝑛 

(MW) 

𝑃𝑖𝑒,𝑚𝑎𝑥 

(MW) 

𝑅𝑖𝑒
+, 𝑅𝑖𝑒

− 

(MW) 
𝑎𝑖𝑒 𝑏𝑖𝑒 𝑐𝑖𝑒 

1 50 200 20 0.004 2 6 

2 20 80 16 0.002 2 6 

5 15 50 10 0.006 1 8 

8 10 35 7 0.008 3 10 

11 10 30 10 0.025 3 18 

13 12 40 16 0.025 3 18 

 

 
Fig. 3.  Modified IEEE 30-bus system. 
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FDIA are considered in cases 4-7 and sensitivity analysis is for 

cases 7-10. Both the first-stage and second-stage expected costs 

are increasing for cases 4-7 from only considering EL-FDIA to 

considering all three types of FDIA with renewable 

uncertainties. It can be found that GL-FDIA has the largest 

impact on economic performance, i.e., the total cost of case 5 

has 4.7% more cost than case 4. On the contrary, GD-FDIA has 

the least impact on economic performance with a 1.4% rise of 

total cost from case 5 to case 6. From case 7 to 10, 15% more 

AIL causes an increase of total cost from $124252 to $132000. 

It should be noted that although EL-FDIA does not increase the 

overall load increase since some loads are increasing while the 

rest are decreasing, FDIA aims at attacking critical loads for 

causing economic losses. Accordingly, under these three types 

of FDIA with high risks, DR-FMS is more suitable for risk 

assessment and mitigation considering the worst-distribution.  

B. Studies on Load Shedding 

To maintain the feasibility of optimization and system 

balance under FDIA and renewable uncertainty, it is necessary 

to implement load shedding. The electricity load shedding (ELS) 

and gas load shedding (GLS) for 24 hours under FDIA are given 

in Fig. 4 and 5. In Fig. 4, ELS is up to 140MWh when EL-FDIA 

and GL-FDIA are both 20%. ELS is not sensitive to increase 

when only increasing GL-FDIA level, but sensitive when 

increasing EL-FDIA. The reason is that the scale of electricity 

load is much larger than the gas load. Therefore, the GL-FDIA 

has a minor effect on ELS. In Fig. 5, GLS reaches up to 4.7kcf 

when FDIA is at the maximum level. GLS increases smoothly 

when AIL of EL-FDIA is under 17% while increases 

significantly when it is over 17%.  

The ELS and GLS under EL-FDIA and GD-FDIA are shown 

in Fig. 6 and Fig. 7. Compared with GL-FDIA in Fig. 4,  84 

MWh more ELS is made when considering the GD-FDIA. 

Since the wrong gas density can directly influence the gas flow. 

When there is no EL-FDIA, ELS caused by GD-FDIA can still 

reach up to 3MWh. In Fig. 7, GLS reaches 13kcf at the 

maximum AIL compared with the 4.7kcf in Fig. 5, which again 

TABLE Ⅳ 

ECONOMIC PERFORMANCE FOR CASE 1-10 

Economic result Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10 

First-stage cost ($) 108930 120955 125810 108835 113922 115465 119250 120880 122140 123480 

Expected Second-

stage cost ($) 
0 0 0 3895 4132 4275 5292 7862 8043 8520 

Total cost ($) 108930 120955 125810 112730 118054 119740 124252 128742 130183 132000 

 

            
 

Fig. 4.  Electricity load shedding under EL-FDIA and GD-FDIA.                           Fig. 6.  Electricity load shedding under EL-FDIA and GD-FDIA. 

                   
Fig. 5.  Gas load shedding under EL-FDIA and GL-FDIA.                                       Fig. 7.  Gas load shedding under EL-FDIA and GD-FDIA. 

