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Current and Future Test Reference Years at a 5 km Resolution
C Liu®, W Chung, F Cecinati, S Natarajan and D Coley

Department of Architecture and Civil Engineering, University of Bath, Claverton Down, Bath,
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Abstract

Frequently, the computer modelling of the natural and human-made environment requires localised
weather files. Traditionally, the weather files are based on the observed weather at a small number
of locations (14 for the UK). Unfortunately, both the climate and the weather are known to be highly
variable across the landscape, so the small number of locations has the potential to cause large errors.
With respect to buildings, this results in incorrect estimates of the annual energy use (sometimes by
a factor of 2), or of overheating risk. Here we use a validated weather generator running on a 5x5 km
grid to create probabilistic Test Reference Years (pTRYs) for the UK at 11,326 locations. We then
investigate the spatial variability of these pTRYs and of annual energy estimates and temperatures in
buildings generated by them, both now and in 2080. Further pTRYs targeted at understanding the
impact of minimum and maximum temperatures are proposed and produced at the same locations.
Finally, we place these pTRYs, which represent the first set of reference weather files at this spatial
resolution in the world and that include the urban heat island effect, into a publicly accessible
database so researchers and industry can access them.

Practical applications:

Insufficiently localised weather data for building simulations has limited the accuracy of previous
estimations of energy use and overheating risk in buildings. This work produces localised probabilistic
Test Reference Years (pTRYs) across the whole UK for now and future climates. In addition, a new
pTRY method has been proposed in order to overcome an unexpected shortcoming of traditional
pTRYs in representing typical maximum and minimum temperatures. These current and future
weather data will be of interest to various disciplines including those interested in low carbon design,
renewable energy and climate resilience.

Keywords

Spatial variability, climate change, weather files, built environment

*Corresponding author:
C Liu, University of Bath, Claverton Down, Bath, BA2 7AY, UK
E-mail address: C.Liu2Z@bath.ac.uk



mailto:C.Liu2@bath.ac.uk

1. Introduction

Global warming due to anthropogenic emissions has the potential for a series of adverse effects on
human health, the built environment, agriculture and other systems. Thanks in part to the computer
simulation of the future climate, some of these impacts have been studied. For instance, the risk of
overheating, heat-related deaths and energy consumption in buildings!*>. These studies rely on high
fidelity predictions of future weather, and such predictions are of equal importance to those
interested in renewable energy productivity, crop yields, etc. today and under changing climate.
Though there are uncertainties in any predictions due to limitations in modelling techniques and an
imperfect understanding of the climate system, modelling with future climates is likely to be
increasingly beneficial in studying climate related problems and avoiding climate related disasters,
and hence in discussing resilience and creating policy. However in all cases there is the need for the
underlying weather files to accurately reflect the variability of the climate across the landscape and
include the impact of the urban environment on the temperature time series »> ¢, Hence, localised
reference weather years are required.

Unfortunately, current and future weather years are unavailable at a high spatial resolution for any
country. In the UK, for instance, the Chartered Institution of Building Services Engineers (CIBSE)
provides Test Reference Years (TRYs) and Design Summer Years (DSYs) for use in building simulation
only for fourteen UK sites, with for example the whole of Scotland being covered by only two files:
one sited in Edinburgh and the other in Glasgow; and all buildings in Wales, even in upland areas,
modelled as if they are located in coastal Cardiff. The reason for the small number of sites is largely
due to the limited availability of reliable and long-term observed weather time series.

The CIBSE TRYs were created for use in evaluation of building energy performance while the CIBSE
DSYs were created for use in assessment of overheating risk and cooling loads. Levermore and
Parkinson (2006) ¥’ proposed methods for creating the CIBSE TRYs and DSYs based on around 21 years
of historical weather data collected between 1983 and 2005. Eames et al. (2015) 8 updated these
CIBSE TRYs and DSYs based on around 30 years of observed weather data available until 2013. In
addition, Eames et al. (2011) *° created future probabilistic TRYs (pTRYs) and DSYs (pDSYs) using future
synthetic weather data generated by the UKCP09 Weather Generator (WG) 2> 2, CIBSE released these
future weather files for fourteen UK sites too. As demonstrated in Eames et al. (2012)’s ®> work for
instance, fourteen sites are insufficient for accurate predictions of internal climate and energy use.
Even the expansion to 45 locations through the PROMETHEUS project *° is too few to investigate
spatial variation in, for instance, energy demand, or the morbidity or mortality from overheating in
the homes of the vulnerable. Satellite remote sensing datasets could be used for identifying spatial
variation in land surface temperature (e.g. urban heat or cool island effect). However, it has been
challenging to retrieve and validate satellite-derived land surface temperatures 2. Moreover, it has
been hard to derive all the thermally related hourly weather variables from satellite remote sensing
datasets that are required in the creation of building simulation weather files.

