UNIVERSITY OF

BATH

Citation for published version:

Spiliotis, E, Petropoulos, F, Kourentzes, N & Assimakopoulos, V 2020, 'Cross-temporal aggregation: Improving
the forecast accuracy of hierarchical electricity consumption’, Applied Energy, vol. 261, 114339.
https://doi.org/10.1016/j.apenergy.2019.114339

DOI:
10.1016/j.apenergy.2019.114339

Publication date:
2020

Document Version
Peer reviewed version

Link to publication

Publisher Rights
CC BY-NC-ND

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 09. Mar. 2023


https://doi.org/10.1016/j.apenergy.2019.114339
https://doi.org/10.1016/j.apenergy.2019.114339
https://researchportal.bath.ac.uk/en/publications/323eccff-ece7-4b8c-84cf-9002ad4a3682

Cross-temporal aggregation: Improving the forecast accuracy of hierarchical
electricity consumption

Evangelos Spiliotis®*, Fotios Petropoulos®, Nikolaos Kourentzes®, Vassilios Assimakopoulos®

“Forecasting and Strategy Unit, School of Electrical and Computer Engineering, National Technical University of
Athens, 9 Iroon Polytechniou Str, 15778 Zografou Athens, Greece
bSchool of Management, University of Bath, Bath, BA2 7TAY, UK
¢ Lancaster University Management School, Department of Management Science, Lancaster, Lancashire, LA1 4YX,
UK

Abstract

Achieving high accuracy in energy consumption forecasting is critical for improving energy man-
agement and planning. However, this requires the selection of appropriate forecasting models, able
to capture the individual characteristics of the series to be predicted, which is a task that involves
a lot of uncertainty. When hierarchies of load from different sources are considered together, the
uncertainty and complexity increase further. For example, when forecasting both at system and
region level, not only the model selection problem is expanded to multiple time series, but we also
require aggregation consistency of the forecasts across levels. Although hierarchical forecasting,
such as the bottom-up, the top-down, and the optimal reconciliation methods, can address the
aggregation consistency concerns, it does not resolve the model selection uncertainty. To address
this issue, we rely on Multiple Temporal Aggregation (MTA), which has been shown to miti-
gate the model selection problem for low-frequency time series. We propose a modification of the
Multiple Aggregation Prediction Algorithm, a special implementation of MTA, for high-frequency
time series to better handle the undesirable effect of seasonality shrinkage that MTA implies and
combine it with conventional cross-sectional hierarchical forecasting. The impact of incorporating
temporal aggregation in hierarchical forecasting is empirically assessed using a real data set from
five bank branches. We show that the proposed MTA approach, combined with the optimal recon-
ciliation method, demonstrates superior accuracy, aggregation consistency, and reliable automatic
forecasting.

Keywords: Temporal aggregation, Hierarchical forecasting, Electricity consumption, Exponential

smoothing, Seasonality shrinkage
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Nomenclature

Abbreviations
MAPA Multiple Aggregation Prediction Algorithm
MTA  Multiple Temporal Aggregation

SES Simple Exponential Smoothing

Variables

« smoothing parameter of SES

b; the trend component of the series at point %

bn the median of the trend component of the series estimated for the h-step-ahead forecast produced across

all temporal aggregation levels

et forecast error at time ¢

f time series periodicity

h forecasting horizon

k hierarchical level

K the lowest level of the hierarchy

l; the level component of the series at point ¢

In the median of the level component of the series estimated for the h-step-ahead forecast produced across

all temporal aggregation levels

m total number of series in the hierarchy

mi total number of series at hierarchical level 7

n number of historical observations (length of series)

Dj average of the historical proportions of the j bottom level series relative to the total aggregate Y
Si the seasonality component of the series at point ¢
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Sh the median of the seasonality component of the series estimated for the h-step-ahead forecast produced

across all temporal aggregation levels

t time period

Yt observation of series Y at time t

Ut forecast of series Y at time t

Y: aggregate of all series at time ¢

Yot the z'" series at time ¢ used to disaggregate series Y:

Yz n(h) h-step-ahead (base) forecasts of series x

y ¥l temporally aggregated time series at level k
Vectors and matrices

I identity matrix of order k X k

O/ xk null matrix of order I X k

P vector consisting of all the historical proportions of the hierarchy
P a matrix of order mg X m used to reconcile the base forecasts

S summing matrix representing the hierarchical structure

Yit vector consisting of all the observations of level i at time ¢

Y. (h) vector consisting of the h-step-ahead (base) forecasts

n(h) vector consisting of the final h-step-ahead (reconciled) forecasts

1. Introduction

Energy consumption forecasting encompasses a wide range of forecasting problems. Achieving
high forecast accuracy can yield significant improvements to energy management, leading to many
economic and environmental benefits through energy conservation techniques such as load shifting,
peak shaving, and energy-storing [1, 2, 3]. Moreover, it is crucial for maintaining the balance
between the load and generation [4], as well as for planning the expansion of power grids [5].
Motivated by these potential gains, substantial work has been done to improve energy forecasting

methods and models, including statistical [6, 7], machine learning [8], deep learning [9, 10, 11], and
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hybrid [12, 13] approaches among others. Additionally, different methods exist according to the
forecasting horizon considered, given that different decisions are supported per case [14].

The literature focuses on three main classes of methods based on the prediction models used:
statistical, engineering, and artificial intelligence methods. Suganthi and Samuel [15] provide a
review of these methods, while Zhao and Magoules [16] focus on those used in the building sector.
They find that each forecasting method has its strengths and weaknesses concerning the problem
at hand, available data, and the level of acceptable complexity. The literature does not identify the
best method, and therefore, the model selection problem remains an unresolved key modeling issue
[17]. This is particularly relevant in practice, where a reliable selection of forecasts is desirable.

To mitigate this problem, in the general time series forecasting context, Kourentzes et al. [18]
proposed using Multiple Temporal Aggregation (MTA), later generalized by [19]. This approach
is based on temporally aggregating a time series at multiple levels, which transforms the original
data to lower time frequencies, highlighting different aspects of the series [20]. Mainstream time
series modeling literature has mainly focused on identifying the single optimal level that makes
modeling simpler [21]. On the other hand, MTA models the series at multiple aggregation levels
and combines the resulting forecasts. This has two key advantages: it provides a holistic modeling
approach, focusing at both high- and low-frequency components that are highlighted at different
temporal aggregation levels; and it mitigates modeling uncertainty, since the final forecast is not
based on a single forecasting model.

