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Cost/Benefit Assessment of a Smarter
Distribution System with Intelligent Electric
Vehicle Charging

Lin Zhou, Furong Li, Senior Member, IEEE, Zechun Hu, Member, IEEE, and Simon Le Blond, Member,
IEEE.

Abstract—In the near future, with more distributed generators
connected and new demands arising from the electrification of
heat and transport in the distribution networks, infrastructure
will become ever more stressed. However, building costly new
circuits to accommodate generation and demand growth is
time-consuming and environmentally unfriendly. Therefore,
active network management (ANM) has been promoted in many
countries, aiming to relieve network pressure. Previous research
in ANM was focused on distribution areas with significant
renewable penetration, where ANM reduced network pressure
through significantly enhanced generation curtailment strategies
rather than adopting traditional asset investment.

This paper proposes the use of electric vehicles (EVs) as
responsive demand to complement network stress relief that was
purely based on generation curtailment. This is achieved by
allowing EVs to absorb excessive renewable generation when they
cause network pressure, and it thus can provide additional
measures to generation curtailment strategies. The approach is
illustrated on a practical extra-high voltage distribution system.
The analyses clearly demonstrate the combined management of
demand and generation is superior to previous sole generation
management. The combined management strategy can achieve
7.9% improvement in utilization of renewable energy, and
subsequently increase the net investment profit by £566k.

Index Terms—active network management, demand side
management, electric vehicle, network pressure, renewable
energy generation.

. INTRODUCTION

HE UK has signed up to the EU Renewable Energy

Directive, which includes a UK target of 15% energy from
renewables by 2020. The target demands a seven-fold increase
in energy consumptions from renewables from 2008 level [1].
Significant of renewable energy generators are expected to be
connected to the existing distribution network. The distribution
networks are traditionally designed to distribute power from
grid supply points to end customers. They have very limited
capacity to accommodate significant renewables. This can lead
to severe network pressure and significant energy losses during
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generation peak times, particularly for areas that are dominated
by renewable generation. The traditional way to provide the
extra network capacity is to reinforce the capacity of existing
circuits or to construct new circuits, which is expensive,
time-consuming, and environmentally unfriendly.

Active network management (ANM) [2] has emerged as a
cheaper alternative to the traditional network investment to
accommaodate growing generation and demand. Through better
utilization of the existing network capacity, ANM can strike the
right trade-offs between building new assets and enhancing
system operational performance [3-10]. In generation
dominated area, i.e. network pressure caused by significant
renewable development, ANM, like active generator output
curtailment strategy, is more economic than network
reinforcement investment when accommodating growing
distributed generators (DGs) [11]. Several active control
methods have been presented in [4, 12-14]. A multi-period AC
optimal power flow technique is proposed to maximize wind
power capacity in [4]. Active power flow management is
applied in [12], based on logic control for trimming and
tripping of regulated non-firm generation to control power
flow. Paper [13] uses artificial intelligence technique based
constraint programming to automatically manage DG real
power outputs in medium voltage distribution networks. An
autonomous regional active network management system is
introduced in [14] to reduce network pressure through using
enhanced generation curtailment strategies. However, previous
efforts in these papers only investigate the value of ANM in
terms of economic generation curtailment, but they do not
consider the benefits from demand side management (DSM)
particularly from flexible demand, like electrical vehicles
(EVS).

DSM is implemented to dynamically balance the demand
between peak times and load curve valleys, thus reducing
network planning and operation cost [15-17]. EVs, which are
regarded as energy storage, can smooth the intermittency of
renewable energy resources, such as wind power. If EV
charging can be controlled to coincide with lull periods in
demand, this would not only avoid exacerbating peak loads but
also accommodate excessive wind power. The potential
benefits of “wind-EV”” complementation are discussed in [18,
19]. According to [20], DSM programs can be classified into
price-based [21, 22] and incentive-based [23-25]. Price
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mechanisms in the form of time-of-use (TOS) electricity tariffs
are employed in [21] to encourage commuters to recharge EVs
during off-peak hours. Paper [22] shows a novel method to
plane EV charging, which is achieved by electricity price first
and then be constrained with electricity grid constraints, both
voltage and power. A DSM strategy that takes into account
customers’ preferences, comfort levels, and load priorities is
proposed in [24] to accommodate EV charging while keeping
the peak demand unchanged. Paper [25]establishes a single EV
charging demand model, and then employs queuing theory to
describe the behavior of multiple EVs.