In this work we use a validated weather generator driven by the outputs of a climate model to produce,
for the first time, reference weather years on a 5x5 km grid across the UK, thereby giving examples of
current and future weather at 11,326 locations. We then investigate the spatial variability of this
weather and of the resultant expected annual energy use and temperatures in buildings, both now
and in 2080.



2. Creation of pTRYs using the Spatial Urban Weather Generator
2.1. Synthetic weather data

The UKCP09 Weather Generator (WG) provides current and future synthetic weather data which have
been used for creating building simulation weather files in previous studies * %2327 The UKCP09 WG
is a stochastic tool that primarily generates the precipitation sequence based on the Neyman-Scott
Rectangular Pulses model 2. Then, the precipitation sequence is used to produce the time series of
the other weather variables based on inter-variable relationships observed from the baseline climate
data over the control period (1961 to 1990).

In this study, the Spatial Urban Weather Generator (SUWG)?°, an updated version of the UKCP09 WG
with improved capability to generate extreme weather and spatially correlated climate, was used to
generate climate data for the whole of the UK. The SUWG generates daily weather variables for the
control period in order to fit these to the observed statistics. Hourly weather variables are then
downscaled from daily weather variables. Each run of the SUWG also generates future synthetic
weather data which incorporate an estimate of climate change randomly sampled from 10,000
UKCPO9 probabilistic climate change projections. The probabilistic climate change projections were
formed by regional and global climate models, i.e., multi-model ensembles 2°.

Unlike the UKCP09 WG, the SUWG also takes account of the impacts of land use (i.e. the urban fraction)
and anthropogenic heat flux on the temperature time series, by making use of the urban
anthropogenic components developed by McCarthy et al. (2012) 3°. This means that the urban heat
island (UHI) effect can be explored.

A comparison of the outputs of the SUWG and the UKCP09 WG is presented in Table 1. Key differences
are:

e the UKCP09 WG can generate future weather data for seven future time slices under three
emission scenarios, while the SUWG only produces these for five future time slices (the 2020s,
2030s, 2040s, 2050s and 2080s) under the medium emission scenario (SRES A1B).

o the UKCP09 WG does not provide wind speed directly, so the FAO Penman-Monteith equation
31 for estimating the potential evapotranspiration (mm-day?) needed to be rearranged to
calculate the daily wind speed °. The SUWG, on the other hand, includes wind speed. Then
hourly wind direction can be obtained by using the method proposed by Eames et al. (2011)
19, A complete set of weather variables required for the creation of EnergyPlus Weather (EPW)
files, which have been commonly used in various dynamic building simulation packages such
as EnergyPlus, DesignBuilder, IES<VE> and ESP-r, can be derived from the outputs of the
SUWG using the method presented in previous works 273234,



Table 1. Comparison between the Spatial Urban Weather Generator (SUWG) and the UKCP09 Weather Generator (WG)

SUWG UKCP09 WG
Emission scenarios Low (SRES B1) N4
Medium (SRES A1B) v
High (SRES A1FI)

Time slices Control year (1970s): 1961 - 1990
2020s: 2010 - 2039
2030s: 2020 - 2049
2040s: 2030 - 2059
2050s: 2040 - 2069
2060s: 2050 - 2079
2070s: 2060 - 2089
2080s: 2070 - 2099
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Daily data . Mean total daily precipitation (mm)

. Minimum daily temperature (°C)

. Maximum daily temperature (°C)
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2.2. Creation of pTRYs based on the synthetic weather data from the SUWG