Mitigating modeling uncertainty is crucial when dealing with hierarchies and forecasting several
connected time series. In most problems related to energy conservation, management, and pricing,
any decision taken is multi-layered, considering and affecting multiple levels of the energy system
it refers to [22, 23]. For example, when optimizing the energy use of a building (top-level), the indi-
vidual energy uses (heating, cooling, lighting, etc.) must also be taken into consideration (bottom
level). These decisions are usually supported by forecasting systems, which produce forecasts for
all levels of the hierarchy. On the one hand, this requires model selection and estimation for many
time series and it has the undesirable consequence that lower-level forecasts may not sum up to
the higher level forecasts and vice-versa, as they are produced by independent forecasting models.
Forecasts, in this case, need to be reconciled to ensure aggregation consistency across levels, as

otherwise decisions taken at different levels will not be aligned. To this end, cross-sectional hierar-



chical forecasting methods, such as “bottom-up” and “top-down”, have been proposed to achieve
reconciliation [24].

Given the need for applying cross-sectional approaches to the problem at hand, the question
arises whether MTA could be exploited to mitigate modeling uncertainty and improve forecasting
performance, in a similar fashion to what has been reported in the literature for low-frequency time
series forecasting problems. This is realized using the Multiple Aggregation Prediction Algorithm
(MAPA) by Kourentzes et al. [18]. We propose a modification to make MAPA appropriate for
high-frequency time series, i.e., better handling the undesirable effect of seasonality shrinkage that
typical MTA approaches imply [25], and introduce an approach to combine conventional cross-
sectional hierarchical forecasting with MAPA. Our results show that our approach contributes
towards (a) decreasing model uncertainty and increasing accuracy while (b) ensuring reconciled
forecasts across the hierarchy. Both enable automation of forecasting in such problems, aiding
decision-makers. Based on the above, our contribution to the literature is twofold: (i) we evaluate
the beneficial effect of cross-temporal aggregation in electricity consumption forecasting, and (i)
we provide an approach for effectively applying MTA to seasonal time series.

The rest of the paper is organized as follows: in the next section, we review the work done so far
in the temporal and cross-sectional aggregation literature. Section 3 describes our methodological
approach, including the methods used. The data of our case study and the experimental set-up is
presented in section 4. Section 5 summarizes the results, followed by concluding remarks in section

6.

2. Literature Review

2.1. Cross-sectional hierarchies for forecasting

Energy applications are closely related to hierarchical structures and their accurate extrapola-
tion. From supervision and management to pricing, energy conservation, and storing, managers
must consider diverse information from various levels of their systems to make the right decisions
and act proactively. Advances in data collection, using innovations such as smart meters, further
promote the need for exploiting the information hidden in hierarchies.

To be meaningful and consistent, the forecasts at higher levels must be equal to the sum of the

individual lower-level forecasts that make up the respective higher levels. The literature has inves-



tigated a variety of cross-sectional hierarchical approaches that can produce a reconciled forecast
[26]. The “bottom-up” approach aggregates forecasts of the lowest level of the hierarchy to obtain
forecasts of all higher levels, while the “top-down” approach disaggregates the top-level forecasts to
obtain the forecasts for the lower levels [27]. Another alternative is the middle-out approach, where
the forecasts are produced at a middle level and are then aggregated or disaggregated as needed.
Recently, Hyndman et al. [24] introduced the “optimal combination” approach where all series
of the hierarchy are forecasted independently and are subsequently combined using a regression
model.

There is no consensus in the literature as to which approach is superior [24, 19, 28, 29]. The
top-down approach is considered to be more appropriate for long-term forecasts [30], as it effec-
tively captures the trend of the data [31]. On the other hand, the bottom-up approach performs
better among highly correlated time series [32] as it highlights the unique characteristics of the
disaggregated data [33, 30], while it also leads to less biased and more robust forecasts, at least
when reliable and non-missing data are present at the lowest levels [34, 35]. The correlation of
the individual time series and their errors [36], as well as their variability [37, 38] might indicate
which approach is preferable. However, the performance differences between the two approaches
can often be minimal in practice, also displaying insignificant advantages over other formal or in-
formal strategies reported in the literature [39]. For instance, Widiarta et al. [40] used both the
top-down and the bottom-up methods to predict the demand of various items, concluding that
their performance is similar, especially when the autocorrelation of the demand data is low [41].
Information from all hierarchical levels could be considered instead, with evidence of benefits for
the overall forecasting performance [26, 24, 29].

In the field of energy consumption forecasting, both top-down and bottom-up approaches are
used for energy planning and management [42, 43]. However, the latter is more popular [44], given
that energy models usually correlate consumption with temperature data, which are monitored at
the lowest levels of the hierarchy. More recently, Lai and Hong [45] investigated the performance of
various approaches for improving forecasting accuracy in electric usage by considering a geographic
hierarchy. They showed that: (i) at lower levels the average of temperatures from multiple weather
stations provides the best representation of weather, (ii) at upper levels the data sample strongly

influences the modeling preferences, and (iii) top-down and bottom-up approach display similar



performance at the top level of the hierarchy.

2.2. Multiple temporal aggregation for forecasting

Energy forecasting deals with modeling challenges related to various interconnected uncertain-
ties: sampling, parameter, and model. Limited samples may obscure the underlying structure of
the observed series and affect parameter estimation [46]. This, in turn, can change the identified
model structure, even if we assume that the appropriate model family is chosen, which itself is
uncertain [16]. Instead, MTA can be used to mitigate the need to identify a single ‘correct” model
or rely on a unique estimation of parameters.

MTA is based on the temporal aggregation of time series. Silvestrini and Veredas [21] studied
the effect of temporal aggregation in the forecasting performance of univariate and multivariate
time series models and provided evidence of performance improvement. They found that there
are merits in using temporal aggregation, but concluded it is difficult to identify the optimal
temporal aggregation level. Weiss [47] offered insights into its impact in econometric models
by considering the relationships between variables, reaching similar findings. In brief, temporal
aggregation simplifies the identifiable structure and lessens the noise component of the series.
Yet, depending on the aggregation level, it may be that too much information has been filtered
and therefore, the resulting forecasts are of inferior quality. In a supply chain context, for slow-
moving items, temporal aggregation works as a “self-improving mechanism” [48, 49] by revealing
patterns which are more evident in lower frequencies. Yet, the difficulty in identifying the optimal
aggregation level and selecting an appropriate model remains an issue [50].

In this respect, MTA, which instead of choosing a single level is aggregating series to multiple
lower frequencies and combining the individual forecasts produced per level, becomes very promis-
ing [51]. Given that at lower aggregation levels, periodic components, such as seasonality, are
dominant and that at higher levels these are filtered to reveal long-term ones, such as trends, every
single level has valuable information to offer [18]. This is particularly relevant to fast-moving data,
such as electricity consumption forecasting applications, where the high sampling frequency dis-
plays increased noise and introduces multiple seasonal patterns at the original sampling frequency,
which require data pre-processing of high complexity [52].

