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EFFECTS OF AGGRESSIVE ENERGY EFFICIENCY REGULATIONS ON AN
UNPREPARED BUILDING SECTOR USING UNCERTAINTY ANALYSIS

ABSTRACT

Building Assessment Tools (BATS) are widely used
to estimate the performance of building and to assist
designers in making decisions. As building codes and
rating systems move from prescriptive to
performance-based metrics, BATs are increasingly
used to show compliance. BATS use computational
methods and the results are mostly in a single
annualised  metric. However, the scientific
community has shown that aleatory factors such as
occupant behaviour and weather make the potential
energy use of a building far from being a single
deterministic value. Also, it is known that there is a
significant deviation between predicted (at design
stage) and actual energy use in buildings. These
variations reduce the credibility of the predictions,
questioning the acceptance of BATSs results without
considering underlying errors. This problem is
amplified in developing nations because of under-
policed construction sector. To address this, our work
analyses uncertainty in a typical air-conditioned
multi-storey residential building’s performance in
Delhi and shows implications of variable inputs in
the results.

The paper first reviews the use of BATs and existing
studies on simulation uncertainty. Then uncertainty is
evaluated in energy simulation of a sample building,
including effects of inconsistent and construction
practices. EnergyPlus is then fed values sampled (by
Monte-Carlo method) from probability distribution
functions of inputs (building fabric and operational
parameters). Further sensitivity and uncertainty
analysis of the results is performed. From the 3500
simulations, the most sensitive inputs found were
internal gains; cooling setpoints and infiltration. The
variation in cooling demand and discomfort hours is
more than double between the best and worst case.

INTRODUCTION

Anthropogenic activities in the last decades have
altered climatic stability, water cycles and natural
habitats. At the time of writing, atmospheric CO2
concentration is 399 ppm (Tans & Keeling, 2014)
(Mauna Loa Observatory); 37% more than the
highest concentrations in 8,00,000 years (EPICA
DATA) (Luthi, D., et al., 2008). The annual mean
surface temperatures are rising due to greenhouse

gasses (GHG) concentration increase. It is estimated
to rise by 0.3 to 4.8 in next 100 years (IPCC, 2013).

Governments around the world are evaluating the
impacts of climate change on their economies. The
Indian economy could be considered as climate
sensitive as many sectors are wholly or partially
dependent on seasonal weather cycles. Indian
meteorological data shows a 0.4°C increase in the
mean annual air temperature in the past 50 years
(INCCA, 2010). Also, intensity and frequency of
extreme weathers like heat waves, dry spells and
heavy rainfall have increased (INCCA, 2010). Data
assessments indicate warmer climates in India, with
temperatures rising by 2-40C by 2050 (INCCA,
2010).

Buildings have a significant impact on the
environment. Infrastructural development of cities
leads to rapid growths in construction, causing 25%
of India’s current carbon emissions (Parikha, et al.,
2009). Buildings are responsible for 40% of energy
use and 33% of GHG emissions globally (UNEP,
2009). The energy use in buildings includes
operational and embodied energy and 80% of
building’s life cycle energy is by the former (Gregory
A. Keoleian, 2008) (Chris Scheuer, 2003). Also, the
building sector has the highest and most cost-
effective potential for providing long-term, energy
and GHG emission savings globally (IPCC, 2014).
This has also been observed at a national level in
India (PC : IEP, 2006). Building assessment tools
(BATSs) are widely used for detail assessment of
energy use in buildings.

Buildings are complex systems and their energy use
assessments  dependent on many parameters.
However, in most cases, these parameters are
variable and not certain (Pettersen, 1994). These
uncertainties arise due to lack of knowledge in
simulation inputs, improper construction methods,
approximate weather data and unpredictable
occupant behaviour. Statistical analysis of energy
simulations has been seen as a powerful tool in
predicting this variability (MacDonald, et al., 1999)
(Blight & Coley, 2013). In this paper, we assess the
effect in outputs by the variation of some building
design input parameters, which are regulated by
energy saving related polices.