As the SUWG can provide spatially correlated current and future climate data, it has been possible to
explore the spatial variability of external temperatures under changing climate. The SUWG was used
to create building simulation weather files at 11,326 grid locations. To avoid bias in projected
estimates, the SUWG was run 100 times per grid location by incorporating 100 estimates of randomly
sampled probabilistic climate change projections into the control period, i.e., 1961 to 1990. Therefore,
100 sets of 30-year long control year (1970s) and future climate (for the 2080s under medium emission
scenario) data were generated at the same time for each grid location. The method proposed by
Eames et al. (2011) *° was deployed to produce probabilistic Test Reference Years (pTRYs) for the
11,326 locations. With such a high resolution climate data, it has become possible to investigate
influence of spatial variability of climate on buildings across the UK. As an example of the result, high-
resolution maps of the mean external temperature of the pTRYs as well as the mean internal
temperature generated by them for the 2080s (2070 to 2099) are presented in Figure 3.



3. Reference building

In order to explore the influence of the spatial variability of current and future climate on energy and
thermal performance of buildings, dynamic thermal simulation for all 11,326 grid locations was carried
out. As the idea was only to provide an example, a single building morphology was used: a south facing
detached house - a typical UK dwelling architype. This was modelled using DesignBuilder (version
5.0.3.007)*. Figure A-1 (see Append) shows the geometry, floor plan and glazing dimension of the
building, which was based on the detached house found in BEPAC Technical Note 90/2 3¢ but with
slightly modified dimensions to be in line with the latest English Housing Survey * at the time of writing
this paper.

Shading was included by assuming that east and west sides of the house were shaded by adjacent
houses with the same building height while there was no shading to the rear of the house (i.e. north).
Based on the Residential Design Guide 3, the distance between the adjacent houses was set to 2 m
which is the minimum requirement for side access to rear gardens while the privacy distance between
facing houses (i.e. to the south) was set to 27.5 m (see Figure A-2 in Append). The U-values suggested
by RASAP 2012 version 9.93 3° were used, see Table A-1 and Table A-2 in Append.

DesignBuilder uses EnergyPlus® as its simulation engine which provides two ventilation options:
scheduled and calculated. The scheduled ventilation option was used in this study as it is less computer
intensive and hence has a lower time burden, which was an advantage when simulating at 11,326
locations. As the airtightness of existing UK dwellings has not been improved significantly over the
past decades ** 42, the background air infiltration rate was set to 0.7 ac/h in accordance with
BRECSU*’s recommendation. This value was also suggested by Allen and Pinney (1990) for creating a
thermal model of standard UK dwellings. The effective air change rates for conventional two-story
residential buildings were obtained from the Standard Assessment Procedure (SAP version 9.92) %4,
The recommended maximum effective air change rates when the house is naturally ventilated during
summer are presented in Table A-3, while occupancy, equipment and lighting profiles are shown in
Table A-4 (see Append). The number of occupants was assumed to be the number of bedrooms plus
one, with the occupancy profile for a working couple with two children. Regarding natural ventilation
during the cooling season (April to September), windows were assumed to be open during occupied
hours when internal temperature exceeded 22°C, which is in line with the window opening rule used
in CIBSE TM36 % as well as previous modelling based UK overheating studies * *”%°. During the
heating season (October to March) radiators were turned on and off based on the heating set-point
temperature of 20°C between 5 p.m. and 9 a.m.

The annual gas use for space heating predicted from the thermal model of the reference house was
124.6 kWh-m for London (i.e. Gatwick Airport, 51°09' N, 0°) under the current climate. This is close
to the UK household energy consumption for space heating (125.0 kWh-m2)*°. The annual electricity
use of the reference building (floor area of 110 m?) was 4365 kWh which is also close to the electricity
consumption of real detached houses with similar floor area (i.e. 4400 kWh for floor area between
101 m? and 150 m?) > in the UK.