MTA was proposed by Kourentzes et al. [18] as implemented in MAPA, although the term

itself was coined by Petropoulos and Kourentzes [51] as a more general concept. Since different
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variations of MTA have appeared, notably the Temporal Hierarchies [19] and specialized variants
for intermittent demand [50] and promotional modeling [53]. MAPA models multiple aggregated
views of a time series, using independent exponential smoothing models. The resulting outputs of
the models from each aggregation level are then combined to produce a final forecast. The key
advantage of the approach is that by using a different model per frequency, various time series
components are captured, as these are differentially highlighted in different temporal aggregation
levels. Moreover, modeling uncertainty is mitigated, leading to performance gains due to the mul-
tiple modeling views. The improvements have been reported both for short and long term forecast
horizons, across different applications [53, 54]. Kourentzes et al. [55] showed that although MAPA
is not optimal at any aggregation level, it still provides more accurate forecasts than conventional
approaches to temporal aggregation, as it is very resistant to any modeling misspecification.
Although a lot of research has been undertaken in the direction of accurately forecasting and
reconciling energy-related hierarchical time series, limited work has been done to address the in-
creased modeling uncertainty that arises [56]. In this respect, we investigate how to effectively
deal with model uncertainty in complex energy consumption hierarchies of high-frequency data,
particularly in consumption forecasting applications, while maintaining good forecasting perfor-
mance. The proposed methodological approach combines these commonly separate aggregation
frameworks, cross-sectional and temporal, to gain reconciled forecasts of reduced modeling com-
plexity while putting lots of emphasis on the optimal handling of the seasonal component of the
energy data, which is typically shrunk by conventional MTA implementations [25]. As far to our
knowledge, the only studies considering such a combination, but still evaluated in different appli-
cations than electricity consumption, are those of Kourentzes and Athanasopoulos [57], generating
coherent monthly forecasts for Australia tourism flows across both cross-sections and planning
horizons, and Yagli et al. [58], applying spatial-temporal reconciliation for generating day-ahead

forecasts for photovoltaic power generation plants in California.

3. Methodology

In this section, we describe the proposed methodology to merge cross-sectional hierarchies and
MAPA. We first describe the individual approaches and then proceed to describe the encompassing
methodology.



3.1. Aggregation and forecasting methods

The cross-sectional and temporal aggregation will be combined within the framework to achieve
both reconciled forecasts and reduced modeling uncertainty. The aim is to provide a solution that

will be reliable and automatic in a practical setting.

3.1.1. Hierarchical forecasting

Regardless of the forecasting methods used to extrapolate the electricity consumption time
series for the different levels of the hierarchy, the individual forecasts must be reconciled to be
useful for any subsequent decision making.

First, we introduce the necessary notation. Let k denote the level of the hierarchy. Level 0
refers to the completely aggregated series, while level K to the most disaggregated time series. m;
denotes the total number of series at level i, 7 =0,1,2,..., K and m = mg+m1+...+mg denotes
the total number of series in the hierarchy. Let Y, ; denote the value of the 2t series at time t.
Y; represents the aggregate of all series at time t, Y;; the value of the i’ series of level 1 at time
t, Yj;+ the value of the 4% series used to disaggregate series Y;+ at time ¢; and so on. Vector Yj
denotes all observations at level ¢ and time ¢ such as Yy = [¥3,Y14,..., Yg,]. Similarly, Yx,n(h)
denotes the h-step-ahead forecasts of series z, also known as base forecasts. Yn(h) denotes the
vector consisting of the base forecasts and ?n(h) the vector consisting of the final hierarchical
forecasts. Finally, S is a ‘summing’ matrix of order m X myg used to aggregate the lowest level
series so that Y; = SY g ;. The top row of S is a unit vector of length mg, the bottom section is
an my X myg identity matrix, while the middle parts are vector diagonal rectangular. Matrix S
gives a numeric representation of the hierarchical structure.

Cross-sectional hierarchical reconciliation can be expressed as a linear combinations of the un-
reconciled base forecasts. Using the notation above, ?n(h) = SPY,(h), where P is an appropriate
matrix of order myg X m and ?n(h) are the reconciled forecasts. All approaches that are widely
used in the literature, bottom-up, top-down, and optimal combination, can be expressed in these
terms, differing only on the specification of P.

The bottom-up approach aggregates the forecasts of the lowest level of the hierarchy YK(h) to
obtain the forecasts of the higher levels. This is done by simply summing the base forecasts from
the lowest to the highest levels of the hierarchy according to its structure. In this respect, for the
bottom-up approach P = [0,,, « (m—my) | Img]; where 0;xj, is a null matrix of order I x k and Iy,

9



is an identity matrix of order k x k.

Next, the top-down approach disaggregates the forecasts of the highest hierarchical level Yn(h)
to obtain the forecasts of the lower levels based on historical proportions of the data. For this
approach P = [p | 0., x(m—1)], Where p = [p1,p2,...,pmg] is a vector of proportions that sum

to one. In the present study we use the average historical proportions p; for implementing the

method
n
Y
pj = =,
P
t=1
where p; reflects the average of the historical proportions of the j = 1,...,k bottom level series
Y+ over the period ¢ = 1,...,n relative to the total aggregate Y;. Other alternatives are the

use of the proportions of the historical averages and the forecasted proportions, as described by
Athanasopoulos et al. [26].

Finally, the optimal combination identifies P to provide minimal reconciliation errors, i.e.,
enforce aggregation consistency across forecasts by requiring only minimal changes of the base
forecasts. Hyndman et al. [24] shows that in this case P = (S’S)~!S’, which implies that it depends
only on the structure of the hierarchy. Note that this formulation also implies that forecasts from
all time series are linearly combined, in contrast to only the lower or top levels, as prescribed by
the bottom-up and top-down. Therefore, more information is retained by the optimal combination
reconciliation, which, on the other hand, requires reasonable base forecasts for all time series of

the hierarchy.

3.1.2. Multiple Aggregation Prediction Algorithm

The MAPA algorithm can be separated into three steps: aggregation, forecasting, and combi-
nation. Starting with temporal aggregation, let Y be a time series of periodicity f and length n
and y; denote its observation at point t. We can temporally aggregate ¥ by summing the values
of the series at the original frequency y; in buckets of length k. The temporally aggregated time
series created Y ¥ has n/k observations with values

ik
N S T (1)

n=1+(i—-1)k
For example, given a monthly time series with periodicity f = 12, we get the original series for

k =1, a quarterly series for k = 3, a half-annual series for £ = 6, and an annual series for k = 12.
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We can apply temporal aggregation for any value of k£ < n, although in practice we do so for k < n

k] to have enough observations for fitting a forecasting model. We also note that if

in order for Y
the remainder of the division n/k is not zero, we remove n — [n/k| observations from the beginning
of the series in order to form complete aggregation buckets.

