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Energy dependence of the positronium formation cross-
section in argon

M J Thornton and P G Coleman
Department of Physics, University of Bath, Bath, BA2 7AY, UK

E-mail: pyspgc@bath.ac.uk

Abstract. The positronium (Ps) formation cross-section, Ops for positron-argon interactions
has been measured for incident positron energies from threshold to 60 eV, in an attempt to
resolve the apparent discrepancy between earlier experimental results. QOps was found to vary
smoothly with positron energy between 15 and 30 eV, in qualitative agreement with earlier
results using methods involving the measurement of positron neutralization (as in the current
experiment) and in disagreement with the double-peak energy dependence reported by
Laricchia et al (2002), who used a positron-ion coincidence detection method. Possible
reasons for this discrepancy, including Ps fragmentation and excited-state Ps formation, are
discussed.

PACS: 34.80.Uv, 36.10.Dr

1. Introduction
For the last three decades there has been fundamental interest in measuring and calculating the cross
section for the unique process of positronium (Ps) formation, Op; [1].

There is reasonably good agreement between recent measurements and calculations of Qp for
helium; measurements for for neon, argon, krypton and xenon show general agreement to within ~
25%, and calculations for these four gases exhibit broadly similar energy dependences but often differ
from experiment by a factor of ~ 2 in magnitude [1]. However, in argon there is a significant
discrepancy in the energy dependence of QOp, in the region 15-30 eV between three recent experimental
results [2-4]. The Ops reported by Marler et al [3] and Jones et al (2009) [4] rise to a peak at about 10
eV above threshold (8.9 eV) and then fall smoothly with increasing positron energy. In contrast the
results of Laricchia et al [2] exhibit a double-peaked structure, with broad peaks at ~ 18 and 30 eV
separated by a dip at ~ 21eV, an observation explained by the authors as most probably associated
with the observation of the formation of excited-state Ps. If this double-peak behaviour is real then it
is unclear why a similar structure would not be seen in refs 3 and 4. There is, however, a significant
difference in the experimental methods used in refs 3 and 4 and that in ref 2. In the former two
experiments Ps formation is recorded when an argon ion is formed and detected without the coincident
detection of a positron; in the last experiment Ps formation is recorded when a positron is lost from the
beam (this being the only channel, except the negligible process of direct annihilation, which removes
a positron from the beam). Argon is the only gas for which a double-peak structure has been observed
and for which there is a significant difference between results from different laboratories; shoulder-
like structures are seen in krypton and xenon in refs 2 and 3.



The current experiment uses the positron loss method for measuring QOp,, this having been used
successfully by the authors in the past (eg [5,6]). A brief overview of the experimental method will be
followed by results for Or and QOps in helium (to check the procedure) and argon, and a discussion of
these results in light of the earlier discrepancy.

2. Experimental apparatus

Figure 1 shows a schematic diagram of the apparatus used, which was based on the system used by
Jay and Coleman to study threshold effects in positron-noble gas scattering [7]. A 17MBq **Na source
was positioned behind an annealed double 50%-transmission tungsten mesh moderator [8] to produce
a 4mm diameter beam of c. 2000 positrons sec” of mean energy 1.5eV with an approximately
Gaussian energy distribution of FWHM 1.5eV. The moderated positrons were then accelerated to the
final desired mean energy by applying a potential V.

To narrow the energy distribution a 92%-transmission tungsten mesh was held immediately in front
of the moderator at a potential of (Vy + 1.5) V. The energy spread of the beam was reduced to ~
800meV, peaking at ~ (Vy + 2) eV, with a consequent reduction in useable beam intensity of about
50%. This mesh also serves as an efficient reflector of positrons scattered back towards the source.

The collimated beam then traverses a 30cm-long flight path along an evacuated tube under the
guidance of an approximately uniform axial magnetic field of ~ 100G. It first passes through a gas
cell with an exit aperture 12.5 mm in diameter and 35 mm long which ensures maintenance of an
appropriate pressure differential; a vacuum of ~ 10”7 mbar was maintained throughout the rest of the
apparatus using a turbo-molecular pump. A needle valve controlled the gas flow into the cell, and the
gas pressure was chosen so that no more than 15% of positrons entering the cell were scattered, with
typical attenuations of 3-10%; this constitutes a reasonable compromise between statistically
acceptable measurements of beam attenuation and the minimisation of multiple scattering effects, and
is comparable to the situation in other recent measurements.

The positrons then passed through a retarding field analyser (RFA), a copper tube held at either 0V
or (Vu + 1.35)V, depending on the measurement being made (see later). The tube was 50 mm long and
20 mm in diameter to ensure that fringe (field penetration) effects did not reduce the potential in the
centre of the tube.

The positron beam finally reaches the channel electron multiplier (CEM) which generates pulses
for each particle detected after entering its 10mm-diameter cone. These pulses were amplified, shaped
and recorded by a multi-channel scaler (MCS) after discriminating against small electrical noise
pulses. A potential of -2 kV was applied to the cone of the CEM to repel as many electrons as
possible; these are secondary electrons ejected from the source/moderator assembly by beta positron
bombardment, and those transported by the magnetic field can have energies from ~ 1 to 10°eV. A
fine mesh was held across the cone, also at -2 kV, to prevent electrons from the cone being sucked
from the CEM.

It is important for these measurements that essentially all scattered positrons could be guided to the
CEM by the magnetic field. The beam radius is 2 mm and the CEM cone radius is Smm; in the
extreme worst-case scenario for the apparatus described here, a 60eV positron at the edge of the beam
scattered away from the axis through 90° is has a Larmor radius of 2.6 mm, and so will be detected.

3. Experimental procedure

3.1. Total cross sections

The total scattering cross section Qris deduced using the Beer-Lambert law [ = [y exp(-n/Qr), where, I,
and / are the incident and transmitted positron intensities, and » and / are the atomic number density of
and path length through the target gas atoms, respectively. In this experiment / and [, are measured
and the product n/ obtained using the Or values of Caradonna et al for helium [9] and of Jones et al
for argon [4]. This effectively is a procedure which normalises the current O values to those of recent
measurements by the ANU group (which are generally in agreement with earlier values — see figure 2
below).



In order to measure / and [, four count rate measurements were required — essentially total and
background rates with and without gas in the gas cell. The RFA was held at (Vy + 1.35)V for Or
measurements, an experimentally-determined value which ensured that essentially all scattered
positrons were prevented from passing through the RFA tube. The runs were controlled using the
MCS, measuring count rates as the moderator potential Vy; was ramped from 5 to 58eV in 1eV steps.
The MCS was set to perform repeated short scans to minimise the influence of any fluctuations in the
measurement conditions; the count rate was measured for 10 s at each energy and 150 ramps were
performed, so that the measurement time at each energy was 1500s — resulting in total counts of
~1.5x10° and a resultant statistical uncertainty of ~0.1%.

Total (signal + background) rates were measured with the cut-off mesh (in front of the moderator)
at (Vy+1.5)V. Background rates were measured in the same way, but with the cut-off mesh at a
potential of (V' + 5)V, so that all slow positrons were prevented from entering the gas cell and only
those particles (mostly fast positrons and electrons) contributing to the background count would be
detected. The background rates were measured at each value of V) with and without gas in the cell —
they depend on Vy and gas density, because the background consists of energetic positrons and
electrons.

The intensities / and I, were then used to find QOr as described above. The mean energy of the
positron beam was measured to be (Vy + 1.5) eV, after a small adjustment was made for contact
potential differences (after multiple measurements of Qr) in order to replicate the rapid rise in the
cross sections above the Ps threshold.

3.2. Ps formation cross sections

Ops was obtained from the thin-target result Ops = (Aps/A1)O1, Where Aps and At refer to the measured
positron attenuations due to Ps formation only and to all scattering channels, respectively. Using the
terminology of the previous section, 4 = (Iy - [)/I,. The measurement of A1 is described above in
section 3.1. Ap; was measured by following identical procedures, but with the RFA potential set to 0
V. As Ps is a neutral particle it is not constrained by the magnetic field and will, therefore, never
reach the detector - instead decaying by annihilation in the gas, vacuum, or upon collision with the
apparatus wall. All other scattering channels, which the positrons survive, do not contribute to the
attenuation as the RFA no longer prevents the scattered positrons from reaching the CEM detector.
The same gas pressures were used for these runs as was used for the measurement of Or.

4. Results
The experimental procedure was first tested using helium gas, where there is reasonable agreement
between earlier measurements of Or and Op [5,9-15].

The results for Ot for helium are shown in figure 2(a), along with previous results. Although these
results were obtained using a normalisation procedure the good agreement seen between the energy
dependence of the current results with earlier measurements is gratifying.

Figure 2(b) shows QOps for helium, along with a selection of earlier measurements. Satisfactory
agreement is again seen between measurements, giving confidence in the technique. The statistical
uncertainties in these, as well as all other cross sections reported herein, are reflected in the scatter of
the points, and thus for helium are £ (0.03-0.04) x 10° m”.

For argon the results for Or and QOp, are shown in figures 3(a) and (b). Statistical uncertainties are
here of the same order as the symbol size; they are considerably smaller than those for the helium
results because the latter were intended only to check the reliability of the system and thus the
measurements were not repeated as many times. The energy dependence of Qr for argon, as for
helium, agrees well with earlier results. QOps, however, shows good agreement up to ~15eV, and then
diverges from all recent results as the positron energy increases. This result was reproduced many
times.

5. Discussion



The aim of this experiment was to investigate the energy dependence of (Ops at positron energies
around 30eV. While the absolute values of the measured cross sections results can suffer from errors
due to non-measurement of small-angle elastic scattering, any corrections are (a) likely to be small, as
elastic scattering makes a relatively small contribution to Or in the energy range of interest, and (b) are
very unlikely to influence the broad shape of Or and QOp, at these energies. It is also true that the
0.8eV energy width of the beam used here is not wide enough to mask the dip feature seen in the
results of Laricchia et al [2].

The present results for QOp, in argon (figure 3(b)) do not exhibit a double-peak structure, but do
show a rather flat-topped energy dependence between ~ 18-30 eV. They are quantitatively higher than
recent measurements at higher energies but, interestingly, agree well with earlier measurements. To
investigate the possibility that these higher values could be caused by an increasing inability to confine
all surviving scattered positrons in the beam to the detector, a set of measurements were taken with the
magnetic field decreased to 70G; there was a resultant increase in QOp at 60eV, but this was much
smaller than the observed difference between the results shown.

The results of the San Diego and Australian groups [3,4] show similar energy dependence but
differ in absolute magnitude, probably as a result of different measurements of the gas cell product n/.
They both employ the positron loss method used in the current experiment; in contrast, Laricchia et al
detected argon ions with no coincident positron [1,2]. It is thus tempting to link the observed
difference between the energy dependences of Ops reported in refs. 2-4 simply with measurement
technique; however, the reasoning behind such a correlation is not easy to formulate.

It was suggested by Murtagh et al [17] that the second peak at ~ 30eV may result from observation
of Ps formation in exited states. For this not to be seen in positron-loss experiments the longer-lived
Ps* would presumably have to break up in a second collision, releasing the positron which would then
be detected and Ps* formation would not be registered. There are reasons why this explanation may
not be correct: (a) similar beam attenuations (ie n/ values) were used in both methods, so that Ps*
break-up could occur in both measurements, (b) neutral Ps* drifts from the beam axis and so the
detection of all the positrons released from the break-up of essentially all the Ps* formed in the gas
cell has to be considered highly unlikely, especially with the 10mm-diameter detector used in the
present experiment, and (c) the first measurements of cross sections for Ps* formation in the n = 2
state [17] are considerably smaller than the second peak would suggest, and so contributions from Ps*
formation in higher n states would need to be considerable. Qps: (n = 2) from ref [17] is plotted in
figure 3(b). To investigate the possible consequences of multiple scattering an experiment was
performed with higher gas pressure — so that the maximum attenuation was ~30%. No significant
change from the results presented in figure 3(b) was observed. Measurements with lower gas
pressures were not performed, as the maximum value of the attenuation due only to Ps formation, Aps,
was ~ 6%, and smaller attenuations were impractical.

The second possibility is that, rather than a second peak being missing from QOps in measurements
based on positron loss, a broad dip is present in the results of Laricchia et al [2] at around 20eV. This
could also be explained by Ps dissociation collisions — that Ps formed at 6.8eV or more above
threshold (ie at positron energies above the ionization energy of 15.7¢V) can break up on a second
collision, leading the ion detection method to register the scattering as direct ionization rather than Ps
formation. Fragmentation cross sections measured by Brawley and Laricchia [18] for Ps-He and Ps-
Xe collisions suggest that the probability of Ps break-up is significant at a few eV above threshold; the
losses due to fragmentation would need to decrease between 20 and 30eV rather more rapidly than the
measured cross sections of ref [ 18] suggest — this may happen if the more energetic Ps escapes the gas
region or reach a region out of sight of the positron detector.

Clearly the relative likelihood of these different scenarios is difficult to judge, being critically
dependent on the geometries of the gas cell/region and the size of the positron detectors used in
particular experiments.

None of the theoretical calculations for Op in argon [19-21] — not shown in Fig 3 for the sake of
clarity (the reader is referred to [1]) — exhibits a significant second peak at 30eV, being more broadly



similar in energy-dependence (but not in magnitude) to the results of refs 3 and 4. A small shoulder a
few eV above the first peak is seen in the results of Gilmore et al [20], who included the formation of
Ps* and of Ps from inner ns shells of argon. Dunlop and Gribakin [21] argue that inclusion of QOp
from the 3s shell of argon may produce a second peak similar to that seen in ref [2], having a threshold
at 22.5e¢V - which the authors claim is a more realistic explanation than Ps* formation, whose
threshold they consider to be too low.

6. Conclusion

Although one can attribute the observed differences between QOp(E) in the 20-30eV region solely to
the two different measurement techniques used, an explanation as to why this should be is not
straightforward as both techniques should in principle be able to measure Op satisfactorily. Indeed,
one might symmetrically argue that second collisions could lead both to a dip in Op; measured by ion
detection or a missing peak in Ops measured by positron loss. The results of the present measurement
do not offer conclusive support to either explanation, but do add to the number of results which do not
possess a second peak (or dip) and, after the failure of attempts to induce such a feature in the results
by varying experimental conditions, the authors are led to favour the existence of at most a modest
shoulder in QOp associated with Ps* formation or Ps formation from inner shells, but not of a double-
peaked structure.
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Figure 1

Schematic diagram of the experimental apparatus. RFA - Retarding Field Analyser, CEM - Channel

Electron Multiplier. The distance between source and CEM is ~ 300 mm.
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Figure 2

Experimentally-determined total and Ps formation cross sections for helium. Upper points are Or,
lower points Op,. @ — current measurements: O — Or and QOp, Caradonna et al [9]: [J — O from
Kauppila et al [10], lower limit of Op, from Stein et al [11]: O - Or, Brenton et al [12]; V - Or from
Griffith et al [13], Op, from Murtagh et al [14]; A - Op,, Fornari et al [5]: ¥~ Op,, Fromme et al [15].
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Figure 3

(@) Experimentally-determined total cross sections Qr for argon. @ — current measurements: A —
Jones et al [4]: V - Kauppila et al [10]: [ - Griffith etal [13]: ¢ - Tsai et al [16].

(b) Positronium formation cross sections Qps for argon. @ — current measurements: A — Jones et al
[4]: V - lower limit results of Stein et al [11]: [ - Laricchia et al [2]: ¢ - Fornari et al [5]: O —
Marler et al [3]: X-n =2 Ps, Murtagh et al [17].
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