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Energy minimisers of prescribed winding number in an

S1-valued nonlocal Allen-Cahn type model

Radu Ignat∗ Roger Moser†

July 29, 2019

Abstract

We study a variational model for transition layers with an underlying functional that
combines an Allen-Cahn type structure with an additional nonlocal interaction term. A
transition layer is represented by a map from R to S1. Thus it has a topological invariant
in the form of a winding number, and we study minimisers subject to a prescribed winding
number. As shown in our previous paper [15], the nonlocal term gives rise to solutions
that would not be present for a functional including only the (local) Allen-Cahn terms.
We complete the picture here by proving existence of minimisers in all cases where it has
been conjectured. We also prove non-existence in some other cases. Finally, in addition
to existence, we prove a result for the structure of minimizers.

Keywords: domain walls, Allen-Cahn, nonlocal, existence of minimizers, topological degree,
concentration-compactness, micromagnetics.

1 Introduction

In this paper we study a variational model coming from the theory of micromagnetics. In soft
thin films of ferromagnetic materials, one of the predominant structures in the magnetisation
field is a type of transition layer, called a Néel wall. We consider a simplified, one-dimensional
variational model for Néel walls and study the question whether several transitions may
combine to form a more complex transition layer. The same model has been used by several
authors to analyse Néel walls in terms of existence, uniqueness, and properties of solutions
to the Euler-Lagrange equations, but mostly for single transitions (see Section 1.2 for more
details). For the background and the derivation of the model, we refer to the papers [6, 8, 11].
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1.1 The model

We begin with a description of the variational model used for our theory. For a given param-
eter h ∈ [0, 1], consider maps m = (m1,m2) : R → S1 with values on the unit circle S1. We
study the functional

Eh(m) =
1

2

(
‖m′‖2L2(R) + ‖m1 − h‖2Ḣ1/2(R)

+ ‖m1 − h‖2L2(R)

)
,

where m′ is the derivative of m and Ḣ1/2(R) denotes the homogeneous Sobolev space of
order 1/2 (a different representation of the corresponding term is given shortly). The first
two terms in this functional represent what is called the exchange energy and the stray field
energy in the full micromagnetic model, and we will use these expressions here as well. The
third term comes from a combination of crystalline anisotropy and an external magnetic field.
For simplicity, we call this term the anisotropy energy.

The stray field energy ‖m1−h‖2Ḣ1/2(R)
arises from the micromagnetic theory in conjunction

with a stray field potential u : R2
+ → R (where R2

+ = R× (0,∞)), which solves

∆u = 0 in R2
+, (1)

∂u

∂x2
= −m′1 on R× {0}. (2)

This boundary value problem has a unique solution up to constants if we impose finite
Dirichlet energy. (We will discuss this point in more detail in Section 2.) The solution then
satisfies ˆ

R2
+

|∇u|2 dx = ‖m1 − h‖2Ḣ1/2(R)
.

(The constant h may seem irrelevant here, because ‖·‖Ḣ1/2(R) is a seminorm that vanishes
on constant functions. Notwithstanding, we will keep h in the expression as a reminder that
m1 − h decays to 0 at ±∞ for the profiles we are interested in.) For some of the arguments
in this paper, however, the following double integral representation is more convenient (see,
e.g., [9]):

‖m1 − h‖2Ḣ1/2(R)
=

1

2π

ˆ
R

ˆ
R

|m1(x1)−m1(y1)|2

|x1 − y1|2
dx1dy1. (3)

As remarked previously, the third term in the energy functional represents, up to the
constant h2, the combined effects of the anisotropy potential V (m) = m2

1 = 1−m2
2 (favouring

the easy axis ±e2) and the external field −2he1 (favouring the direction e1 = (1, 0) for positive
h) that gives rise to the term −2he1 ·m = −2hm1. We denote

α = arccosh ∈ [0, π/2],

and we assume this relationship between h and α throughout the paper. Then the resulting
potential

W (m) = (m1 − h)2, m ∈ S1,

has two wells on the unit circle if h ∈ [0, 1), which are at (cosα,± sinα), and one well at
(1, 0) if h = 1. If we write m = (cosφ, sinφ) ∈ S1, then we can further observe that W grows
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quadratically in φ ± α near these wells if h < 1 and quartically in φ near the well (1, 0) if
h = 1.

In principle, we could allow h > 1 as well, but the questions studied in this paper are
completely understood in this case by our previous work [15]. Since the case h > 1 would
require a somewhat different representation of the potential W , we omit the discussion here;
however, we wish to point out that our previous paper [15] also partially treats the case
h ∈ [0, 1) (in addition to h > 1), but not h = 1, because the quartic growth of W near
the wells is not compatible with the methods used there. From the physical point of view,
the cases h ≥ 1 and h < 1 are equally interesting, but mathematically the latter is more
interesting because it gives rise to the more intricate patterns.

1.2 Néel walls

A transition of m between the wells of the potential W on S1, as illustrated in Figure 1,
represents a Néel wall (in the micromagnetics terminology). In the case of h = 1 a transition
means that m describes a full rotation around S1. Thus in this case, we have the transition
angles ±2π, while for 1 > h = cosα, we have the possible transitions angles ±2α and
±2(π − α) (see Figure 1). These are the most simple transitions, going from one well to the

x1

m

x1

m

Figure 1: Schematic representation of a Néel wall of angle 2α (left) and 2π − 2α (right).

next. It is also conceivable, however, that m will pass several wells during the transition.
Such behaviour is in fact necessary for profiles of winding number 1 or above (in the case
h < 1), which is why we discuss the winding number in the next section.

Existence, uniqueness and structure of locally energy minimising profiles including a Néel
wall of angle 2α, for α ∈ (0, π2 ], have been proved in [10, 15, 21, 22]. In this context, a Néel
wall of angle 2α is a (unique) two-scale object: it has a core of length l ∼ 1 and two tails
of larger length scale � l, where m1 − h decays logarithmically. Stability, compactness, and
optimality of Néel walls under two-dimensional perturbations have been proved in [2, 5, 16].
Existence and uniqueness results are also available for Néel walls of larger angle α ∈ (π2 , π)
(see [1, 15]) as well as for transition layers with prescribed winding number combining several
Néel walls (see [12, 15]). Furthermore, the interaction between several Néel walls has been
determined in terms of the energy (see [7, 14]).

1.3 Winding number

To each finite energy configuration m : R → S1 we associate a winding number deg(m)
as follows. We first note that a map m ∈ H1

loc(R;S1) is necessarily continuous and has a
continuous lifting φ : R→ R with m = (cosφ, sinφ) in R. Moreover, the lifting φ is unique up
to a constant. If Eh(m) <∞, then it follows that limx1→±∞m(x1) = (cosα,± sinα) (where
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the signs on both sides of the equation are independent of one another). Thus

deg(m) =
1

2π
lim
x1→∞

(φ(x1)− φ(−x1))

is well-defined and belongs to Z± {0, α/π}.

1.4 Objective of the paper

Our aim is to analyse the existence of minimisers m of Eh subject to a prescribed winding
number. For d ∈ Z± {0, α/π}, we define

Ah(d) =
{
m ∈ H1

loc(R;S1) : Eh(m) <∞ and deg(m) = d
}

and
Eh(d) = inf

m∈Ah(d)
Eh(m).

Note that {Ah(d)}d∈Z+{0,±α
π
} comprises the connected components of

{m ∈ H1
loc(R;S1) : Eh(m) <∞}

in the strong Ḣ1(R) topology, hence forming a partition of this set. (The map deg is con-
tinuous in the strong Ḣ1(R) topology because Ḣ1(R) is continuously embedded in C0(R).
Thus every connected component is contained in one of the sets Ah(d). To see that Ah(d)
is connected, we consider the lifting: given two points in Ah(d), we may construct a path
connection by interpolation of the corresponding liftings.)

If we can find a minimiser of Eh within Ah(d), then this will automatically be a critical
point of winding number d. It will in general consist of several transitions between the points
(cosα,± sinα) on the unit circle; therefore, it can be thought of as a composite Néel wall
consisting of several transitions stuck together. The first component m1 of such configurations
is shown schematically in Figures 2 and 3.

x1

m1

1

-1

Figure 2: For h = 1, an array of Néel walls of total winding number 3, represented in terms
of m1.
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x1

m1

cosα

1

-1

x1

m1

cosα

1

-1

Figure 3: For h < 1, a hypothetical array of Néel walls of total winding number 1+α/π (left)
and an existing one of winding number 3− α/π (right).