Following temporal aggregation, a prediction model is fit to each of the created series. Although
in its original form MAPA was proposed using the complete family of exponential smoothing, the
selection of the forecasting model is up to the practitioner. It may depend on the type of data, the
application, and the available resources. The substantive issue here is that instead of handling each
forecast as a single value, we decompose it into three basic components: level (I;), trend (b;), and
seasonality (s;). This is done to combine the individual components instead of forecasts, which
is useful as at each temporal aggregation level, a different model can be fit, and combining by
components allows drawing only the necessary information from each level.

In its third step, MAPA combines the components estimated per aggregation level to produce
the final forecast. This can be done using a variety of combination operators, such as the mean
or median. In this work, we consider the median since it is less affected by poorly estimated
components due to extreme values and other types of outliers, noise, and limited training sample,
and can, therefore, lead to more robust forecasts. This can become extremely helpful when dealing
with noisy data of high frequency (like hourly energy consumption time series), where even outlier
detection methods are possible to fail or under-perform. The final h-step-ahead forecast of the
series is calculated as:

Gn = lp + by, + 8n, (2)

where I, by, and 5, is the median of the level, trend, and seasonal components estimated for the h-
step-ahead forecast produced across all aggregation levels considered. We note that to combine the
forecasts, all components must first be transformed into an additive form for (2) to hold, irrespective
of the type of model used. Multiplicative components can be transformed into additive easily by
multiplying them with the respective level. Additionally, if a component has not been estimated
for an aggregation level (e.g., in case of non-seasonal time series or use of non-trended models), we
set it equal to zero. The reasoning behind this is simple: as MAPA does not assume knowledge of
the true process, if at an aggregation level a trend is identified, but at another none is identified

and set to zero, we do not indicate to prefer one or the other option. Therefore, these are combined

11



into a damped trend. Naturally, if most levels identify no trends, then any estimated trend will be
diminished and vice-versa.

In forecasting electricity consumption data, there is a crucial consideration that should not
be overlooked: accurate prediction of peaks is important [59]. Peak load is strongly correlated to
variables such as energy prices and system stability. However, when applying temporal aggregation
on time series, the produced forecasts will be much smoother than the original data due to (1) that
acts as a moving average filter [25]. Also, any subsequent combinations across temporal aggregation
levels will exhibit damped seasonality.

Hourly energy data typically exhibit strong daily and weekly seasonality. There is a con-
sumption profile that occurs every 24 hours, capturing the day-night cycle, and every 168 hours,
capturing the different days of the week cycle, and particularly the difference between work-days
and weekends. These long seasonal periodicities permit to consider multiple temporal aggregation
levels that can potentially exhibit seasonality, specifically: 2, 3, 4, 6, 7, 8, 12, 14, 21, 24, 28, 42,
56, and 84. As a result, the peaks will be poorly forecasted, due to the shrinkage of the seasonal
component imposed by temporal aggregation.

A solution that keeps seasonality unaffected is to apply temporal aggregation on the seasonally
adjusted data and re-seasonalize the final forecasts. A deterministic seasonality is forced, helping
us to handle the peaks effectively. An example of this phenomenon and the proposed solution is
provided in Figure 1, where the hourly energy demand of a commercial building is forecasted for
five days ahead. As shown, MAPA produces forecasts with shrunk seasonal indexes, while MAPA
on a seasonally adjusted series maintains the original seasonal pattern of the data.

This approach makes the use of the full exponential smoothing family unnecessary, as season-
ality is modeled externally (in (2), 55, = 0). We impose a further simplification: in the decision
relevant forecast horizons (1 to 7 days ahead) consumption data do not exhibit persistent trends,
as the effect of possible behavioral changes or operational adjustments is impossible to be captured
within such short periods. Therefore, we only consider the level variant of exponential smooth-
ing (in (2), by, = 0), which is the widely used Simple Exponential Smoothing (SES) [60]. In this
regard, the final forecast of MAPA will be the median of the levels calculated. To support this
simplification, Figure 2 presents the forecasts produced by seasonally adjusted MAPA for the same

series examined in Figure 1, but this time by allowing the estimation of the trend. As seen, MAPA
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forecast
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| |
P
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Hours

Figure 1: The effect of MAPA (continuous) on hourly electricity consumption of a commercial building with strong

seasonality. In contrast to seasonally adjusted MAPA (dotted), seasonal indexes produced are significantly shrunk.

does not identify any significant trends across the various temporal levels considered, resulting in

identical forecasts with that of the simplified approach.

forecast

Wh

10 15 20 25 30 35

5
| |
-

0 200 400 600 800 1000

Hours

Figure 2: The effect of seasonally adjusted MAPA to hourly electricity consumption of a commercial building with
strong seasonality when the estimation of trend is either allowed (red) or not (black). Due to the lack of significant
trends, the two approaches result in identical results.

Undoubtedly, if the same forecasting method is to be applied to all temporally aggregated views
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of the series, there is no reduction of the model selection uncertainty. However, MAPA still provides
benefits in terms of mitigating the parameter estimation uncertainty, as the method parameters
are estimated on multiple views of the series. SES produces forecasts using a single estimation of
the smoothing parameter and initial level state. Both of those parameters are specified through the
appropriate criteria. However, there is always the risk of inadequate parameterization due to the
effect of outliers and other unusual values, especially for a series of high frequency, where noise may
still be dominant. By calculating these parameters multiple times across temporally aggregated
series, we can significantly reduce the modeling uncertainty and increase the robustness of the
model.

An alternative solution to the seasonality shrinkage of MAPA can be achieved by using a
weighted combination. The final components I, by, and 3}, in (2) are the result of the unweighted
combination of the components estimated at each aggregation level. Although for both level and
trend, the long-term dynamics, as captured by the higher levels of temporal aggregation, enrich
them, for the seasonal component, s, it can lead to undesired shrinkage. We propose to mitigate
this shrinkage using a simple weighting scheme: each aggregation level k is weighted by 1/k, ef-
fectively lessening the shrinkage. The combination of both level and trend components remains
unweighted. Kourentzes et al. [18] identified this shrinkage effect and proposed a weighed combi-
nation for relatively low frequency (up to monthly) time series, to mitigate this. The weighting
scheme we propose is more aggressive in retaining the high-frequency aspects of the seasonal pat-
tern, which are crucial for high-frequency time series forecasting. Note that eliminating shrinkage
is not desirable, as it is beneficial [61]. Once again, we use the time series of Figure 1 to justify
our claims. As shown in Figure 3, seasonally weighted MAPA does mitigate the effect of seasonal
shrinkage, providing results similar to those of seasonally adjusted MAPA. Yet, it seems that this
approach still underestimates the peak load.

The decomposition approach simplifies the specification of MAPA substantially, considering
both the number of parameters to be estimated (in exponential smoothing the highest estimation
cost comes from the seasonal component) and the number of possible alternative exponential
smoothing models considered at each aggregation level. Both will result in substantial speed-
ups in model specification, and potential accuracy gains, particularly when the in-sample data

are limited in length. On the other hand, the weighted combination approach avoids imposing a

14



forecast

Wh

10 15 20 25 30 35

5
| |
P

0 200 400 600 800 1000

Hours

Figure 3: The effect of MAPA (blue) on hourly electricity consumption of a commercial building with strong sea-
sonality. Both seasonally adjusted MAPA (black) and seasonally weighted MAPA (red) provide less shrunk seasonal

indexes than the original implementation. However, seasonally weighted MAPA still underestimates the peak load.

specific decomposition, which may be erroneous, and does not require sequential estimation, of the
decomposed seasonal profile and then the MAPA fit, that can introduce modeling bias. Finally,
it does not restrict MAPA to a single exponential smoothing model type, hence mitigating both
estimation (like the decomposition alternative) and model selection uncertainty. In any case, both
of the modifications proposed for MAPA to better deal with high-frequency data display multiple
advantages over its initially proposed form, leading potentially to improvements in forecasting

performance.

3.1.3. Ezxponential smoothing

The Simple Exponential Smoothing (SES) model is used to produce the benchmark forecasts
when no temporal aggregation is used. It is also used to produce the individual forecasts for each
temporally aggregated view of the time series. The model is used to track the local level of a given

series by inspecting its changes over time and is expressed through the following equations:

gt+1 - lt7
Iy = li—1 + ey, (3)
€t =Yt — ﬁt,
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where [; is the estimated level of the series and ¢; the forecast of SES at point ¢. « is the smoothing
parameter used for adjusting the running level of the series and can take any value between 0 and
1. In case a = 1, SES becomes equal to the naive method, while if & = 0, the produced forecasts
are equal to [y, the value of the initial level. In general, the higher the value of «, the more weight
is assigned to the more recent observations in calculating the level.

In order to estimate the model we first specify the values of [y and «. This is done by maximising

the likelihood £ of the model [62]:

n

L(aylo) = ~510g(Y (er)?),

t=1
where n is the length of the series and the error e; is conditional on the smoothing parameter «
and the initial state Iy used. This criterion is utilized within the study to individually optimize the
parameters of the model across all the series of the hierarchy.

A seasonal variant of the model can be easily constructed by including a seasonal component.
The same is true for the case of the trend component. All typical variants of exponential smoothing
are described by Hyndman et al. [62]. In this paper, we focus only on the additive approaches that
may allow for trend and seasonality. Note that the additive formulation of exponential smoothing is
more robust to time series with very low or zero values, which can be the case for the disaggregated

building electricity consumption time series.

3.2. Forecasting methodology

When dealing with real data, it is common that there may be issues, such as data collection
errors. The reasons for obtaining abnormal data vary and can be metering and data streaming
problems, outages, failures of the electricity provider’s system, and so on. These can decrease the
performance of the forecasting system, due to the carry-over effect of the outliers on the forecasts
and the bias introduced in the estimates of the model parameters [63]. Therefore, data cleansing
becomes a task of significant importance [17].

Missing values are imputed to enable further analysis and modeling. Given a missing value X; at
point-hour ¢, the arithmetic mean of the observations X168 and X;_16g is used as its replacement
to take into account both the weekly and hourly seasonality of energy consumption (since X is
an hourly series of both daily and weekly cycles, seasonal effects are theoretically repeated every

7days*24hours=168hours). If observation X;ii6g is unavailable, X; 165 is used as a replacement
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while, for the rest of the cases, a simple linear interpolation between the last respective known and
the next available observations is applied to estimate the missing values. The imputed observations
are used both for model estimation and evaluation so that more representative results are obtained.

Another essential data consideration is special days, such as bank holidays, which can affect
the forecasting performance negatively [64]. These can reduce accuracy during both outlying and
regular periods. Barrow and Kourentzes [54] evaluated various approaches to deal with these
and found that for conventional forecasting methods, such as SES, one of the best performing
approaches is to correct them. Therefore, we consider additive outliers and level shifts using the
detection approach proposed by Chen and Liu [65]. Additive outliers adjustments will be used to
mitigate the effect of extreme values, while level shift adjustments will deal with temporal changes
on the level of the series due to outages, change in equipment, and technical problems.

The individual time series of the hierarchy are then seasonally adjusted to effectively capture
the consumption peaks, as discussed in section 3.1.2. Deseasonalization is performed using classical
decomposition by moving averages [66], with a seasonal periodicity of 168 hours. We use additive
decomposition, to avoid any complications with very low demand values at the most disaggregated
level:

Yt:bt—l-st—ket,

where b, s;, and e; denote the component of trend, seasonality and error, respectively. To estimate
bs, a moving average of order equal to the periodicity of the data is applied and then used to remove
the trend from the original series. The seasonal component is computed by averaging for each time
unit over all periods, then centering. Finally, the error component is the remainder of the original
time series when b; and s; are removed.

Alternative seasonal cycles, such as 24, were also tested, but rejected due to the impact of
working and non-working days, resulting in less homogeneous seasonal profiles, as evident by the
corresponding seasonal plots (see Figure 4). The classical additive decomposition is applied to the
time series for alternative periodicities (24 and 168 hours), and the extracted seasonal component
is plotted against the individual periods in the season. In this respect, periods of low variance
indicate strong seasonal profiles and vice versa. Observe that the weekly profile has substantially
lower variation than the daily one, indicating that the former is estimated more accurately and is

preferable to the daily one.
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Figure 4: Distribution of seasonal indices for the total electrical consumption of the bank branches for seasonal
cycles of 168 (left) and 24 (right) hours. Given that in a time series with strong seasonality the observations will be
overlapping, we anticipate low variance around the seasonal profile. This is evident for the weekly profile, while for

the daily profile differences between working days, weekends, and bank holidays introduce substantial variance.

Data transformations, such as the Box-Cox one, which could have been used to normalize the
raw data, simplify their patterns, and enhance forecasting performance [67] were not considered in
the present study. This is because many of the time series examined display values close to zero,
making their implementation ineffective. Transformations are not applicable either after seasonally
adjusting the data since additive decomposition may lead to time series of negative values.