 

 

 

TABLE Ⅴ 

FCR FOR CASES 4-10 

FCR Line 1-2 Line 6-7 Line 27-28 

Case 4 56% 56% 45% 

Case 5 57% 69% 50% 

Case 6 59% 78% 54% 

Case 7 76% 87% 62% 

Case 8 89% 93% 65% 

Case 9 100% 95% 80% 

Case 10 100% 96% 83% 

FCR 
Pipeline  

N4-N3 

Pipeline  

N6-N5 

Pipeline  

N1-2 

Case 4 53% 63% 64% 

Case 5 66% 65% 65% 

Case 6 77% 66% 67% 

Case 7 86% 66% 90% 

Case 8 97% 68% 93% 

Case 9 100% 68% 97% 

Case 10 100% 69% 100% 
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proves the significant impact of gas density on GLS. EL-FDIA 

and GL-FDIA show the similar impact on GLS, i.e., GLS 

increases by 10kcf when fixing GL-FDIA and increasing EL-

FDIA while GLS increases by 13kcf when fixing EL-FDIA  and 

only increasing GL-FDIA. Since as observed from Fig. 4, the 

scale magnitude of electricity load is much larger than gas load, 

which largely influences on both ELS and GLS.  

As observed from Figs. 4 and 6, the impact of GL-FDIA and 

GD-FDIA on ELS is minor when EL-FDIA is 0%. It shows that 

when one type of FDIA is manipulated, the impact on ELS is 

minor. However, when multiple types of FDIA are conducted 

in, the impact on ELS could be large. In Fig. 4, with the AIL 

increase of both GL-FDIA and EL-FDIA, the ELS is massive, 

which is 99MWh when the AIL of GL-FDIA is 0% and 

139MWh when AIL of GL-FDIA is 20%. The EL-FDIA is 

fixed but there is a 40MWh increase of GLS. In Fig. 7, GLS 

under EL-FDIA and GD-FDIA is given. When GD-FDIA is 0%, 

EL-FDIA has a low impact on GLS even when the AIL is 20%. 

However, when AIL of GD-FDIA is at 20%, GLS ranges from 

4.7kcf to 13kcf, and when AIL of GD-FDIA is at 20%, GLS 

ranges from 4.7kcf to 13kcf. This indicates that the security 

interdependency between electricity and gas systems is minor 

when attackers only conduct one type of FDIA, but when 

multiple types of FDIA is attacking the IEGS, it will lead to 

massive load shedding. 

C. Studies on Flow-Capacity Ratio  

To study the FDIA impact on power and gas flow, in TABLE 

Ⅴ, flow-capacity ratio (FCR) for three power lines and three gas 

pipelines at the peak load time period are studied, which is 

defined as the percentage of flow divided by the line capacity. 

The FCR of line N1-N2 and pipeline N4- N3 and N1-2 all reach 

100% when maximum AIL is considered since these three lines 

play vital parts for interconnecting buses and transmitting flow. 

From case 4 to 7, there is a general increase for FCR of power 

lines and gas pipelines since types of FDIA are gradually 

incorporated. From cases 7 to 10, the FCR still monotonically 

increases when AIL is increasing from 5% to 20%. It should be 

noted that line 1-2 and line 27-28 are more sensitive to increase 

of AIL with a 24% and 21% increase respectively. Compared to 

pipeline N4-N3 which is prone to overloading, the FCR of 

pipeline N6-N5 ranges only reaches 69%, indicating that gas 

flow is mainly sourced from the gas well connected to node 4.  

D. Discussion on System Interdependency under FDIA 

The interdependency between electricity and gas systems 

worsen the system security, i.e., the FDIA on electricity system 

has adverse impact on gas system and vice versa. TABLE Ⅵ-

Ⅷ present the impact of EL-FDIA on GLS, GL-FDIA on ELS 

and GD-FDIA on ELS, respectively. The EL-FDIA has minor 

impact on gas system compared with GL-FDIA on gas system 

and GL-FDIA or GD-FDIA have also minor impact on 

electricity system compared with EL-FDIA on electricity 

system. In order to observe a more obvious result, TABLE Ⅵ 

is under the fixed 10% of GD-FDIA and TABLE Ⅶ and Ⅷ 

are under the fixed 10% of EL-FDIA.  

A smooth increase of GLS is shown in TABLE Ⅵ, i.e., the 

increase of GLS with the 20% increase of EL-FDIA is only 3kcf. 