Clearly, there is a minimiser in Ah(0), which is constant. Moreover, it suffices to study the
question for d ≥ 0, as the case d < 0 can be reduced to this one by reversing the orientation.
It is well-known that a minimiser in Ah(α/π) exists [21, 1], and similar arguments apply to
Ah(1 − α/π) as well (see [15] for the details). We obtained further, but still partial results
on the existence of minimisers in our previous paper [15]. Namely, there exist no minimisers
in Ah(1), but if α > 0 is sufficiently small, then there exists a minimiser in Ah(2− α/π). In
this paper, we completely settle the question under the assumption that α is small enough
(i.e., that h is sufficiently close to 1). We also have some information about the structure of
the minimisers.

1.5 Main results

Our main results are as follows.

Theorem 1 (Existence of composite Néel walls). Given ` ∈ N = {1, 2, . . . }, there exists
H−` ∈ (0, 1) such that Eh attains its infimum in Ah(`− α/π) for all h ∈ (H−` , 1].

In the case h = 1, we note that ` − α/π = `. Thus the following corollary is a special
case of Theorem 1. We state it separately, because it highlights how the result fits in with a
result for h > 1 in our previous paper [15]. (The case h = 1 was not studied in [15], so this
is new information that complements the previous results.)

Corollary 2. The functional E1 attains its infimum in A1(`) for every ` ∈ Z.

Theorem 3 (Non-existence). Given ` ∈ N, there exist H0
` , H

+
` ∈ (0, 1) such that Eh does not

attain its infimum in Ah(`) for all h ∈ (H0
` , 1) and does not attain its infimum in Ah(`+α/π)

for all h ∈ (H+
` , 1).

The statements of Theorems 1 and 3 were conjectured in our previous paper [15], along
with the conjecture that minimisers in Ah(` − α/π) do not exist for ` ≥ 2 if h is too small,
and that the non-existence in Ah(`) and in Ah(` + α/π) holds for all h ∈ (0, 1). Heuristic
arguments were provided to back up the conjectures. They rely on a decomposition of m1−h
into its positive and negative parts and a further decomposition into pieces that correspond
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to individual transitions between (cosα,± sinα). The key observation is that the stray field
energy (the nonlocal term in the functional) will become smaller if two pieces of the same
sign approach each other or two pieces of opposite signs move away from each other. We may
interpret this as attraction between pieces of the same sign and repulsion between pieces of
opposite signs. If 1 − h is small, then we also expect that the positive pieces will be much
smaller than the negative pieces. Thus for winding number ` − α/π for ` ∈ N (as on the
right of Figure 3), the whole profile will be sandwiched between the outermost pieces, which
strongly attract each other. In contrast, for the winding number ` + α/π (as on the left
of Figure 3), the outermost pieces will experience a net repulsion, and moving these pieces
towards ±∞ will reduce the energy.

We summarise our results and previously known results graphically in Figure 4, alongside
some conjectures from our previous paper [15]. These conjectures would, if proved correct,
complete the picture about the existence and non-existence of minimisers of Eh subject to a
prescribed winding number, except that the best values of H−` , H0

` , and H+
` in Theorems 1

and 3 are still unknown. (Figure 4 might suggest that they are increasing in `, but no such
statement is intended and their behaviour is unknown.)

Figure 4: A schematic representation of existence and non-existence results and further
conjectures. The position of any changeover between solid/dashed and dotted lines is not
accurate.

For the proofs of Theorems 1 and 3, we need to quantify the above heuristic arguments
precisely. Moreover, we need to estimate any effects coming from the other (local) terms
in the energy functional as well, so that we can show that the above effects (coming from
the nonlocal term) really do dominate the behaviour. In our previous paper [15], we used
a linearisation of the Euler-Lagrange equation for minimisers of Eh as one of our principal
tools. This approach is based on ideas of Chermisi-Muratov [1]. It has the disadvantage,
however, that it requires the quadratic growth of W near the wells that we have observed
for h < 1 but not for h = 1. There are further complications of a technical nature, and as a
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result, the method gives good estimates (in the case h < 1) near the tails of a profile, but not
between two Néel walls. This in turn restricts the analysis to small winding numbers. In this
paper, we replace this tool with different arguments of variational nature. Our new estimates
are more robust; in particular they do not have the restrictions described. In the next step,
we use the estimates to show that for certain profiles of m, splitting them into several parts
of lower winding number will always increase the energy. In the concentration-compactness
framework of Lions [20], this implies that no dichotomy will occur for minimising sequences.
Here the strategy for the proof of Theorem 1 is similar to our previous paper [15]. For the
non-existence, we have exactly the opposite: profiles of certain winding numbers can always
be split into several parts in a way that decreases the energy. We refer to Section 1.8 for
more details.

In a forthcoming paper [13] (extending previous work [14]), we also study the asymptotic
behaviour of a version of the problem where the exchange energy is weighted with a parameter
ε that tends to 0. The above heuristics are consistent with the observation that in this
situation, too, the Néel walls stay away from each other when α ∈ (0, π2 ] is sufficiently large.
But for the asymptotic problem, we can give the precise angle where the change in behaviour
occurs.

In addition to existence, we can give some information about the structure of the min-
imisers from Theorem 1.1

Theorem 4 (Structure). Given ` ∈ N, there exists H` ∈ (0, 1) such that the following holds
true for all h ∈ (H`, 1): if m ∈ Ah(`−α/π) is a minimiser of Eh in Ah(`−α/π), then there
exist a1, . . . , a2`−1, b1, . . . , b2`−2 ∈ R with

a1 < b1 < a2 < · · · < a2`−2 < b2`−2 < a2`−1

such that m1(an) = (−1)n for n = 1, . . . , 2` − 1 and m1 ≤ h in (−∞, b1] ∪ [b2, b3] ∪ · · · ∪
[b2`−2,∞) and m1 ≥ h in [b1, b2] ∪ [b3, b4] ∪ · · · ∪ [b2`−3, b2`−2].

This means that the picture on the right of Figure 3 is qualitatively accurate. The result
is also consistent with the idea that we should think of these minimisers as a composition of
several Néel walls in a row.

It is an open question whether the minimisers of Eh in Ah(`− α/π) (in the cases where
they exist) have a monotone phase. That is, if m = (cosφ, sinφ) is such a minimiser, does
it follow that φ′ ≥ 0 (or even φ′ > 0)? The answer is known only for the simplest cases
of a transition of degree ±α/π or ±(1 − α/π), where a standard symmetrisation argument
applies (see [1, 21]). For a higher degree `− α/π with ` ≥ 2, Theorem 4 is consistent with a
monotone phase, but it does of course not answer the question.

It is known, however, that the solutions of our minimisation problem are symmetric up
to translation in the following sense [15, Lemma 3.2]: if d ∈ N − α/π and m ∈ Ah(d) is a
minimiser of Eh in Ah(d), then there exists t0 ∈ R such that

m1(t0 − x1) = m1(t0 + x1) and m2(t0 − x1) = −m2(t0 + x1)

for all x1 ∈ R.

1A similar result holds for the case h = 1, see Lemma 5 below.
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Another open question is whether minimisers of Eh in Ah(` − α/π) are unique (up to
translation in x1) for ` ≥ 2. The answer is yes for Ah(α/π) and for Ah(1 − α/π), as the
energy is strictly convex in the m1-component2 (see [14, Proposition 1]).

1.6 Scaling

The three terms in the energy Eh(m) have different scaling. However, after rescaling in the
variable x1 and renormalizing the energy, only one length scale remains. This is why in
the physical model, there is, in general, a parameter ε in front of the exchange energy. As
our results are qualitative (and not necessarily quantitative), we fix that parameter ε = 1.
The critical values H`, H

0
` , H+

` , and H−` in our main results must of course be expected to
depend on ε. However, as we do not attempt to give the optimal values, we do not discuss
this question any further.

For a critical pointm of the functional Eh, the Pohozaev identity (see [15, Proposition 1.1])
implies that we have equipartition of the energy coming from the local terms (the exchange
and anisotropy energies). This equality effectively fixes the length scale of the core of a Néel
wall (which is of order l ∼ 1 for ε = 1). The nonlocal term is dominant and has the length
scale of the tails much larger than l.

1.7 Relation to other models

As we have mentioned in the introduction, the model studied in this paper can be seen as
a nonlocal “perturbation” of the (local) Allen-Cahn model (the latter consisting only in the
exchange and anisotropy terms), see [15, Appendix]. The nonlocal term in Eh is in fact the
key ingredient for existence of transition layers with higher winding number.

We can also relate our model to the study of 1
2 -harmonic maps defined on the real axis

with values into the unit sphere (see, e.g., [4, 3] for regularity, compactness and bubble
analysis and [23] for a Ginzburg-Landau approximation). There is a model for boundary
vortices in micromagnetics (see e.g. [17, 18, 19, 24, 25]) that amounts to a “perturbation”
of the 1

2 -harmonic map problem by a zero-order term comparable to the anisotropy in our
model. But the problem studied in this paper has an additional higher-order term, which
changes the behaviour of the problem dramatically. (This is most striking in the asymptotic
analysis carried out in an earlier paper [14], where the interaction between different Néel walls
is studied. We have attraction where the model for boundary vortices would give repulsion
and vice versa.)

