SAE Mobilus*

Enter keyword, authors, product code...

in: Metadata + F

Advanced Search

Elucidation of Aircraft Energy Use Through Time-Variant Exergy Analysis

(https://badge.dimensions.ai/details/doi/10.4271/2011-01-2683?domain=https://saemobilus.sae.org)

Technical Paper 2011-01-2683

ISSN: 0148-7191, e-ISSN: 2688-3627

DOI: https://doi.org/10.4271/2011-01-2683 (https://doi.org/10.4271/2011-01-2683)

Published October 18, 2011 by SAE International in United States

Sector: Aerospace

Event: Aerospace Technology Conference and Exposition

Language: English

Abstract

Increases in fuel costs and environmental concerns have in recent years heightened the importance of fuel efficiency as a design consideration in vehicles, especially aircraft. For this reason, a greater understanding of the energy consumption of vehicles is needed, both for design and operational decisions. Exergy, a measure of available work in an imbalance of state, allows systems to be compared on an equal basis with losses and waste being equated to fuel costs. Vehicles and especially aircraft do not operate in steady state as do industrial plants, the traditional subject of exergy analysis. While some analysis of aircraft has been performed in the literature, time-variance has not been addressed, leading to a lack of detail and only very broad conclusions. It is proposed that in order to fully understand aircraft energy use, a fully time-variant analysis must be performed. It is the aim of this paper to discuss the first challenges encountered in designing a methodology to permit this and to describe the methods used to address these issues.

To perform time-variant exergy analysis, exergy data are gathered at regular time intervals over the course of a mission at the inputs and outputs of system components. Sufficient fidelity is only achieved when time intervals are short enough (e.g. around 1 second), leading to the requirement to store and analyze a large amount of data. A database structure and a graphical front-end have been designed for these tasks.

Intrinsic to the change from steady-state to time-variant exergy analysis is the inclusion of a storage term in

1 of 3 3/7/2023, 12:09 PM

all control volume exergy balances. This change requires some alteration to the way in which calculations are performed, as well as leading to some proposed amendments to Grassmann diagrams. A simple electrically powered UAV is used to illustrate the methodology.

Recommended Content

Journal Article A Hybrid Economy Bleed, Electric Drive Adaptive Power and Thermal Management System for More Electric Aircraft

Technical Paper

Integrated Aircraft Thermal Management & Power Generation: Reconfiguration of a Closed Loop Air Cycle System as a

Brayton Cycle Gas Generator to Support Auxiliary Electric Power Generation

Technical Paper Potential of Reduced Fuel Consumption of Diesel-Electric APUs at Variable Speed in Mobile Applications

Authors

- Frederick Berg University of Bath
- Martin Balchin University of Bath
- Patrick Keogh University of Bath

Topic

- Energy consumption
- Energy conservation
- Electric power
- Fuel economy
- Aircraft
- Unmanned aerial vehicles
- Design processes
- Storage

Citation

Berg, F., Balchin, M., and Keogh, P., "Elucidation of Aircraft Energy Use Through Time-Variant Exergy Analysis," SAE Technical Paper 2011-01-2683, 2011, https://doi.org/10.4271/2011-01-2683 (https://doi.org/10.4271/2011-01-2683).

Also In

References

- 1. Ahrendts, J. "Reference States" Energy 5 8-9 667 677 1980
- Roth, B.A. Mavris, D.N. "A Generalized Model for Vehicle Thermodynamic Loss Management and Technology Concept Evaluation" 5th World Aviation Congress and Exposition San Diego, CA 2000
- 3. Bejan, A. Siems, D.L. "The Need for Exergy Analysis and Thermodynamic Optimization in Aircraft Development" Exergy International Journal 1 1 14 24 2001
- 4. Paulus, D.M. Gaggioli, R.A. "The Exergy of Lift and Aircraft Exergy Flow Diagrams" International Journal of Thermodynamics 6 4 149 156 2003
- Gandolfi, R. Pellegrini, L.F. Da Silva, G.A.L. De Oliveira, S. Jr. "Exergy Analysis Applied to a Complete Flight Mission of a Commercial Aircraft" 46 th AIAA Aerospace Sciences Meeting and Exhibit Reno, NV 2008
- 6. Turgut, E.T. Karakoc, T.H. Hepbasli, A. "Exergetic Analysis of an Aircraft Turbofan Engine" International Journal of Energy Research 31 1383 1397 2007
- 7. Tona, C. Ravioloa, P.A. Pellegrini, L.F. De Oliveira, S. Jr. "Exergy and Thermoeconomic Analysis of a Turbofan Engine During a Typical Commercial Flight" Energy 35 952 959 2010

Cited By

2 of 3 3/7/2023, 12:09 PM

 $\ \ \ \ \ \ \$ SAE International. All Rights Reserved. SAE MOBILUS v3.4.22

3/7/2023, 12:09 PM