This paper begins with a background section
reviewing: (1) the use of BATSs for design decision
making; and (2) existing studies that analyse
uncertainty in simulation results. This is followed by
assessing variations in input parameters in energy
simulations of a residential building in Delhi,
including the effects of construction processes used.
The paper focuses on uncertainties in the fabric (i.e.
thermal properties) and operational parameters. It
concludes by performing uncertainty and sensitivity
analysis of the input variables for the output of
cooling and heating energy use and discomfort hours.

BACKGROUND

Use of Building Assessment Tools (BATS) for code
compliance to reduce energy use in buildings

BATs are widely used to estimate energy
performance of building designs. These tools assist
designers in the decision making process by
providing comparative and detailed assessments of
building performance under various design
conditions and strategies. Due to their capabilities to
model building systems and physical phenomena in
detail, they are used make predictions about the
performance of a building under a wide range of
scenarios. But, in most cases, these tools rely on
input parameters that are either assumed or averaged
to provide deterministic outputs, i.e. predict future
scenarios that are known to be uncertain (Haldia &
Robinson, 2011) (de Wilde & Tian, 2009) (Blight &
Coley, 2013) (Ramallo-Gonzaleza, et al., 2013). This
results in simulations that are fundamentally
unrealistic and have shown to have errors exceeding
100% (Brohus, et al., 2009) (Demanuele, et al.,
2010).

In the context of the move from prescriptive to
performance-based building regulations (e.g. US
building energy performance assessments (BECP:US
DoE, 1991); and Energy Performance of Buildings
Directive in Europe (The European Parliament and
The Council of European Union, 2003)),
deterministic outputs seem to be ill-suited to provide
realistic estimates of future performance due to the
well demonstrated stochastic nature of energy use in
buildings (Page, Robinson, & Scartezzini, 2007)
(Blight & Coley, 2013). Similarly, India’s Energy
Conservation Building Code (ECBC) (BEE, 2009)
has a performance based compliance criterion (BEE,
2009). ECBC is partly mandatory and does not
include residential buildings. Experience in other
countries suggests that voluntary codes eventually
make the transition to mandatory codes (National
Action Plan for Energy Efficiency, 2009) (Liu, et al.,
2010). Apart from the issues of uncertain results due
to deterministic nature BATs’ results, construction
techniques that are widely used in India might result
in underperforming fabrics even when conforming to
ECBC specifications. Uncertainty analysis (with the
inclusion of construction process deficiencies) could
provide a contextual picture, with a more robust

understanding of the likely outcomes of measures in
the ECBC.

Uncertainty and applicability of BATs

Most BATSs use deterministic algorithms to predict a
single value for the building performance. Actual
prediction is more complex. Uncertainty in building
simulations arise due simplifications in computation
process and building complexity to reduce computing
time; or because of unknown and erroneous input
parameters (Clarke, 2001). Simplification generally
occurs in inputs like weather data, material properties
(like U-values), geometry etc. There, only the mean
or most probabilistic values are used. This provides
an unrealistic picture as value of each input can vary
within a range of data. This theoretical simplification
gives a range for the value calculated but not a
credible result (especially when results depend on
many such inputs). Adapted from Ramallo-
Gonzalez’s PhD thesis (Ramallo-Gonzalez, 2013)
and other similar works, we classify the types of
uncertainty into three groups:

e Environmental: Uncertainty in weather data
because of use of nearest weather station’s
synthetic weather file and uncertainty in
prediction of changing climate.

e Workmanship and quality of building
elements: Differences amid the design and
the real building: Conductivity of insulation
and thermal bridges, infiltration amount or
U-values of walls and windows.

e Behavioural: Actual building occupant
behaviour and usage patterns.

Additionally there is divergence in computation i.e.
the approximation and uncertainty in computational
formulas in the simulation tools. Above groups,
describe the broad areas of uncertainty. Based on the
reasons of existence they can also be divided in two
types, aleatory and epistemic. Aleatory uncertainties
represent the randomness nature of some variables.
Epistemic uncertainties are due to lack of knowledge
(Sandia Lab, n.d.). Uncertainties make it impossible
to find, for some inputs, a value that is actually true;
observed by Newton when building energy
simulations were in their infancy (Newton, et al.,
1988):

“...the choices of climatological data and occupancy
patterns are not easy and, in many cases, there is no
single correct value.”