1.8 Structure of the main proofs

Here we give a brief summary of the strategy for the proofs of Theorems 1, 3 and 4, in order
to help the reader understand the structure of these proofs.

The key idea for the proof of Theorem 1 is to show that for degree d = ` − α/π, it
is energetically favourable for the width of an optimal profile of degree d to stay bounded

2Minimising Eh in Ah(α/π) or in Ah(1−α/π) is in fact equivalent to minimising Eh under the constraint
m1(0) = 1 or m1(0) = −1, respectively.
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under the assumptions of the theorem (in the sense that the points where m attains the
values (±1, 0) remain in a bounded interval up to translation) rather than to decompose
into individual pieces. It is convenient, however, to consider the contrapositive (although a
rigorous statement as above is proved in Proposition 19 below for a different purpose). Thus
we show that for given minimisers in Ah(d1), . . . ,Ah(dJ), where d1, . . . , dJ are admissible,
positive degrees with d1 + · · ·+dJ = d, we can always construct a profile in Ah(d) with energy
less than Eh(d1)+ · · ·+Eh(dJ) by gluing them together (this is done in Proposition 17). Once
we have shown this, minimisers in Ah(d) can be constructed with the direct method (see
Theorem 16). The energy improvement in the construction of Proposition 17 comes from
the nonlocal H1/2-part of the energy, and more precisely, from the interaction between the
positive and negative parts of m1 − h described heuristically on page 6. Roughly speaking,

if we have two profiles m(1) and m(2) such that m
(1)
1 − h and m

(2)
1 − h are both nonnegative

or both nonpositive (or one nonnegative and one nonpositive) and with compact supports
separated by the distance R, then the energy gain (or loss, respectively) from the attraction
(or repulsion, respectively) will be of order

R−2
∥∥∥m(1)

1 − h
∥∥∥
L1(R)

∥∥∥m(2)
1 − h

∥∥∥
L1(R)

. (4)

Therefore, we need estimates for the L1 norms of the positive and negative parts of m1 − h
for minimisers m in Ah(d). (These are given in Proposition 10 below.) As we will in general
have attraction and repulsion simultaneously, the estimates for the positive parts contain
information about the dependence on α. If α is sufficiently small, we can conclude that the
attraction dominates.

All of the above depends only on the term ‖m1 − h‖Ḣ1/2(R) in the energy functional.
But of course the other energy terms have to be estimated as well, and the construction,
which involves in particular a localisation with the help of a cut-off function (see Lemma 12),
requires further estimates. The key to both is to understand the decay of m1 − h near ±∞
and near any point where m passes one of the wells of W . The estimates have to be good
enough to allow the conclusion that these effects are negligible relative to (4). In other words,
in terms of the energy, we need a decay faster than R−2, where R is the distance between
any two pieces where m1 − h is large. We do not immediately achieve such an inequality,
but rather prove some more modest decay estimates first (see Lemma 8). With a variety of
arguments, we can then improve the estimates step by step (Lemma 9, Proposition 11), until
we obtain the required decay in Corollary 13. (For h = 1, we also need Lemma 12 for this
purpose, which gives estimates specifically for the effect of the localisation. For h < 1, we
can use a result from our previous paper [15] instead.)

The most novel (and possibly most interesting) part of this chain of improvements involves
some inequalities derived from the Euler-Lagrange equation for minimisers of Eh with the
help of suitable test functions; these are given in Proposition 7 and finally improved in
Proposition 11.

The proof of Theorem 3 is in some sense the mirror image of the proof of Theorem 1. Here
we want to show that a profile of degree d = ` or `+ α/π (for ` ∈ N) cannot be a minimiser,
because we can always decrease the total energy by splitting off one of the outermost pieces
and moving it to ±∞. This observation ultimately relies on the same attraction and repulsion
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estimates for the nonlocal energy term discussed above, and we can use some of the same tools.
In contrast to Theorem 1, however, there is no need to use a cut-off function, and we can rely
mostly on the L1-estimates in Proposition 10 and some direct estimates of ‖m1 − h‖Ḣ1/2(R)
here.

Finally, the proof of Theorem 4 again follows a strategy similar to Theorem 3. Arguing by
contradiction, we assume that we have a minimising profile that does not have the structure
described in the theorem. Then we conclude that the profile has at least one piece where
m1 − h goes from 0 to ±1 − h and back to 0, and which can be deleted without changing
the degree. We then have to estimate the effect of the deletion on the energy. While this
situation requires some additional arguments for technical reasons, the underlying ideas are
still similar. We eventually conclude that we can always modify such a profile such that the
energy decreases.

Acknowledgment. R.I. acknowledges partial support by the ANR project ANR-14-CE25-
0009-01.

2 Preliminaries

In this section we discuss a few tools for the analysis of our problem and recall some known
results. Since the nonlocal term in the energy functional (i.e., the stray field energy) is not
only the most challenging to analyse, but in fact determines the behaviour of the system to
a considerable extent, it will have a prominent place here.

2.1 Representations of the stray field energy

We have already seen two different representations of the stray field energy. One of them is
given by (3) and will be used in some of our estimates later on. The other representation
involves the stray field potential u that is determined by the boundary value problem (1),
(2). In order to make the discussion of the problem rigorous, we introduce the inner product
〈 · , · 〉Ḣ1(R2

+) on the set of all φ ∈ C∞(R × [0,∞)) with compact support in R × [0,∞) (so φ

is allowed to take non-zero values on the boundary R × {0}). This inner product is defined
by the formula

〈φ, ψ〉Ḣ1(R2
+) =

ˆ
R2
+

∇φ · ∇ψ dx.

The space Ḣ1(R2
+) is then the completion of the resulting inner product space. Its elements

are not functions, strictly speaking, as the completion will conflate all constants. Nevertheless,
we will sometimes implicitly pick a specific constant (for example, by considering the limit
at ∞) and treat elements of Ḣ1(R2

+) as functions.

Given m1 ∈ h+H1(R), there exists a unique solution u ∈ Ḣ1(R2
+) of the boundary value

problem (1), (2). This solution will satisfy

‖m1 − h‖2Ḣ1/2(R)
=

ˆ
R2
+

|∇u|2 dx.
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While it is sometimes convenient to work with u, there is also a dual problem that is
more useful for other purposes. Namely, if u ∈ Ḣ1(R2

+) solves (1), (2), then we consider
∇⊥u = (− ∂u

∂x2
, ∂u∂x1 ), which will satisfy curl∇⊥u = 0 in R2

+. By the Poincaré lemma, there

exists v : R2
+ → R such that ∇v = ∇⊥u (i.e., such that u and v are conjugate harmonic

functions). This implies that ∆v = 0 in R2
+ and ∂v

∂x1
( · , 0) = m′1 in R. After adding a suitable

constant, we thus obtain a solution of the boundary value problem

∆v = 0 in R2
+, (5)

v = m1 − h on R× {0}. (6)

If we are content to fix v only up to a constant, then we may regard it as an element of
Ḣ1(R2

+). Of course we also have the identity

‖m1 − h‖2Ḣ1/2(R)
=

ˆ
R2
+

|∇v|2 dx,

which may be more familiar to the reader as v is the harmonic extension of m1 − h to the
upper half-plane.

2.2 The Euler-Lagrange equation

As we are interested in minimising the functional Eh in Ah(d), we will study the Euler-
Lagrange equation for critical points of Eh. Givenm : R→ S1, it is convenient to represent the
Euler-Lagrange equation in terms of the lifting φ : R→ R. That is, we writem = (cosφ, sinφ),
and then the equation becomes

φ′′ = (h− cosφ+ u′( · , 0)) sinφ in R. (7)

Here u ∈ Ḣ1(R2
+) is the stray field potential as introduced in the preceding section and we

use the abbreviation u′ = ∂u
∂x1

. The derivation of this equation is almost identical to the
corresponding calculations given in our previous work [14]. It is known [15, Proposition 3.1]
that solutions of (7) must be smooth.

If m ∈ Ah(d) for a given winding number d, then there will be at least a certain number
of points, say a1, . . . , aN ∈ R, where m1(an) = ±1 and m2(an) = 0 (i.e., φ(an) ∈ πZ). We
can use these points as a proxy for the positions of the Néel walls in the given configuration.
One of the tasks for the proofs of the main theorems will be to estimate the rate of decay
of m1 − h as we move away from one of the points a1, . . . , aN . But some information about
these points is already available from our previous work [15, Lemma 3.1], namely that for
energy minimising solutions of the Euler-Lagrange equation,3 the number N is determined
uniquely by the prescribed winding number. (Although it is assumed that h 6= 1 in the other
paper, the proof of this statement does not depend on the assumption.)

