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Abstract—High temperature superconducting magnetic energy 

storage systems (HTS SMES) have attracted significant attention for 
fast response and ensure a reliable power supply. However, the cur-

rent carrying capacity of single superconducting tape often meets 
limitation for the large scale HTS SMES applied in the power grid. 
Therefore, a high temperature superconducting composite cable 

with inner helical cooling tunnel and kA class current carrying abil-
ity is proposed for SMES magnet by using REBCO tape. The critical 
current characteristics of this internal cooling composite cable are 

analyzed considering the influence of anisotropy in magnetic field. 
A 100 m length, high temperature composite cable is manufactured 
in China Electric Power Research Institute (CEPRI). The critical 

current experimental system with a 3 kA DC current power source 
and a high-precision Digital Data Acquisition (DAQ) system have 
been set up to investigate the current carrying ability of a straight 

and a bending demo composite cable in LN2. The results show that 
critical current of HTS composite cable consisted of 4 REBCO tapes 
can achieve 780 A at 77 K self-field and the experimental I-V curve 

of each REBCO tape in the composite cable is not uniform because 
of the influence of anisotropy. When the HTS composite cable is 
bent, its critical current is about 90% of the straight HTS composite 

cable. Therefore, the design method and the proposed experimental 
system are proved to be effective as well. 
 

Index Terms—High temperature superconducting composite ca-
ble, inner helical cooling, REBCO, SMES 

I.  INTRODUCTION 

igh temperature superconducting energy storage system 

(HT SMES) stores energy in the magnetic field produced 

by a persistent current in a superconducting loop. So that HT 

SMES has several significant advantages: a) larger power den-

sity than other energy storage system, b) more than 85% effi-

ciency, c) a substantially faster response speed, d) infinite 

charge and discharge cycles [1]. 

 There are several completed and ongoing HTS SMES pro-

jects for power system applications [2, 3]. Superpower Inc, 
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Houston University and Brookhaven National Lab are aiming 

to deliver a 2.5 MJ system for load leveling in medium voltage 

15-36 kV distribution networks. In 2013, Germany also pro-

posed a new type of 48 GJ hybrid energy storage system 

LIQHYSMES to solve the problem of grid fluctuation caused 

by renewable energy integration [4]. Form these above applica-

tion, we find the large capacity energy storage magnet usually 

wants the current can be as large as possible. However, the crit-

ical current of single commercial HTS tape used in SMES can’t 

meet this requirement. And it is difficult and costly to increase 

the current by paralleling coils or lowering the operating tem-

perature. 

In recent years, there are some literatures describing different 

kinds of superconducting composite conductor, such as twisted 

stacked-tape cable (TSTC) [5-8]. However, they didn’t have 

enough considerations for the power grid application, for exam-

ple in SMES. In 2016, China Electric Power Research Institute 

(CEPRI) has firstly designed a 3 MJ HTS SMES applying a pro-

posed twisted stacked-tape in tube (TSTT) composite cable [9].  

This paper proposes a TSTT composite cable integrated by 

four REBCO tapes and a constant aluminum jacket. The elec-

tromagnetic characteristics and current variation considering 

the anisotropy of REBCO and critical current are analyzed by 

using COMSOL software. A 100 m length, TSTT composite 

cable is manufactured and tested in CEPRI for the first time. 

The calculated and measured critical current of a straight and a 

bent TSTT composite cable are compared. The results show that 

the critical current of TSTT composite cable has achieved 780 

A@77K which satisfied the current performance requirement for 

winding a 3 MJ HT SMES. 
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II. INTERNAL COOLING HIGH TEMPERATURE COMPOSITE CA-

BLE DESIGN 

A. Structure design 

1

2
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4
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Fig. 1. sketch of inner helical cooling TSTT composite cable. 

 

The structure schematic diagram of the composite cable is 

shown in Fig.1. It mainly consists of six parts: (1) supercon-

ducting core. It has 4–ply REBCO superconducting tapes 

stacked in parallel and twisted in a certain pitch (the total num-

ber of tapes can be increased); (2) soft metal buffer layer using 

silver-plated copper wire; (3) inner aluminum coating layer; (4) 

aluminum jacket with square outer wall and round inner wall; 

(5) cooling channel flowing liquid nitrogen or gas helium; (6) 

insulation layer of polyimide film.  