Assessment of uncertainties at all levels is required to
get results with confidence intervals. It is the only
way to have realistic assessments and a better
understanding of energy simulation results. In this
study, aleatory and epistemic uncertainties in groups
2 and 3 would only be considered.

Areas where consideration of uncertainty can play a
major role are in energy-savings performance
contracts and in certification and code compliance for
green and ultra-energy efficient buildings (e.g. LEED



Ratings, or codes like EPBD in Europe or ECBC in
India.). Since BATSs are used to inform and evaluate
designs, there is a significant risk (could be financial
or of occupant comfort) if the real and predicted
performance vary. Additional information about the
uncertainty (like confidence intervals) would
facilitate a more informed decision by the designer.
Therefore, the argument of this paper is to prove how
BATSs should not be relied upon in a deterministic
manner but in a probabilistic way, to provide the
designers with stochastic indicators of the future
performance or demand of the building. In this paper,
we have used these indicators to verify the impact of
uncertainties in workmanship and operations in the
final energy performance of buildings.

Most of the studies discussed in the next section take
the wvariation in input parameters as a normal
distribution. These variations when seen practically
do not necessary apply. E.g. actual measurements of
accumulated electricity use in the UK (Carbon Trust,
2011) show a non-normal distribution. For that
reason, in this paper, probability distributions that are
more representative have been used. They represent
more closely what seen in reality. This point will be
further developed in later sections.

Existing studies on uncertainty in building energy
design

There have been many studies in the last two decades
vis-a-vis uncertainties influencing the results of
BATs. However, the studies are mainly theoretical
and have not been applied in real world problems.
Pettersen’s work is one of the first studies that looked
at the effects of climate variability, building
characteristics and occupants (Pettersen, 1994).
Using a statistical simulation method based on Monte
Carlo Analysis (MCA), Pettersen studies the
variation of energy use in dwellings, which was
about 15%.

There is little literature showing the impact of
uncertainties in specific inputs. De Wit studies the
effect of uncertainty as well as relative importance of
non-linear effects and parameter interactions on
thermal comfort, using factorial sampling (de Wit,
1997) (de Wit & Augenbroe, 2002). He also explores
effect of assumptions in measurement and
simplification in calculations. Dominguez-Munoz
studies the impact of uncertainties on the peak-
cooling loads using MCA with a global sensitivity
analysis to identify the most important uncertainties
(Dominguez-Munoz, et al., 2010).

Hopfe et al. have also worked on uncertainty and
sensitivity analysis for thermal comfort prediction to
help in design decision making and optimisation
(Hopfe, et al., 2007). Another paper written by Hopfe
and Hensen (Hopfe & Hensen, 2011), covers the
implication of uncertainties on energy consumption
and thermal comfort using a theoretical case study
and studying various building performance

parameters using as inputs physical, design based,
and scenario variables with their standard deviation.

Several works of MacDonald have focused on
quantifications and application of uncertainty on the
predictions of demand using building simulation
software (MacDonald, et al., 1999), (Macdonald &
Strachan, 2001), (MacDonald, 2002).His thesis
(MacDonald, 2002) shows two ways of achieving
this: The first way altered the input variables,
requiring multiple simulations of systematically
altered models and the subsequent analysis of the
changes, with differential, factorial and Monte Carlo
sampling; The second way altered the algorithm of
BAT to include uncertainty at all computational
stages. Applying these changes, the predicted
uncertainty in thermo-physical properties, casual heat
gains and infiltration rates was quantified and was
compared with MCA and differential analysis.
Further, the issue of non-convergence building
simulations was discussed (MacDonald & Clarke,
2007). The non-convergence was caused by
introduction of new uncertainty terms that were
uncorrelated to existing terms.