Lemma 5. For any h ∈ [0, 1] and d ∈ Z± {0, α/π}, the following holds true.

3Here ‘energy minimising solution’ refers to a minimiser of Eh over the set Ah(d) (if it exists). Recall
that Ah(d) is an open set in the strong Ḣ1(R) topology; therefore, the degree constraint does not change the
Euler-Lagrange equation (7).
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1. Suppose that d 6= 0 and m ∈ Ah(d) minimises Eh in Ah(d). Then

|m−1
1 ({±1})| =


2|d| − 1 if h = 1 and d ∈ Z,
2|d| if h < 1 and d ∈ Z,
2`− 1 if h < 1 and |d| = `− 1 + α/π or |d| = `− α/π with ` ∈ N.

Furthermore, if a ∈ R with m1(a) = ±1, then m′2(a) 6= 0. (Therefore, any lifting
φ : R→ R of m will satisfy φ′(a) 6= 0.)

2. If 0 < |d| < 1, then Eh(d) ≥ (1 − arccos(πd))2. If |d| ≥ 1, then Eh(d) ≥ 2|d| − 1. In
particular, Eh(d) > 0 for every degree d 6= 0.

Proof. Statement 1 was proved in [15, Lemma 3.1].
For statement 2, we observe the following. If h 6= 0 and m ∈ Ah(±α/π), then there exists

a ∈ R such that m1(a) = 1, while limx1→±∞m1(x1) = h. Thus

ˆ ∞
a

(|m′|2 + (m1 − h)2) dx1 ≥ 2

ˆ ∞
a
|m′1||m1 − h| dx1 ≥ (1− h)2.

A similar estimate holds for the integral over (−∞, a). Hence Eh(m) ≥ (1− h)2.
If h = 0 and m ∈ Ah(±1/2), then we may have a ∈ R with m1(a) = −1 instead, but this

situation permits the same arguments.
If m ∈ Ah(d) for d 6∈ {0,±α/π}, then there exist at least N ≥ 2|d| − 1 points, say

a1, . . . , aN ∈ R, with a1 < · · · < aN and m1(an) = (−1)n for n = 1, . . . , N . Furthermore,
there exist b1, . . . , bN−1 ∈ R such that an < bn ≤ an+1 and m1(bn) = h for n = 1, . . . , N − 1.
Set b0 = −∞ and bN =∞. Then by the same arguments as before,

ˆ bn

an

(|m′|2 + (m1 − h)2) dx1 ≥ ((−1)n − h)2 , n = 1, . . . , N.

Considering the intervals (bn−1, an) as well and summing over n, we then find that Eh(m) ≥
(1 + h)2 if d = ±(1− α/π) and Eh(m) ≥ 2|d| − 1 otherwise.

Remark 6. We recall that the following was proved in [15, Propositions 2.2 and 2.3].

1. (Monotonicity) If d1, d2 ∈ Z + {0,±α/π} with 0 ≤ d1 ≤ d2 (and if 0 < h < 1, we
suppose that (d1, d2) 6= (`+α/π, 1 + `−α/π) for ` ∈ Z), then Eh(d1) ≤ Eh(d2). This is
because a transition of degree d2 contains also a (sub)transition of degree d1, except for
the exceptional case described above.

2. (Subadditivity) If d1, d2, d ∈ Z+{0,±α/π} with d1+d2 = d (if h = cos π3 and d2−d1 ∈ Z,
we suppose that d ∈ Z), then Eh(d) ≤ Eh(d1)+Eh(d2). This is because the concatenation
of two transitions of degrees d1 and d2 has more energy than an optimal transition of
degree d1 + d2. Two such neighbouring transitions are compatible if either d1 or d2 is
an integer, or if d1 + d2 ∈ Z; this explains the constraint above for h = cos π3 .
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2.3 H1 and H2-estimates away from the Néel walls

The following is a consequence of the Euler-Lagrange equation, obtained by the use of suitable
test functions and differentiation. It provides local estimates for a solution of (7) away from
the points a1, . . . , aN where m1 takes the value ±1 (thought of as the locations of the Néel
walls and discussed in the preceding section).

The following inequalities include the energy density of the stray field energy, given in
terms of the solution v ∈ Ḣ1(R2

+) of (5), (6). As a consequence, we have inequalities involving
integrals over R and over R2

+ simultaneously. For convenience, we use the following shorthand
notation: given a function f : R2

+ → R, we writeˆ ∞
−∞

f dx1 =

ˆ ∞
−∞

f(x1, 0) dx1.

Proposition 7. Let h ∈ [0, 1]. Suppose that I ⊆ R is an open set and φ ∈ H1
loc(R). Let

m = (cosφ, sinφ) and suppose that m1 − h ∈ Ḣ1/2(R) and m2(x1) 6= 0 for all x1 ∈ I. Let
η ∈ C∞0 (R2) with supp η( · , 0) ⊆ I. Suppose that v ∈ Ḣ1(R2

+) is the unique solution of ∆v = 0
in R2

+ with v(x1, 0) = m1(x1)− h for all x1 ∈ R. If φ is a solution of (7) in I, then

ˆ ∞
−∞

η4

(
1

2
|m′|2 + (m1 − h)2

)
dx1 +

ˆ
R2
+

η4|∇v|2 dx

≤ 576

ˆ ∞
−∞

(η′)4 dx1 + 16

ˆ
R2
+

v2η2|∇η|2 dx (8)

andˆ ∞
−∞

η2

(
|m′′|2 + (m′1)2 +

|m′|4

m2
2

)
dx1 +

ˆ
R2
+

η2|∇2v|2 dx

≤ 32

ˆ ∞
−∞

(η′)2|m′|2 dx1 + 24

ˆ
R2
+

|∇η|2|∇v|2 dx. (9)

Proof. If u ∈ Ḣ1(R2
+) is the solution of (1), (2), then u and v are conjugate harmonic

functions in the sense that ∇v = ∇⊥u. Thus equation (7) may be written in the form

φ′′ =

(
h− cosφ+

∂v

∂x2

)
sinφ.

Since sinφ 6= 0 in I, then

v( · , 0)
∂v

∂x2
( · , 0) = φ′′

cosφ− h
sinφ

+ (cosφ− h)2

in I. It follows thatˆ
R2
+

η4|∇v|2 dx = −
ˆ ∞
−∞

η4v
∂v

∂x2
dx1 − 4

ˆ
R2
+

η3v∇η · ∇v dx

= −
ˆ ∞
−∞

η4(cosφ− h)2 dx1 +

ˆ ∞
−∞

η4(φ′)2h cosφ− 1

sin2 φ
dx1

+ 4

ˆ ∞
−∞

η3η′φ′
cosφ− h

sinφ
dx1 − 4

ˆ
R2
+

η3v∇η · ∇v dx.

13



We claim that
| cosφ− h| ≤ 3(1− h cosφ). (10)

For 0 ≤ h ≤ 1
3 , this is clear as | cosφ−h| ≤ 2 and 1−h cosφ ≥ 2

3 in this case. For 1 ≥ h > 1
3 ,

we note that on the one hand,

h(cosφ− h) ≤ 1− h cosφ,

because

2 cosφ ≤ 2 ≤ 1

h
+ h,

and on the other hand,
h(h− cosφ) ≤ 1− h cosφ

trivially. Hence (10) follows.
In particular, using Young’s inequality with three factors and exponents 2, 4, and 4, we

may estimate

4

ˆ ∞
−∞

η3η′φ′
cosφ− h

sinφ
dx1 ≤

1

2

ˆ ∞
−∞

η4(φ′)2 | cosφ− h|
3 sin2 φ

dx1

+
1

2

ˆ ∞
−∞

η4(cosφ− h)2 dx1 + 288

ˆ ∞
−∞

(η′)4 dx1

(10)

≤ 1

2

ˆ ∞
−∞

η4(φ′)2 1− h cosφ

sin2 φ
dx1

+
1

2

ˆ ∞
−∞

η4(cosφ− h)2 dx1 + 288

ˆ ∞
−∞

(η′)4 dx1.

Furthermore,

−4

ˆ
R2
+

η3v∇η · ∇v dx ≤ 1

2

ˆ
R2
+

η4|∇v|2 dx+ 8

ˆ
R2
+

v2η2|∇η|2 dx.

Hence

1

2

ˆ ∞
−∞

η4

(
(φ′)2 1− h cosφ

sin2 φ
+ (cosφ− h)2

)
dx1 +

1

2

ˆ
R2
+

η4|∇v|2 dx

≤ 288

ˆ ∞
−∞

(η′)4 dx1 + 8

ˆ
R2
+

v2η2|∇η|2 dx.