This paper applies DSM achieved through smart charging of
EVs on the existing ANM. The proposed control algorithm
focuses on the technical aspects of incentive-based DSM. The
optimal EV response across the entire network is determined in
time sequence in order to alleviate network pressure points. The
demonstration results show that when DSM is considered, the
network pressure can be alleviated before generation
curtailment. A substantial reduction of up to 7.9% in renewable
energy curtailment can be realized. ....... uncertainty energy
prices

This paper has the following four key contributions.

1) DSM with EV utilization in time sequence is applied on
the existing ANM; .....

2) It determines the impact of different time window scale
for intelligent EV charging on distribution network operation
benefits and costs;

3) It designs alternative planning strategies for distribution
systems where both intelligent EV charging and economic
generation curtailment are exercised for the largest profits.

The paper is organized as follows. Section Il introduces a
model of existing ANM without DSM. Section |11 describes the
improved ANM with DSM. Section 1V discusses the case study
of 33kV Aberystwyth network. Section V assesses the
cost/benefit of the combined management of demand and
generation in distribution network and its influence on network
planning. Finally, the conclusion is drawn in Section VI.

I1. CONSTRAINT MANAGEMENT OF EXISTING ANM WITHOUT
DSM

Traditional constraint management for network pressure in
distribution network follows the last-on-first-off (LOFO) rule
[26], where the last-on distributed generator (DG) will be the
first to be tripped off or curtailed once line overloading is
detected. However, sometimes, the last-on DG may not
contribute to remove the overloading, which results in
unnecessary wasted energy. To overcome the disadvantage,
ANM has been developed. Within various ANMs, a project
called autonomous regional active network management
system (AURA-NMS) was deployed in the UK in 2006 [27, 28].
It allows real-time states to be used to select the most sensitive
bus-bar to relieve network pressure, which could eliminate
stress with the least amount of generation curtailment or load
shedding. The optimal decision of existing AURA-NMS is
formulated as the following linear programming problem [27]:

Objective:

min (Z 0 APy + Z ﬁﬂAP&) (1)
ieNG ieND
Subject to:

Z {PBE.-APSL}-
_ieNG

Z(Pdi'dpdi )=0 (
ieND

N
ZS&- (P, - APy - Py +4Py)

=1

<PP'= |ENB (3)

Py <AP,; <Py™, ieNG (4)
0SAP; <Py, i END (5)

where at the i bus-bar, «; is coefficient of generation
curtailment, g is coefficient of load shedding, Py is power
generation, Pg is the load demand, APg is generation

curtailment, APq is load shedding, * P2 is the lower limit

of generation output, Pz;**is the upper limit of generation

output, £ is the maximum power flow of the I line and Sy is
an element in the sensitivity matrix S of line flow to nodal

power injection. : NB, NG, and ND are the sets of branch,
generation, and load demand, respectively.

Power transfer distribution factor (PTDF) is a sensitivity
matrix of line active power flow with respect to nodal power
injection. When an overloaded state is detected, the most
overloaded line Im will be found first. Then PTDF is introduced
as a reference matrix to select the most sensitive bus-bar, which
has the largest impact on line Im. Based on the PTDF, the
generation curtailment 4Pg;, which can be used to quantify the
operational benefit of AURA-NMS constraint management, is
derived as

PP
APgFmin{ P P }zfem (6)

PTDF(Im,gi)-PTDF(Im,si)’ ~ &

where si is the slack bus, Py, is the power flow on line I, and
Pi® s the line rating on line In. It is worth noting that the
operational benefit in the existing AURA-NMS is obtained only
through generation curtailment and neglects the potential
operational benefit from the demand side.

