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The Leidenfrost effect occurs when an object near a hot surface vaporizes rapidly 

enough to lift itself up and hover1,2.  Although well-understood for liquids1-15 and 

stiff sublimable solids16-19, nothing is known about the effect with materials whose 

stiffness lies between these extremes.  Here we introduce a new phenomenon that 

occurs with vaporizable soft solids—the elastic Leidenfrost effect.  By dropping 

hydrogel spheres onto hot surfaces we find that, rather than hovering, they 

energetically bounce several times their diameter for minutes at a time.  With high-

speed video during a single impact, we uncover high-frequency microscopic gap 

dynamics at the sphere-substrate interface.  We show how these otherwise-hidden 

agitations constitute work cycles that harvest mechanical energy from the vapour 

and sustain the bouncing.  Our findings suggest a new strategy for injecting 

mechanical energy into a widely-used class of soft materials, with potential 

relevance to fields such as active matter, soft robotics, and microfluidics. 

 

The Leidenfrost effect is commonly observed in the kitchen—splash a droplet of water 

onto a hot pan and, rather than boiling, it counterintuitively floats above the surface1.  

Far beyond a curiosity, this effect plays a critical role in industrial settings ranging from 
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alloy production plants4 to nuclear reactors20 and provides a mechanism to reduce drag 

in fluid4,6 and solid19 transport. Although first described more than two centuries ago, 

issues as fundamental as droplet shape13,14, the dynamics during impact8,11,21, and the 

effects of substrate texturing3,7,12,16,17 are only recently becoming understood.  One issue 

that has remained unquestioned is the potential importance of the mechanical properties 

of the object itself.  For sublimable solids such as dry ice, the Young’s modulus is far 

too large (~10 GPa) for mechanical deformations to be relevant16-18.  In liquids, surface 

tension can lead to quasi-elasticity for tiny droplets15, but otherwise its influence is 

limited to capillary oscillations14.   

 

Here we introduce a new type of Leidenfrost effect that occurs with vaporizable soft 

solids—in our experiments, water-saturated hydrogel spheres (diameters 1.49±0.01 cm, 

masses 1.75±0.03 g).  Despite consisting of ~99% water, these behave like linear elastic 

solids (Young’s moduli Y=50±4 kPa; see the Methods and Supplementary Fig. 2).  The 

effect is illustrated in Fig. 1a, where we show top-down tracks of five dyed hydrogel 

spheres cast onto a ceramic-coated aluminium surface at 215 °C.  Immediately upon 

contact the spheres exhibit energetic activation, frenetically travelling around the 

surface at speeds of up to 0.5 m/s and emitting high-pitched screeching noises (see 

Supplementary Video 1).  This demonstrates the potential usefulness of the effect as an 

energy injection strategy, particularly to create macroscopic active matter22,23.  While 

the tracks convey horizontal motion, this is achieved through sustained vertical 

bouncing where the spheres repeatedly reach heights of 3-4 cm.  The effect is long-

lived—a sphere typically bounces for two to three minutes (~103 bounces), and 

occasionally we observe lifetimes up to ten minutes.  The activity would continue 

longer if the hydrogel material itself were tougher—the cessation of motion is 

invariably associated with fracture (Fig. 1b).  
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With side-view video of a single sphere bouncing on a gently curved plate (see setup of 

Fig. 1c), we isolate the vertical motion (Fig. 1d-f and Supplementary Video 2).  For a 

drop height of ~6 cm onto a “cold” (25 °C) surface, the sphere behaves like an inelastic 

ball, losing energy during each impact and quickly coming to rest (Fig. 1d).  With the 

same drop height and a “hot” (215 °C) surface (Fig. 1e), the sphere loses energy 

initially, but soon reaches a steady bounce height of a few centimetres.  Spheres 

dropped from below this height climb higher with every bounce—ultimately up to the 

same steady state (Fig. 1f).  Simultaneous plots of the vertical trajectories and audio 

traces show that the screeching only occurs in the hot experiments and coincides with 

each impact (Fig. 2a,b).   