A simple calculus exercise gives

1− cosα cos t

sin2 t
≥ 1

2
for every t ∈ (0, π), α ∈ [0, π/2].

Thus, we obtain the first inequality.
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The second inequality is a direct consequence of an estimate proved in our paper [15].
Let u ∈ Ḣ1(R2

+) be the solution of (1), (2). In the proof of [15, Lemma 3.3], it is shown that
under the above assumptions,

ˆ ∞
−∞

η2

(
(φ′′)2 + 2(φ′)2 sin2 φ+

1

3
(φ′)4(1 + cot2 φ)

)
dx1 +

1

2

ˆ
R2
+

η2|∇2u|2 dx

≤ 16

3

ˆ ∞
−∞

(η′)2(φ′)2 dx1 + 4

ˆ
R2
+

|∇η|2|∇u|2 dx.

Noting that |∇u| = |∇v| and |∇2u| = |∇2v|, and that

|m′|2 = (φ′)2, (m′1)2 = (φ′)2 sin2 φ, and |m′′|2 = (φ′′)2 + (φ′)4,

we derive inequality (9).

3 Decay estimates

We now study how fast m1−h decays when we move away from the points where m1 takes one
of the values ±1. For technical reasons, we proceed in two steps, first proving a preliminary
estimate before improving it in the second step.

3.1 A preliminary L∞-estimate

Lemma 8. There exists a constant C > 0 such that the following inequality holds true.
Suppose that h ∈ [0, 1] and m ∈ H1

loc(R;S1) is a critical point of Eh. For any t ∈ R, let

σ(t) = 1 + inf {|t− x1| : x1 ∈ R with m2(x1) = 0} .

Then
|m1(t)− h| ≤ C(σ(t))−3/4

√
Eh(m) + 1

for all t ∈ R.

Proof. Let v denote the solution of (5), (6).

As |m1 − h| ≤ 2, it suffices to consider t ∈ R with σ(t) ≥ 4. Let R = σ(t)
4 (so R ≥ 1).

Choosing a suitable cut-off function η in (8) in Proposition 7, we see that

ˆ t+R

t−R

(
|m′|2 + (m1 − h)2

)
dx1 ≤

C1π
2

32R2

ˆ
R×(0,R)

v2 dx+
C1

R3

for a universal constant C1.
The boundary value problem (5), (6) gives rise to some estimates for v with standard

tools. In particular, according to Lemma 24 in the appendix (applied for p = 2),

ˆ
R×(0,R)

v2 dx ≤ 16R

π2

ˆ ∞
−∞

(m1 − h)2 dx1.
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This, combined with the above inequality, yields

ˆ t+R

t−R

(
|m′|2 + (m1 − h)2

)
dx1 ≤

C1

R
(Eh(m) + 1). (11)

Moreover, estimate (9) in Proposition 7 leads to

ˆ t+R

t−R
(m′1)2 dx1 ≤

C2

2R2
Eh(m)

for a universal constant C2. In particular, we deduce that(
osc

[t−
√
R,t+

√
R]
m1

)2

≤

(ˆ t+
√
R

t−
√
R
|m′1| dx1

)2

≤ C2

R3/2
Eh(m). (12)

Set

C0 =

√
C1

2
+
√
C2.

We claim that

|m1(t)− h| ≤ C0

R3/4

√
Eh(m) + 1,

which will conclude the proof. Indeed, if we had the inequality

|m1(t)− h| > C0

R3/4

√
Eh(m) + 1,

then it would follow from (12) that

|m1(x1)− h| > C0 −
√
C2

R3/4

√
Eh(m) + 1 =

√
C1(Eh(m) + 1)

2R3/2

for all x1 ∈ [t−
√
R, t+

√
R]. Hence

ˆ t+
√
R

t−
√
R

(m1 − h)2 dx1 >
C1

R
(Eh(m) + 1),

which contradicts (11).

3.2 A preliminary L1-estimate

Eventually we want to estimate the L1-norms of the positive and negative parts of m1 − h.
The preceding inequality is not good enough for this purpose, but we will use it as a first
step. In the next step (Lemma 9), we derive an L2-estimate of m1− h, before turning it into
an L1-estimate in Proposition 10 below.
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Lemma 9. Let p ∈ (4
3 , 2]. Then there exists a number C > 0 with the following property.

Let h ∈ [0, 1] and d ∈ Z± {0, α/π}. Suppose that m ∈ Ah(d) is a minimiser of Eh in Ah(d).
Let a1, a2 ∈ R ∪ {±∞} with a1 < a2 such that m2 6= 0 in (a1, a2). Then

ˆ a2−R

a1+R

(
|m′|2 + (m1 − h)2

)
dx1 ≤ C(|d|+ 1)2/pR−2/p(Eh(m) + 1)

for all R ≥ 1.

Proof. As in the proof of Proposition 7 and Lemma 8, let v denote the harmonic extension
of m1 − h to R2

+. Then by Lemma 24 in the appendix, there exists a constant C1 = C1(p)
such that ˆ R

0

ˆ ∞
−∞

v2 dx1 dx2 ≤ C1R
2−2/p‖m1 − h‖2Lp(R).

Assuming that we have a cut-off function η ∈ C∞0 (R2) with 0 ≤ η ≤ 1 such that supp η ⊆
R× (−∞, R] and supp η( · , 0) ⊆ (a1, a2), then (8) in Proposition 7 implies that

ˆ ∞
−∞

η4

(
1

2
|m′|2 + (m1 − h)2

)
dx1 +

ˆ
R2
+

η4|∇v|2 dx

≤ C2R
2−2/p‖∇η‖2L∞(R2

+)‖m1 − h‖2Lp(R) + 576‖η′‖4L4(R),

where C2 = 16C1. A suitable choice of η therefore gives rise to a number C3, depending only
on p, such that

ˆ a2−R

a1+R

(
|m′|2 + (m1 − h)2

)
dx1 ≤ C3R

−2/p‖m1 − h‖2Lp(R) + C3R
−3.

Furthermore, since p > 4
3 , the function σ in Lemma 8 has the property that σ−3p/4 is

integrable over R. Lemma 5 and Lemma 8 then imply that

‖m1 − h‖Lp(R) ≤ C4(|d|+ 1)1/p
√
Eh(m) + 1

for some constant C4 = C4(p). Thus we obtain a constant C5 = C5(p) such that

ˆ a2−R

a1+R

(
|m′|2 + (m1 − h)2

)
dx1 ≤ C5(|d|+ 1)2/pR−2/p(Eh(m) + 1).

This is the desired estimate.

The preceding result implies an L1-estimate for the positive and negative parts of m1−h.
In the following, we write (m1−h)+ = max{m1−h, 0} ≥ 0 and (m1−h)− = min{m1−h, 0} ≤
0.

Proposition 10. Let p ∈ (4
3 , 2). Then there exists a number C > 0 with the following

property. Let h ∈ [0, 1]. Given d ∈ Z ± {0, α/π}, suppose that m ∈ Ah(d) is a minimiser of
Eh in Ah(d). Then

ˆ ∞
−∞

(m1 − h)+ dx1 ≤ C(|d|+ 1)1+1/pα2(2−p)/(2+p)
√
Eh(m) + 1
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and

−
ˆ ∞
−∞

(m1 − h)− dx1 ≤ C(|d|+ 1)1+1/p
√
Eh(m) + 1.

Proof. Let C1 be the constant satisfying the statement of Lemma 9 for the given value of p
and define

c0 =
1√

C1(|d|+ 1)2/p(Eh(m) + 1)
.

By Lemma 5, there exist a1, . . . , aN ∈ R with a1 < · · · < aN and N ≤ 2|d| + 1 such that
m2(an) = 0 for n = 1, . . . , N and m2 6= 0 in R\{a1, . . . , aN}. Set a0 = −∞ and aN+1 = +∞.
Fix n ∈ {1, . . . , N}.

Lemma 9 gives L2-estimates for m1 − h at first, but using it for varying values of R, we
can derive an L1-estimate as well. The details are given in Lemma 25 in the appendix. We
apply this Lemma 25 to the functions

ψ1(x1) =

{
c0|m1(an + x1)− h| if 1 ≤ x1 ≤ (an+1 − an)/2,

0 if x1 > (an+1 − an)/2,

and

ψ2(x1) =

{
c0|m1(an − x1)− h| if 1 ≤ x1 ≤ (an − an−1)/2,

0 if x1 > (an − an−1)/2,

and use Lemma 9 to verify that the hypothesis of Lemma 25 is satisfied for σ = 2/p. (This
is why we assume p < 2 here, in contrast to Lemma 9.) Therefore, there exists a constant
C2 = C2(p) such that ˆ an−R

(an+an−1)/2
|m1 − h| dx1 ≤

C2R
1/2−1/p

c0

and ˆ (an+1+an)/2

an+R
|m1 − h| dx1 ≤

C2R
1/2−1/p

c0

for all R ≥ 1.
If α ≤ 1, then we choose R = α−4p/(2+p). Using the fact that (m1 − h)+ ≤ 1− h ≤ α2

2 in
(an −R, an +R), we then obtain the estimate

ˆ (an+1+an)/2

(an+an−1)/2
(m1 − h)+ dx1 ≤

(
2C2

c0
+ 1

)
α2(2−p)/(2+p).