Table 2 presents indoor mean and maximum temperatures predicted from the thermal model of the
reference house and those found from UK national survey on summertime overheating in 193 English
homes 52. The indoor temperatures were monitored (08:00-22:00 for living rooms while 23:00-07:00
for bedrooms between 22" July and 31°%* August in 2007) across nine UK government office regions
including North East, West Midlands, Yorkshire, South West, East Midlands, North West, East of
England, South East and London °2. Due to the lack of localised weather data for the same monitoring
period, the current CIBSE TRYs for the same regions were used in this study to examine whether or
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not summertime temperatures of the reference house were representative. As shown in Table 2, the
external mean and maximum temperatures averaged over the nine regions for the monitored period
between 22" July and 31t August in 2007, i.e., T and T)?%* were 15.3°C and 27.0°C respectively.
The monitored period was found to be the coolest summer between 1998 and 2007 *2. Also, the
monitored period was cooler than the CIBSE TRYs as evidenced by the fact that the mean and
maximum temperatures of the CIBSE TRYs averaged over the same regions were 16.7°C and 28.2°C
respectively. As can be seen in Table 2, the predictions (i.e., T*" and T7%% ) are slightly warmer than
the monitored values, most likely because the survey was conducted during the cool summer of 2007,
however they are very close and hence the thermal model of the reference house can be considered

as reasonably representative.

Table 2. Comparison between the monitored data °2 and predictions from the thermal model. Note all the values shown in
this table were averaged over the nine UK government office regions: North East, West Midlands, Yorkshire, South West,
East Midlands, North West, East of England, South East and London. #values are standard deviations.

. . Predictions from the thermal model of the
Monitored data from UK national survey

Indoor reference house in this study
Living room Bedroom Living room Bedroom

T;mean (°C) 21.8 0.4 21.6 0.5 22.6 0.6 21.2 +0.6

T;max (°C) 25.7 1.0 25.4 0.8 27.8 1.6 25.6 1.0

Outdoor Measured data from UK national survey Current CIBSE TRYs >3

Tgzee™ (°C) 15.3 +1.0 16.7 +0.8

TR (°C) 27.0° 28.2 +1.7

*Standard deviation of the external maximum temperatures was unavailable from the reference 52
4. Spatial variability of the probabilistic Test Reference Years

As mentioned in the introduction, it is well known that the annual heating energy use and summertime
temperatures of UK homes vary across the landscape, especially in areas with large topographic
differences . As presented in Figure 1, the UK landscape indeed shows great topographic variation,
and hence we would expect any TRY data set with high spatial resolution to show similar variation. In
this section we examine the spatial variation in the mean external temperature of pTRY (T x¢%") and
the mean summertime internal temperature (T/;/¢%") and gas use for heating (kWh-m per year) for

the reference house.
4.1. Adjusting external temperatures by using the environmental lapse rate

In Figure 1, map A shows the spatial variability of the surface altitude at a 5 km by 5 km grid resolution
across the UK landscape. The altitude datasets were derived from the Global Land One-km Base
Elevation Project database **. The database was aggregated to the same 5 km grid of the synthetic
weather data generated by the SUWG for the UK. Map B shows the expected resultant spatial variation
in temperature caused by this altitude, given by the environmental lapse rate (—0.6°C/100m). Map C
shows the 14 CIBSE weather regions and the annual mean external temperature (T;x¢%") as found in
each CIBSE TRY. Comparing the map A and map C it is clear that 14 CIBSE TRYs are not sufficient to
represent localised weather. Most commercial thermal modelling software allows the weather file to
be adjusted for altitude by using the environmental lapse rate although it is unknown if most
researchers or engineers do so. Map D in Figure 1 illustrates the impact of simply adjusting for altitude
in this way. Although, much detail is added, artefacts can still be observed, such as the spatial
discontinuity in the south east, again suggesting localised weather is needed.
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Figure 1. A) Spatial variability of surface altitude of the UK at a 5 km resolution; B) expected decrease in hourly
temperatures through the application of an environmental lapse rate of -0.6°C per 100m of altitude; C) the regions covered
by the 14 current TRYs together with their annual mean temperatures; D) the effect of applying an environmental lapse rate
of -0.6°C per 100m of altitude on current CIBSE TRYs. Quantile map classification was used, except for map C, so that each
class contained approximately the same number of grids.



4.2. Spatial variability of external and internal mean temperatures

Spatial variations in external (T%¢%") and internal summertime mean temperatures (Ti’,’l”‘éa") across

the UK are presented in Figure 3. Summer is defined as April to September for the reference building.
No heating was used during this period. The largest cities in the UK are marked and the urban heat
island effect is clearly noticeable. For instance, Tgx®*" and T;5*" for urban areas such as London,
Birmingham and Manchester are respectively on average 1.5°C and 1.0°C warmer than rural areas.

A classic technique for measuring spatial continuity is through a semivariogram (see Figure 2), i.e., an
observation plot showing change in variability over increasing separation distances *°. A
semivariogram uses semivariance (y(h)), which is a measure of spatial dependence of the values of
attribute Z between two points on a surface, Z(x) and Z(x + h) with a separation defined by the lag,
h %e:
W= ST l2e) - 261 + WP ()
T VAT

where N (h) is the number of data pairs that are approximately separated by lag, h. The distance
where the semivariogram first flattens out (after which semivariance does not increase anymore) is
termed the range, and the semivariance value at this point, the absolute sill. The nugget, which
describes the variability at distances tending to zero, represents both small scale variability inherent
in the studied process and measurement errors. It can therefore be used to explain the speckle, i.e.,
the variability between adjacent pairs of cells across the landscape.

Semivariance

~ :
. Nuggst ¢

Lag

Figure 2. Semivariogram

In our case, the attributes of interest (Z) are external and internal temperatures. We would expect
locations near each other to be (on average) fairly similar (i.e., correlated). We set the sampling
interval distance of the semivariogram, i.e., the lag (h) to 10 km, a distance conveniently greater than
that between adjacent grid locations. The resulting maps and semivariograms for Tgx®*" and Tj ¢*"
shown in Figure 3 are consistent with our assumptions. The ranges of the semivariogram for eastings
for TJ°%™ and T/ %™ are seen to be similar, at approximately 75 km. The nugget for northings and
eastings are 0.26 (°C?) and 0.18 (°C?) for Tg¢*" respectively; and 0.19 (°C?) and 0.13 (°C?) for Tj ¢*"
respectively. These values are negligibly small, which reflects the observation that the differences of

annual average temperatures between adjacent grids appears small in most regions and the images



in Figure 3 appear free of speckle, suggesting that in most cases 5 km would seem to be a sensible
resolution for the production of weather files for the UK.

Returning to the temperature predictions, it is noticeable that the spatial variations in TJ¢¢*™ shown
in Figure 3 is similar to that found in the topographic variation presented in Figure 1 with an additional
effect of latitude, as expected, suggesting that the spatial variability T.2¢*™" is realistic. We can
therefore conclude that pTRYs are suitable for assessing spatial variation in year-round average
temperatures, building energy consumption, etc.

As previously discussed, much of the variability found in the temperature time series across the UK is
due to altitude. Figure 4A shows the same data as Figure 3A, but after removing the altitude effect (by
applying the same environmental lapse rate), the perturbation caused by the major cities is now even
more evident. Figure 4B shows rise in T x¢*"of pTRYs for the 2080s relative to the control period, i.e.,
1970s. It is clear that the expected rise is not uniform. Figure 4C presents absolute differences
between the T,2¢%" shown in Figure 3A and that shown in Figure 1D, i.e., the error in Tj2%" of the
adjusted CIBSE TRYs. Though there would be an offset in the overall errors due to warmer climate in
the 2080s, it can be inferred from the spatial variability of the error that using the adjusted CIBSE TRYs
would lead to unrealistic spatial variation in Tox¢?". For instance, the errors for major cities are
significantly larger as the UHI effect was not considered in the adjusted CIBSE TRYs. Hence, building
simulation with the current CIBSE TRYs will lead to inaccuracies especially for urban areas.

Maps of gas use for heating (kWh-m per year) for the 1970s and 2080s for the reference building are
presented in Figure 5, which illustrate one possible use for such data. As presented in Figure 5B, the
difference between the 1970s and 2080s is not uniform across the landscape. Compared to the 1970s,
the heating energy in the 2080s was projected to be 23.5% lower on average (with a range from -14%
to -39% across the landscape). The mean reduction of 23.5% is in line with estimations from previous
studies >57°, however the wide range predicted once more points to the need to use high resolution
weather files when setting local policy.
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Figure 5. A) shows gas use for heating (kWh-m=2 per year) in the reference building for the control year (i.e., the 1970s) and
for the 2080s; B) shows the reduction (%) in gas use for heating in the 2080s relative to the 1970s.
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4.3, Limitation of pTRY in representing spatial variability of external maximum and minimum
temperatures

From the above, it would appear that the pTRYs based on the weather data generated from the SUWG
reasonably reflect true spatial variability. This would indicate the potential to investigate how

buildings might typically perform into the future, allowing the creation of highly localised policy that
is both sensible and cost-effective.

The spatial distribution of the maximum hourly temperature (i.e.,Tox®* = max(Ty, Ty, ... Tg760)) and

minimum hourly temperature (i.e., /%" = min(Ty, Ty, ... Tg7¢0)) Of the pTRY (the 50" percentile TRY
for the 2080s) are shown in Figure 6. It is clear that the distribution of temperatures is unrealistic, with
a highly speckled appearance, in contrast with the common sense expectation that two adjacent
places would have similar maximum and minimum temperatures. This is confirmed by the nuggets

found in the semivariograms, which are almost 10 times those of Figure 3: 2.84 (°C?) and 2.79 (°C?) for

T for northings and eastings respectively, and 1.58 (°C?) and 1.43 (°C?) for ™" respectively for

ex
northings and eastings. Thus, the pTRY is not suitable for use in mapping extremes. This is unsurprising
as the method used to create a TRY is based on neither the maximum nor minimum one-hour

temperature found in the time series.
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5. Creation of new pTRYs (pTRY-max and pTRY-min) at a 5 km by 5 km resolution

Current and future probabilistic TRYs (pTRY) consist of the most average months, as selected by the
FS statistic 7 1°. Hence the TRY method can ensure pTRYs are representative of the typical monthly
situation. However, as shown above, there is no guarantee that any time series so generated will
include a spatially consistent set of T4 and T/®". Therefore, these pTRYs are inappropriate in
exploring the spatial variability of T/?** and T™ across the landscape, or the impact of maximum or
minimum temperatures on buildings or other systems. Hence we propose a new method for creating
spatially consistent time series which contain realistic and typical maximum and minimum one-hour
temperatures, and term these: pTRY-max and pTRY-min respectively. To be in line with the original
TRY method, pTRY-max and pTRY-min are also composed of twelve months selected from potentially
different sample years. Twelve months in the pTRY-max and pTRY-min were selected based on the
maximum and minimum hourly temperatures respectively. For instance, the January which contained
the typical maximum hourly temperature was selected from a set of 30 year-long climate data based
on:

Diff(m,i) = abs| Tje* — T,max (2)
N rmax
and Tmax — Z1=1"mi (3)
m,N N

where, T is the maximum hourly temperature of amonth m inasampleyear i € N (e.g., Tjgni =

max(Ty, T,, ... T31x24) ) and N is the length of the period in years (in our case 30 years), W is the
averaged maximum hourly temperature over all Januaries from a set of N year-long data, and
Dif f(Jan,i) is the absolute difference between them. The January with the least Dif f (Jan, i) was
selected from each set. So, 100 Januaries could be selected from 100 sets of 30 year-long data
generated by the SUWG. Then, the 100 Januaries were ranked based on ascending order of Tox%*.
Finally, the January, February and so on with the same percentile rank were concatenated to form a
probabilistic TRY-max. That is, each calendar month of the pTRY-max contains a typical Tox%* for that

month. Likewise, the probabilistic TRY-min has been created based on T/™,

Figure 7 presents the spatial variation in T/?** for pTRY-max and the spatial variation in T.%" for
pTRY-min. From the map of T/™™ (on the right) it is clear that the coastline is warmer than inland;
furthermore, as expected the UHI effect is much stronger compared to ones shown over the map of
TR (on the left), and the map of TJ2¢%" shown in Figure 6. Semivariances shown in Figure 7 are
smaller than the ones shown in Figure 6 for the same lags. For instance, the semivariance for a distance
of 100 km shown in Figure 7 is less than 2 (°C?) which is half of the semivariance shown in Figure 6. In
addition, the nuggets of the semivariograms for easting are 0.28 (°C?) and 0.12 (°C?) for T;*** and
TIM" respectively, close to those given in Figure 3. That is, the spatial continuity for both T4 of
pTRY-max and Tg,’éi" of pTRY-min are dramatically improved compared to Figure 6, with adjacent cells
having similar values. Maps and semivariograms for other weather variables can be found in Append.