 

The existence of a steady bounce height indicates that spheres in the hot experiments 

gain kinetic energy during their interaction with the surface.  To quantify this, we first 

analyse the cold experiments (inset Fig. 2a) and determine the rebound curve (Hi+1 vs. 

Hi).  By subtracting the anticipated "cold" rebound height from the measured one in the 

hot experiments, we determine the kinetic energy injected during impact with the hot 

surface (see Methods for full details).  For steady-state bouncing, this amounts to 

around 102 μJ (~6 mm in added bounce height), though with significant bounce-to-

bounce fluctuations (inset Fig. 2b).  By performing drops over a range of heights with 

an ensemble of similar spheres we obtain the average energy injection vs. drop height 

(Fig. 2c).  Plotting the energy injection and loss curves on the same graph produces an 

intersection point at approximately 3.5 cm, i.e., the steady bounce height.  

 

One naturally suspects this behaviour is linked to vaporization of the water-saturated 

gel.  By measuring the mass lost by spheres vs. how long they bounce on the hot surface 
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(Fig. 2d) we verify this—on average, they boil ~1.5x102 μg/impact.  How does the 

vaporization process unfold?  Focusing on a single impact at significantly higher spatial 

and temporal resolution, we discover complex dynamics at the sphere-substrate 

interface.  The image sequence in Fig. 3a shows that throughout the total duration (~8 

ms) of a single impact, a minute gap repeatedly opens and closes below the sphere at a 

much faster timescale.  This agitation is best appreciated in Supplementary Videos 3 

and 4, which further reveal that each oscillation launches a Rayleigh wave that 

propagates around the sphere's surface.  Using the central region of the video, we see 

that the gap reaches heights of ~102 μm before throttling back to the surface.  The gap 

power spectrum (Fig. 3c) has clear peaks near 2-3 kHz.  These peaks are also present in 

the audio spectrum, which unveils the oscillations as the source of the audible 

screeching. 

 

These observations are starkly different from the equilibrium Leidenfrost effect, where 

the stable (and silent) gap is governed by a delicate balance between vaporization, 

viscous squeeze flow, and the object's weight2,5.  Recent experiments with liquid 

droplets impinging on hot surfaces11,21 show that for sufficiently high impact velocities 

the vapour layer is squeezed and the droplet makes physical contact with the substrate, 

leading to accelerated vaporisation and a barrage of bubbles that tear upwards through 

the liquid. For our impacting spheres, we also expect physical contact and accelerated 

vaporization, but the integrity of the solid gel precludes the nucleation and escape of 

bubbles through the inside of the material—instead, vaporization is confined to the gel-

substrate interface.  Furthermore, whereas liquids store no elastic energy, and stiff solids 

like dry ice barely deform at all, the spheres in our experiments are solid yet soft, which 

means that energy stored in pressurized vapour can be converted into mechanical energy 

through elastic deformation. 
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Based on these considerations, we now propose a picture for the underlying physics that 

recasts each gap oscillation as a thermodynamic cycle that does mechanical work on the 

sphere (Fig. 4a).  The first stage of the cycle commences each time the sphere bottom 

comes into physical contact with the surface.  This causes rapid vaporization, but the 

localization of the generated vapour at the interface effectively traps it in a "pocket" (as 

illustrated for stage I of Fig. 4a).  The growing pressure from this vapour deforms the 

sphere's underbelly and causes the volume of the pocket to expand until its radius 

reaches the edge of the Hertzian contact and its height reaches some value l*.  Now the 

visible gap opens up and stage two begins where the vapour is blown out by the 

overpressure.  Once the pressure is sufficiently reduced, stage three begins during which 

the sphere bottom elastically recoils toward the surface, thus reinitiating stage one. The 

asymmetry of the pressure evolution on the upward/downward strokes of this cycle 

renders the area enclosed in the pressure-volume (PV) diagram greater than zero, which 

results in an increase in the sphere's mechanical energy.  Remarkably, this energy 

injection is achieved with the fuel (water), mechanism (gap oscillations) and mechanical 

output (increased mechanical energy) embedded in a single soft material—the sphere is 

effectively a soft engine that harvests energy from the hot surface. 