In other recent works, Wang examines uncertainties
in energy consumption due to annual weather
variation and building operations using MCA (Wang,
et al., 2012). Eisenhower enlarged uncertainty and
sensitivity analysis to take into account the influence
of 1000+ parameters (Eisenhower, et al., n.d.).

Uncertainties in India Context

The uncertainties in building input parameters are
particularly relevant in the Indian context because of
the techniques of construction used. Indian standards,
codes and practices for construction allow significant
tolerances and deviations in the fabric (IS: 2212:
2005 (BIS, 1991)), (1S4021: 1995 (BIS, 1995)), (IS:
4913-1968 (BIS, 2001)), (IS: 1948: 1961 (BIS,
2006)). General construction practice shows that
most of the construction procedures are not
consistent. From mixing of concrete by rough
estimation to fabrication of wood framed doors and
windows, all the work is done on-site. The quality is
mainly dependent on the skills of the professionals.
The doors and windows, constructed on site have
gaps created at the time of installation which are
filled with plaster (I1S: 4913-1968 (BIS, 2001)) (IS:
3935: 1966 (BIS, 1986)). This technique
compromises the U-value of the construction and
airtightness and it might lead to thermal bridging
because of the improper sealing and frame effects.

The bricks used for construction also have variation
in their properties due to the variation in the
composition of clay used and non-consistency of the
firing process (Sarangapani, Reddy, & Jagadish,
2002). Small ducts for building services (plumbing
pipes and electric conduits) are also embedded in the
walls (SP20 (BIS, 1991)), (IS: 2212: 2005 (BIS,
1991)). This reduces the wall’s thermal effective
thickness, affecting the overall U-value. These



inconsistencies in the fabric can create variation in
the actual energy use. We show here a method to
quantify this effect. We think it is a powerful tool for
policymakers, as it will enable them to understand
the fruitless and somewhat detrimental impact of
stringent energy policies on an un-prepared industry.
In other words the building sector, at present, is not
prepared for incorporating energy policies unless the
functioning of the whole sector is modified. The
building components used should be quality
controlled, ensuring consistency in performance then
only the energy polices can be implemented. Such
recommendations are incorporated in ECBC, e.g.
supply-chain improvements to ensure availability of
certified products, but are not exercised in practice.

Wall U-value™

Roof U-value®

1. Weather conditions Fahric
Solar ohsarbance

2. Thermal properties Emissivily Flaor Ll-value®

Envelope heot capocity Window U-value

3. Operational characteristics Internal loads Equipment, Lighting
Temperature set points Oceupant
4. System efficiency [hoilers and Air Changes

chilliers) Wertilation rate

Infiltration rate

*U-value indedes vacertain parameters for materiol conduction, density, thickness

Figure 1 Uncertanity Parameters included in existing
studies

In order to estimate the overall effect, uncertainties
due to variation in inputs, discussed earlier, have to
be combined with the impact of construction
procedures in India on the building fabric. Studies
exploring the latter issue were not found. Based on
past studies (Heo, et al., 2012), (de Wilde & Tian,
2009), (Hopfe, et al., 2007), (MacDonald, 2002),
(Wang, et al., 2012), (Pettersen, 1994) on uncertainty
(Figure 1) and assuming the uncertainties because of
local factors, uncertainties in various parameters are
estimated. A more accurate finding of the
distributions is suggested for further work. For this
paper, we have used generic distributions that could
be changed for each region to obtain more accurate
results.

In this paper, a methodology for uncertainties related
to thermal properties, temperature set points, internal
loads and ventilation is presented. Weather, system
efficiencies and other operation parameters have not
been considered in this study, but the method can be
extrapolated to include these too.

METHODOLOGY

Uncertainty propagation, sensitivity analysis (SA)
and uncertainty analysis (UA) has been carried out in
this paper in the following manner (It has been
assumed in this study that the input variables are not
dependent):

1. A baseline building with fabric based on
ECBC specifications was created as refernce
point.

2. Based on existing studies, six major
uncertainty factors were selected and the

calculations of their variability with
probabilistic distributions defined.