It should be noted that the purpose of pTRY-max and pTRY-min is not to allow the study of rare
extreme conditions, e.g., heat waves and cold snaps, but to provide spatially consistent typical
maximum and minimum conditions in line with the TRY philosophy, thereby allowing external and
internal conditions at the typically coldest or hottest temperature to be studied.
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Figure 7. Spatial variation in the maximum hourly temperatures of pTRY-max (on the left) and the minimum temperatures
of pTRY-min (on the right) for the 2080s.
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An important question, however, is that whether the Tg¢**™ and T/ /%" of the pTRY-max and pTRY-
min are similar to that of pTRY. Figure 8 shows that the spatial variation in TJ¢¢*™ of pTRY-max and
pTRY-min are extremely similar to that of pTRY across the UK. It is encouraging that the spatial
continuity, i.e., the nuggets and ranges of the semivariograms are almost identical. Figure 9 presents
the spatial variation in T/5*" for the reference building during the summer. Again, the spatial
variation in T/ '5*" for pTRY, pTRY-max and pTRY-min are similar across the landscape. Moreover, the
differences of median T,x%" between them are less than 0.3°C as can be seen in Figure 10. Dynamic
thermal simulations with pTRY, pTRY-max and pTRY-min have been carried out for all of the 11,326
grid locations, and differences of median Tiﬁ‘;‘m between them are negligible as can be seen from the
data in Figure 10. Thus, it would appear that pTRY-max and pTRY-min well represent the year round

average temperature, as well as the maximum and minimum temperatures (respectively).
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Figure 8. Spatial variation in the mean temperature (Tox¢*" ) of pTRY, pTRY-max and pTRY-min for the 2080s.
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6. Use of the files

By providing pTRYs at 11,326 locations energy modellers and those looking at the performance of
buildings can proceed for the first time knowing that they are using weather representative of the
local situation. Others will be interested in how energy use in buildings or internal temperatures in
free running buildings changes across the landscape. The pTRY can be used for assessing year-round
energy performance of buildings under average conditions, while pTRY-max and pTRY-min might be
used for looking at typical maximal and minimal conditions, for instance, in looking at how peak
heating and cooling load changes across the landscape. One impressive aspect of these new files is
the clear identification of an UHI. The weather files can be downloaded from a website
(https://colbe.bath.ac.uk/) by providing a postcode or latitude and longitude of the location of interest.
The following files can be downloaded: 1) typical years such as pTRY, pTRY-max, pTRY-min for the
1970s, 2020s and 2080s, and 2) warmer than typical years represented by probabilistic Design Summer
Years (pDSY) *° and probabilistic Hot Summer Years (pHSY) ?* for the 1970s, 2020s and 2080s.

7. Conclusion

The aim of this work was to produce localised test reference years for building simulations across the
whole of the UK and examine spatial variability and to discover if 5 km was a sensible resolution. For
the first time, pTRYs were created for 11,326 grid locations based on approximately 30 TB of synthetic
weather data generated by the updated SUWG which takes topographic effects into account. The
SUWG has incorporated the urban anthropogenic component so that the synthetic weather data from
the SUWG could be used to explore the UHI effect. Indicative dynamic thermal simulations for 11,326
locations have also been carried out. The pTRYs show a realistic spatial distribution, as measured by
their semivariograms. The UHI effect is clearly evident and the realistic spatial variation also makes
sensible predictions in the spatial variation in the thermal performance of a reference building. Hence,
we believe the pTRYs can be used to examine the spatial variability of conditions within buildings at
an unprecedented resolution. The nuggets for northings and eastings are negligibly small, which
reflects the reality that the differences of annual average temperatures between adjacent grids
appear small in most regions, suggesting that 5 km is a sensible resolution for the production of
weather files for the UK.

One unanticipated finding was that pTRY showed limitations in mapping maximum and minimum
hourly temperatures with poor spatial continuity and unrealistic differences between adjacent grids.
Hence a new method was proposed to create new pTRY (i.e. pTRY-max and pTRY-min) for the study
of peak heating and cooling loads and other situations requiring a one-hour metric.