 

Characterizing the physics behind this engine from first principles involves a complex 

interplay of vaporization, compressed gas dynamics, and mechanical deformation.  We 

now lay out a simplified numerical model that couples these three ingredients and 

highlights the essential physics of this elastic Leidenfrost effect.  Complete details are 

included in the Methods, where we also present calculations based on our experiments 

to predict the appropriate simulation parameters.  As illustrated in Fig. 4b, we mimic the 

soft sphere with a one-dimensional chain of N identical masses (mass m) connected by 
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N-1 identical springs (rest length δ, stiffness κ).  Simulating a chain does not reproduce 

the geometric non-linearities associated with a Hertzian contact24.  However, it enables 

us to resolve elastic deformations at the interface (i.e., the gap oscillations) 

independently from the center-of-mass motion of the impacting object, which is a 

critical aspect of the observed phenomena.  (We further clarify this issue in the 

Supplementary Text).  We solve for the dynamics of this chain as it impacts into a hard 

surface by specifying the forces and initial conditions for each mass and numerically 

integrating the equations of motion.  Denoting the index of the bottom mass as i=0 and 

counting upwards, these are 

 

𝑚𝑦̈0 = −𝑓0 + 𝑓𝑠 + 𝑃𝐴 − 𝑔𝑚,               

𝑚𝑦̈𝑖 = (𝑓𝑖−1 − 𝑓𝑖)  − 𝑔𝑚       𝑖 ≠ 0, 𝑁 − 1, (6) 

   𝑚𝑦̈𝑁−1 = 𝑓𝑁−2 − 𝑔𝑚.   

 

Here g is the acceleration due to gravity, fi is the compressive force in the spring 

between masses i and i+1, fs is the force provided by the hard surface, P is the pressure 

from the vapour and A is the instantaneous contact area.  For both "cold" and "hot" 

impacts, we model the force provided by the hard surface, fs, as a stiff spring that acts 

on the bottommost mass once it passes y=0.   

 

Impacts onto a "hot" surface include the additional force that arises from the vapour 

pressure, P, that develops below the bottommost mass.  To reproduce the periodic 

pressure trapping, we initialize the pressure to P=0 Pa and co-evolve it as follows.  We 

approximate the build-up that occurs each time the bottommost mass reaches the surface 

(stage I) with linear growth (𝑃̇ = 𝛼).  For the escape that occurs once the gap has 

opened up (stages II and III), we approximate the vapour release with exponential decay 
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(𝑃̇ = −𝑃/𝜏).  Consistent with our preceding discussion, we demarcate the transition 

from pressure growth to decay each time the bottommost mass rises above the 

lengthscale l*.  The pressure acts over an area, A, that evolves throughout the impact 

according to the overlap of an imaginary sphere located at the centre-of-mass of the 

chain with the surface at y=0.      

 

Despite our model's simplicity, the simulations qualitatively and semi-quantitatively 

capture all of the experimental observations (for qualitative comparison, see 

Supplementary Video 5).  During impact, the position of the lowest mass in the chain, 

i.e., the gap, rises up to heights on the order of 102 μm with a frequency around ~2.5 

kHz, thus reproducing the observed oscillations (Fig. 4c).  Calculating the kinetic 

energy injection and loss curves exactly as in the experiments, we see an intersection 

point at drop heights of a few centimetres and a steady-state kinetic energy injection on 

the order of ~102 μJ.  With the mechanism laid out explicitly, we can estimate an upper 

bound for the total energy injection during an equilibrium bounce as 

Etotal≲Favl
*Nosc~5x102 μJ (where Nosc~10 is the number of gap oscillations and Fav~0.5 

N is the average impact loading—see Methods and Supplementary Fig. 3).  This value 

exceeds the measured kinetic energy injection of Fig. 2 (~102 μJ) and is consistent with 

the fact that some energy is also pumped into internal vibrations, i.e. the Rayleigh 

waves and screeching.   

 

We have introduced a new type of Leidenfrost effect that occurs with vaporizable soft 

solids.  Beyond the gentle hovering observed with liquids and stiff materials, soft solids 

are capable of energetic activation in the form of sustained bouncing.  Our experiments 

and numerical simulations reveal that the mechanism behind this behaviour is the 
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coupling between vapour release and elastic deformations, which lead to microscopic 

work cycles at the sphere-substrate interface that inject mechanical energy.  In addition 

to this fundamental result, our findings provide a tool for activating hydrogels in other 

fields.  As a concrete example, Supplementary Video 1 illustrates that studying 

collective phenomena in systems of "active bouncers" is already within reach.  Given 

the incorporation of hydrogels in soft robotics25,26 and microfluidics27-29, it is 

conceivable that embedding heating elements in those systems could lead to useful 

actuation there, too—particularly given that techniques to rapidly fabricate 

hydrogels30,31, bond them to diverse surfaces32,  and increase their toughness33 are 

steadily advancing.  Finally, although the system we have presented harvests energy 

from a heat reservoir, it is easy to imagine that other energy sources, e.g. vapour blown 

through a porous plate or a chemically active surface, could produce a similar effect.  

The elastic Leidenfrost effect therefore offers a template on how elastic deformations 

can be leveraged to create energetic activation of soft materials.   

 

Methods 

Sphere preparation  We prepared commercially available hydrogel spheres 

(Educational Innovations Inc. ® GB-710) by adding dehydrated specimens to a mildly 

saline solution (0.6 g NaCl/KCl table salt per 1.0 L Milli-Q® water).  As shown in 

Supplementary Fig. 1, the distribution (mean and spread) of masses of the dehydrated 

spheres is 24±1 mg, while for the swollen spheres it is 1.75±0.13 g.  The water content 

by mass is therefore 98.6±0.1%.  Given that the Young's moduli change quickly with 

sphere size (Supplementary Fig. 2), we performed experiments with a subset of spheres 

that had a distribution M=1.75±0.03 g.  For imaging data, we dyed the otherwise clear 

spheres with food colouring (Rainbow Dust ProGel®).    
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Surfaces  For the data in Figs. 1d-f, Figs. 2a,b and the energy loss measurements in Fig. 

2c, we used an aluminium surface with a gentle spherical curvature (radius 81.9 cm) to 

keep the sphere within the field of view.  In cold experiments we applied a 

superhydrophobic coating (Glaco® Mirror Coat Zero) to mitigate wetting.  Vaporisation 

prevented wetting in hot experiments.  The aluminium surface permitted observation of 

sequential impacts, but it easily became sullied.  This made subsequent interactions 

erratic and required constant cool-down so it could be cleaned. For the energy injection 

measurements of Fig. 2c, we used a flat, ceramic-coated aluminium surface.  This 

permitted us to observe only a few bounces at a time, but allowed us to clean the surface 

while hot and avoid cool-down.  The roughness of both the flat and curved surfaces was 

less than 5 μm.  We heated the surfaces with a hot plate (Stuart US150 Hot Stirrer, 700 

W) and measured their temperatures to within ±5 °C with a thermocouple. 

 

Sphere Young's modulus We characterized the spheres’ mechanical properties using 

an Instron (model 5965) equipped with a 10N load cell to take force-displacement 

curves for individual specimens sandwiched between two vertical crossheads 

(Supplementary Fig. 2a).  We attached fine (1200 grit) sandpaper to the crossheads to 

prevent slippage.  We coated the sandpaper with superhydrophobic spray (Glaco® 

Mirror Coat Zero) to mitigate wetting. The Young’s modulus was calculated by fitting 

the force-displacement curve to the equation for a Hertzian sphere compressed between 

two hard half-spaces34, i.e.,  

 

𝐹 =
𝑌√𝑑

3(1−𝜐2)
∆3/2.   (1) 
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Here Y is the Young’s modulus, d is the diameter, ν is the Poisson’s ratio (v=0.5), and Δ 

is the crosshead displacement.  The value of the Young’s modulus varies from sphere to 

sphere and with the diameter (Supplementary Fig. 2b).  For the spheres we used in the 

experiments, the distribution of Young’s moduli is Y=50±4 kPa. 

 

Bounce heights  and trajectory analysis  Our experimental setup provided a variety of 

ways to measure a sphere’s vertical trajectory and bounce height.  While the most 

straightforward would seem to be with the camera, this has the disadvantages of (1) 

poorly resolving small drop heights and (2) requiring inconveniently large amounts of 

data and analysis.  Instead, we used the force sensors to define the contact intervals and 

backed out the vertical trajectories from Newton’s laws24,35-37  (Supplementary Fig. 3a).  

We take 𝑡𝑖
𝑜𝑢𝑡 to be the time when impact i ends and 𝑡𝑖+1

𝑖𝑛  to be the time when impact i+1 

begins and furthermore define 𝛥𝑡 = 𝑡𝑖+1
𝑖𝑛 − 𝑡𝑖

𝑜𝑢𝑡  and 𝑡̅ = (𝑡𝑖+1
𝑖𝑛 + 𝑡𝑖

𝑜𝑢𝑡)/2.  The 

maximum height in the parabolic flight between is 𝐻𝑖+1 = 𝑔𝛥𝑡2/8 , where g=9.8 m/s2.  

The trajectory is given by 

 

𝑦(𝑡) = 𝐻𝑖+1 −
1

2
𝑔(𝑡 − 𝑡̅ )2.  (2) 

 

This is valid as long as aerodynamic drag is small compared to the sphere’s weight.  For 

spheres with a diameter of 1.5 cm moving through air at 1.0 m/s (the maximum velocity 

we encounter), the drag term is on the order of ρairπd2V2/4~1x10-4 N—two orders of 

magnitude smaller than the weight.   

 

For impacts on the hot surface we modified this procedure on account of the gap 

oscillations, which modulate the force sensor signal at high frequency.  Additionally, 
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the sensor picks up other spurious oscillations ranging from 1-10 kHz due to mechanical 

resonances in our setup.  We therefore quantified the response of an impact onto a hot 

surface by first performing a low pass (<1 kHz) filter and then defining tc and Fmax the 

same way as in the cold experiments (Supplementary Fig. 3b).  The global features of 

impact involve low enough frequencies (<500 Hz) to be preserved. 

 

Energy injection  We measured the kinetic energy injection by comparing the rebound 

heights for spheres dropped on cold and hot surfaces.  The bouncing on a cold surface is 

close to what would be expected for a constant coefficient of restitution, which would 

give 𝐻𝑖+1 = 𝜀2𝐻𝑖.  However, ε deviates from constant behaviour at low and especially 

at high Hi (Supplementary Fig. 4). To account for this, we binned our data and 

constructed an interpolated coefficient of restitution curve for the cold surface, 𝜀(𝐻𝑖), as 

shown in Supplementary Fig. 4b.  The energy injection is then given by 

 

𝐸𝑖𝑛𝑗(𝐻𝑖) = 𝑀𝑔(𝐻𝑖+1 − {𝜀(𝐻𝑖)}2𝐻𝑖).  (3) 

 

We remark that the form of the curve, 𝜀(𝐻𝑖), is not consistent with dissipation from 

plastic deformation24 or viscoelasticity38.  This reveals that the energy lost during 

impact is mainly transferred to spheroidal oscillations39, which are clearly visible in  

Supplementary Video 3.  These oscillations damp out over the long parabolic flights 

between impacts.  Note these spheroidal oscillations are large wavelength, i.e., λ~d, and 

are not the same as the short-wavelength Rayleigh waves (λ~1mm) that are a result of 

the gap oscillations (visible only in the second part of Supplementary Video 3). 

 

Parameters of the spring-mass chain  For fi, we use neo-Hookean springs to prevent 
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the masses from passing through each other40.  We denote the positions of the masses by 

yi and the (common) rest length of the springs as δ.  Defining the stretch of the ith spring 

as 𝜆𝑖 = (𝑦𝑖+1 − 𝑦𝑖)/𝛿 and the (common) spring constant as κ, then the force between 

the masses i and i+1 is given by 𝐹𝑖 = 𝜅(𝜆𝑖 − 𝜆𝑖
−2).  In the limit of small deformations 

(λi~1), these springs are approximately Hookean with stiffness 3κ/δ.  As discussed 

previously, the spheres lose their centre-of-mass kinetic energy during impact to 

excitation of large-wavelength spheroidal modes.  Analogously, the energy lost for the 

spring-mass chain arises from excitation of large-wavelength longitudinal modes.  For 

the data in Fig. 4d, we simulate one bounce at a time and do not consider any damping 

that occurs in flight between bounces.  This is also true for Supplementary Video 5, 

where we simulate individual bounces and then extrapolate the parabolic flights in 

between. 

 

We constrain the sum of the individual masses to equal the sphere mass (Nm=M), and 

the sum of the spring rest lengths to equal the sphere diameter [ (N-1)δ =d ].  For the 

neo-Hookean spring constant, κ, we compare numerical and experimental results for 

impacts onto a "cold" surface and pick the value that minimizes the deviation of the 

average force throughout impact vs. drop height.  The motivation for this procedure is 

illustrated in Supplementary Fig. 5a, where the smooth F vs. t curve for an experiment is 

plotted alongside the step-like curve from a chain.  The step arises because the chain 

impact is dominated by a shock that gives a nearly constant force F(t)~cV0σ, where 𝑐 =

√3𝜅𝛿/𝑚 is the sound speed (~4 m/s), V0 the impact velocity, and σ=Μ/d the linear 

mass density.  The step shape suggests a convenient strategy for mimicking the sphere.  

Namely, for an appropriate value of κ, the average forces can nearly match up 

(Supplementary Fig. 5b).  To find this value, we first run impacts at a fixed value of κ 
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for several different drop heights (spread out over our experimental range of 

approximately 400 μm to 20 cm) and calculate the sum of the squared residuals between 

the average force and the prediction from Hertz.  Calculating this quantity for different 

values of κ reveals a clear optimum (Supplementary Fig. 5c), which produces an Fav vs. 

Hi curve that nicely approximates the experimental results (Supplementary Fig. 5b).  

Advantageously, this procedure ensures that the contact times for the experiments and 

simulations are similar (Supplementary Fig. 5d).  For the data presented in Fig. 4 we use 

N=201, m=8.7x10-5 kg, δ=7.5x10-5 m, and κ=6.0x10-1 N. The results start becoming 

independent of discretization for N larger than 50 (see Supplementary Fig. 6).   

 

Interaction with the hard surface  For the interaction with the hard surface, fs, we use 

the penalty method and turn on a very stiff spring for the bottom mass once it passes 

below y=0.  Additionally, we use the FEM practice of incorporating a damping term on 

the bottom-most mass when it is below y=0 to stabilize the contact.  Concretely, this 

force is 𝑓𝑠 = (−𝑘𝑠𝑦0 − 𝛽𝑠𝑦̇0) 𝜃(−𝑦0).  Here ks is a spring constant, βs is a damping 

coefficient, and θ(-y0) is the Heaviside function to reflect that this only turns on for 

y0<0.  In order for the surface to be "hard," it must be the case that ks>>3κ/δ.  The 

damping parameter, βs, should be just large enough to maintain contact each time the 

lowest mass passes zero (until it is pushed up again by the growing pressure). Beyond 

these criteria, the exact values of ks and βs do not significantly alter the gross features of 

impact, although extremely large values unnecessarily slow down computation.  For the 

data in the main text we use ks =105κ/δ and βs = 500 Ns/m.  

 

Evolving contact area We account for the evolving contact area of an impacting sphere 

in each step of our numerics as is done in Hertzian contact mechanics.  Explicitly, we 

calculate the intersection area of a sphere of diameter d located at the centre-of-mass of 
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the chain, Ycm, with the plane located at y=0.  This is given by A=π[(d/2)2-(d/2-Ycm)2] 

θ(d/2- Ycm).  The Heaviside function, θ(d/2- Ycm), is present to satisfy the requirement 

that the contact area is zero if Ycm >d/2.  Having an evolving contact area is not 

necessary for energy injection.  However, an evolving contact (1) better approximates 

the experimental situation where the energy injected per cycle is larger near the middle 

of each impact than at the beginning or end and (2) produces a smooth curve by 

rendering the effect of the discrete total number of cycles less pronounced.    

 

Parameters of the pressure evolution To produce trapping in our 1D model, we 

initialize the pressure to P=0 Pa and use the following evolution: 

 

   𝑃̇ = −𝑃/𝜏  until y0 reaches 0,     

   𝑃̇ = 𝛼       until y0 reaches l*,       (7) 

   𝑃̇ = −𝑃/𝜏  until y0 reaches 0,     

                                        ⋮ 

As evident, this evolution depends on the values of the parameters l*, α, and τ, which 

we now estimate from our experiments.    

 

First, we estimate a reasonable value for the length scale, l*.  This length must be 

smaller than, but on the order of, the gap height.  Realistically, it will change for each 

cycle of a single impact owing to (a) the changing pre-compression of the sphere and 

(b) the changing contact area.  It will also change from one impact to the next owing to 

differences in the dynamics as a function of the drop height.  Practically, we use the 

zeroth order approximation of a constant value because it is sufficient to recover the 

observed behaviours. We choose our estimate for the constant value based on 
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observations of an equilibrium bounce and use l*= 50 μm—on the order of maximum 

gap height seen in the middle of an impact for a sphere dropped from the equilibrium 

bounce height (Fig. 3b). 

 

To estimate the value for the pressure build-up rate, α, we are guided by two 

calculations.  First, as is evident in Fig. 3B, the gap under the sphere remains closed in 

the middle of the impact for Δt≈0.25 ms.  When the contact fully breaks, the upward 

force provided by the trapped vapour must be at least as large as the downward force 

from the Hertzian compression above.  For a drop height of 3.5 cm, the Hertzian force 

from the compressed sphere above in the middle of the impact, Fmax, is on the order of 1 

N (Fig. S3C).  With the aid of Hertzian theory or from our experimental data (e.g., 

Supplementary Videos 3 and 4), we also know that the Hertzian contact area is Amax≈10-

4 m2.  This gives the lower bound for the estimate, α≈Fmax/Amax Δt≈4x107 Pa s-1. 

 

As a second independent calculation, we use the data for the mass loss in combination 

with the ideal gas law.  Again considering a drop from the steady bounce height, the 

mass lost is 150 μg/impact (Fig. 2d).  Assuming 10 gap oscillations per impact and 

additional evaporative losses when the trap is open, we roughly estimate that the amount 

of vapour trapped during one cycle is on the order of 10 μg, which amounts to n=6x10-7 

mol.  This is contained in a volume that scales like Amax l
*.  The time it takes for this to 

develop is, once again, Δt≈0.25 ms.  Using the ideal gas law, we therefore have 

α=nRT/Amax l
*Δt ≈2x108 Pa s-1 (R is the universal gas constant and T≈500 K the 

temperature of the surface).  This value is higher than our other estimate, and we expect 

this arises because the trapping process is not perfect—gas often escapes laterally in the 

middle of a cycle rendering it less efficient.  This is evidenced by the initially choppy 
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development of the gap oscillations (Supplementary Video 4).  For the simulation data 

in Fig. 4, we use a value between our two estimates: α=1.5x108 Pa s-1.  

 

Finally, to inform our decision on a reasonable value for the time constant, τ, we 

consider the situation of pressure driven evacuation of viscous vapour from a fixed gap 

(height l*) trapped between two flat disks (area Amax).  Accounting for Poiseuille's flow 

and mass conservation, one can show that this system obeys Darcy's law18,41 with a 

timescale given by τ=12ηAmax/πl*2ΔP, where, η is the viscosity of the vapour (2x10-5 Pa 

s) and ΔP is the pressure difference between the center and the edge (ΔP ≈Fmax/Amax  

≈10 kPa).  This gives a timescale of 10-4 s, which should be considered an upper bound 

for two reasons.  First, the gap opens to heights greater than l*, which further reduces 

the escape time.  Second, the increasing volume of the gap itself reduces the pressure 

via the ideal gas law.  In the simulations we use a slightly smaller value of τ=5x10-5 s.  

Our model is not terribly sensitive to this parameter so long as it is not significantly 

larger than our upper bound—energy injection still occurs for infinitesimal values of τ 

as long as the lengthscale, l*, and the pressure buildup parameter, α, are greater than 

zero.  
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Figure 1:  Persistent bouncing of hydrogel spheres on a hot surface. a Top-down stills 

showing the long-lasting dynamics of five hydrogel spheres dropped onto a hot (215 °C) 

surface.  The lateral motion is mediated by vertical bouncing, and the spheres emit high-

pitched screeching noises throughout (see Supplementary Video 1).  Lines show tracks 

of the preceding 0.42 s.  b Spheres typically stop after 2-3 minutes as a result of 

fracture. c Main experimental setup with a high-speed camera, backlighting, a 

microphone, and dynamic load cells to determine contact intervals.  d-f  Side-view stills 

showing the maximum height for bounce number nb with spheres dropped from d ~6 cm 

onto a “cold” (25 °C) surface and e “hot” (215 °C) surface, and from f ~2 mm onto a 

hot surface (see Supplementary Video 2).  The sphere dropped onto the cold surface 

comes to rest, while the spheres dropped onto the hot surface reach a steady bounce 

height of about 3.5 cm.   
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Figure 2: Energy injection and mass loss.  a Vertical position (top) and audio (bottom) 

vs. time for a sphere bouncing on a cold surface.  The rebound curve (inset) reveals the 

restitution coefficient, ε, is nearly constant (see Methods and Supplementary Fig. 4).  b  

Same as (a) for a sphere on a hot surface.  The audio trace reveals that screeching only 

occurs during impact.  The inset shows the kinetic energy gained, Einj, during each 

impact on the hot surface (see Methods).  c The kinetic energy lost during impacts on a 

cold surface (blue open circles) and injected during impacts on a hot surface (red closed 

circles) vs. drop height.  d  The mass lost vs. time is 1.0±0.2 mg/s (dashed line) or about 

1.5x102 μg/impact.   
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Figure 3:  High-frequency, microscopic 

gap oscillations at the interface a High-

speed video stills of a single impact (Hi 

≈3.5 cm) at high magnification and frame 

rate (15625 fps) reveal that a minute gap 

below the sphere rapidly opens and closes 

many times during each impact (see 

Supplementary Videos 3 and 4).  The 

timescale for one cycle is about 0.5 ms.  b 

Plotting the gap height (averaged over the 

central 100 pixels) vs. time shows that the 

deformation of the sphere underbelly is 

on the order of 102 μm.  c The power 

spectra of the gap and the audio signal 

both have clear peaks around 2-3 kHz, 

which indicates that the gap oscillations 

are the source of the screeching.   
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Figure 4:  Coupling the Leidenfrost effect to elastic deformations. a Sketch and PV 

diagram for the gap oscillation work cycle consisting of three stages: pressure build-up 

(I), pressure escape (II), and elastic recoil (III).  The "pocket" underneath the sphere 

where the vapour is trapped is illustrated in the drawing for stage I.  b We simulate the 

sphere as a chain of N identical point-masses (mass m) connected by N-1 identical neo-

Hookean springs (stiffness κ, rest length δ).  The pressure grows linearly (𝑃̇ = 𝛼) after 

each time the lowest mass reaches the surface (stage I) and then decays exponentially 

(𝑃̇ = −𝑃/𝜏)  after each time the lowest mass rises above the trapping height l* (stage II 

and III).  c-d Simulation results for N=201 masses and all other parameters estimated 

from our experiments (m=8.7x10-5 kg, δ=7.5x10-5 m, κ=6.0x10-1 N, l*=50 μm, 

α=1.5x108 Pa/s and τ=5.0x10-5 s—see Methods).  c The lowest mass, i.e. the gap, opens 

and closes to heights on the order of 102 μm at ~2.5 kHz (power spectrum in inset).  d 

Plots of the kinetic energy injected and lost vs. drop height for the model shows the 

same steady-state bouncing phenomenology as the experiments with a similar 

equilibrium bounce height of a few centimetres.  For rendered videos of the model gap 

oscillations and steady-state bouncing, see Supplementary Video 5. 