3. The deviation in conditioning loads and
occupant comfort in relation to the input
variables was explored. Random MCA
sampling is used for input variables based
on their determined probability
distributions. Those samples are used for
multiple EnergyPlus runs for Propogation of
uncertanity.

4. Multiple Linear Regression (MLR) is done
to asess the sensitivity of variables -
sensitivity analysis (SA).

5. A mean and peak variation for each output
is calculated to assess the uncertainty -
uncertainty analysis (UA).

SIMULATION

Building Plan

The reference building is a three story residential
building in New Delhi based on normal practice. The
floor area is 75 m2 (total built up area of 225 m2).
The floor-to-floor height is 3 meters. The building
has longer axis along E-W direction. The Living
(4.275m*4.8m — with toilet)/Dining (2.915m*2.8m)
room is in North and the bedrooms are located on in
SE (3.915m*4.21m) and SW (3.235m*4.21m — with
toilet) corner; the kitchen faces West (2.8m*1.885m).
Each room is taken as a separate zone.

Construction and operation

The building has a mixed mode running system with
natural ventilation happening between heating and
cooling setpoints. Table 1 below shows the input
parameters for the initial base case.

Table 1 Table showing the input parameters taken
for the baseline building model

Criteria Remarks
Structure RCC and brick infill panel walls
Walls 0.44 W/m2K ; Insulated brick cavity walls
Windows 3.3 W/m2K; Openable, and air filled clear double
glazed (6-12-6)
Roofs 0.40 W/m2K; Insulation covered RCC slabs
Setpoints Heating -19°C; Cooling - 24°C
Room type Occupancy schedule Internal
gains
Bedroom Weekdays 2200-0600 2 people, 1
TV, 1 tube
Weekends 2200-0600; light, 1 fan
1400-1600
Kitchen Daily 0600-0800; 1 person, 1
1200-1400; tube light, 1
1900-2100 fan, 1frige
Living/dinin | Weekdays 0600-1000 4 people, 1
g room TV, 8 tube
Weekends 0600-0200; lights, 4 fans
1600-2200

Outputs considered

Two outputs were obtained from the simulations: (1)
the total heating and cooling energy use; and (2) the
number of non-comfortable hours of the occupied




spaces. The standard ASHRAE 55-2004 Predicted
Mean Vote (PMV) was used to define non-
comfortable hours (integrated in EnergyPlus).

Variable inputs and their distributions

As described earlier, based on existing research, the
uncertain factors taken are fabric thermal properties,
temperature set points, and ventilation. The section
below describes the input variables and Table 2
shows the base case, upper and lower values
distributions selected and their variation graphs.

Internal loads

Internal loads are one of the most significant aspects
governing the building performance. Internal loads
cannot be negative, thus, a normal distribution is not
ideal to represent the variation in internal loads. In
previous studies (Schnieders & Hermelink, 2006)
internal loads have been assumed to vary in a
symmetric  distribution.  However, in actual
measurements done on accumulated electricity use in
the UK (Carbon Trust, 2011) it has been seen that the
electricity use has been an asymmetric distribution.

Infiltration rate

Infiltration is primarily due to construction defects,
gaps and cracks. Onsite fabrication of windows and
high tolerances in construction of fenestration
increase infiltration drastically.

Temperature set points

Set points depend on personal preferences. Variation
in heating and cooling set points is assumed to follow
a normal distribution as these variables are far from
zero, therefore could be assume symmetric. During
sampling, if the heating set point is less than 2
degrees below the cooling set point, the sample is
rejected and another one calculated as this is
considered the width of comfort (ASHRAE, 2009).

Wall U-value

Wall U-Value has a large impact on energy
calculations. Standard deviation in U-values because
of measurement techniques is 5 % (MacDonald,
2002). Moreover, due to construction techniques,
detailing and material manufacturing processes, the
variation is more. It is more likely that errors in
manufacturing processes and workmanship lead to a
larger U-Value (lower quality).