Then it suffices to sum over n = 1, . . . , N to prove the first inequality.
For α > 1 and for the second inequality, we can use the same arguments with R = 1,

since |m1 − h| ≤ 2 in (an −R, an +R).
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3.3 Improved estimates

With this control of the L1-norm, we can now take advantage of the second inequality in
Lemma 24 and improve the estimates again.

Proposition 11. There exists a number C > 0 with the following property. Let h ∈ [0, 1]
and suppose that m ∈ Ah(d) is a minimiser of Eh in Ah(d) for some d ∈ Z± {0, α/π}. Let
u ∈ Ḣ1(R2

+) denote the solution of (1), (2), and let a1, a2 ∈ R ∪ {±∞} with a1 < a2 and
m2 6= 0 in (a1, a2). Then

ˆ a2−R

a1+R

(
|m′|2 + (m1 − h)2

)
dx1 +

ˆ a2−R

a1+R

ˆ R

0
|∇u|2 dx2 dx1

≤ C(|d|+ 1)16/5R−2 logR (Eh(m) + 1) (13)

and
ˆ a2−R

a1+R

(
|m′′|2 + (m′1)2 +

|m′|4

m2
2

)
dx1 +

ˆ a2−R

a1+R

ˆ R

0
|∇2u|2 dx2 dx1

≤ C(|d|+ 1)16/5R−4 logR (Eh(m) + 1) (14)

and ˆ a2−R

a1+R
(u′(x1, 0))2 dx1 ≤ C(|d|+ 1)16/5R−3 logR (Eh(m) + 1) (15)

for all R ≥ 2.

Proof. For the proof of (13), we simply combine (8) in Proposition 7 with the second and
third inequality of Lemma 24 and Proposition 10 (with p = 5/3). Choosing a suitable cut-off
function η in Proposition 7, such that η ≡ 1 in [a1 +R, a2 −R]× [0, R],

supp∇η ∩ R2
+ ⊆

(
[a1 +R/2, a1 +R]× (0, 2R]

)
∪

∪
(
[a2 −R, a2 −R/2]× (0, 2R]

)
∪
(
[a1 +R/2, a2 −R/2]× [R, 2R]

)
,

and |∇η| ≤ 8/R, we thus obtain (13).
In order to prove (14), we use (9) in Proposition 7 and choose η similarly to the first part

of this proof again. Then we use (13) (say, with R/2 instead of R) to estimate the right-hand
side of (9). This gives the desired estimate.

Finally, for the proof of (15), we consider the conjugate harmonic function v : R2
+ → R

with ∇v = ∇⊥u. Again we choose η ∈ C∞0 (R2) and compute
ˆ ∞
−∞

η2(u′)2 dx1 =

ˆ ∞
−∞

η2

(
∂v

∂x2
(x1, 0)

)2

dx1

= −
ˆ
R2
+

div

(
η2 ∂v

∂x2
∇v
)
dx

= −
ˆ
R2
+

(
η2∇v · ∇ ∂v

∂x2
+ 2η

∂v

∂x2
∇η · ∇v

)
dx

≤
ˆ
R2
+

(
η2(R|∇2v|2 +R−1|∇v|2) + 2|η||∇η||∇v|2

)
dx.
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We observe that |∇v| = |∇u| and |∇2v| = |∇2u|. Using (13) and (14) and choosing η
appropriately, we therefore obtain (15).

4 Localisation

For the proof of Theorem 1 (and more specifically for the proof of Proposition 17 below), we
want to glue together a collection of different profiles m(j) ∈ Ah(dj) for certain degrees dj .

To this end, we first modify m(j) such that m
(j)
1 − h has compact support with the help of

a cut-off function, thus localising the profile. This will of course change the energy, and we
will need to estimate by how much. For h < 1, we already have a suitable estimate from
our previous work [15, Proposition 2.1]. As the statement is technical, we do not repeat it
here (but it is similar in structure to Lemma 12 below). For the case h = 1, however, we
need to modify the result, as the quartic growth of W near the well (1, 0) requires different
arguments. We prove the following for this situation.

Lemma 12. There exists a constant C > 0 with the following property. Suppose that h = 1
and φ ∈ H1

loc(R) is such that m = (cosφ, sinφ) satisfies E1(m) <∞. Let v ∈ Ḣ1(R2
+) be the

solution of (5), (6). Furthermore, suppose that there exist two numbers `± ∈ 2πZ and three
measurable functions ω, σ, τ : [0,∞)→ [0,∞) such that

|φ(x1)− `+| ≤ ω(x1) and |φ(−x1)− `−| ≤ ω(x1) for all x1 ≥ 0

and

|φ′(x1)| ≤ σ(|x1|) and

∣∣∣∣ ∂v∂x2
(x1, 0)

∣∣∣∣ ≤ τ(|x1|) for all x1 ∈ R.

Suppose that supx1≥r ω(x1) ≤ π
2 for some r ≥ 1. Then for any R ≥ r there exists m̃ ∈

H1
loc(R;S1) such that

deg(m̃) =
`+ − `−

2π
(16)

and
m̃1 = 1 in (−∞,−2R] ∪ [2R,∞), m̃1 = m1 in [−R,R],

and |m̃1 − 1| ≤ |m1 − 1| everywhere, and such that

E1(m̃) ≤ E1(m) +
C

R2

ˆ 2R

R

(
ω2 +Rωσ

)
dx1 + C

ˆ ∞
R

ω2τ dx1

+ C

(ˆ ∞
R

ω4 dx1

)1/2(ˆ ∞
R

(
ω4

R2
+ ω2σ2

)
dx1

)1/2

.

This result has a counterpart for h 6= 1, stated in [15, Proposition 2.1]. For the purpose
of this paper, however, only the case h < 1 treated in [15] is relevant. The structure of the
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statement is then similar to the above lemma, but for h < 1 the inequality becomes

Eh(m̃) ≤ Eh(m) + C

ˆ ∞
R

(
ω2

R2
+ σ2 + ωτ

)
dx1

+ C

(ˆ ∞
R

ω2 dx1

)1/2(ˆ ∞
R

(
ω2

R2
+ σ2

)
dx1

)1/2

. (17)

This is good enough for our proofs if h < 1, but for h = 1 we need the improvement given by
Lemma 12.

The following proof is similar to the reasoning of [15, Proposition 2.1], too, but for the
convenience of the reader, we repeat the arguments here.

Proof of Lemma 12. Choose η ∈ C∞0 (R) with η(x1) = 0 for |x1| ≥ 2R and η(x1) = 1 for
|x1| ≤ R, and such that 0 ≤ η ≤ 1 and |η′| ≤ 2/R everywhere. Define4

φ̃(x1) =

{
`− + η(x1)(φ(x1)− `−) if x1 ≤ 0,

`+ + η(x1)(φ(x1)− `+) if x1 > 0.

Set m̃ = (cos φ̃, sin φ̃). Then clearly (16) is satisfied and |m̃1 − 1| ≤ |m1 − 1| everywhere.
For x1 > 0, we compute

φ̃′(x1) = η(x1)φ′(x1) + η′(x1)(φ(x1)− `+).

A similar identity holds for x1 < 0. Hence

(φ̃′)2 ≤ (φ′)2 + 2|ηη′||φ′||φ− `±|+ (η′)2(φ− `±)2 ≤ (φ′)2 +

(
4ω2

R2
+

4ωσ

R

)
1{|x1|∈[R,2R]}

(where for simplicity, we extend ω and σ to R evenly). It follows that

1

2

ˆ ∞
−∞

(φ̃′)2 dx1 ≤
1

2

ˆ ∞
−∞

(φ′)2 dx1 +
4

R2

ˆ 2R

R

(
ω2 +Rωσ

)
dx1.

It is obvious that
1

2

ˆ ∞
−∞

(m̃1 − 1)2 dx1 ≤
1

2

ˆ ∞
−∞

(m1 − 1)2 dx1.