I1l. PROPOSED CONTROL ALGORITHM FOR ANM wITH DSM

To improve the utilization of renewable energy and increase
net investment benefit, in our proposed control algorithm, EV
charging strategy is exemplified as DSM. This approach is
taken to evaluate potential operational benefit from the demand
side. This section is separated into two parts. After indicating
constraints for intelligent EV charging in section A, the
operation of DSM (intelligent EV charging) is explained in
section B.

A. Constraints for intelligent EV charging

In order to calculate the lower/upper limits for EV charging,
two conditions are assumed in the proposed algorithm:
1. Total electricity consumption before and after DSM on
each node remains unchanged.
2. EV load shifting capability is predefined, limited by EV
battery capacity, assumed travel behavior, etc.
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The first assumption can be mathematically represented as

Py= Z P
ieND ieND
where P, ; is the new load demand at bus i after load shifting.
The predefined EV load shifting capability in the second
assumption can be described as
PPy |
LTDF(Im,di)-LTDF(Im,si} °

APd-Lfmin{ EVdU}: iEND (8)
where at the i bus-bar and in t" sequence, AP is the required
reductive/incremental amount of EV load demand to eliminate
network pressure, EF; is the flexible amount of EV demand,
and LTDF (load transfer distribution factor) is a sensitivity
matrix of line active power flow with respect to nodal demand.
Since load is regarded as negative generation, LTDF can be
derived from PTDF. The lower/upper limits of E¥;, denoted
as [Ctmin Cimax], are considered over a 24-hour period and are
determined by three factors [22, 23, 29, 30]:

1. Number of EVs.

2. EV battery characteristics.

3. Road trip limitations.

1) Number of EVs

The number of EVs on a specific bus-bar is calculated
according to EV penetration rate and the corresponding
customer number. EV penetration rate is assumed to be 0.675
per customer from year 2030 to 2050 [31]. Customer number
on the i bus-bar (CN;) can be expressed as

D; - ;
ADD;

CN, =

where D;is the annual load demand, n, is the percentage of
domestic customers [32], and ADD; is the average domestic
electricity consumption [32]. Numbers of EVs on 12 different
bus-bars are shown in detail in Table 1.

, iEND (9)

TABLE 1
NODAL EV OWNERSHIP IN THE NETWORK
Yearly Average
Load Domestic Domestic Customer EV
Bus Bar Demand percentage  consumption Num. Num.
(MWh) (KWh)
Bow street 26011 46.61% 5652 2145 1448
Machynllethl 17109 43.39% 4946 1501 1013
University 29496 46.61% 5652 2432 1642
College Wales
Aberdovey 15775 46.92% 5134 1442 973
Tywyn 23929 46.92% 5134 2187 1476
Fairbourne 14816 46.92% 5134 1354 914
North Road 30644 32.60% 3952 2528 1706
Aberystwyth 29926 46.61% 5652 2468 1666
Parc Y Llyn 35785 48.95% 4361 4017 2711
Llanilar 12792 46.61% 5652 1055 712
Rhydlydan 5621 48.95% 4361 631 426
Rhydlydan ST1 3385 48.95% 4361 380 257

2) EV battery characteristics

Typical EV battery capacity (B, ) in the UK is Nissan Leaf
characterized by 24kWh. To avoid damage and premature
aging, there are limitations on the battery state-of-energy [22]
as shown below:

5}?:1?235 = Sk_r{—: aﬁch ( 10)

(7) where 5%, is the state-of-energy of vehicle k at timeslot t. The

minimum (&,,3,) and maximum (d,,..) coefficients of the battery
capacity are set to be 0.2 and 0.9, respectively.

3) Road trip limitations

The use of an EV at each timeslot within 24 hours can be
obtained from [29] as shown in Fig. 1. The average electricity
consumption of an EV in use is 2.1 kW [23]. When an EV is
parked at a charge station, the vehicle is assumed to charge
immediately at the maximum charging rate of 4 kW. Since the
operation of ANM is executed on each bus-bar rather than each
customer, this paper considers total EVs on each bus-bar
instead of individual EV separately.

12

10r

Number of trips [%]
[=2]

0 7_2 - 4 6 8 1IO 12 14 1IS 1I8 éO 22 24
Time [h]
Fig. 1. Percentage of trips by EV at each hour

To guarantee sufficient energy for the next hour trip, the
battery state-of-energy S: of an EV should fall within the
minimum and maximum energy range. For a large number of
EVs (N) on a bus-bar, the total state-of-energy of batteries
varies in the range of [Symin, Stmax]. The upper (Cimax) and lower

(Ctmin) limits of EV charging at timeslot t can be expressed as:

Ct.mr}: = mx{Pa}‘__r—i - ‘?\'Tfiminﬂc - Sr—z‘__}mzx : O}J I==24 1y

Comax=MIN{ NG Be — St 1 min » PenNugi e}y 1 <1524 (1

575, 7CPyy, 151224 (13)
S1,pwn~NOminBe P 2 (14)

&) J,max‘z‘?"ramm B, (15)
where S, ( Sipme ) 1 the minimum  (maximum)

state-of-energy at timeslot t-1, Pg..r is total electricity
consumption of all EVs on the bus-bar over the next timeslot
t+1 due to driving, P, is the maximum charging rate per
vehicle when it is stopped, Ny is the number of stopped
EVs at timeslot t, S;mm ( Sime ) is the min (max)
energy-of-state at the end of 1% hour, and P 7 is the driving
electricity consumption in the 2" hour.

In order to derive the lower/upper limits of EV charging
(Ctmin and Cimax). SOme initial conditions should be clarified for
the energy-of-state §; as listed in (14) and (15). The unknown
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S:;and C;in (11) and (12) can then be derived from each other
according to the recursive relationship in (13).

B. Operation of EV charging strategy

In the proposed control algorithm, load demand and
generation profiles are updated every hour. The intelligent EV
charging follows the time-window schedule. M-time-window
means that in time sequencet, load shifting can be made in the
following M-1 hours, i.e. from t+1 to t+M-1. When no network
stress is detected in t, the check system will move on to
sequence t+1 and the dispatch of EV charging in t keeps
unchanged. Otherwise, intelligent EV charging starts to work
before the check system moves on to the next sequence.

AP

e
D]t [oawa o3 e 6] w6 w7 ve] v wo]wi] .|

6 hour time-window scale
Fig. 2. Schematic illustration of 6-hour time-window

In proposed ANM with DSM, when network pressure is
detected, the most overloaded line (Im) will be found in the
same way as that in existing ANM without DSM. According to
LTDF, the most sensitive node with maximum absolute LTDF
value will be picked out. The value of LTDF could be either
negative or positive for increasing or decreasing load demand,
respectively. According to (8) and by using LTDF, the ideal
load shifting quantification AP, can be calculated to eliminate
network pressure. The next step is to find a proper timeslot in
the time-window scale to exchange AP, For example, when
the time-window scale is assumed to be 6 hours, the best
timeslot is chosen within the shadow grids as shown in Fig. 2.
By ranking EV flexibility at these timeslots, where EV
flexibility is the difference between original EV charging
amount and EV charging boundary (Cimad/Cimin), the most
suitable timeslot can be chosen. If timeslot t+3 has the
maximum EV flexibility, the exchange of AP, should be done
between timeslot t and timeslot t+3 in Fig. 2. If the network
pressure cannot be totally eliminated, the program will look
into the second most sensitive node to make further load
shifting. The loop will carry on until there is no available EV
left for load shifting. After that, generation curtailment is
executed as mentioned in section Il to eliminate the remaining
network pressure. The corresponding flowchart for proposed
ANM constraint management with DSM is shown in Fig. 3.

Forming PTDF matrix

!

Input generation and load profile by
sequence and calculate the DC line flow

Overloading exist?

YES

Find the most overloaded line Im

!

Find the most effective node based on LTDF and
determine how much its demand (AP; ; ) need to

change to relief overloading

I

Check the availability of flexible EV on the
corresponding node in the following M hours and pick
out the most suitable timeslot to deal with AP ; ;

1

DG curtailing or load shedding

'

Output

Fig. 3. Flowchart of ANM constraint management with DSM

IV. CAsSE STubY OF ANM wiTH DSM

To analyze the benefit of proposed ANM with DSM, a
47-node network is studied. In section A, a practical test system
of ANM with DSM is introduced and its load profile is forecast.
In section B, the corresponding simulation results are
discussed.

A. A practical test system of ANM with DSM and EV demand
forecast

The test system, Aberystwyth 33kV network, is a practical
132/33kV distribution network in the UK [27] and its
simplified single line topology is shown in Fig. 4. For the test
system, the hourly 33kV load demand and DG output are
available in year 2006, where there are 8760 operating states in
total. The load profile in year 2006 mainly contains classical
loads, namely domestic, commercial, and industrial electricity
consumption. Load demand in the Aberystwyth area is not
expected to increase in the short and medium term. Hence, all
future classical loads are assumed invariant from 2006 to 2029.
When more EVs and heat pumps are connected, a large amount
of flexible load demand will be added to the classical loads. In
order to use the data of year 2006-2050 to simulate the test
system, the forecast of load demands of 2030-2050 are
required.



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 5

7011
7008 7010
7006

7004

7003

7002 @ Wind Farm
@ Hydro Power

7001
132kv

400KV

Fig. 4. Single diagram of the 132/33kV network

New added EV demand on each bus-bar can be estimated
analytically based on the customer number ratio in that area,
which is the ratio of the customer number (CN;) to the total
population in the UK [33]. With demand profiles (database in
DECC summary) for the whole UK and customer ratio of each
bus-bar, we can allocate the EV load demand of the whole
country to the test system.

B. Time-series simulation of the test system

Power flow calculations are carried out for the 8760
operating states in sequence. After simulation, the generation
curtailment results are counted. It is assumed that the duration
of each generation curtailment is one hour. The total generation
curtailments are identified in the whole year. Overloading
mainly occurs on the power flow of line 5015-5017, 5010-5012,
and 5018-5017, because of the new DG integration. When line
overloading occurs in some operating states, for the year 2030,
ANM without DSM needs to curtail renewable energy by
1790.74 MWh. When DSM is considered, however, the
generation curtailment reduces dramatically as shown in Fig. 5.
The reduction reaches up to 7.9% and its average value is
around 7.6%. In Fig. 5, two phenomena are worth noting. First,
in most situations, the generation curtailment is found to
decrease when time-window scale increases. The 24-hour
time-window scale has the least generation curtailment. Thus,
we argue that larger time-window scale can give better
perspective of the network condition to help make a smarter
load shifting decision. Second, small fluctuations appear in the
curve. ANM with DSM is used to minimize the generation
curtailment in one particular hour within a fixed time-window
scale. The optimization simulation is done in sequence. The
operation in earlier hours may increase the power flow in later
hours and make network congestion in later hours more severe.
Therefore, the increased generation curtailment in later hours

may be bigger than the saved generation curtailment in earlier
hours, which makes the total annual generation curtailment
more in the end and leads to the curve fluctuation.

T T U ¢ T T T T T [ S— T U ¢ LS S— [ S— T U ¢ T
1675 i

Generation curtailment (MWh)
= = = = =
[e2] [o)] (2] ()] [e)]
a1 o (2] o ~
o (8] o (8] o

AT S S S S S S S S S ST S S S S S S S S S 3
4 8 12 16 20 24
Time-window scale (h)

Fig. 5. Generation curtailment of ANM with DSM under different
time-window scales

In ANM without DSM, the most serious congestion happens
at 10:00 a.m. on the 340™ day of the year 2030. Thus, data on
this day is chosen to analyze the change in load curve due to
DSM. ANM with DSM goes through all bus-bars to do load
shifting according to their LTDF ranking before generation
curtailment. Since one node load shifting is limited and always
not enough to eliminate line overloading, we analyze the load
shifting of the entire network as shown in Fig. 6.

<10°

35r

25

—o—original load curve
—e—classical load curve
--[- load curve after DSM

Load demand (MWh)

Time (h)
Fig. 6. EV re-dispatch on peak generation curtailment day

The generation curtailments of ANM with and without DSM
are displayed in Table 2. Without DSM, the total generation
curtailment of the 340" day is 28.7 MWh. The value could be
reduced by 12% (namely 3.5 MWh) with DSM. In Fig. 6, the
difference between the original load curve (blue) and classical
load curve (red) reveals the original EV charging, and the
difference between classical load curve (red) and load curve
after DSM (green) is re-dispatch of EV charging in 24-hour
period. In the first 5 hours (from 0:00 to 5:00), the EV demand
is increased to reduce the generation curtailment. The
increasing EV demand mainly comes from load shifting
accumulated from the previous day or the later hours. In the
following 10 hours (from 5:00 to 15:00), the load curve after
DSM matches the original load curve in Fig. 6. However, one
should note that this does not mean there is no load shifting on
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individual nodes in Fig. 6 and one can see that the curtailment
values still have changes in these hours in Table 2. From the
16" hour on (from 15:00 to 24:00), compared with the original
load curve, the load curve after DSM decreases dramatically,
which is due to the slight line congestion detected in these
hours. The shaved EV demand is moved to the timeslots that
need larger load demand to alleviate network pressure.
Although the generation curtailment has a small increase at
22:00 in Table 2, the total curtailment of the whole 340" day is
reduced.

TABLE 2
GENERATION CURTAILMENT COMPARISON WITH AND WITHOUT DSM

Time  Without DSM (MWh)  After DSM (MWh)
1:00 1.35 0.64
2:00 0.38 0.00
3:00 0.30 0.00
4:00 0.00 0.00
5:00 257 1.98
6:00 0.75 0.75
7:00 0.98 0.98
8:00 2.47 1.98
9:00 431 3.86
10:00 4.46 4.07
11:00 2.27 1.90
12:00 431 3.98
13:00 1.97 1.67
14:00 1.69 1.73
15:00 0.88 1.18
16:00 0.00 0.00
17:00 0.00 0.00
18:00 0.00 0.00
19:00 0.00 0.00
20:00 0.00 0.00
21:00 0.00 0.00
22:00 0.01 0.44
23:00 0.00 0.00
24:00 0.00 0.00
Total 28.69 25.16

V. COST/BENEFIT ASSESSMENT OF ANM wITH DSM AND
NETWORK PLANNING

In this section, the impact of DSM on the optimal trade-off
between operational benefit and network investment cost is
discussed. The alternative planning strategies for smart
distribution system are also recommended.

A. Wind farm repowering and load profile forecast

Considering the life expectancy of existing wind-farms, the
year they were commissioned, the potential for increasing land
use, and the potential for increasing turbine size, the expansion
size and time of repowering wind farms are investigated in [26].
Since the repowering in 2018 has already reached the
maximum wind blade size level, the wind turbines cannot be
expanded any more. Therefore, the wind generation profile will
stay the same as that of 2018. The load profile from 2011 to
2050 was forecast in section V.

B. Benefit and cost category

For each investment option, the operational benefit
considered is from the annual generation curtailment reduction
as shown:

B, =EP,-GC,

where in the year y, B,, is the operational benefit, EP, is the
electricity price, and GC, is the generation curtailment
reduction.

The network investment cost considered in network planning
mainly includes primary asset investment, ANM, and DSM as
shown:

C,= Aq. —A-’\-*_-W/IS,. _D.S‘_-""%- (17)
where in the year y, C,, is the network investment cost, AC, is
the cost of asset investment, ANM, is cost of investing ANM,
and DSM, is the cost from DSM.

For the primary asset investment, the time to invest new lines
in network is determined by the year the wind farm is upgraded
and the EV demand connected. The detailed information is
listed in Table 3 [26]. For existing ANM without considering
DSM, its cost is £700k for the test system and its lifetime is 20
years [27]. In order to test the feasibility of the constraint
programming method for power flow management in ANM, a
software prototype was recently, developed to run on
commercially available substation computing equipment [11].
Hence, the cost of ANM consists of hardware and software. For
DSM, its cost estimation, however, varies significantly
between countries and even between networks in one country.
Therefore, it is difficult to determine the specific cost of DSM.
However, one should note that since existing ANM already has
the ability of remote measurement and monitoring, which can
remote monitor the EV consumption, DSM can be integrated
into the software in ANM. Therefore, in our proposed ANM
with DSM, the cost of integrating DSM is minimized.

TABLE 3
TIME AND COST OF PRIMARY ASSET INVESTMENT

Cost Present Value Lifetime

Number Right of Way Year Em) (Em) (years)
5015-5017

Asset 1 5017-5018 2013 1.33 114 40
5010-5012

Asset 2 5012-5013 2018 3.13 1.94 40

Asset 3 5017-5018 2030 1.25 0.33 40

After the operational benefit and investment cost are
obtained, the internal rate of return (IRR) is used to compare the
profitability of each planning strategy. The higher an option's
IRR, the more desirable it is to be undertaken. It is calculated by
setting the option’s net present value (NPV) [34] to be zero as:

2050 )
(B,-C,)
yE7my; (1HIRR)=0

where yois the year 2011.

C. Investment options

The exhaustive list of investment options in Table 4 reflect
four potential planning strategies, listed below, that distribution
network operators (DNOs) might adopt in the light of
increasing renewable penetration and EV demand.

1) Invest only in network primary assets.
2) Invest only in the ANM.

(16] 3) Invest both in network assets and ANM.
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> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 7

TABLE 4
EXHAUSTIVE INVESTMENT OPTIONS
Plan Investment detail Plan Investment detail
No. No.
1 2 lines in 2013 9 ANM in 2011& 2031+2 lines in 2013
2 2 lines in 2018 10 ANM in 2011& 2031+2 lines in 2018
3 1 line in 2030 11 ANM in 2011& 2031+1 line in 2030
4 2 lines in 2013+2 lines in 12 ANM in 2011& 2031+2 lines in
2018 2013+2 lines in 2018
5 2 lines in 2013+1 line in 13 ANM in 2011& 2031+2 lines in
2030 2013+1 line in 2030
6 2 lines in 2018+1 line in 14 ANM in 2011& 2031+2 lines in
2030 2018+1 line in 2030
7 2 lines in 2013+2 lines in 15 ANM in 2011& 2031+2 lines in
2018+1 line in 2030 2013+2 lines in 2018+1 line in 2030
8 ANM in 2011& 2031

D. Network planning considering electricity price uncertainty

From year 2010 to 2050, energy price will fluctuate as well
as the electricity price. Based on two key global drivers (the
speed of global economic recovery and the extent of globally
coordinated environmental action), Ofgem’s Project Discovery
- Energy Market Scenarios projects electricity price from year
2010 to 2025 in four different scenarios, namely GREEN
TRANSITION, SLOW GROWTH, GREEN STIMULUS, and
DASH FOR ENERGY [35]. To investigate the impact of
electricity price uncertainty, we adopt the wholesale electricity
price from year 2010 to 2025 in [35] and assume the wholesale
electricity price from year 2026 to 2050 will be same with year
2025.

By applying electricity price in (16-18), the corresponding
IRR of each investment option is calculated. Fig. 7 shows the
IRRs in ANM without DMS. In Fig. 7, the highest IRRs are
obtained in option 8 for all scenarios (26.34% in SLOW
GROWTH, 26.18% in GREEN TRANSITION, 29.77% in
DASH FOR ENERGY, and 24.56% in GREEN STIMULUS).
Option 11 is comparable to the most profitable option 8. Fig. 8
shows the IRRs in proposed ANM with DSM. The curve
tendency in Fig. 8 is similar to that in Fig. 7. Option 8 still gets
the highest profit in four scenarios. However, its largest IRR
reaches 26.36%, 26.19%, 29.79% and 24.58% in scenario
SLOW GROWTH, GREEN TRANSITION, DASH FOR
ENERGY and GREEN STIMULUS, respectively. Fig. 7 and
Fig. 8 give the recommendations in distribution network
planning. However, in these two figures, it is difficult to see the
increased benefit from applying DSM.
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Fig. 7. Options’ IRRs in ANM without DSM
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Fig. 8. Options’ IRRs in proposed ANM with DSM

Fig. 9 shows the increased operational benefit from adding
DSM to ANM. For each investment option, the increased
benefit is calculated by comparing NPVs in ANM with and
without DSM. In order to obtain NPVs, the IRR in (18) is set to
be 6.9% [36] for all investment options. In Fig. 9, options 8 to
15 show increased benefit due to DSM, whereas options 1 to 7
show no increased benefit since they are only line investment.
Option 11 (AuRA in 2011& 2031+1 line in 2030 in Table 4)
gets the largest increased benefit from DSM (£530k in SLOW
GROWTH, £478k in GREEN TRANSITION, £566k in DASH
FOR ENERGY, and £463k in GREEN STIMULUS). Under
different scenarios, the increased benefit in same investment
option varies a lot, which implies that the electricity price
uncertainty has a strong impact on the benefit and should not be
neglected in the benefit assessment.
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Fig. 9. Increased benefit from DSM
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VI. CONCLUSION

This paper applies DSM to ANM to relieve network pressure
caused by increasing DG connection in distribution networks.
The DSM strategy is achieved through intelligent EV charging,
which is realized determined based on network power flow
condition in time sequence and limited by time-window scale.
A practical 33kV network is exemplified as test system for
ANM with DSM to assess the costs/benefits over one year. It is
found that with intelligent EV charging, ANM can further
reduce generation curtailment, i.e. more renewable energy
could be utilized in the network. Results show that up to 7.9%
of generation curtailment could be saved compared with the
previous ANM. Moreover, it is also found that larger
time-window scales always produce better performance,
resulting in more generation curtailment reduction. By
analysing four different electricity price strategies, the
increased benefits from DSM are found to be strongly
dependent on electricity price and its uncertainty, which is thus
worth noting in optimal network asset investment. In general,
the new ANM with DSM can provide a viable and promising
enhancement to previous ANM, particularly for networks with
high penetrations of renewable generation.

VII. DISCUSSION

This paper proposes a way to apply DSM on the existing
ANM to reduce generation curtailment. The results positively
approve that combined management of generation and demand
can achieve 7.9% improvement in utilization of renewable
energy, and subsequently increases the network investment
profit by £566Kk.

Paper [12] shows that the scheme has the potential to
increase the capacity of generation connected by upwards of
three times the FG connection capacity (i.e. from a FG capacity
of 26MW to a total connected capacity of 74AMW upwards).
Paper [4] indicates that power curtailment proved to have a
significant impact on connecting larger volumes of DG, a 5%
limit of energy curtailment increases by 30% the wind power
capacity. Paper [14] shows the reduction in the level of
generation curtailment using AURA-NMS in term of different
additional DG capacity. The generation curtailment reduction
can reach 79.6% when the new DG capacity is set to be 40MW.
But this paper does not investigate the role that DSM can play
in reducing generation curtailment.

It should be noted that the methods devised in this paper and
reference are for different objectives with various constraints,
and testified on different systems. It is impossible to set a
benchmark to measure the benefits they can produce. The work
here is improvement over the existing ANM to consider the
impact from EV charging. The results in this paper demonstrate
that the new method can achieve fairly high benefits on top of
the existing work [14].
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