Window U-value

The in-situ construction of windows will affect the
overall U-Values. The variation in the overall U-
Values is mimicked by changing in thickness of the
cavity as we consider it is the parameter of the
window more likely to vary in a production process
with poor quality control.

Table 2 Uncertain parameters chosen and their

Space
Infiltration Inflltr_atlon Ach/h 075 025 2
Rate Design
Flow Rate
cooling | rpormostat | °C 24 2 | 2
Set points
Heating | pomostat | °C 19 17 | 21
Set points
Wall U- Insulation
Value Cond. W/mK 0.03 0.02 | 011
Window .
U-Value Air Gap mm 0.013 0.01 | 0.016
Distributio P
Parameter n D'smbl.m Graph
on details
Name
Internal _ Scaled =20,
Loads inverse chi- 2y .
squared : ~__
Log N,
Infiltration Normal 0=0.45;
Rate Distributio J1=0 v
n S
Cooling Set =24 f
. normal . [
points o=1 ‘ |
Heating Set =19; “‘"‘ \
points normal o2=1 f; \
S
Wall U- inverse 1=05; e\
Value gaussian A=4 o \\
,f\“
Window U- normal A=0013; | 7\
Value 0%=0.0015 | - /\

distribution
Parameter Element Units Base LB uB
changed
Internal Equipment 2
Loads Loads Wim 20 10 50

SIMULATION RESULTS ANALYSIS

Based on the values ranges and the PDFs, values
between the upper and lower bounds are selected by
random monte-carlo sampling for multiple simulation
runs. Results of all 3427-simulation runs are analysed
to propagate the uncertainty and to perform a SA and
UA.

Uncertainty propagation

The histograms in Figure 3 show variation in heating
and cooling energy use and non-comfortable hours
(minimum, average and maximum of all zones).
Being a cooling dominated climate the cooling
energy use is in GJ and heating energy use is in MJ.
The cooling energy use in the building varies
between 150 GJ and 385 GJ with the peak frequency
at 225 GJ. Heating energy use shows a very large
variation with values ranging from zero to 17GJ. The
peak frequency is at 100 MJ of energy with the
average use of 446 MJ. The graph is presented in
logarithmic scale. For the non-comfortable hours the
values vary from 0 to 2180, 0 to 3110 and 0 to 4960
for minimum, average and maximum for all the
rooms respectively.
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Figure 3 Histograms showing spread of output
results

Sensitivity Analysis (SA)
Sensitivity of each input, for the outputs is gauged
through regression. The analysis is similar to one in

(Blight & Coley, 2013). Table 3 shows adjusted R
Square value and Significance F for regression.

Table 3 Results of regression analysis showing
adjuster R square value and significance F

Output adjR | F Remarks
Variable sq
Cooling 0986 | O Regression model fits the outputs
Energy very well. Coefficient values are
Use significant.
Heating 0.546 | 0 | There are more factors which affect
Energy the output. Coefficient values are
Use significant

NCH Min 0.863 | O Regression model fits the outputs
very well. Coefficient values are

significant.

NCH Avg 0.818 | 0 Regression model fits the outputs
very well. Coefficient values are

significant.

NCH Max 0.721 0 There are some factors more
affecting the output. Coefficient

values are significant

It can be seen that adjusted R square values are high
(except heating energy use) showing high accuracy
of the data. Significance F value is 0. This shows that
the variables are still important and relevant enough
and that the results are not by chance. The regression
analysis is done at 95% confidence interval and P-
value <0.05 in Table 4 shows that those input
variables are significant for the output. Green means
significant and red means insignificant.

Table 4 P-value (significance) of inputs for the
different outputs

Insul - Cool | Heati
) Wind : .
ation ow Intern ing ng Infiltera
Con Air al Set Set tion
ducti G Loads | point | point Rate
. ap
vity S S
Cooling 0 0
Energy 0.79 0 0 0.13
Heating | 0.00 0.48 | 0.000 | 0.000 0 0
Energy 003 001 1
NCH 0.00 0.59 0 0 0.34 0
Min 03
NCH 0.02 0.29 0 0 0.29 0
Avg 3
NCH 0.23 0.21 0 0 0.33 0
Max

Residuals for each output also show randomness and
equal distribution about the x-axis thus showing
homogeneity and linearity and verifying the
credibility of the regression.

