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Coordinated Risk Mitigation Strategy for
Integrated Energy Systems under Cyber-Attacks
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Abstract—The dramatic increase of cyber-attacks on energy
systems can cause huge losses, which has drawn extensive attention
due to the fast integration of information communication
technologies (ICTs). This issue is becoming worse with the
integration of electricity and gas systems (IEGS), facilitated by gas
generation and new coupling technologies.

This paper investigates the risk and mitigation strategies for
IEGS under false data injection attacks (FDIA) in a hierarchical
two-stage framework. The FDIA on both electricity and gas systems
are modelled through injecting falsified data by adversaries. To
mitigate the adverse impacts, a novel two-stage distributionally
robust optimization (DRO) is proposed: i) day-ahead operation to
determine initial operation scheme and ii) real-time corrective
operation with the realization of FDIA and renewable generation
uncertainties. A semidefinite programming is formulated for the
original problem and it is then solved by a convex optimization-
based algorithm. A typical IEGS is used for demonstration, which
shows that the proposed model is effective in mitigating the risks
caused by potential FDIA and renewable uncertainties, by optimal
coordinating energy infrastructures and load shedding. This work
provides system operators with a powerful tool to operate the IEGS
with enhanced security against malicious cyber-attacks while
accommodating increasing renewable energy. The method can also
be easily extended to operating 1EGS against other natural attacks.

Index  Terms—Cyber-attacks,  distributionally  robust
optimization, false data injection attacks, integrated electricity
and gas system, real-time operation, risk mitigation.

NOMENCLATURE

A. Indices and sets
t,T Index and set for time periods.
b,B Index and set for electricity buses.
i, I, Index and set for electricity generators.
ig, Iy Index and set for gas wells.
GT Index for gas turbine.
j, J Index and set for renewable generators.
l,, L, Index and set for power lines.
lg, Ly Index and set for gas pipelines.
k., K, Index and set for electric loads.
kg, K4 Index and set for gas loads.

B. Parameters
AIL Attack injection level for FDIA.
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Cost coefficients for of electricity generator
ig.

Cost coefficient for gas well i,.

Cost coefficient for up and down reserve of
electricity generator i,.

Regulation cost coefficient for electricity
generator i, and renewable generator j.
Penalty cost coefficient for electricity and
gas load shedding.

Forecasted output of renewable generator |
attime t.

Maximum up and down reserve capacity of
electricity generator i, at time t.

Maximum up and down reserve capacity of
gas turbine GT at time t.

Maximum and minimum output of
electricity generator i,.

Maximum and minimum output of gas well
ig-

Maximum and minimum output of gas
turbine GT.

Resistance of power line L.

Maximum power flow of line ,.
Maximum gas flow of line I,.

Forecasted renewable generation at time t.
Maximum and minimum gas pressure of
gas pipeline l;.

Coefficient for Weymouth equation.
Diameter and length of pipeline L.
Pipeline friction coefficient.

Specific gas constant.

Compression factor of pipeline I;.

Gas density.

Temperature.

Electricity and gas load at time t.

Maximum electricity and gas load shedding
attime t.

Participation factor for reserves of
electricity generator and gas turbine at time
t.
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C. Variables and functions

P} P Scheduled and regulated output of
electricity generator i, at time t.
Pii, I,P{q ‘e Scheduled and regulated output of gas well

igattimet.
Scheduled and regulated output of gas
turbine GT at time t.

N re
PGT,t' PGT,t

T, Up and down reserve of electricity
er e
generator i, at time t.
Tére Ter.e Up and down reserve of gas turbine GT at

time t.
Scheduled and regulated power flow.
Scheduled and regulated gas flow.

fi e fi
£ o fS

flini fl;ez"

o Gas flow from initial node and to terminal

node of pipeline [, at time t.

Scheduled and regulated gas pressure of gas
pipeline [, at time t.

prl;it"i , Scheduled gas pressure of initial and

Prf ., Pr/€
Igtr FTgt

Prz;',tter terminal nodes of pipeline [, at time t.
prl;‘féi"i , Regulated gas pressure of initial and

p l;‘,?t'ter terminal nodes of pipeline [, at time t.
P Electricity load shedding at time t.

Pe Gas load shedding at time t.

X, Y Vectors of first and second stage variables.
Pf() Probability function.

Ep[] Expectation over distribution.

() Trace of matrix.

Yo, Wjk, T Dual variables.
D. Uncertainty
it Real-time renewable power output of j at

time t.

APy, APy, ., FDIA ON electricity load, gas load and gas

oF density at time t.

lg

D Ambiguity set for FDIA and renewable
uncertainty.

u,z Mean vector and covariance matrix for
FDIA and renewable uncertainty.

o Second moment matrix.

Vs Polyhedral set of extreme points.

I. INTRODUCTION

OWER systems have evolved to be more intelligent,
efficient and reliable with the increasing dependence on
data communication infrastructures [1]. The information
and communication technology (ICT) supports bidirectional
information flows and thus enhances the optimal control of the
physical power system with better observability and
controllability. However, high integration and modernization of
ICT can naturally raise threats to power system security [2]. The
adversary can launch false data injection attacks (FDIA) to
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tamper critical data and inject falsified data, which brings
serious challenges to state estimators, indirectly affecting
system operation and control. In 2015, three Ukrainian regional
power distribution companies were attacked by FDIA which
caused power outages for 225,000 customers [3].

Existing research of FDIA most focuses on investigating i)
maximally launching FDIA to cause damages [4-6], ii)
detection algorithm against FDIA [7-8] and iii) mitigation and
protection schemes against FDIA [11-12]. As for attack
modelling and detection, paper [4] models how an adversary
can trigger sequential outages on targeted branches by
identifying critical branches. A stochastic model is proposed to
design FDIA that affects electricity market by adopting
imperfect grid information [5]. Paper [6] proposes an FDIA that
can be launched through the approximation on system states
based on injection measurements. An online anomaly detection
algorithm is used to detect FDIA based on load forecasting and
generation scheduling [7], where the minimum attack
magnitudes and detection thresholds are determined. A
detection and isolation scheme is proposed in [8] by using
interval observer based on the physical dynamics of grids.

State estimation is of significance in FDIA detection.
However, malicious FDIA can be masked and hidden through
judiciously designing residue of bad data detection [9, 10].
Therefore, mitigation strategy is the final barrier for protecting
power systems provided that detection is failed. A corrective
scheme is proposed to address overloading and uneconomic
dispatch in [11] against the worst-case FDIA. Paper [12]
proposes a unit commitment model by using a trilevel
optimization model, which is converted into a bilevel mixed
integer programming problem.

The increasing demand growth of both power and gas
systems, low price of natural gas resources, and conversion
technologies between the two systems, e.g., gas-fired units and
power-to-gas facilities, have promoted the interdependency
between power and gas systems. Consequently, modelling and
optimizing the two independent systems as an entity can
facilitate the economy and security for both systems. Integrated
electricity and gas systems (IEGS) realizes the coordination
between energy infrastructures in both power and gas systems.

The electricity and natural gas systems are increasingly
independent, interconnected by many coupling technologies to
form IEGS. Conversion technologies between the two systems
include gas-fired units and power-to-gas facilities. Combined
heat and power (CHP) enables the conversion of gas to both
heat and electricity [13, 14]. Power-to-gas (P2G) facilities can
convert excessive renewable energy to synthetic natural gas [15,
16]. The conversion from gas to power is mainly realized by
utilizing gas turbines [17, 18]. In some compressor stations of
natural gas systems, electricity is used to drive compressors.
The interdependency produces many benefits, including
enhanced security of supply, more absorption of renewable
energy, but there are also many adverse impacts. Cascading
failures in one system can propagate to the other and the cyber-
attacks on one system can affect the security of the other.

Existing IEGS literatures on making use of its unique
interdependency generally concentrates on i) operation under
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normal conditions, ii) security-based operation under reliability
issues and iii) resilience enhancement and operation strategies
under natural disasters [19-23]. Paper [19] proposes an optimal
operation scheme for IEGS considering electricity demand
response and the impact on the entire system is profound due to
the strong interdependency of power and gas systems. A-low
carbon IEGS community with heat delivery system is proposed
in [20], where the uncertainties of renewable generation and
demand are handled by stochastic optimization (SO). Paper [21]
models a security-constrained unit commitment against N - k
outages by using robust optimization (RO). Nonlinear gas flow
is relaxed into a second-order cone problem for convexity. To
enhance IEGS resilience, a robust network hardening strategy
is proposed in [22], considering natural disaster uncertainties.
Paper [23] proposes a minimax-regret robust unit commitment
model for enhancing the resilience of IEGS against the extreme
weather obtained by spatial dynamic method.

Leveraging between RO and SO, distributionally robust
optimization (DRO) is widely applied in power systems to
handle uncertainties [24-28]. SO either assumes specific
knowledge of probability distributions or requires a large
number of uncertainty samples, which is not always practical
and can cause high computational burden. RO accommodates
uncertainties in predefined uncertainty sets and considers the
worst-case scenario, which could have extremely low
probability and thus produces over-conservative results. DRO,
taking the advantage of distributional information, e.g., moment
information, deals with uncertainties within a feasible set,
called ambiguity set. Therefore, compared with RO, DRO
determines expected results over all possible distributions,
which are less-conservative. Compared with SO, DRO avoids
intensive computation, thus improving calculation efficiency.

Paper [26] applies DRO to a risk-based optimal gas-power flow.

An optimal scheduling of IEGS considering electricity and gas
load uncertainties is proposed in [27].

Due to the strong interdependency between electricity and
gas systems in IEGS, the FDIA on either electricity or gas
system can propagate to each other. The adverse impact can be
exaggerated when there is high uncertain renewables in the
electricity system. But limited effort is dedicated to studying the
impact of FDIA on IEGS. This paper proposes a two-stage risk
mitigation strategy to address the uneconomic operation of
IEGS under FDIA considering renewable generation
uncertainties. FDIA is assumed to attack both electricity and
gas meter readings, including i) load measurement of electricity
and gas systems and ii) gas density measurement. In the first
stage, the day-ahead optimization determines an optimal IEGS
scheduling scheme based on forecasted renewable generation
without considering potential FDIA. In the second stage, both
FDIA and renewable uncertainties are revealed, a real-time
corrective optimization is built to minimize the attack impacts
through load shedding and adjusting generation output. The
original problem is converted into equivalent semidefinite
programming (SDP) and a constraint generation algorithm
(CGA) is adopted to solve the SDP problem. For conciseness
and simplicity, the proposed distributionally robust FDIA
mitigation scheme is represented by DR-FMS.

3

The major contribution of this paper is as follows:

1) It models FDIA in an IEGS for the first time,
particularly on natural gas load and density
measurement, where existing research only focuses on
FDIA on electricity systems.

2) Uncertainties of renewable resources are considered in
the proposed model as they can worsen system
operation conditions during FDIA, compared to existing
FDIA papers [11,12] that ignore the impact of
renewable uncertainties.

3) Compared to SO and RO for modelling FDIA, the
ambiguous distribution of DRO developed in this paper,
which is less data-dependent and conservative, can
better characterize uncertain variables.

4) A two-stage FDIA mitigation scheme is proposed for
the first time to conduct the day-ahead and real-time
operation, which is more powerful and convenient to be
used by system operators to ensure the efficiency and
security of the IEGS.

The rest of this paper is organized as follows. Section II
models FDIA for integrated systems.Section III presents
problem formulation of the DR-FMS. The DRO methodology
regarding and associated reformulations are given in Section IV.
Section V demonstrates case studies and performance of the
DR-FMS. Finally, the conclusion is given in Section VI.

Il. ATTACK MODELLING

This section presents the attack modelling for electricity and
gas system. State estimation is a powerful tool to detect FDIA
by processing raw data measurements, but a successful FDIA
can be undetectable by adversary’s stealthy design.

A. Attacks on Electricity System

The nonlinear relationship between state variable x and
measurement z is given in (1), where h(x) denotes the
nonlinear vector function of x and e is the error measurement.
Based on DC state estimation, equation (1) can be transformed
into (2), where H represents the Jacobian matrix.

z=h(x)+e (1)
z=Hx+e 2

After the realization of FDIA, the measurement vector z
becomes z,,4, = z + a, and the estimated state vector can be
represented as X,,4 = X + ¢ Where a is attack vector and c is
the resulted deviation vector of state variable after FDIA.
Accordingly, to determine the estimated state variable, X,,4
can be formulated as:

Xpaa = (H'WH) ' H'Wz)qq @)

The largest normalized residual (LNR) can be used to detect
and identify measurement errors by (4). If the residual is less
than a threshold &, then the state estimate is valid without FDIA.

LNR = ||z —HX|| < ¢ 4)

Then, equation (5) representing LNR is given based on (3)
and (4). Finally, equation (6) is obtained.

LNR = ||z+ a — H((H'WH)"*H'W zp,) |l (5)
LNR = ||z — HX + (a — HO)|| (6)

If a is the linear combination of H and c, i.e., a = Hc, then
LNR = ||z — Hx|| has no change of residual. Therefore, a
successful FDIA is launched which can evade detection.
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Uncertainty treatment

Generation and reserve cost for electricity

Renewable generation forecast

deviation of renewable, Uncertain renewable generation, FDIA

on electricity load, gas load and gas

TABLEI
TWO-STAGE MITIGATION FRAMEWORK
Decision variables Objective
+ - .t —
Stage I P o Pi;,t' Pir e T o0 Tig o0 Tar,00 TaT 0 y #
sini pster 2 generators and gas turbine
¢ O il Prl;,t'fl;,t
l L re,ini
Stage 11 plr:t, Pi;‘fp PG PE pk;t, 6.5, Penal!y_ cost for
greter rre p.re? gre electricity and gas wells
et et Prige figo Load shedding cost

density based on moment information

As a special case of FDIA, load measurement can be attacked
according to [9, 10] by enforcing the sum of load attack vector
to be zero in (7). For simplicity, the FDIA on electricity load is
represented by EL-FDIA. Equation (8) constraints the attack
deviation by attack injection level (AIL).

Y APy, =0 (7)
—AlLy Pe,c < APy, < AlLy Py, ®)

B. Attack on Gas System

The FDIA on a gas system is considered on both gas load and
density measurement. Similar to FDIA on electricity load
measurement, the FDIA on gas load measurement and density
are given in (9) and (10), namely GL-FDIA and GD-FDIA. The
changed gas density measurement results in a change of
Weymouth coefficient Yi,- Accordingly, the initial coefficient

in (11) is changed to (12) under FDIA.

0 < AP ;< AlLy Py 9)
P, < piy < (1+ Badpyy, (10)
(A (1)
Y, =7
‘v " \4/ L, F, RZp, *Temp
2n5
o (E)z a ng (12)
Yo =\4) | R RzZpF T
gl apy, temp

I1l. TWO-STAGE RISK MITIGATION SCHEME

The risk mitigation for IEGS under potential FDIA consists
of: i) day-ahead operation without considering FDIA or
renewable uncertainties and ii) real-time operation actions for a
corrective mitigation scheme under potential FDIA with the
realization of renewable uncertainties. The objective functions
and associated constraints are presented in this section.

A. DR-FMS Objective Function

A summary of decision variables, objective functions and
uncertainty modelled in the two stages is presented in TABLE
I. Equation (13) presents the day-ahead operation objective
function in the first stage. The first four terms represent the
generation cost of electricity and gas respectively. Reserve
costs of electricity generators are shown in the rest. It is noted
that the reserve capacity is prepared for FDIA and uncertainties
from renewable resources.

[; = min AL PS .+ ADPE+ X+ Ay P

io€lg,ig€ly,tET
AT A AT,

The real-time objective function in the second stage is given
in (14), which mitigates the impact against the presence of
FDIA and renewable uncertainty. The first three terms represent
the penalty cost for renewable generators, electricity generators

(13)

and gas wells when regulated generation deviates from
scheduled generation. The final two terms represent electricity
and gas load shedding cost.
I, = min +/1]re|wj5’t—§j,t|
io€le,igElG,tET k€K kyEK
+ A2 |P e — PLE| AT
+ AP+ P

(14)

ps  — pre
lg,t Lg,t

B. Proposed Coordinated Modelling of IEGS

The IEGS is a tight coupling entity due to the strong
interdependency between electricity and gas systems.
Accordingly, the two systems should be modelled together by
one decision maker. The modelling of IEGS in the existing
literatures can be generally categorized into three types: i)
Modelling from the perspective of electricity system operators,
which overlooks the operational and security constraints of gas
system [29, 30]. This ignorance will cause the physical gas flow
violation due to the renewable power fluctuation and load
variability; ii) Sequential optimization for IEGS [31, 32], which
firstly solves the power system model for determining the
optimal schedule for generators while neglects the operational
constraints of gas system. Based on the obtained solution from
power system, the gas system can be solved; and iii) Co-
optimization for IEGS which optimizes the comprehensive
objective simultaneously [13-17].

This paper provides a simultaneous coordinated model for
the electricity and gas systems. Due to the different
characteristics of electricity and gas systems, the operational
constraints of two systems are nonrelevant. However, the two
systems are solved interdependently with the gas turbine
interconnected between the two systems. The gas flow through
the gas turbine can be used to generate power flow, which is
considered as the supplement for electricity system.

C. Day-ahead Operation

The day-ahead operation is implemented based on renewable
generation forecast without FDIA risks, whose constraints are
in (15)-(28). Constraint (15) and (16) limit the reserve capacity
for electricity generators and gas turbine. The scheduled output
of electricity generators and gas turbine are enforced within
limits in (17) and (18). The linearized DC power flow is given
in (19) and (20). Constraint (21) ensures the power balance. Gas
well output is limited in (22). Gas pressure is limited in (23).
Constraint (24) means the pressure at the initial node is larger
than the terminal node since the proposed gas system has a
radial topology. Weymouth gas equation for describing gas
flow is shown in (25) and (26), where the coefficient is defined
in (11). Gas turbine connects two interdependent systems as a
coupled infrastructure. Constraint (27) presents the
transformation from gas flow injection to power generation.
The gas balancing condition is given in (28).
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0<r}; <Rj {}=1i,GT (15)
0<ry: <Ry {}=1i,GT (16)
Pé e + 10 < Peymax: (3 = 16, GT 17)
P{-},min = P{}t r{_}tv {}=i.GT (18)
xfise = (000" = 03¢ (29)
_flz,max = fle t = flz max (20)
Z PS .+ Pir, +Z .+ Z fim Z foer (21)
i€l jEJ I[.€L, I,€EL,
= Z Prot
Ke€K,
Pig,min = Pi;,t < Pig,max (22)
PrE min < P1ie < P2 max (23)
Prls,'itni > Prls,ier (24)
= v (o ey @
0= £i5: < filmax (26)
Pgr; = CGTfl; GT (27)
(28)

> P

ig€lg

DWEDW AP

lgELg kgEKg
D. Real-time Risk Mitigation

Considering potential FDIA and uncertainties of renewable
resources, real-time risk mitigation is presented in the second
stage to mitigate uneconomic dispatch. The approach is

distributionally robust against FDIA and renewable uncertainty.

The regulated generator and gas turbine output are shown in
(29). Constraint (30) represents the electricity and gas load
shedding limits. The limits considered in the model is based on
the existing research [33]. The regulated power flow is
constrained in (31) and (32). Constraint (33) presents the limits
for gas wells. The regulated gas pressure and flow are limited
in (34)-(37). Based on (12), the new Weymouth coefficient yl’;

influenced by the attacked gas density is applied. Constraint
(38)-(40) show that the power imbalance caused by renewable
uncertainties should be offset by adjusting the reserves of
generators and gas turbine. Specifically, constraint (38) ensures
the deviation of renewable generation is within the range of up
and down reserve limits. In (39) and (40), the adjustment factor
N, and Nigt are the regulation commitment from generators

and gas turbine to mitigate renewable uncertainties. Constraint
(41) presents the regulated power generation of gas turbine.
Constraint (42) and (43) ensure power and gas balance in the
second stage.

Pl =15 S P S P+ 10300 {3 = 6, GT (29)
0 < P8 < Pmax {3 = kerky (30)
xlf‘le — (91‘6 ini _ greiter) (31)

~fiomax < fiot < figmax (32)

Piymin < P{7t < Py max (33)

PT min < Przg,t < P12 max (34)

P,rlTEtlTll > Prl;?t,teT (35)

5
fl;_etz ylg (Prlretmlz _ Prl;(,siterz ) (36)
0= f7% < fimax (37)
0 SN Djeg(@fe = &50) S e (3 =60, GT (38)
0<nue<1{}=1i,0GT (39)
40
D et Y nll = “0)
ig€le ig€lg
Pgre = CGTflg GT (41)
z P% +ij,t+PGTt 42
ig€le Jj€J ( )
= Z Pke,t + APke,t - Plfcz,t
ke€Ke
Z P{;t + Z ﬁ;i:inl Z flre ter (43)
ig€ly lgEly lg€lg
= Z Pkg,t + APkg,t - Pklcsg,t
kg€Kg

Constraint (25) contains one nonlinear term, i.e., ¢ fl;tz’ and

constraint (36) contains two nonlinear terms, i.e., * fl;jz’ and

‘y{; (Prl"g’f‘ —Prf" ) They need to be linearized for
obtaining convex functions and guaranteeing global optimal
solutions. A sufficiently large constant M, can be used to
linearize Y}, (Pr;;f — Prie” ) shown in (44) and (45). The
bilinear term ‘fl;f

approximation by separating nonlinear function into pieces.
Readers are referred to [34] for details. It should be noted that

‘Pr”” > does not require linearization since it is regarded as
squared form throughout the paper.
2 re,ini? reter? F
gt < (i = st )+ (1= v )
25 re,ini? reter? F
figf 2 @nr = Pt )+ (1= v ) M

> can be linearized by piecewise linear

(44)
(45)

IV. METHODOLOGY

The two-stage DR-FMS is a minmax DRO problem, which
is solved by the SDP based model. Firstly, the linear DRO
problem is represented by a compact matrix form. Then, the
family of possible uncertainty distributions for FDIA and
renewable uncertainties is defined by an ambiguity set. Finally,
the dual problem of DR-FMS is formulated, solved by CGA.

A. Formulation in Brevity

Matrices and vectors are used to represent the original
problem for notation abbreviation. The objective function (46)
represents (13) and (14) to minimize the sum of the first-stage
objective c¢'x and the expected second-stage objective
Epf[Q(x,&)]. The random parameter ¢ is used to represent both
APy and &;, which is sampled from a family of distributions Pf.

min ¢'x + sup Epr[Q(x, O] (46)
X€X PfEDg E=APE |
s.t. Ax < b, (47)
Q%) = myinf’y (48)
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Fig. 1. An example of bivariate distribution for FDIA on two buses.

st.Ex+ Fy+ GE < h, (49)
The first-stage constraints are shown in (47). Equation (48)
and (49) represent the recourse function, where vector f denotes
the coefficient of (14).

B. Ambiguity Set for DR-FMS

The uncertainties of FDIA and renewable power generation
can be captured by ambiguity sets that define a family of
distributions. Based on limited historical data, moment
information, i.e., mean and covariance are obtained to construc
empirical point-estimates. The proposed ambiguity set is given
in (50) to characterize both uncertain FDIA and renewable
generation, which guarantees i) the integral of distribution of &
is 1, and ii) the second moments are known.

P{}=1
E¢}=u
EEE)}I=2 +u@)

D = (50)

)

The ambiguity set used to characterize uncertain variables is
composed of mean and covariance information. Intuitively, a
certain set of mean vector and covariance matrix contains all
possible probability distributions. Fig. 1 depicts the bivariate
distribution for EL-FDIA on two buses with a fixed mean and
covariance information. In this case, DRO searches for the
distribution that cause the worst-case solution. Fig. 1 only
shows one possible distribution, but other distributions can have
different shape due to the ignorance of higher order moment
information, e.g., kurtosis and skewness.

C. Equivalent Dual Form

To obtain a ‘min’ form of the second-stage problem, dual
reformulation is required for the inner problem ‘min sup
Ep[Q(x,$)]’. The second-stage problem Ep([Q(x,$)] is an
infinite-dimensional linear problem and the primal form is
given in (51)-(55).

SEnl = max [ Qe OPIOE (51
st.Pf(¢§)=0,véer (52)

[ Prevas =1 (53)

fE EMPF(E)dE =y, m=1,2, ..., & (54)

f: fmf"Pf(f)df = Zmn + Uy, M, n=1,2, ..., % (55)

6

Initialize set for vertices,
denoted as VS

|
L)

Solve the master problem (62), record
the optimal objective value 0*
and optimal solution x*.

Update set of
vertices VS,
Solve the sub problem (63), record =VSurTt

the optimal objective value 0"
and optimal solution T*

Obtain 0" and x*

Solve the second-stage problem
(48) after uncertainty & is revealed

Fig. 2. Flowchart of constrained generation algorithm.

For tractability, the primal form needs to be recast as (56)-
(57), where 1, ¥; and ¥, are dual variables associated with
constraints (29) to (43), and O represents = + p (1)’. When the
weak duality holds, S(x)P"mal < §(x)4al . However, (55)
ensures that the strong duality holds when 6 is strictly positive
definite and thus S(x)?Prmal = §(x)%al [35]. Accordingly,
now the problem with an infinite number of variables is
transformed into one with a finite number of variables (56)-(57),
which is easier to solve.

Sr)tat = Juin (7'0) + " u + o (56)
St (Q)PE+YP'E+1o 2 Q(x,8) 57)
véEE
The new compact form of DR-FMS is:
r;lel)rfl c'x + S(x)dual (58)

D. SDP Reformulation

Problem (58) is a semi-infinite-dimensional program which
contains an infinite number of constraints. Thus, it is required
to be transformed into a closed form [36]. By introducing the
new dual variable t, a positive quadratic function in (59) can be
obtained from (48). VS denotes the polyhedral set of extreme
points and N, is the set of vertices of feasible region in VS.

ume%r’(b —Ex—Gé¢&) (59)
VS ={t|F't = f,7 < 0} (60)
@OPE+ @+ G’Ti)’f + o — (h— EX)‘L'i >0 (61)

véieE i=1.2,...,N,
In summary, the SDP form of DR-FMS is as follow, which
is the master problem.
min c¢'x+(¥'0)+yY'u+
i (1 Y+ Y u+
' '3 “(W+G'tH
1 PR AR [ T
DL @+6t) - (h—Ex) 7|1
vEeEE i=12,...,N,, x €EX,VI' €VS
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E. Constraint Generation Algorithm

A large number of constraints with infinite cardinality of VS
cause high computational burden. CGA initially enumerates a
subset of vertices and incorporates more vertices step by step.
This relaxation method can efficiently solve the proposed
problem, which is separated into a master and sub problem in
(62) and (63). The flowchart of the CGA is given in Fig. 2.

(fs),lpfs + lplfs + 1,00 - (h —Ex — Ggs)"[ =0
stvéEez,teVs

(63)

V. CASE STUDIES

A combined IEEE 30-bus electricity system and a 6-node gas
system is used to test the effectiveness of the DR-FMS through
the extensive case studies. In the case studies, three types of
FDIA are considered, namely EL-FDIA, GL-FDIA and GD-
FDIA, which represent FDIA on electricity load, gas load and
gas density, respectively. For EL-FDIA, the total load is
unchanged, which is the fundamental condition of FDIA for
evading the detection. The modelling of EL-FDIA is discussed
in section II-A, which can be also found in [9, 11, 37]. The
following 10 cases are considered:

Case 1: Single-stage deterministic optimization for IEGS
without considering FDIA or renewable uncertainty.

Case 2: RO based FMS with three types of FDIA (AIL =5%).
Case 3: Case 2 considering renewable uncertainty (AIL =5%).
Case 4: Two-stage DR-FMS considering FDIA on electricity
load (AIL =5%).

Case 5: Case 4 considering FDIA on both gas and electricity
load (AIL =5%).

Case 6: Case 5 considering FDIA on gas density (AIL =5%).
Case 7: Case 6 considering renewable uncertainty (AIL =5%).
Case 8-10: Case 7 with AIL =10%, 15% and 20%.

In case 3 and 7, the addition of renewable uncertainty is
considered and the AIL is still 5% as case 2 and 4. The proposed
test network is shown in Fig. 3, which contains 30 buses, 6
electricity generators, 2 renewable generators, 2 gas wells, 21
electricity loads and 3 gas loads. The renewable generators are
connected to bus 22 and 25 with 60MW for each output.
Parameters of electricity generators, gas wells are given in
TABLEs II and III, which can be found in [38].

The method for case 1 is a deterministic global optimization
for solving linear programming. The reasons for not using
metaheuristic optimization methods are: i) The deterministic
linear programming problem solved by deterministic global
optimization and metaheuristic optimization methods have
similar results [39-41]; ii) The focus of this paper is to address
FDIA and design mitigation schemes. The deterministic
optimization method in case 1 is only used for comparison; iii)
In practice, system operators implement economic dispatch
after the data-filtering by state estimators, which requires high
computational efficiency;; and iv) Metaheuristic methods, such
as genetic algorithm and particle swarm optimization, easily
converge prematurely and could be trapped into a local
minimum, particularly with complex problems [42].

It should be noted that the DR-FMS considers the worst-case
uncertainty distribution for both FDIA and renewable energy
from all candidate distributions. Based on the partial
distributional information, i.e., mean value vector and
covariance matrix, DR-FMS can test all possible distributions

;
TABLEII
PARAMETERS OF GAS WELLS
P, P i
N d N X lg,max lg,ml" A'
oce Mo (kcth) (kctfh) is
2 35 10 2.2
6 70 20 2
TABLE Il
GENERATOR PARAMETERS
Bus Pig,min Pie,max th’ Rl: a: b; c:
No. (MW) (MW) (MW) te e te
1 50 200 20 0.004 2 6
2 20 80 16 0.002 2 6
5 15 50 10 0.006 1 8
8 10 35 7 0.008 3 10
1 10 30 10 0.025 3 18
13 12 40 16 0.025 3 18

Q=

modelled by moment information. Accordingly, this worst-
distribution oriented mitigation scheme is a data-driven
approach and actually tests a variety of scenarios.

A. Studies on Economic Performance

Firstly, the economic performance for all 10 cases under
different combinations of uncertainties is shown in TABLE IV.
Case 10 has the highest total cost, i.e., $132000, which is 21%
higher than that of case 1, since EL-FDIA and GD-FDIA are
comprehensively considered with the highest AIL. Case 1 has
the lowest economic result since the deterministic model is
applied. In addition to the only consideration of FDIA by case
2, in case 3, when renewable uncertainty is further considered,
the expected total cost increases by 4%. The total economic cost
of case 3 is $13080, higher than that in case 4. The main reasons
are: i) case 3 considers all three types of FDIA while case 4 only
considers EL-FDIA,; ii) case 3 considers renewable uncertainty
while case 4 does not, iii) case 3 is implemented under RO,
which provides more conservative solutions even in the single-
stage framework. For case 4, the second stage of DR-FMS
considers corrective actions for the day-ahead operation, which
accounts for a small portion of the total cost. The big portion of
cost is from the first stage, because generation costs for
electricity generators and gas wells are considered. From cases
4 to 10, two-stage DRO is applied, where different types of
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TABLE IV
ECONOMIC PERFORMANCE FOR CASE 1-10

Economic result Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10

First-stage cost ($) 108930 120955 125810 108835 113922 115465 119250 120880 122140 123480

Expected ~ Second- 0 0 0 3895 4132 4275 5292 7862 8043 8520

stage cost ($)

Total cost ($) 108930 120955 125810 112730 118054 119740 124252 128742 130183 132000
£ 0 L
;

ALL G EDIA M‘;“ load (). 2 AIL of FDIA on gas de:s‘ny (%) : z =

' 0 g 18 1 Al[‘at FDIA‘cn electricity load (%) 0 18 TAIL of FDIA t;n electricity load (%)
Fig. 4. Electricity load shedding under EL-FDIA and GD-FDIA. Fig. 6. Electricity load shedding under EL-FDIA and GD-FDIA.

Load Shedding (kcf)

15

AlL of FDIA on gas load (%)
10

w 1
'% AIL of FDIA on electricity load (%)

Fig. 5. Gas load shedding under EL-FDIA and GL-FDIA.

FDIA are considered in cases 4-7 and sensitivity analysis is for
cases 7-10. Both the first-stage and second-stage expected costs
are increasing for cases 4-7 from only considering EL-FDIA to
considering all three types of FDIA with renewable
uncertainties. It can be found that GL-FDIA has the largest
impact on economic performance, i.e., the total cost of case 5
has 4.7% more cost than case 4. On the contrary, GD-FDIA has
the least impact on economic performance with a 1.4% rise of
total cost from case 5 to case 6. From case 7 to 10, 15% more
AIL causes an increase of total cost from $124252 to $132000.
It should be noted that although EL-FDIA does not increase the
overall load increase since some loads are increasing while the
rest are decreasing, FDIA aims at attacking critical loads for
causing economic losses. Accordingly, under these three types
of FDIA with high risks, DR-FMS is more suitable for risk
assessment and mitigation considering the worst-distribution.

B. Studies on Load Shedding

To maintain the feasibility of optimization and system
balance under FDIA and renewable uncertainty, it is necessary
to implement load shedding. The electricity load shedding (ELS)
and gas load shedding (GLS) for 24 hours under FDIA are given
inFig. 4 and 5. In Fig. 4, ELS is up to 140MWh when EL-FDIA
and GL-FDIA are both 20%. ELS is not sensitive to increase
when only increasing GL-FDIA level, but sensitive when
increasing EL-FDIA. The reason is that the scale of electricity
load is much larger than the gas load. Therefore, the GL-FDIA

Load Shedding (kcf)

15
10

AIL of FDIA on gas density ("/o)

- 1
"° AIL of FDIA on electricity load (%)

Fig. 7. Gas load shedding under EL-FDIA and GD-FDIA.

TABLEV
FCR FOR CASES 4-10

FCR Line 1-2 Line 6-7 Line 27-28
Case 4 56% 56% 45%
Case 5 57% 69% 50%
Case 6 59% 78% 54%
Case 7 76% 87% 62%
Case 8 89% 93% 65%
Case 9 100% 95% 80%
Case 10 100% 96% 83%

Pipeline Pipeline Pipeline

FCR N4-N3 N6-N5 N1-2
Case 4 53% 63% 64%
Case 5 66% 65% 65%
Case 6 7% 66% 67%
Case 7 86% 66% 90%
Case 8 97% 68% 93%
Case 9 100% 68% 97%
Case 10 100% 69% 100%

has a minor effect on ELS. In Fig. 5, GLS reaches up to 4.7kcf
when FDIA is at the maximum level. GLS increases smoothly
when AIL of EL-FDIA is under 17% while increases
significantly when it is over 17%.

The ELS and GLS under EL-FDIA and GD-FDIA are shown
in Fig. 6 and Fig. 7. Compared with GL-FDIA in Fig. 4, 84
MWh more ELS is made when considering the GD-FDIA.
Since the wrong gas density can directly influence the gas flow.
When there is no EL-FDIA, ELS caused by GD-FDIA can still
reach up to 3MWh. In Fig. 7, GLS reaches 13kcf at the
maximum AIL compared with the 4.7kcf in Fig. 5, which again
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TABLE VI
EL-FDIA ON GAS LOAD SHEDDING
AlL 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%
GLS (kcf) 1.46 167 1.88 2.09 2.30 2.53 2.84 3.19 3.62 4.08 4.54
TABLE VII
GL-FDIA ON ELECTRICITY LOAD SHEDDING
AlL 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%
ELS (MWh) 34.3 36.8 39.8 39.9 41.1 41.4 42.3 42.9 43.7 48.0 48.53
TABLE VIII
GD-FDIA ON ELECTRICITY LOAD SHEDDING
AlL 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%
ELS (MWh) 345 48.7 48.7 48.7 48.7 48.7 48.7 48.7 50.0 78.0 1117

proves the significant impact of gas density on GLS. EL-FDIA
and GL-FDIA show the similar impact on GLS, i.e., GLS
increases by 10kcf when fixing GL-FDIA and increasing EL-
FDIA while GLS increases by 13kcf when fixing EL-FDIA and
only increasing GL-FDIA. Since as observed from Fig. 4, the
scale magnitude of electricity load is much larger than gas load,
which largely influences on both ELS and GLS.

As observed from Figs. 4 and 6, the impact of GL-FDIA and
GD-FDIA on ELS is minor when EL-FDIA is 0%. It shows that
when one type of FDIA is manipulated, the impact on ELS is
minor. However, when multiple types of FDIA are conducted
in, the impact on ELS could be large. In Fig. 4, with the AIL
increase of both GL-FDIA and EL-FDIA, the ELS is massive,
which is 99MWh when the AIL of GL-FDIA is 0% and
139MWh when AIL of GL-FDIA is 20%. The EL-FDIA is
fixed but there is a 40MWh increase of GLS. In Fig. 7, GLS
under EL-FDIA and GD-FDIA is given. When GD-FDIA is 0%,
EL-FDIA has a low impact on GLS even when the AIL is 20%.
However, when AIL of GD-FDIA is at 20%, GLS ranges from
4.7kcf to 13kcf, and when AIL of GD-FDIA is at 20%, GLS
ranges from 4.7kcf to 13kcf. This indicates that the security
interdependency between electricity and gas systems is minor
when attackers only conduct one type of FDIA, but when
multiple types of FDIA is attacking the IEGS, it will lead to
massive load shedding.

C. Studies on Flow-Capacity Ratio

To study the FDIA impact on power and gas flow, in TABLE
V, flow-capacity ratio (FCR) for three power lines and three gas
pipelines at the peak load time period are studied, which is
defined as the percentage of flow divided by the line capacity.
The FCR of line N1-N2 and pipeline N4- N3 and N1-2 all reach
100% when maximum AIL is considered since these three lines
play vital parts for interconnecting buses and transmitting flow.
From case 4 to 7, there is a general increase for FCR of power
lines and gas pipelines since types of FDIA are gradually
incorporated. From cases 7 to 10, the FCR still monotonically
increases when AIL is increasing from 5% to 20%. It should be
noted that line 1-2 and line 27-28 are more sensitive to increase
of AIL with a 24% and 21% increase respectively. Compared to
pipeline N4-N3 which is prone to overloading, the FCR of
pipeline N6-N5 ranges only reaches 69%, indicating that gas
flow is mainly sourced from the gas well connected to node 4.

D. Discussion on System Interdependency under FDIA

The interdependency between electricity and gas systems
worsen the system security, i.e., the FDIA on electricity system

has adverse impact on gas system and vice versa. TABLE VI-
VIII present the impact of EL-FDIA on GLS, GL-FDIA on ELS
and GD-FDIA on ELS, respectively. The EL-FDIA has minor
impact on gas system compared with GL-FDIA on gas system
and GL-FDIA or GD-FDIA have also minor impact on
electricity system compared with EL-FDIA on electricity
system. In order to observe a more obvious result, TABLE VI
is under the fixed 10% of GD-FDIA and TABLE VII and VIII
are under the fixed 10% of EL-FDIA.

A smooth increase of GLS is shown in TABLE VI, i.e., the
increase of GLS with the 20% increase of EL-FDIA is only 3kcf.
The GLS accounts for 1% when EL-FDIA is at 20%. The
potential reasons for this result are i) the electricity system is
resilient enough based on multiple electricity generators and
renewable generators which does not require massive supply
from gas system and ii) the overall operation cost and load
shedding of IEGS will increase significantly provided that gas
system provides more supply to electricity system while
implements more GLS. In TABLE VII, GL-FDIA causes
48.5MWh ELS when AIL is at 20%. The result is on the
contrary of TABLE VI since GL-FDIA causes gas wells supply
more on gas system itself, which can be also viewed from Fig.
5. The increase of GL-FDIA does not result in significant
increase of GLS, which indicates that there is far less gas to
power flow. In TABLE VIII, GD-FDIA shows a more severe
impact on ELS. The ELS when GD-FDIA is 0% is only
34.5MWh while it increases dramatically and reaches 111.7
when GD-FDIA is 20%. The reason is that GD-FDIA directly
increases the gas density, which accordingly limits the gas flow
and the gas turbine production is restricted.

E. Comparison with RO Based Mitigation Scheme

The comparison made between DR-FMS and R-FMS is in
Figs. 8 and 9. In general, the (flow-capacity ratio) FCR from R-
FMS is higher than that from DR-FMS for all power lines and
gas pipelines. In Fig. 8, the FCR in pipeline N1-2 has the
highest level. The FCR solved by DR-FMS is 90% and 98% by
R-FMS. Pipeline N4-N3 has the second-highest FCR and the
difference between DR-FMS and R-FMS is 9%. Fig. 9 depicts
the FCR at the lowest load period, which shows lower FCR for
all power lines and gas pipelines. The largest FCR difference
from DR-FMS and R-FMS is for line 27-28, which is 13%. For
line 6-7, the FCR difference modelled by two schemes is the
lowest for both peak and lowest load period. To summarize,
DR-FMS not only provide more economic operation scheme
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Fig. 8. FCR for power lines and gas pipelines at peak load period.
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Fig. 9. FCR for power lines and gas pipelines at lowest load period.

but yields lower FCR since the FDIA is considered in a
moderate robust manner.

VI. CONCLUSION

A risk mitigation scheme for IEGS against FDIA is proposed
in this paper with a two-stage DRO model. A tractable SDP
formulation is built for the original DR-FMS, which is solved
by CGA in an iterative manner. Through the extensive case
studies, the key findings are listed below:
= Considering all three types of FDIA, i.e., EL-FDIA, GL-
FDIA and GD-FDIA, leads to higher economic results and
more load shedding than considering two types or one type
of FDIA. Load shedding is more sensitive to EL-FDIA than
GD-FDIA or GL-FDIA.

= DRO provides less-conservative results than RO in terms of
economic performance and load shedding.

= Renewable generation uncertainty is necessary to consider,
which leads to 3.7% more operation cost.

The proposed DR-FMS ensures the economic performance
of IEGS by providing a two-stage risk mitigation scheme via
implementing efficient load shedding under FDIA and
renewable uncertainty. The beneficiaries of this work inlcude:
network operators can have powerful operation models, end
customers will enjoy better supply security, and renewable can
penetrate to the maximum level without much curtailment.
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