This composite cable has some advantages for constructing a 

SMES. Firstly, the stacked tapes have been twisted so the ani-

sotropy of HTS wires can be reduced to make current distribu-

tion more uniform, which is beneficial to enhance the critical 

current and reduce AC losses. Secondly, the spiral inner cooling 

channels can increase the contact surface to improve the cooling 

efficiency of magnet. Thirdly, the aluminum jacket acts as a sta-

bilizer to withstand the fault current for SMES quench protec-

tion. Finally, the compact structure   can greatly reduce the size 

of the high temperature energy storage magnet.  The specifica-

tion of a TSTT composite cable has shown in Table.1.  
TABLE I 

SPECIFICATION OF THE INTERNAL COOLING TWISTED STACKED-TAPE IN TUBE 

COMPOSITE CABLE FOR HTS SMES 
 

Parameters Value 

Sectional dimension 13mm×13mm 
Length 100m 

Inner diameter  10.8mm 
Pitch >200mm 

Superconducting core size 9.6mm×4.8mm 
Thickness of soft metal buffer layer 0.5mm 

Critical tensile stress (77 K) 250 MPa 
Critical tensile strain (77 K) 0.3% 
Minimum bending diameter 300mm 

REBCO tape number 4 
Critical current (77K)  700 A 

Length per cable 100m 

B. Critical current characteristics analysis  

A T-A equation model is applied for the first time to calculate 

the magnetic field and current distribution of each REBCO tape 

in the composite cable considering the influence of anisotropy 

in magnetic field.  It is a general, flexible and efficient FEM 

model which can be implemented in commercial FEM software 

to analyze complex geometries. The T-A governing equation 

based on Faraday’s law is shown in (1): 
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Since the T-A model approximates the superconducting layer 

as a sheet, the Faraday’s law is applied to the sheet geometry. 

The difference is that a normal vector n is applied in (1). Then, 

E-J power law is employed as  
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And J is calculated as 

J T 
                                                                      (3) 

Where, T is current vector potential, n is the n-value of su-

perconducting tape. The magnetic flux density B is solved using 

the traditional A formulation, seen in (4). Jc(B) is calculated by 

(5): 
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B∥, B⊥  are the parallel and perpendicular magnetic filed 

components; Ic0 is the critical current of superconducting tape 

at 77K, self-field; B0=20 mT；γ=5, α=0.65 [10]。 

The FEM mesh for a 10 cm length, 3D TSTT composite ca-

ble is built by using COMSOL software, seen in Fig.2. The elec-

tromagnetic solve equation is replaced by the T-A equation 

model with applying current to the superconducting tapes by 

setting the edges. The magnetic flux density and critical current 

of the demo composite conductor is calculated based on Jc-B 

relationship. The theoretical critical current is 913 A@77 K. 

 

 
Fig. 2. The mesh of TSTT composite cable based on 3D FEM in COMSOL. 

http://www.so.com/link?url=http%3A%2F%2Fdict.youdao.com%2Fsearch%3Fq%3Dperpendicular%2520components%26keyfrom%3Dhao360&q=%E5%9E%82%E7%9B%B4%E5%88%86%E9%87%8F+%E8%8B%B1%E6%96%87&ts=1510302181&t=e88cef5dabbfb07cd87387856e92d41
http://www.so.com/link?url=http%3A%2F%2Fdict.youdao.com%2Fsearch%3Fq%3Dperpendicular%2520components%26keyfrom%3Dhao360&q=%E5%9E%82%E7%9B%B4%E5%88%86%E9%87%8F+%E8%8B%B1%E6%96%87&ts=1510302181&t=e88cef5dabbfb07cd87387856e92d41
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III. MANUFACTURE AND CRITICAL CURRENT EXPERIMENTAL 

TESTS OF THE COMPOSITE CABLE 

A. Continuous HTS Composite Cable Manufacturing 

In this paper, China Electric Power Research Institute (CEPRI) 

design the manufacturing process of high temperature supercon-

ducting internal cooling twisted stacked-tape in tube (TSTT) 

composite cable using Fujikura REBCO tapes. A continuous 

TSTT composite cable with 100 meters is manufactured in Anhui 

Hong Yuan Special Cable Group co. LTD in China. The indus-

trial manufacturing process photo of insulation coating process 

for the 100 m composite cable is shown in Fig. 3. Then, a 1.5 m 

demo cable is cut off from the 100 m cable and to be tested for 

its critical current characteristic after the industrial manufacturing. 

 

 
Fig. 3. Photo of 100 m HTS composite cable in insulation coating process. 

B. The critical current testing system for TSTT cable 

 
 

Fig. 4. V-I test system photo for composite HTS cable. 

 

The V-I test platform photo is shown in Fig. 4. The test sys-

tem consists of a NI Data Acquisition (DAQ) test instrument, a 

3 kA DC power supply with quench protection circuit and a 

cryogenic dewar. A 1.5 m demo composite cable is placed in a 

vessel which is filled with liquid nitrogen at 77 K. Each super-

conducting tape is connected to the 3 kA DC power supply 

through a silver current lead in the V-I test system. The cross 

section of a silver current lead is  10 mm×0.4 mm. There are 

several voltage leads both on REBCO tapes and silver current 

leads. And they are all connected to the DAQ test instrument. 