The standardised coefficients are found by dividing
the ‘distance from the mean’ by the standard
deviation of each variable, and can be used to
directly compare the relative contributions from
independent factors. The taller the bar, more
influential is the input on the output. Positive means
a direct relation between the change and vice-versa.

The most influential variables for cooling energy use
are internal loads and cooling set points with
infiltration and wall U-value next. Window air gap
does not have any big impact on the output but does
change is a little. Similarly, for heating energy use
infiltration and heating set points are factors that are
more dominant. For the NCH hours Infiltration,




internal loads and cooling set point affect the outputs
the most.

It can be seen that occupant behaviour is the most
important aspect as in most cases; they determine the
internal loads and cooling set points. A conservative
approach in estimating the internal loads can be quite
detrimental when calculating building’s cooling
energy needs and comfort. Infiltration and U-value of
the fabric also show that construction and proper
airtightness is required.

M Cooling Energy Use M Heating Energy Use NCH Min

u
0.8 NCH Max NCH Max

= =

0.6

0.4

0.2

=
Insulation  Window Air |
Conductivity Gap Loal

ooling Heating  Infilteration
tpoints Setpoints
-0.2

-0.4

-0.6

Figure 5 Standardized regression coefficient
comparing the relative influence of the explanatory
variables on the dependent variables

Uncertainty Analysis

The values in all outputs show substantial variation.
Table 5 below shows the upper value, lower value,
mean value, and standard deviation of the various
outputs.

Table 5 Spread of the outputs because of variations
in the input values

Outputs Maximum | Minimum Mean Std. Dev.
Value Value

Cooling 384.97 31.76
Energy (GJ) 152.36 234.94 (13%)
Heating 17305.56 0.00 441.30 1150.85
Energy (MJ) (260%)
NCH Min 2177.75 0.00 495.17 411.92
(hrs.) (83%)
NCH Avg 3107.14 0.00 711.02 454.58
(hrs.) (63%)
NCH Max 4955.50 0.00 1108.89 888.76
(hrs.) (80%)

It can be seen from the results that the variation is
very big and outputs have very high percentage of
uncertainty. Through the results, it can be seen that
occupant behaviour is the most important aspect as in
most cases; the occupants determine the internal
loads and cooling set points. A conservative
approach in estimating the internal loads can be quite
detrimental in assuming building’s cooling energy
needs. Infiltration and U-value of the fabric also

show that construction and proper airtightness is also
required.

CONCLUSION

Through this study, it has been shown that there
could be a significant variation in the simulation
result output because of the variation in the inputs.
Cooling energy use because of occupant usage and
construction quality alone could produce variations
over the mean of about 13% with the variation in
maximum and minimum values of more than 150%.
Similarly, non-comfortable hours in the year could
have a variation of whole year comfortable to more
than half a year uncomfortable. While, the sensitivity
analysis it is seen that the most influential variables
in regarding the increase the cooling loads and
decrease in comfort are internal gains and cooling set
points, both factors primarily governed by occupants.
Infiltration and U-value of the walls are similar on
importance; both are primarily governed by quality
of construction. Therefore, owing to these persistent
uncertainties, simulation results should be taken in a
more probabilistic manner to ensure that the risk
associated with the uncertainties in the inputs is also
calculated when making the assessment.

Another important issue that needs to be addressed
when performing uncertainty analysis is that the type
probability distribution of input variables should be
based on realistic factors and measured data. The use
of normal distributions might not represent the actual
variation in some cases as it has been shown here.
Fail to use the right distribution could render the
methodology misleading.

It is of prime importance that the uncertainty on input
variables is considered when performing energy
assessment. Obtaining stochastic results encourage
constructor and designers to take the adequate
measurements to minimise this variation when it has
a large impact in the final energy use of the building.
This has even more importance in buildings in which
low-demands are the aim.
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