Once the data pre-processing is complete, each time series is forecasted using MAPA. The
resulting forecasts are re-seasonalized, using the seasonal indices estimated before. After producing
the forecasts, these are reconciled across the various levels of the hierarchy. As the literature is
inconclusive as to which cross-sectional aggregation approach is the best, we retain all and evaluate

the best one. An overview of the proposed methodology is presented in Figure 5.

4. Experimental Design

4.1. Data and case study

The proposed methodology is applied to a group of five bank branches located in Athens,

Greece. We examine the benefits in terms of accuracy, complexity, and decision support.
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Figure 5: Flow chart of the proposed methodological framework applied to a K-level hierarchy. Y;; indicates the j.,
time series of level .

The bank branches form a three-level hierarchy representing per level the total energy needs of
the bank (level 0), the energy consumption per bank branch (level 1), and end-use (level 2): Heating,
Ventilation, and Air Conditioning (HVAC), devices connected to UPSs (cameras and safes) and
Lighting. The structure of the hierarchy is presented in Figure 6, while a typical example of the
time series of each level is provided in Figure 7. The available data (energy consumption in kWh)

span for 9.5 weeks (1612 hourly observations, from 5-Jan-12 to 12-March-12). Missing observations
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account for about 2% of the whole sample, while special days for approximately 3%. The majority
of them belong in the training sample.

Note that the relatively small size of the dataset is another challenge that needs to be tackled
among the others discussed, i.e., the high-dimensional seasonal profile, model and parameter uncer-
tainty, missing values, and special days. Given that the methods typically used in such applications,
such as neural networks, strongly rely on extended samples of data, generating robust forecasts
through alternative approaches like the one proposed becomes vital [8]. For instance, it would be
interesting to see whether our approach effectively captures seasonality, ensures reliable parameter
estimations, and leads to accurate forecasts, even when relatively long horizons are considered. If

that is the case, then this would be an additional strength of the proposed framework.

Figure 6: The three-level hierarchical tree diagram of the bank case-study. B;, A;, U; and L; stand for the i,
Branch, HVAC, UPS, and Lighting energy use, respectively.

4.2. Ezxperimental setup

The forecasting performance of the methods will be measured by producing forecasts at all the
levels of the hierarchy and across different horizons to indicate per level possible gains for relevant
decisions. More specifically, we examine three windows that mirror the current bank’s energy
manager practices: up to 2 days (1-48 hours), up to 5 days (49-120 hours), and up to a week.
Thus, the most appropriate combination of temporal and cross-sectional aggregation methods will
be empirically demonstrated.

At the beginning of every week, forecasts are produced for all branches to highlight possible
threats and indicate necessary opportunities for cost reduction via load shifting and energy-storing

[68]. After the implementation of any energy conservation action through appropriate control
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Figure 7: Visualization of a representative time series of the bank branches data set for a typical week: Energy

consumption of all the branches (continuous), the first bank branch (dashed), and its HVAC use (dotted).

systems, the manager recalculates the forecasts twice within the week to better calibrate and
amend the existing plan. To apply such measures, the branch must be part of a larger scale
electrical system and organized under a smart grid approach, while storing mechanisms must be
ideally available [69].

In our experiments, we implement four alternative forecasts. First, we consider the methodol-
ogy discussed above (see Figure 5), which implements both decomposition and multiple temporal
aggregation, through the MAPA framework. This will be named MAPA.D hereafter. Next, to
evaluate the effect of MTA, we implement as a benchmark SES, after removing seasonality via de-
composition, as in the methodology outlined for MAPA.D. To assess the impact of decomposition
and seasonal adjustment, we apply the original MAPA, as described by [18], as well as the modified
one, with the proposed weighting scheme described in section 3.1.2. The latter is named MAPA.W.
We have also tested an exponential smoothing base model with no decomposition and MTA but
we do not present its performance for brevity, as it did not perform well. As the results suggest,
the decomposition is particularly useful due to the high dimensionality of the seasonal profile and
the relatively limited sample size.

The forecasting performance of the proposed methodology is evaluated both in terms of fore-

casting accuracy (closeness of actual values and generated forecasts) and bias (consistent differences
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between actual values and generated forecasts). To this purpose, we use the Relative Mean Abso-

lute Error (RMAE) and Relative Absolute Mean Error (RAME):

h
> lyi— il

i=n—+1

RMAE ==t
Z i — Uil
=1

h
> yi— i
RAME = ‘=1

i

n
Z Yi — YB;
=1

where y; are the actual values of series Y at point ¢, ¢; the forecasts of the method being evaluated,

yB,; the forecasts of the method used as Benchmark, and h the forecasting horizon. We summarize
the metrics across time series using the geometric mean, resulting in ARMAE and ARAME for
accuracy and bias. ARMAE has been proposed by Davydenko and Fildes [70] (referred to as
AvRelMAE by the authors), and ARAME is its bias equivalent. ARMAE has been shown to
be robust to calculation issues, overcoming limitations of the Geometric Relative Mean Absolute
Error (GMRAE) that summarizes individual errors after the ratios are formed. ARMAE also
has a minimal bias, in contrast to more popular metrics such as the Mean Absolute Percentage
Errors (MAPE) [71]. Furthermore, the metric is easy to interpret. A value below one signifies an
improvement over the benchmark forecast, while the opposite is true for values above 1. Percentage
gains over the benchmark can be easily calculated as (1 — ARMAE)100%. We use SES as a
benchmark in the calculation of the metrics.

Finally, we implement a rolling origin evaluation scheme [72] to reduce the bias in our results.
The original time series is divided into the training set, used to fit the model, and the test set
for evaluating its performance. Then, multiple evaluation rounds are performed as an additional
observation is included in the fitting sample and updating the forecasting origin by one step at a
time. Given an initial training set of length s and a forecasting horizon of h, a maximum number
of (n — s) — h + 1 validation sets can be provided. We use the last 20% of observations as a test
set, resulting in a two-weeks test set, providing a sample of 313 to 169 forecasts, depending on the
forecasting horizon examined.

The analysis is performed using the R statistical software [73] and the packages of MAPA,
22



which contains functions and wrappers for implementing the MAPA [74]; forecast, which contains
methods and tools for analysing time series [75]; and tsoutliers, which contains functions for the

detection of outliers in time series and their adjustment [76].

5. Results

In tables 1 and 2, we present the performance of the cross-sectional aggregation methods in
terms of forecasting accuracy and bias for different forecasting horizons and various hierarchical
levels. In the first case, the performance is calculated by averaging the error measure values across
the respective horizons (for all horizons) considering all levels, while in the latter by averaging the
values across all the forecasting horizons and for each level separately. Note that in both tables
SES is not reported as it is used as the denominator for the calculation of the metrics and the
result is equal to 1 for every case.

Considering ARMAE, for the case of the MAPA.D, across all forecasting horizons (1-168)
and levels, the optimal approach outperforms the rest of the hierarchical approaches. The same
conclusion is made both for all the forecasting horizons considered, as well as for predicting at
the mid and bottom level of the hierarchy. At the top level, the top-down approach is marginally
superior to the optimal. Similar results can be observed for ARAME.

In table 1, we can see that the benchmark SES is outperformed substantially by MAPA.D and
MAPA.W, demonstrating the usefulness of MTA in modeling. MAPA.D that similarly to SES
relies on decomposition is overall superior to the non-decomposition based MAPA.W forecasts,
by about 10%. The modified MAPA.W outperforms MAPA, as it caters to the high-frequency
nature of the seasonality, but it is not more accurate than MAPA.D. This is attributed to the
estimation challenges of the high-dimensional seasonal profile, with relatively small sample size.
MAPA.D avoids this estimation by employing decomposition. The same reasoning is applicable
in explaining the relatively poor performance of MAPA compared to SES (all ARMAE values are
above 1).

Considering the various hierarchical methods, we find that optimal combination performs over-
all best for most cases. For MAPA, which is mediocre at estimating the high-frequency seasonality
compared to the alternative MAPA.D and MAPA.W, the top-down approach is beneficial, as it

relies on estimation at the aggregate level, that the noise of the lower levels is not so strong. How-
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Table 1: Accuracy (ARMAE) per forecasting horizon per hierarchical level across and forecasting horizons.

MAPA.D MAPA MAPAW MAPA.D MAPA MAPAW

Method
All forecasting horizons and levels
Bottom-up 0.861 1.433 0.978 0.861 1.433 0.978
Top-down 0.852 1.265 0.922 0.852 1.265 0.922
Optimal 0.803 1.333 0.917 0.803 1.333 0.917
t+1 to t+48 Level 0
Bottom-up 0.879 1.535 1.018 0.854 1.408 0.923
Top-down 0.859 1.322 0.939 0.813 1.333 0.897
Optimal 0.814 1.414 0.947 0.817 1.340 0.897
t+49 to t+120 Level 1
Bottom-up 0.857 1.396 0.963 0.833 1.289 0.892
Top-down 0.847 1.237 0.912 0.857 1.270 0.916
Optimal 0.797 1.296 0.903 0.802 1.238 0.868
t+121 to t+168 Level 2
Bottom-up 0.848 1.372 0.953 0.899 1.620 1.136
Top-down 0.851 1.237 0.916 0.888 1.195 0.955
Optimal 0.798 1.292 0.903 0.789 1.427 0.991
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Table 2: Bias (ARAME) per forecasting horizon per hierarchical level across and forecasting horizons.

MAPA.D MAPA MAPAW MAPA.D MAPA MAPAW

Method
All forecasting horizons and levels
Bottom-up 0.459 0.603 0.622 0.459 0.603 0.622
Top-down 0.488 0.527 0.744 0.488 0.527 0.744
Optimal 0.412 0.523 0.573 0.412 0.523 0.573
t+1 to t+48 Level 0
Bottom-up 0.686 0.820 0.791 0.399 0.421 0.596
Top-down 0.686 0.696 0.792 0.357 0.408 0.798
Optimal 0.595 0.675 0.692 0.403 0.412 0.759
t+49 to t+120 Level 1
Bottom-up 0.416 0.554 0.547 0.449 0.476 0.618
Top-down 0.432 0.495 0.698 0.470 0.474 0.680
Optimal 0.389 0.489 0.523 0.448 0.488 0.635
t+121 to t+168 Level 2
Bottom-up 0.340 0.482 0.557 0.541 1.092 0.655
Top-down 0.392 0.426 0.744 0.691 0.758 0.759
Optimal 0.302 0.433 0.520 0.387 0.711 0.390
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ever, for the alternative forecasts that do not suffer from this limitation, the optimal combination
allows using information from all levels, resulting in the best accuracy.

Turning our attention to table 2 that provides the bias (ARAME) results, we observe similar
findings. However, in this case, all MAPA-based forecasts are outperforming SES. Overall, the
proposed MAPA.D outperforms all other alternatives, demonstrating the benefits of both MTA
and decomposition. The optimal combination across hierarchical levels remains beneficial, as it
allows using information from all levels of the hierarchy, in contrast to the bottom-up and top-
down alternatives. However, in contrast to the accuracy results, the bottom-up approaches perform
competitively to the top-down, echoing findings in the literature that have found bottom-up to
perform very well in terms of forecast bias [26]. Similarly, MAPA’s bias is competitive to MAPA.D
and MAPA.W, as the inaccurate modeling of seasonality is of less importance than the overall level
of the forecasts in the calculation of the bias.

Regardless of the hierarchical reconciliation method used, we find that both decomposition and
MTA are beneficial, demonstrating the usefulness of the proposed approach. Reflecting on the dif-
ferences between MAPA.D and MAPA.W, the former does not need to estimate the seasonal profile,
reducing the optimization complexity. Furthermore, due to MTA, it is robust against estimation
uncertainty. MAPA.W gains both in terms of mitigating model uncertainty and parameter specifi-
cation, evident in the superior results against the benchmark SES (both ARMAE and ARAME are
consistently below 1), but due to the relatively limited sample size, it is not able to perform as well
as MAPA.D. Another benefit of MTA is evident when comparing the differences in accuracy and
bias between shorter and longer forecast horizons. Relatively to exponential smoothing, MAPA
performs best at longer forecast horizons. This finding is in agreement with the literature that
argues this is due to the effect of incorporating information from the high-aggregation temporal
levels, where long term dynamics are more natural to model [18].

Finally, we have experimented with MAPA forecasts that permit trends and found no substan-
tial performance differences. We discovered that a trend component was rarely selected, and in all
cases, it was strongly damped by MTA. The lack of strong trends was apparent in higher temporal
aggregation levels, which in turn helped the final MAPA forecasts to have a minimal trend. This
again highlights the strength of MAPA in mitigating modeling uncertainty.
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5.1. Implications for energy managers

The results of this study show that the proposed forecasting methodology can lead to significant
improvements, especially when referring to forecasts of 6 to 7 days ahead. A key contribution of
this work is the decision making support that the proposed methodology offers to energy man-
agers. To optimize the energy use of a building system and its components, detailed information is
required regarding the energy-intensive end uses of the individual buildings [77]. The methodology
provides such information across all hierarchical levels and enables the efficient monitoring and
energy management of the system. In this regard, the energy manager can inspect the expected
energy demand at the highest level of the hierarchy (bank), detect possible threats (problematic
branches), and specify the cause of increased energy consumption (end-uses). Energy optimization
and conservation action plans, such as load shifting or maintenance of the facilities, will become
easier to develop and implement and can become more targeted than the present. Undoubtedly,
reconciled forecasts is a prerequisite, which is a direct output of our modeling approach.

Given its generalized nature and reasonable complexity, the proposed methodology can be
easily implemented in any block of buildings, such as retail stores and shopping centers, public
buildings, bank branches, offices, hotels, and cinemas. Our methodology could give support to
Intelligent Energy Management Systems (IEMS) that assist energy managers grand better control
and monitoring, prevent costs and contamination, as well as ensure comfort and wellness [8]. The
beneficial effects of the methodology could become even more significant if connected to Smart
Energy Management Systems (SEMS), utilizing smart meters to optimize appliance scheduling in
a h-hours ahead period and allocate energy resources of appliances in real-time [78]. Finally, the
forecasts provided by the methodology could serve as benchmarks for detecting energy efficiency

anomalies in smart buildings [79] and minimizing the risk of malfunctions and deterioration [80].

5.2. On the effect of seasonality shrinkage

One of the main contributions of this study is the introduction of an easy to implement method-
ology that allows the generation of robust forecasts through MTA, while also accurately capturing
the seasonal component of energy consumption series that are characterized by strong periodic
fluctuations and peaks. This is a fundamental concept in energy consumption forecasting, closely
related to most energy-saving, efficiency, and conservation actions. However, the proposed method-

ology could be exploited to improve forecasting accuracy in almost any application involving the
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extrapolation of high-frequency data, mitigating the effect of seasonality damping that typical
MTA approaches imply.

To demonstrate the value added by the proposed methodology in such applications, we con-
sider the 1428 monthly and 756 quarterly series of the M3 competition [81], the standard testing
ground of generic time series forecasting algorithms. Like in Section 4.2, we consider three different
implementations of MTA: (i) MAPA, implementing the original MAPA framework, (ii) MAPA.D,
implementing both decomposition and MTA, and (iii) MAPA.W, implementing the weighted com-
bination scheme of MAPA for retaining seasonality. Moreover, since M3 involves business data
of various domains (micro, industry, macro, finance, and demographic) that are characterized by
diverse features, such as trend, seasonality, and auto-correlation [82], instead of considering just
SES, we allow MAPA to consider any possible model of the ExponenTial Smoothing family (ETS),
as described by Hyndman et al. [62]. Thus, in contrast to the previous case-study, by, of (2) can be
different than zero.

Table 3 summarizes the performance of the examined approaches, both per frequency and in
total. We use ARMAE and ARAME for measuring forecasting accuracy and bias, using ETS
instead of SES as a benchmark in the calculation of the metrics to enable fair comparisons. As
seen, all implementations display metric values lower than one, highlighting the benefits of apply-
ing MTA. However, MAPA.D and MAPA.W outperform MAPA both in terms of accuracy and
bias, indicating that seasonality shrinkage of MTA does have a significant effect on forecasting
performance. Moreover, in most cases, MAPA.D performs better than MAPA.W, especially for
the quarterly series, where the sample size is more limited. In this regard, we conclude that MTA
with seasonal decomposition is a promising alternative to standard MTA that should be considered

when extrapolating seasonal series.

6. Conclusions

We proposed a holistic approach for forecasting effectively hierarchical electricity consumption
time series, by producing both accurate and reconciled forecasts. This is key given that the forecasts
of the lower aggregation levels of a system must always add up to the ones of the higher levels,
and vice-versa.

In our approach, Multiple Temporal Aggregation (MTA) is used, through the Multiple Ag-

28



Table 3: Accuracy (ARMAE) and bias (ARAME) for the 756 quarterly and 1,428 monthly series of the M3 Com-
petition. The performance of the proposed methodology (MAPA.D) is compared to that of the original MAPA as
well as its weighed combination scheme (MAPA.W) to identify best practices for applying MTA when dealing with

seasonal data.

MAPA.D MAPA MAPAW

Dataset
Accuracy

Quarterly 0.915 0.949 0.931
Monthly 0.918 0.941 0.919
Total 0.917 0.944 0.923

Bias

Quarterly 0.934 0.976 0.976
Monthly 0.979 0.981 0.965
Total 0.963 0.979 0.969

gregation Prediction Algorithm (MAPA), to boost the forecasting performance and alleviate the
effect of modeling uncertainty, while cross-sectional hierarchical approaches are applied to reconcile
the individual forecasts across the hierarchy. Additionally, some modifications to MAPA’s original
form are introduced to enable it to capture better the unique characteristics of high-frequency data
and deal with seasonality shrinkage that typical MTA approaches imply. The results of our study

indicate that:

e MTA significantly improves forecasting performance in terms of accuracy and bias.

e Cross-sectional aggregation further enhances forecasting performance by combining appro-

priately the base forecasts produced.

e Applying MTA to seasonally adjusted data leads to better forecasts than applying MTA to

the original series.

More specifically, we find that the optimal combination method, which combines views of the
time series from multiple levels of the hierarchy, performs best when combined with MTA. Thus, we
confirm that balancing the detailed information available at the bottom level of the hierarchy and

the aggregate view of its higher levels is the best strategy for improving forecasting performance.
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We also find that weighting appropriately the seasonal components computed by MAPA across
different temporal levels (MAPA.W) leads to better forecasts than the original MAPA. Thus,
we confirm the benefits of avoiding the over-smoothing of the high-frequency seasonal profile.
Furthermore, we attribute the better performance of the proposed approach (MAPA.D) over the
weighting one (MAPA.W) to the relatively limited sample size.

It is also shown that MTA boosts forecasting performance, even when external variables that
affect energy consumption are not considered, and simple time series forecasting models like ex-
ponential smoothing are used instead. This is a promising outcome given that detailed regressor
information is not always available, but also requires more sophisticated forecasting models.

Moreover, we demonstrate that our proposed approach achieves good accuracy even for limited
sample sizes, being a fast, robust, and reliable solution. This is important given that, typically,
forecasting must be performed automatically for numerous time series, to support decisions within
an acceptable time frame. This conclusion is further supported by observing that the proposed
approach can be easily implemented in energy management systems as well as existing forecasting
support systems. It is based on exponential smoothing that is standard in most systems, offering a
compelling alternative where more complex methods mentioned in the literature, such as machine
learning techniques, are not available or applicable.

Finally, given the positive results reported here and in the literature for MTA, we suggest
that future research should be focused on (i) optimally combining the forecasting methods across
the multiple temporal aggregation levels, (ii) optimally combining temporal hierarchical levels to

cross-sectional ones, and (iii) expanding cross-temporal aggregation for probabilistic forecasting.
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