All of the current and voltage signals of TSTT composite cable 

are collected by DAQ system. Therefore, the current sharing 

characteristics in the composite cable can be obtained according 

to the voltage signals of the silver leads and their resistance. So, 

the experimental V-I curve and the quench state of the 1.5m 

demo TSTT composite cable is obtained. In the experiment, the 

shunt ratio for the total current is 2000 A/75 mV, the charging 

rate for the composite cable is 2 A/s and the discharging rate is 

5 A/s. Fig.5 is the 1.5 m TSTT composite cable with 160 mm 

bending radius. 

 

Silver current 
leads

Demo 
composite HTS 

conductor

Voltage taps

Copper leads

 
Fig. 5. Photo of silver current lead and welding condition of voltage leads for 

1.5m TSTT composite cable with 160mm bending radius.  

C. Critical current testing for straight composite cable 

Fig. 6 is the V- I curves of four REBCO tapes which are in a 

straight TSTT composite cable. The critical currents of four 

HTS tapes are 211 A，215 A，236 A and 237 A, respectively. 

The critical current of the 1st tape and 2nd tape are both less than 

that of the 3th tape and 4th tape. This decrease in the critical cur-

rent may be due to the damage caused by the composite cables 

in the manufacturing process, or in the welding process due to 

the high temperature environment. Compared to the critical cur-

rent of single REBCO tape with 270 A@77 K, the critical cur-

rents of four tapes have decreased by 21.85%, 20.37%, 12.59% 

and 12.22%. The maximum reduction ratio of 1st tape is nearly 

22%.  

Fig. 7 is the critical current curve for the TSTT composite 

cable. When one tape takes place quench at the first time, we 

add the current of each tape at this moment as the overall critical 

current of the cable.  According to the transition criterion (1μ
V/cm), the critical current is 780 A and it is 85.43% of the the-

oretical value of 913 A.  
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Fig. 6. Experimental V-I curve of each REBCO tape in HTS TSTT composite 

cable. 
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Fig. 7. Experimental V-I characteristic of HTS TSTT composite cable. 

D. Critical current testing for composite cable with bending 

To investigate the bending effect on the critical current in the 

process of winding, this article has carried on a critical current 

test of composite cable with the bending radius of 160 mm 

which is the inner radius of a pancake for a superconducting 

energy storage magnet [11]. 

Fig. 8 is the V- I curves of four REBCO tape in a bending 

composite cable. Fig. 9 is the V- I curve for the composite cable 

after bending. In Fig. 8, the critical currents of four HTS tapes 

are 183 A，185 A，218 A and 220 A@77 K. These critical 

currents have decreased by 32.22%, 31.48%, 19.25% and 18.51% 

compared to the critical current of a REBCO tape, respectively. 

The critical currents of the 1st tape and 2nd tape that have been 

damaged in the process of manufacturing are more attenuated 

than that of the 3th tape and 4th tape.  The critical current of the 

bending composite cable is 700 A which is 89.74% of that of 

the straight composite cable. It is shown that bending leads to 

further reduction of the critical current for composite cable.  
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Fig. 8. Experimental V-I curve of each REBCO tape in HTS TSTT composite 

cable with 160 mm bending radius. 
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Fig. 9. Experimental V-I characteristic of HTS TSTT composite cable with 160 

mm bending radius. 

E. Comparison and analysis 

Considering the influence of magnetic field and mechanical 

processing, the calculated critical current of the composite cable 

is 913 A. After manufacturing, the critical current reduces to 

780 A and further to 700 A with a bending radius of 160 mm. 

Compared to the theoretical value, the critical current reduction 

ratio of straight and bending HTS TSTT composite cable are 

14.5% and 23.3%, respectively, as in Table.2. When the com-

posite cable is bent, its critical current is nearly 90% of the 

straight one. Therefore, the composite cable meets the critical 

current performance requirements. It is feasible to use this com-

posite cable to make a designed MJ class SMES magnet. We 

will give these research achievements in future. 

 
TABLE II 

THE CRITICAL CURRENT COMPARISON BETWEEN CALCULATION AND EXPERI-

MENTAL RESULTS OF TSTT COMPOSITE CABLE 
 

Item 
Theoretical 

value 

Experimental Ic value of composite  

HTS conductor 

Straight Bending 

Critical current 

/A@77K 
913 780 700 

Reduction ra-

tio 
- 14.5% 23.3% 

IV. CONCLUSION 

A high temperature superconducting twisted stacked-tape in 

tube (TSTT) composite cable is proposed in CEPRI with a spiral 

cooling tunnel inside and a metal jacket. A T-A equation model 

is applied to calculate the theoretical critical current of the TSTT 

composite cable. A continuous TSTT cable with 100 meters is 

manufactured in China. The critical current experimental system 

is built for the composite cable. Compared to the theoretical 

value with 913 A@77 K, the critical current reduction ratio of 

straight and bending TSTT composite cable are 14.5% and 

23.3%. In addition, after the composite cable is bent, its critical 

current is nearly 90% of the straight one. Therefore, the compo-

site cable is considered as the potential superconducting mate-

rial for a MJ SMES magnet. 
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