The GLS accounts for 1% when EL-FDIA is at 20%. The 

potential reasons for this result are i) the electricity system is 

resilient enough based on multiple electricity generators and 

renewable generators which does not require massive supply 

from gas system and ii) the overall operation cost and load 

shedding of IEGS will increase significantly provided that gas 

system provides more supply to electricity system while 

implements more GLS. In TABLE Ⅶ, GL-FDIA causes 

48.5MWh ELS when AIL is at 20%. The result is on the 

contrary of TABLE Ⅵ since GL-FDIA causes gas wells supply 

more on gas system itself, which can be also viewed from Fig. 

5. The increase of GL-FDIA does not result in significant 

increase of GLS, which indicates that there is far less gas to 

power flow. In TABLE Ⅷ, GD-FDIA shows a more severe 

impact on ELS. The ELS when GD-FDIA is 0% is only 

34.5MWh while it increases dramatically and reaches 111.7 

when GD-FDIA is 20%. The reason is that GD-FDIA directly 

increases the gas density, which accordingly limits the gas flow 

and the gas turbine production is restricted.  

E. Comparison with RO Based Mitigation Scheme 

The comparison made between DR-FMS and R-FMS is in 

Figs. 8 and 9. In general, the (flow-capacity ratio) FCR from R-

FMS is higher than that from DR-FMS for all power lines and 

gas pipelines. In Fig. 8, the FCR in pipeline N1-2 has the 

highest level. The FCR solved by DR-FMS is 90% and 98% by 

R-FMS. Pipeline N4-N3 has the second-highest FCR and the 

difference between DR-FMS and R-FMS is 9%. Fig. 9 depicts 

the FCR at the lowest load period, which shows lower FCR for 

all power lines and gas pipelines. The largest FCR difference 

from DR-FMS and R-FMS is for line 27-28, which is 13%. For 

line 6-7, the FCR difference modelled by two schemes is the 

lowest for both peak and lowest load period. To summarize, 

DR-FMS not only provide more economic operation scheme 

TABLE Ⅵ 

EL-FDIA ON GAS LOAD SHEDDING 

AIL 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20% 

GLS (kcf) 1.46 1.67 1.88 2.09 2.30 2.53 2.84 3.19 3.62 4.08 4.54 

 

TABLE Ⅶ 

GL-FDIA ON ELECTRICITY LOAD SHEDDING 

AIL 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20% 

ELS (MWh) 34.3 36.8 39.8 39.9 41.1 41.4 42.3 42.9 43.7 48.0 48.53 

 

TABLE Ⅷ 

GD-FDIA ON ELECTRICITY LOAD SHEDDING 

AIL 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20% 

ELS (MWh) 34.5 48.7 48.7 48.7 48.7 48.7 48.7 48.7 50.0 78.0 111.7 
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but yields lower FCR since the FDIA is considered in a 

moderate robust manner.  

VI.  CONCLUSION 

A risk mitigation scheme for IEGS against FDIA is proposed 

in this paper with a two-stage DRO model. A tractable SDP 

formulation is built for the original DR-FMS, which is solved 

by CGA in an iterative manner. Through the extensive case 

studies, the key findings are listed below: 

 Considering all three types of FDIA, i.e., EL-FDIA, GL-

FDIA and GD-FDIA, leads to higher economic results and 

more load shedding than considering two types or one type 

of FDIA. Load shedding is more sensitive to EL-FDIA than 

GD-FDIA or GL-FDIA.   

 DRO provides less-conservative results than RO in terms of 

economic performance and load shedding.  

 Renewable generation uncertainty is necessary to consider, 

which leads to 3.7% more operation cost.  

The proposed DR-FMS ensures the economic performance 

of IEGS by providing a two-stage risk mitigation scheme via 

implementing efficient load shedding under FDIA and 

renewable uncertainty. The beneficiaries of this work inlcude: 

network operators can have powerful operation models, end 

customers will enjoy better supply security, and renewable can 

penetrate to the maximum level without much curtailment.  
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