Although these files were produced for building thermal modelling, and to support national built
environment policy, they are likely to be of interest to other disciplines including studies of renewable
energy generation, crop yields and climate resilience.
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Appendix

Notation

IPCC Intergovernmental Panel on Climate Change

SRES Special Report on Emissions Scenarios

CIBSE The Chartered Institution of Building Services Engineers

CIBSE TRY CIBSE Test Reference Year

UKCPO9 The UK Climate Projections 2009

SUWG The Spatial Urban Weather Generator, an updated version of the UKCP09
Weather Generator

pTRY Probabilistic Test Reference Year

pTRY-max New probabilistic Test Reference Year containing a typical hourly maximum
temperature

pTRY-min New probabilistic Test Reference Year containing a typical hourly minimum

temperature

19



Front

8.0m |

: Bathroom
Kitchen | Bedroom2

Dining room
Landing ‘

g
S | | Ll JT
Living room ;3 Bedroom3 Main bedroom
E_‘7
<
N L
! |
6.0 m I+ 6.0m {
Ground floor The first floor 3D view

Figure A-1. Geometry, floor plan and glazing dimensions of the detached house
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Table A-1. Construction details

Construction

U-value (W-mZK)

External wall

Internal partition

Internal floor

Ground floor

Pitched roof

105
100
105

13

13
100
13

12.5
50
65
25

500
150
50
10

12.5

mm brickwork outer leaf
mm  cavity ventilated
mm brick, inner leaf

mm  plaster

mm  lightweight plaster
mm  lightweight concrete
mm  lightweight plaster

mm  plasterboard (ceiling)

mm  air layer

mm cast concrete

mm  wood block

mm  clay underfloor
mm concrete roof/floor slab
mm  flooring screed

mm concrete roof tiles

- roof space

mm  plasterboard (ceiling)

1.5

11

1.6

1.1

2.0

Note: thermal conductivity, density and specific heat capacity of building materials can be found in CIBSE Guide A 62,

Table A-2. Window and door characteristics

Construction

U-value (W-mZK)

Single glazing

Wooden frame

Door

20

35

mm  generic clear glass

mm  wood

mm  painted oak

4.8
(SHGC=0.85)
3.6

2.8

Table A-3. Effective air change rate (ach) for each zone

Zones

Cross ventilation

Night-time ventilation

The maximum air
change rate (ach)

Ground Living (30 m?)

floor Dining (18 m?)
Kitchen (8.75 m?)
Hall (11.25 m?)

First Main bedroom (25.5 m?)

floor Bedroom 2 (15.75 m?)
Bedroom 3 (9.5 m?)

Bathroom (5.6 m?)

Possible

Internal doors are
closed when
occupied

Only possible during
occupied hours for
security issue

Possible

25
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Table A-4. Occupancy and equipment profiles

Zones Number of Metabolic rate Equipment (W) & Lighting Hot water
occupants (W/person) & Schedule schedule schedule
Occupied hours (15 W-m?) (sow)
Living 2 108 17:00-22:00 160 17:00-18:00 17:00-22:00 -
(seated) (TV) 19:00-22:00
Dining 0 - - 60 00:00-24:00 08:00-09:00 -
(Fridge)
Kitchen 0 - - 160 07:00-08:00 07:00-08:00 00:00-24:00
1600 18:00-1900 18:00-21:00
(cooker)
Hall 0 - - - 07:00-08:00 -
18:00-21:00
Main bedroom 2 72 22:00-07:00 - - - -
(sleeping)
Bedroom 2 1 55 21:00-07:00 100 - - -
(PC)
Bedroom 3 55 21:00-07:00 - - - -
Bathroom 0 - - 20 07:00-08:00 07:00-08:00 00:00-24:00
20:00-2100 20:00-2100

Note: the equipment and lighting schedules were modified from BEPAC Technical Note 90/2 3¢ to be in line with the latest
survey on energy use in English homes 51; the main bedroom was for a couple (i.e. adults) while bedroom 2 and 3 were for

children.
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Figure A-3. Spatial variation in the external mean relative humidity (RH) of pTRY, pTRY-max and pTRY-min for the 2080s.
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Figure A-4. Spatial variation in the mean wind speed (WS) of pTRY, pTRY-max and pTRY-min for the 2080s.
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Figure A-5. Spatial variation in the whole-year global horizontal irradiation (GHR) of pTRY, pTRY-max and pTRY-min for the
2080s.
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