This leaves the stray field energy to be estimated.
Note that

|m̃1 −m1| ≤ 1−m1 ≤ (φ− `±)2 ≤ ω2

in R \ [−R,R], whereas∣∣m̃′1 −m′1∣∣ = |
(
η′(φ− `±) + ηφ′

)
sin φ̃− φ′ sinφ|

≤ |φ′|| sinφ− η sin φ̃|+ |η′||φ− `±|| sin φ̃|
≤ |φ′||φ− `±|+ |η′|(φ− `±)2

≤ ωσ +
2ω2

R
.

4An interpolation in m1 was used in [15, Proposition 2.1] for the case h < 1 (and also for h > 1). However,
in our case h = 1, the interpolation in the lifting φ is more appropriate.
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Here we have used the inequality | sin φ̃| = | sin
(
η(φ − `±)

)
| ≤ |η||φ − `±| together with

| sin t− η sin(ηt)| ≤ | sin t| ≤ |t| for all 0 ≤ η ≤ 1 and t ∈ [−π/2, π/2] (applied to t := φ− `±).
Thus by interpolation between L2(R) and Ḣ1(R), we obtain

‖m̃1 −m1‖2Ḣ1/2(R)
≤ C1

(ˆ ∞
R

ω4 dx1

)1/2(ˆ ∞
R

(
ω4

R2
+ ω2σ2

)
dx1

)1/2

for some universal constant C1.
Now recall that v ∈ Ḣ1(R2

+) is the harmonic extension of m1−1 to R2
+ and let ṽ ∈ Ḣ1(R2

+)
be the harmonic extension of m̃1 − 1. Then

ˆ
R2
+

|∇ṽ|2 dx =

ˆ
R2
+

|∇v|2 dx+

ˆ
R2
+

|∇v −∇ṽ|2 dx− 2

ˆ
R2
+

∇v · (∇v −∇ṽ) dx.

We know thatˆ
R2
+

|∇v −∇ṽ|2 dx = ‖m1 − m̃1‖2Ḣ1/2(R)

≤ C1

(ˆ ∞
R

ω4 dx1

)1/2(ˆ ∞
R

(
ω4

R2
+ ω2σ2

)
dx1

)1/2

.

Moreover, an integration by parts gives

−2

ˆ
R2
+

∇v · (∇v −∇ṽ) dx = 2

ˆ ∞
−∞

(m1 − m̃1)
∂v

∂x2
dx1 ≤ 4

ˆ ∞
R

ω2τ dx1.

Hence

1

2

ˆ
R2
+

|∇ṽ|2 dx ≤ 1

2

ˆ
R2
+

|∇v|2 dx

+
C1

2

(ˆ ∞
R

ω4 dx1

)1/2(ˆ ∞
R

(
ω4

R2
+ ω2σ2

)
dx1

)1/2

+ 2

ˆ ∞
R

ω2τ dx1.

The desired inequality then follows.

When we apply Lemma 12, we will consider a fixed d ∈ Z±{0, α/π} and a profile m that
minimises Eh in Ah(d). Then by Lemma 5, there exist a1, . . . , aN ∈ R with a1 < · · · < aN
and N ≤ 2|d| + 1 such that m2(an) = 0 for n = 1, . . . , N and m2 6= 0 elsewhere. Thus
Proposition 11 applies between any pair of points (an, an+1) and also in (−∞, a1) and in
(aN ,∞). If φ is a lifting of m, choosing

ω(x1) = max{|φ(x1)− `+|, |φ(−x1)− `−|}
σ(x1) = max{|φ′(x1)|, |φ′(−x1)|}, (18)

τ(x1) = max

{∣∣∣∣ ∂v∂x2
(x1, 0)

∣∣∣∣ , ∣∣∣∣ ∂v∂x2
(−x1, 0)

∣∣∣∣} ,
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we then find, by Lemma 8, that ω(x1) ≤ π
2 for |x1| large enough. Moreover, we then obtain

(φ(x1) − `±)2 ≤ π(1 − cosφ(x1)) = π(1 − m1(x1)) for |x1| large enough.5 We write I =
(−2R,−R) ∪ (R, 2R). Then Proposition 11 implies

ˆ 2R

R
ω2 dx1 ≤ π

ˆ
I
(1−m1) dx1

≤ π
(

2R

ˆ
I
(1−m1)2 dx1

)1/2

≤ C1

√
logR

R

(19)

and

ˆ 2R

R
ωσ dx1 ≤

√
π

ˆ
I

√
1−m1|m′| dx1

≤
√
π

(
2R

ˆ
I
(1−m1)2 dx1

)1/4(ˆ
I
|m′|2 dx1

)1/2

≤ C1

R5/4
(logR)3/4

(20)

for a constant C1 = C1(d), provided that R is sufficiently large. Moreover,

ˆ ∞
R

ω4 dx1 ≤ π2

ˆ
R\(−R,R)

(m1 − 1)2 dx1 ≤
C1

R2
logR, (21)

ˆ ∞
R

ω2σ2 dx1 ≤ π
ˆ
R\(−R,R)

(
(m1 − 1)2

R
+R|m′|4

)
dx1 ≤

C1

R3
logR, (22)

ˆ ∞
R

ω2τ dx1 ≤ π
ˆ
R\(−R,R)

(
R−1/2(m1 − 1)2 +R1/2

(
∂v

∂x2

)2
)
dx1 ≤

C1

R5/2
logR. (23)

In the case h < 1, we use [15, Proposition 2.1] instead of Lemma 12, which gives rise to
inequality (17). In this case, we know that |φ − `±| ≤ c|m1 − h| and |φ′| ≤ c|m′1|, with a
constant c depending on h, when |x1| is sufficiently large. This gives rise to

ˆ ∞
R

ω2 dx1 ≤ c2

ˆ
R\(−R,R)

(m1 − h)2 dx1 ≤
C2

R2
logR, (24)

ˆ ∞
R

σ2 dx1 ≤ c2

ˆ
R\(−R,R)

|m′1|2 dx1 ≤
C2

R4
logR, (25)

ˆ ∞
R

ωτ dx1 ≤ c
ˆ
R\(−R,R)

(
R−1/2(m1 − h)2 +R1/2(u′)2

)
dx1 ≤

C2

R5/2
logR (26)

for a constant C2 = C2(d, h), provided that R is sufficiently large. These estimates are not
quite as good as the ones derived in [15], but they are sufficient for our purpose and they avoid
a significant part of the previous analysis. This conclusion can be summarized as follows.

5Note that t2/π ≤ 1− cos t ≤ t2/2 for every t ∈ [0, π/2].
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Corollary 13. Let h ∈ [0, 1] and d ∈ Z± {0, α/π}. Suppose that m is a minimizer of Eh(d)
in Ah(d). Then there exist R0 ≥ 1 and β > 0 such that for every R ≥ R0, there exists
m̃ ∈ Ah(d) that is locally constant in R \ [−R,R] and satisfies

Eh(m̃) ≤ Eh(d) +
1

R2+β

and |m̃1 − h| ≤ |m1 − h| everywhere in R.

5 Proofs of the main results

5.1 Existence and non-existence of minimisers

For the proof of Theorem 1, we can now largely use the arguments from our previous paper
[15] (repeated below for the convenince of the reader), but we replace the previous decay
estimates by Proposition 11 and the previous L1-estimates by Proposition 10. The main task
is to estimate the stray field energy for potential minimisers of Eh. To this end, we divide
m1 − h into several pieces, each of which is either nonpositive or nonnegative in R. As we
may express the stray field energy in terms of the Ḣ1/2-inner product, the following estimate,
given as Lemma 4.3 in [15], is particularly useful here.

Lemma 14. Let f, g ∈ Ḣ1/2(R) be nonnegative functions and suppose that there exists R > 0
with supp f ⊆ [−2R,−R] and supp g ⊆ [R, 2R]. Then

− 1

4πR2
‖f‖L1(R)‖g‖L1(R) ≤ 〈f, g〉Ḣ1/2(R) ≤ −

1

16πR2
‖f‖L1(R)‖g‖L1(R).

Using this and the above estimates, we can now examine what happens if a magnetisation
profile m is split into two or more parts or if several profiles are combined. For this purpose,
we use the following notion.

Definition 15. Fix h ∈ (0, 1] and let Dh = (N ± {0, α/π}) ∪ {α/π}. Suppose that d ∈ Dh.
For J ∈ N and d1, . . . , dJ ∈ Dh, we say that (d1, . . . , dJ) is a partition of d if

• d = d1 + · · ·+ dJ and

• for all j, k ∈ {1, . . . , J} with j < k, if dj 6∈ N and dk 6∈ N but dj+1, . . . , dk−1 ∈ N, then
dj + dk ∈ N.

We say that the partition is trivial if J = 1.

The conditions in the definition guarantee that profiles m(j) ∈ Ah(dj) can be combined
to form a profile in Ah(d), although for dj ∈ N, it may be necessary to reverse the orientation

of R as well as S1 and consider m
(j)
1 (−x1) instead of m

(j)
1 and −m(j)

2 (−x1) instead of m
(j)
2 .

One of the key ingredients for the proof of Theorem 1 is a concentration-compactness
principle that allows to prove existence of minimisers in Ah(d) under the assumption that any
nontrivial partition of d will give rise to a larger total energy. A special case was formulated
in our previous paper [15, Theorem 6.1]. The statement can easily be extended as follows.
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Theorem 16. Suppose that d ∈ Dh is such that

Eh(d) <
J∑
k=1

Eh(dk)

for all nontrivial partitions (d1, . . . , dJ) of d. Then Eh attains its infimum in Ah(d).

Proof. For completeness, we adapt the arguments presented in the proof of [15, Theorem 6.1].
Consider a minimising sequence (mj)j∈N of Eh in Ah(d). Up to translation, we can assume
that

mj(0) ∈ {(±1, 0)} if h < 1 and mj(0) = (−1, 0) if h = 1 (27)

for every j ∈ N.6 Furthermore, as we may choose a subsequence if necessary, we may assume
that mj ⇀m weakly in H1

loc(R;S1) and locally uniformly in R for some m ∈ H1
loc(R; S1) and

ˆ 2j

−2j
|mj −m|2 dx1 ≤

1

j5
for all j ∈ N.

Then m(0) satisfies (27), and the lower semicontinuity of the energy with respect to such
convergence implies

Eh(m) ≤ lim inf
j→∞

Eh(mj) = Eh(d).

In particular, we have limx1→±∞m1(x1) = h, and the winding number d̃ = deg(m) is well-
defined and belongs to Z + {0,±α/π}; moreover,

lim
j→∞

‖mj
1 − h‖L∞([−2j,−j]∪[j,2j]) = 0 and lim

j→∞

ˆ 2j

−2j
(mj)⊥ · (mj)′ dx1 = 2πd̃.

The aim is to show that d̃ = d, which entails that m is a minimiser of Eh in Ah(d).
The idea is to split the map mj for each j ∈ N by cutting off a left part m̂−j , a middle part

m̃j and a right part m̂j such that m̂−j = mj in (−∞,−2j) and constant in (−7j/4,+∞),
m̃j = mj in (−j, j) and constant in (−∞,−5j/4) ∪ (5j/4,+∞), while m̂j = mj in (2j,+∞)
and constant in (−∞, 7j/4). Then deg(m̃j) = d̃, and if we denote d±j = deg(m̂±j), we have
d̃ + d−j + dj = d for every sufficiently large j ∈ N. Following the argument in the proof of
[15, Theorem 6.1], we obtain

lim sup
j→∞

(
Eh(m̃j) + Eh(m̂j) + Eh(m̂−j)

)
≤ Eh(d).

In particular, we deduce that the two sequences (Eh(d±j))j∈N are bounded; by Lemma 5, it
follows that the two sequences (d±j)j∈N are bounded. Therefore, we can extract a subse-
quence, such that after relabelling, those sequences are constant, i.e., d−j = d− and dj = d+

for two degrees d± ∈ Z + {0,±α/π}. Note that all the pairs (d−, d̃), (d̃, d+), (d−, d̃ + d+),
and (d+, d̃ + d−) comprise compatible neighbouring degrees (see Remark 6). Moreover, by

6In the proof of [15, Theorem 6.1], we further used a symmetrisation argument when choosing the mini-
mizing sequence (mj)j∈N, but this is not necessary here.
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Lemma 5, combined with (27), we know that lim supj→∞Eh(m̃j) ≥ max{C, Eh(d̃)} for some
C > 0 depending only on h. Therefore, it follows that

Eh(d+) + Eh(d−) + max{C, Eh(d̃)} ≤ Eh(d) and d̃+ d− + d+ = d. (28)

We claim that the above relation entails d = d̃. This follows in several steps.

Step 1: we prove that d+, d− ≥ 0. Assume by contradiction that d− < 0 (the other case
d+ < 0 can be treated identically). In particular, by (28), d+ + d̃ = d− d− > d. As d̃ and d+

are compatible neighbouring degrees, Remark 6 implies that Eh(d̃) + Eh(d+) ≥ Eh(d̃ + d+).
We distinguish two cases.

• If 0 < h < 1 and (d+ + d̃, d) = (` + 1 − α/π, ` + α/π) for some ` ∈ N ∪ {0}, then
d− = 2α/π − 1 ∈ Z + {0,±α/π}. Thus α = π/3 (as α ∈ (0, π/2)), d− = −1/3, and
d̃ + d+ = ` + 2/3, which contradicts the compatibility of the neighbouring transitions
of degree d− and d̃+ d+.

• Otherwise, the monotonicity in Remark 6 applies and we conclude that

Eh(d̃) + Eh(d+) ≥ Eh(d̃+ d+) ≥ Eh(d)
(28)

≥ Eh(d̃) + Eh(d+) + Eh(d−).

In particular, Eh(d−) = 0. By Lemma 5, this would imply d− = 0, which contradicts
the assumption d− < 0.

Step 2: we prove that d̃+d+, d̃+d− > 0. Assume by contradiction that d−+ d̃ ≤ 0 (the other
case d+ + d̃ ≤ 0 can be treated identically). By (28), d+ = d− (d− + d̃) ≥ d. We distinguish
two cases.

• If 0 < h < 1 and (d+, d) = (`+ 1− α/π, `+ α/π) for some ` ∈ N ∪ {0}, then d− + d̃ =
2α/π − 1 ∈ Z + {0,±α/π}. Thus α = π/3, d+ = ` + 2/3, and d̃ + d− = −1/3, which
contradicts the compatibility of the neighbouring transitions of degree d+ and d̃+ d−.

• Otherwise, the monotonicity in Remark 6 applies and gives

Eh(d+) ≥ Eh(d)
(28)

≥ Eh(d+) + C,

which is impossible as C > 0.

Step 3: we prove that d̃ > 0. Assume by contradiction that d̃ ≤ 0. As d̃ and d+ are
compatible neighbouring degrees, Remark 6 implies that Eh(d+) + Eh(d̃) ≥ Eh(d+ + d̃). By
(28), it follows that Eh(d) ≥ Eh(d+ + d̃) + Eh(d−). As d− ≥ 0 (by Step 1) and d+ + d̃ > 0 (by
Step 2), the assumption of the theorem implies that (d−, d+ + d̃) is not a partition of d, i.e.,
that d− = 0. This in turn implies that d− + d̃ = d̃ ≤ 0, which contradicts Step 2.

Step 4: we conclude that d = d̃. If this were not the case, then Steps 1 and 3, combined with
the compatibility of neighbouring transitions of degree d−, d̃ and d+ (see Remark 6), would
imply that (d−, d̃, d+) or (d−, d̃) or (d̃, d+) is a nontrivial partition of d. By the hypothesis
of the theorem, however, this would contradict (28). Therefore, we see that d = d̃.
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If we want to use Theorem 16, we need to verify the inequality in the hypothesis. We first
study what happens if the profiles of several minimisers of Eh (for their respective winding
numbers) are combined. This is the counterpart of [15, Theorem 7.2] for higher winding
numbers.

Proposition 17. For any ` ∈ N there exists H ∈ (0, 1) such that the following holds true
for all h ∈ (H, 1]. Suppose that d = ` − α/π. Let (d1, . . . , dJ) be a nontrivial partition of d
such that there exists a minimizer m(j) ∈ Ah(dj) with Eh(m(j)) = Eh(dj) for all j = 1, . . . , J .
Then

Eh(d) <
J∑
j=1

Eh(dj).

Proof. We may assume that

lim
x1→+∞

m(j)(x1) = lim
x1→−∞

m(j+1)(x1), j = 1, . . . , J − 1.

(This is because in the case dj ∈ N, we may replace m
(j)
1 (x1) by m

(j)
1 (−x1) and m

(j)
2 (x1) by

−m(j)
2 (−x1) for some values of j.) It is easy to see that there exists a constant C1 = C1(`)

such that
J∑
j=1

Eh(m(j)) ≤ C1.

By Corollary 13, we may modify m(j) such that the support of m
(j)
1 − h becomes compact,

while changing the energy only by a small amount. More specifically, we find two numbers

R0 ≥ 1 and β > 0 such that for all R ≥ R0, there exist m̃(j) ∈ Ah(dj) with m̃
(j)
1 = h outside

of [−R,R], while at the same time,

Eh(m̃(j)) ≤ Eh(m(j)) +
1

R2+β

and |m̃(j)
1 − h| ≤ |m

(j)
1 − h| everywhere for j = 1, . . . , J .

Because d ∈ N − α/π, it follows that d1, dJ ