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The Leidenfrost effect occurs when an object near a hot surface vaporizes rapidly
enough to lift itself up and hover™2. Although well-understood for liquids'*® and
stiff sublimable solids'®'°, nothing is known about the effect with materials whose
stiffness lies between these extremes. Here we introduce a new phenomenon that
occurs with vaporizable soft solids—the elastic Leidenfrost effect. By dropping
hydrogel spheres onto hot surfaces we find that, rather than hovering, they
energetically bounce several times their diameter for minutes at a time. With high-
speed video during a single impact, we uncover high-frequency microscopic gap
dynamics at the sphere-substrate interface. We show how these otherwise-hidden
agitations constitute work cycles that harvest mechanical energy from the vapour
and sustain the bouncing. Our findings suggest a new strategy for injecting
mechanical energy into a widely-used class of soft materials, with potential

relevance to fields such as active matter, soft robotics, and microfluidics.

The Leidenfrost effect is commonly observed in the kitchen—splash a droplet of water
onto a hot pan and, rather than boiling, it counterintuitively floats above the surface’.

Far beyond a curiosity, this effect plays a critical role in industrial settings ranging from



alloy production plants* to nuclear reactors?® and provides a mechanism to reduce drag
in fluid*® and solid®® transport. Although first described more than two centuries ago,
issues as fundamental as droplet shape!®!4, the dynamics during impact®!12t, and the
effects of substrate texturing®’121617 are only recently becoming understood. One issue
that has remained unquestioned is the potential importance of the mechanical properties
of the object itself. For sublimable solids such as dry ice, the Young’s modulus is far
too large (~10 GPa) for mechanical deformations to be relevant!®8, In liquids, surface
tension can lead to quasi-elasticity for tiny droplets®, but otherwise its influence is

limited to capillary oscillations*.

Here we introduce a new type of Leidenfrost effect that occurs with vaporizable soft
solids—in our experiments, water-saturated hydrogel spheres (diameters 1.49+0.01 cm,
masses 1.75+0.03 g). Despite consisting of ~99% water, these behave like linear elastic
solids (Young’s moduli Y=50%4 kPa; see the Methods and Supplementary Fig. 2). The
effect is illustrated in Fig. 1a, where we show top-down tracks of five dyed hydrogel
spheres cast onto a ceramic-coated aluminium surface at 215 °C. Immediately upon
contact the spheres exhibit energetic activation, frenetically travelling around the
surface at speeds of up to 0.5 m/s and emitting high-pitched screeching noises (see
Supplementary Video 1). This demonstrates the potential usefulness of the effect as an
energy injection strategy, particularly to create macroscopic active matter?2%, While
the tracks convey horizontal motion, this is achieved through sustained vertical
bouncing where the spheres repeatedly reach heights of 3-4 cm. The effect is long-
lived—a sphere typically bounces for two to three minutes (~10° bounces), and
occasionally we observe lifetimes up to ten minutes. The activity would continue
longer if the hydrogel material itself were tougher—the cessation of motion is

invariably associated with fracture (Fig. 1b).



With side-view video of a single sphere bouncing on a gently curved plate (see setup of
Fig. 1c), we isolate the vertical motion (Fig. 1d-f and Supplementary Video 2). For a
drop height of ~6 cm onto a “cold” (25 °C) surface, the sphere behaves like an inelastic
ball, losing energy during each impact and quickly coming to rest (Fig. 1d). With the
same drop height and a “hot” (215 °C) surface (Fig. 1e), the sphere loses energy
initially, but soon reaches a steady bounce height of a few centimetres. Spheres
dropped from below this height climb higher with every bounce—ultimately up to the
same steady state (Fig. 1f). Simultaneous plots of the vertical trajectories and audio
traces show that the screeching only occurs in the hot experiments and coincides with

each impact (Fig. 2a,b).

The existence of a steady bounce height indicates that spheres in the hot experiments
gain Kinetic energy during their interaction with the surface. To quantify this, we first
analyse the cold experiments (inset Fig. 2a) and determine the rebound curve (Hi+1 vs.
Hi). By subtracting the anticipated "cold" rebound height from the measured one in the
hot experiments, we determine the kinetic energy injected during impact with the hot
surface (see Methods for full details). For steady-state bouncing, this amounts to
around 102 pJ (~6 mm in added bounce height), though with significant bounce-to-
bounce fluctuations (inset Fig. 2b). By performing drops over a range of heights with
an ensemble of similar spheres we obtain the average energy injection vs. drop height
(Fig. 2¢). Plotting the energy injection and loss curves on the same graph produces an

intersection point at approximately 3.5 cm, i.e., the steady bounce height.

One naturally suspects this behaviour is linked to vaporization of the water-saturated
gel. By measuring the mass lost by spheres vs. how long they bounce on the hot surface
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(Fig. 2d) we verify this—on average, they boil ~1.5x10? pg/impact. How does the
vaporization process unfold? Focusing on a single impact at significantly higher spatial
and temporal resolution, we discover complex dynamics at the sphere-substrate
interface. The image sequence in Fig. 3a shows that throughout the total duration (~8
ms) of a single impact, a minute gap repeatedly opens and closes below the sphere at a
much faster timescale. This agitation is best appreciated in Supplementary Videos 3
and 4, which further reveal that each oscillation launches a Rayleigh wave that
propagates around the sphere's surface. Using the central region of the video, we see
that the gap reaches heights of ~102 um before throttling back to the surface. The gap
power spectrum (Fig. 3c) has clear peaks near 2-3 kHz. These peaks are also present in
the audio spectrum, which unveils the oscillations as the source of the audible

screeching.

These observations are starkly different from the equilibrium Leidenfrost effect, where
the stable (and silent) gap is governed by a delicate balance between vaporization,
viscous squeeze flow, and the object's weight®°. Recent experiments with liquid
droplets impinging on hot surfaces''?! show that for sufficiently high impact velocities
the vapour layer is squeezed and the droplet makes physical contact with the substrate,
leading to accelerated vaporisation and a barrage of bubbles that tear upwards through
the liquid. For our impacting spheres, we also expect physical contact and accelerated
vaporization, but the integrity of the solid gel precludes the nucleation and escape of
bubbles through the inside of the material—instead, vaporization is confined to the gel-
substrate interface. Furthermore, whereas liquids store no elastic energy, and stiff solids
like dry ice barely deform at all, the spheres in our experiments are solid yet soft, which
means that energy stored in pressurized vapour can be converted into mechanical energy

through elastic deformation.



Based on these considerations, we now propose a picture for the underlying physics that
recasts each gap oscillation as a thermodynamic cycle that does mechanical work on the
sphere (Fig. 4a). The first stage of the cycle commences each time the sphere bottom
comes into physical contact with the surface. This causes rapid vaporization, but the
localization of the generated vapour at the interface effectively traps it in a "pocket"” (as
illustrated for stage I of Fig. 4a). The growing pressure from this vapour deforms the
sphere's underbelly and causes the volume of the pocket to expand until its radius
reaches the edge of the Hertzian contact and its height reaches some value I*. Now the
visible gap opens up and stage two begins where the vapour is blown out by the
overpressure. Once the pressure is sufficiently reduced, stage three begins during which
the sphere bottom elastically recoils toward the surface, thus reinitiating stage one. The
asymmetry of the pressure evolution on the upward/downward strokes of this cycle
renders the area enclosed in the pressure-volume (PV) diagram greater than zero, which
results in an increase in the sphere's mechanical energy. Remarkably, this energy
injection is achieved with the fuel (water), mechanism (gap oscillations) and mechanical
output (increased mechanical energy) embedded in a single soft material—the sphere is

effectively a soft engine that harvests energy from the hot surface.

Characterizing the physics behind this engine from first principles involves a complex
interplay of vaporization, compressed gas dynamics, and mechanical deformation. We
now lay out a simplified numerical model that couples these three ingredients and
highlights the essential physics of this elastic Leidenfrost effect. Complete details are
included in the Methods, where we also present calculations based on our experiments
to predict the appropriate simulation parameters. As illustrated in Fig. 4b, we mimic the

soft sphere with a one-dimensional chain of N identical masses (mass m) connected by



N-1 identical springs (rest length o, stiffness x). Simulating a chain does not reproduce
the geometric non-linearities associated with a Hertzian contact?*. However, it enables
us to resolve elastic deformations at the interface (i.e., the gap oscillations)
independently from the center-of-mass motion of the impacting object, which is a
critical aspect of the observed phenomena. (We further clarify this issue in the
Supplementary Text). We solve for the dynamics of this chain as it impacts into a hard
surface by specifying the forces and initial conditions for each mass and numerically
integrating the equations of motion. Denoting the index of the bottom mass as i=0 and

counting upwards, these are

myo = —fo + fo + PA— gm,

Myy-1 = fn—2 — gm.

Here g is the acceleration due to gravity, fi is the compressive force in the spring
between masses i and i+1, fs is the force provided by the hard surface, P is the pressure
from the vapour and A is the instantaneous contact area. For both "cold" and "hot"
impacts, we model the force provided by the hard surface, fs, as a stiff spring that acts

on the bottommost mass once it passes y=0.

Impacts onto a "hot" surface include the additional force that arises from the vapour
pressure, P, that develops below the bottommost mass. To reproduce the periodic
pressure trapping, we initialize the pressure to P=0 Pa and co-evolve it as follows. We
approximate the build-up that occurs each time the bottommost mass reaches the surface
(stage 1) with linear growth (P = ). For the escape that occurs once the gap has

opened up (stages Il and 111), we approximate the vapour release with exponential decay
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(P = —P/t). Consistent with our preceding discussion, we demarcate the transition
from pressure growth to decay each time the bottommost mass rises above the
lengthscale I*. The pressure acts over an area, A, that evolves throughout the impact
according to the overlap of an imaginary sphere located at the centre-of-mass of the

chain with the surface at y=0.

Despite our model's simplicity, the simulations qualitatively and semi-quantitatively
capture all of the experimental observations (for qualitative comparison, see
Supplementary Video 5). During impact, the position of the lowest mass in the chain,
i.e., the gap, rises up to heights on the order of 10 um with a frequency around ~2.5
kHz, thus reproducing the observed oscillations (Fig. 4c). Calculating the kinetic
energy injection and loss curves exactly as in the experiments, we see an intersection
point at drop heights of a few centimetres and a steady-state kinetic energy injection on
the order of ~102 pJ. With the mechanism laid out explicitly, we can estimate an upper
bound for the total energy injection during an equilibrium bounce as

EtotalSFavl ‘Nosc~5x10% nd (Where Nosc~10 is the number of gap oscillations and Fa~0.5
N is the average impact loading—see Methods and Supplementary Fig. 3). This value
exceeds the measured kinetic energy injection of Fig. 2 (~10% wJ) and is consistent with
the fact that some energy is also pumped into internal vibrations, i.e. the Rayleigh

waves and screeching.

We have introduced a new type of Leidenfrost effect that occurs with vaporizable soft
solids. Beyond the gentle hovering observed with liquids and stiff materials, soft solids
are capable of energetic activation in the form of sustained bouncing. Our experiments

and numerical simulations reveal that the mechanism behind this behaviour is the



coupling between vapour release and elastic deformations, which lead to microscopic
work cycles at the sphere-substrate interface that inject mechanical energy. In addition
to this fundamental result, our findings provide a tool for activating hydrogels in other
fields. As a concrete example, Supplementary Video 1 illustrates that studying
collective phenomena in systems of "active bouncers" is already within reach. Given
the incorporation of hydrogels in soft robotics?>% and microfluidics?”-%, it is
conceivable that embedding heating elements in those systems could lead to useful
actuation there, too—particularly given that techniques to rapidly fabricate
hydrogels®3!, bond them to diverse surfaces®?, and increase their toughness®: are
steadily advancing. Finally, although the system we have presented harvests energy
from a heat reservoir, it is easy to imagine that other energy sources, e.g. vapour blown
through a porous plate or a chemically active surface, could produce a similar effect.
The elastic Leidenfrost effect therefore offers a template on how elastic deformations

can be leveraged to create energetic activation of soft materials.

Methods

Sphere preparation We prepared commercially available hydrogel spheres
(Educational Innovations Inc. ® GB-710) by adding dehydrated specimens to a mildly
saline solution (0.6 g NaCIl/KCI table salt per 1.0 L Milli-Q® water). As shown in
Supplementary Fig. 1, the distribution (mean and spread) of masses of the dehydrated
spheres is 24+1 mg, while for the swollen spheres it is 1.75+0.13 g. The water content
by mass is therefore 98.6+£0.1%. Given that the Young's moduli change quickly with
sphere size (Supplementary Fig. 2), we performed experiments with a subset of spheres
that had a distribution M=1.75£0.03 g. For imaging data, we dyed the otherwise clear

spheres with food colouring (Rainbow Dust ProGel®).



Surfaces For the data in Figs. 1d-f, Figs. 2a,b and the energy loss measurements in Fig.
2c, we used an aluminium surface with a gentle spherical curvature (radius 81.9 cm) to
keep the sphere within the field of view. In cold experiments we applied a
superhydrophobic coating (Glaco® Mirror Coat Zero) to mitigate wetting. Vaporisation
prevented wetting in hot experiments. The aluminium surface permitted observation of
sequential impacts, but it easily became sullied. This made subsequent interactions
erratic and required constant cool-down so it could be cleaned. For the energy injection
measurements of Fig. 2c, we used a flat, ceramic-coated aluminium surface. This
permitted us to observe only a few bounces at a time, but allowed us to clean the surface
while hot and avoid cool-down. The roughness of both the flat and curved surfaces was
less than 5 um. We heated the surfaces with a hot plate (Stuart US150 Hot Stirrer, 700

W) and measured their temperatures to within 5 °C with a thermocouple.

Sphere Young's modulus We characterized the spheres’ mechanical properties using
an Instron (model 5965) equipped with a 10N load cell to take force-displacement
curves for individual specimens sandwiched between two vertical crossheads
(Supplementary Fig. 2a). We attached fine (1200 grit) sandpaper to the crossheads to
prevent slippage. We coated the sandpaper with superhydrophobic spray (Glaco®
Mirror Coat Zero) to mitigate wetting. The Young’s modulus was calculated by fitting
the force-displacement curve to the equation for a Hertzian sphere compressed between

two hard half-spaces®, i.e.,

__YWd .3/
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Here Y is the Young’s modulus, d is the diameter, v is the Poisson’s ratio (v=0.5), and 4
is the crosshead displacement. The value of the Young’s modulus varies from sphere to
sphere and with the diameter (Supplementary Fig. 2b). For the spheres we used in the

experiments, the distribution of Young’s moduli is Y=50+4 kPa.

Bounce heights and trajectory analysis Our experimental setup provided a variety of
ways to measure a sphere’s vertical trajectory and bounce height. While the most
straightforward would seem to be with the camera, this has the disadvantages of (1)
poorly resolving small drop heights and (2) requiring inconveniently large amounts of
data and analysis. Instead, we used the force sensors to define the contact intervals and
backed out the vertical trajectories from Newton’s laws?**>3" (Supplementary Fig. 3a).

We take t2“¢ to be the time when impact i ends and ¢/, to be the time when impact i+1

begins and furthermore define At = ¢/, — t°“ and £ = (¢, + t°**)/2. The

maximum height in the parabolic flight between is H;,; = gAt?/8 , where g=9.8 m/s?.

The trajectory is given by

y() = Hiyy —59(t — )2 @

This is valid as long as aerodynamic drag is small compared to the sphere’s weight. For
spheres with a diameter of 1.5 cm moving through air at 1.0 m/s (the maximum velocity
we encounter), the drag term is on the order of pairmd?V2/4~1x10* N—two orders of

magnitude smaller than the weight.

For impacts on the hot surface we modified this procedure on account of the gap

oscillations, which modulate the force sensor signal at high frequency. Additionally,
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the sensor picks up other spurious oscillations ranging from 1-10 kHz due to mechanical
resonances in our setup. We therefore quantified the response of an impact onto a hot
surface by first performing a low pass (<1 kHz) filter and then defining tc and Frmax the
same way as in the cold experiments (Supplementary Fig. 3b). The global features of

impact involve low enough frequencies (<500 Hz) to be preserved.

Energy injection We measured the kinetic energy injection by comparing the rebound
heights for spheres dropped on cold and hot surfaces. The bouncing on a cold surface is
close to what would be expected for a constant coefficient of restitution, which would
give H;,, = €2H;. However, ¢ deviates from constant behaviour at low and especially
at high Hi (Supplementary Fig. 4). To account for this, we binned our data and
constructed an interpolated coefficient of restitution curve for the cold surface, €(H;), as

shown in Supplementary Fig. 4b. The energy injection is then given by

Einj(H;) = Mg(H;y1 — {e(H)}Y*H,). (3)

We remark that the form of the curve, (H;), is not consistent with dissipation from
plastic deformation?* or viscoelasticity®. This reveals that the energy lost during
impact is mainly transferred to spheroidal oscillations®®, which are clearly visible in
Supplementary Video 3. These oscillations damp out over the long parabolic flights
between impacts. Note these spheroidal oscillations are large wavelength, i.e., A~d, and
are not the same as the short-wavelength Rayleigh waves (A~1mm) that are a result of

the gap oscillations (visible only in the second part of Supplementary Video 3).

Parameters of the spring-mass chain For fi we use neo-Hookean springs to prevent
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the masses from passing through each other®®. We denote the positions of the masses by
yi and the (common) rest length of the springs as . Defining the stretch of the it spring
as A; = (yiz1 — yi)/6 and the (common) spring constant as «, then the force between
the masses i and i+1 is given by F; = (1; — A;%). In the limit of small deformations
(4i~1), these springs are approximately Hookean with stiffness 3x/0. As discussed
previously, the spheres lose their centre-of-mass kinetic energy during impact to
excitation of large-wavelength spheroidal modes. Analogously, the energy lost for the
spring-mass chain arises from excitation of large-wavelength longitudinal modes. For
the data in Fig. 4d, we simulate one bounce at a time and do not consider any damping
that occurs in flight between bounces. This is also true for Supplementary Video 5,
where we simulate individual bounces and then extrapolate the parabolic flights in

between.

We constrain the sum of the individual masses to equal the sphere mass (Nm=M), and
the sum of the spring rest lengths to equal the sphere diameter [ (N-1)6=d ]. For the
neo-Hookean spring constant, x, we compare numerical and experimental results for
impacts onto a "cold" surface and pick the value that minimizes the deviation of the
average force throughout impact vs. drop height. The motivation for this procedure is
illustrated in Supplementary Fig. 5a, where the smooth F vs. t curve for an experiment is
plotted alongside the step-like curve from a chain. The step arises because the chain
impact is dominated by a shock that gives a nearly constant force F(t)~cVoo, where ¢ =
\/3%8 /m is the sound speed (~4 m/s), Vo the impact velocity, and o=M/d the linear
mass density. The step shape suggests a convenient strategy for mimicking the sphere.
Namely, for an appropriate value of «, the average forces can nearly match up

(Supplementary Fig. 5b). To find this value, we first run impacts at a fixed value of
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for several different drop heights (spread out over our experimental range of
approximately 400 um to 20 cm) and calculate the sum of the squared residuals between
the average force and the prediction from Hertz. Calculating this quantity for different
values of « reveals a clear optimum (Supplementary Fig. 5¢), which produces an Fay vs.
Hi curve that nicely approximates the experimental results (Supplementary Fig. 5b).
Advantageously, this procedure ensures that the contact times for the experiments and
simulations are similar (Supplementary Fig. 5d). For the data presented in Fig. 4 we use
N=201, m=8.7x10" kg, 6=7.5x10" m, and x=6.0x10" N. The results start becoming

independent of discretization for N larger than 50 (see Supplementary Fig. 6).

Interaction with the hard surface For the interaction with the hard surface, fs, we use
the penalty method and turn on a very stiff spring for the bottom mass once it passes
below y=0. Additionally, we use the FEM practice of incorporating a damping term on
the bottom-most mass when it is below y=0 to stabilize the contact. Concretely, this
forceis f, = (—ksyo — BsYo) 6(—y,). Here ks is a spring constant, js is a damping
coefficient, and (-yo) is the Heaviside function to reflect that this only turns on for
¥0<0. In order for the surface to be "hard," it must be the case that ks>>3x/6. The
damping parameter, s, should be just large enough to maintain contact each time the
lowest mass passes zero (until it is pushed up again by the growing pressure). Beyond
these criteria, the exact values of ks and s do not significantly alter the gross features of
impact, although extremely large values unnecessarily slow down computation. For the

data in the main text we use ks =10%«¢ and fs= 500 Ns/m.

Evolving contact area We account for the evolving contact area of an impacting sphere
in each step of our numerics as is done in Hertzian contact mechanics. Explicitly, we
calculate the intersection area of a sphere of diameter d located at the centre-of-mass of
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the chain, Ycm, with the plane located at y=0. This is given by A=z[(d/2)?-(d/2-Ycm)?]
0(d/2- Yem). The Heaviside function, 6(d/2- Yem), is present to satisfy the requirement
that the contact area is zero if Ycm >d/2. Having an evolving contact area is not
necessary for energy injection. However, an evolving contact (1) better approximates
the experimental situation where the energy injected per cycle is larger near the middle
of each impact than at the beginning or end and (2) produces a smooth curve by

rendering the effect of the discrete total number of cycles less pronounced.

Parameters of the pressure evolution To produce trapping in our 1D model, we

initialize the pressure to P=0 Pa and use the following evolution:

P=-P/t until yo reaches 0,
P=a until yo reaches I*,  (7)
P=-P/t until yo reaches 0,

As evident, this evolution depends on the values of the parameters I*, a, and z, which

we now estimate from our experiments.

First, we estimate a reasonable value for the length scale, I*. This length must be
smaller than, but on the order of, the gap height. Realistically, it will change for each
cycle of a single impact owing to (a) the changing pre-compression of the sphere and
(b) the changing contact area. It will also change from one impact to the next owing to
differences in the dynamics as a function of the drop height. Practically, we use the
zeroth order approximation of a constant value because it is sufficient to recover the

observed behaviours. We choose our estimate for the constant value based on
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observations of an equilibrium bounce and use I*= 50 um—on the order of maximum
gap height seen in the middle of an impact for a sphere dropped from the equilibrium

bounce height (Fig. 3b).

To estimate the value for the pressure build-up rate, «, we are guided by two
calculations. First, as is evident in Fig. 3B, the gap under the sphere remains closed in
the middle of the impact for A4t~0.25 ms. When the contact fully breaks, the upward
force provided by the trapped vapour must be at least as large as the downward force
from the Hertzian compression above. For a drop height of 3.5 cm, the Hertzian force
from the compressed sphere above in the middle of the impact, Fmax, is on the order of 1
N (Fig. S3C). With the aid of Hertzian theory or from our experimental data (e.g.,
Supplementary Videos 3 and 4), we also know that the Hertzian contact area is Amax~10

4 m2. This gives the lower bound for the estimate, o~Fmax/Amax At=4x10" Pa s™.

As a second independent calculation, we use the data for the mass loss in combination
with the ideal gas law. Again considering a drop from the steady bounce height, the
mass lost is 150 ug/impact (Fig. 2d). Assuming 10 gap oscillations per impact and
additional evaporative losses when the trap is open, we roughly estimate that the amount
of vapour trapped during one cycle is on the order of 10 pg, which amounts to n=6x10"’
mol. This is contained in a volume that scales like Amax I". The time it takes for this to
develop is, once again, A4t=0.25 ms. Using the ideal gas law, we therefore have
a=nRT/Amax I"4t ~2x108 Pa s* (R is the universal gas constant and T~500 K the
temperature of the surface). This value is higher than our other estimate, and we expect
this arises because the trapping process is not perfect—gas often escapes laterally in the

middle of a cycle rendering it less efficient. This is evidenced by the initially choppy
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development of the gap oscillations (Supplementary Video 4). For the simulation data

in Fig. 4, we use a value between our two estimates: a=1.5x108 Pa s.

Finally, to inform our decision on a reasonable value for the time constant, z, we
consider the situation of pressure driven evacuation of viscous vapour from a fixed gap
(height I*) trapped between two flat disks (area Amax). Accounting for Poiseuille's flow
and mass conservation, one can show that this system obeys Darcy's law*84! with a
timescale given by 7=12nAmax/7l AP, where, 7 is the viscosity of the vapour (2x107 Pa
s) and 4P is the pressure difference between the center and the edge (4P ~Fmax/Amax
~10 kPa). This gives a timescale of 10 s, which should be considered an upper bound
for two reasons. First, the gap opens to heights greater than I*, which further reduces
the escape time. Second, the increasing volume of the gap itself reduces the pressure
via the ideal gas law. In the simulations we use a slightly smaller value of 7=5x107s.
Our model is not terribly sensitive to this parameter so long as it is not significantly
larger than our upper bound—energy injection still occurs for infinitesimal values of ¢
as long as the lengthscale, I*, and the pressure buildup parameter, «, are greater than

ZEero.
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Figure 1: Persistent bouncing of hydrogel spheres on a hot surface. a Top-down stills
showing the long-lasting dynamics of five hydrogel spheres dropped onto a hot (215 °C)
surface. The lateral motion is mediated by vertical bouncing, and the spheres emit high-
pitched screeching noises throughout (see Supplementary Video 1). Lines show tracks
of the preceding 0.42 s. b Spheres typically stop after 2-3 minutes as a result of
fracture. ¢ Main experimental setup with a high-speed camera, backlighting, a
microphone, and dynamic load cells to determine contact intervals. d-f Side-view stills
showing the maximum height for bounce number ny with spheres dropped from d ~6 cm
onto a “cold” (25 °C) surface and e “hot” (215 °C) surface, and from f ~2 mm onto a
hot surface (see Supplementary Video 2). The sphere dropped onto the cold surface
comes to rest, while the spheres dropped onto the hot surface reach a steady bounce

height of about 3.5 cm.
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Figure 2: Energy injection and mass loss. a Vertical position (top) and audio (bottom)
vs. time for a sphere bouncing on a cold surface. The rebound curve (inset) reveals the
restitution coefficient, ¢, is nearly constant (see Methods and Supplementary Fig. 4). b
Same as (a) for a sphere on a hot surface. The audio trace reveals that screeching only
occurs during impact. The inset shows the kinetic energy gained, Einj, during each
impact on the hot surface (see Methods). ¢ The kinetic energy lost during impacts on a
cold surface (blue open circles) and injected during impacts on a hot surface (red closed
circles) vs. drop height. d The mass lost vs. time is 1.0+0.2 mg/s (dashed line) or about

1.5x10% pg/impact.
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Figure 3: High-frequency, microscopic
gap oscillations at the interface a High-
speed video stills of a single impact (H;
~3.5 cm) at high magnification and frame
rate (15625 fps) reveal that a minute gap
below the sphere rapidly opens and closes
many times during each impact (see
Supplementary Videos 3 and 4). The
timescale for one cycle is about 0.5 ms. b
Plotting the gap height (averaged over the
central 100 pixels) vs. time shows that the
deformation of the sphere underbelly is
on the order of 102 um. ¢ The power
spectra of the gap and the audio signal
both have clear peaks around 2-3 kHz,
which indicates that the gap oscillations

are the source of the screeching.
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Figure 4: Coupling the Leidenfrost effect to elastic deformations. a Sketch and PV
diagram for the gap oscillation work cycle consisting of three stages: pressure build-up
(1), pressure escape (11), and elastic recoil (111). The "pocket™ underneath the sphere
where the vapour is trapped is illustrated in the drawing for stage 1. b We simulate the
sphere as a chain of N identical point-masses (mass m) connected by N-1 identical neo-
Hookean springs (stiffness «, rest length ¢). The pressure grows linearly (P = «) after
each time the lowest mass reaches the surface (stage 1) and then decays exponentially
(P = —P /1) after each time the lowest mass rises above the trapping height I* (stage I
and I11). c-d Simulation results for N=201 masses and all other parameters estimated
from our experiments (m=8.7x10° kg, 6=7.5x10° m, x=6.0x10" N, I"'=50 um,
a=1.5x108 Pa/s and 7=5.0x10"° s—see Methods). ¢ The lowest mass, i.e. the gap, opens
and closes to heights on the order of 10? um at ~2.5 kHz (power spectrum in inset). d
Plots of the kinetic energy injected and lost vs. drop height for the model shows the
same steady-state bouncing phenomenology as the experiments with a similar

equilibrium bounce height of a few centimetres. For rendered videos of the model gap

oscillations and steady-state bouncing, see Supplementary Video 5.
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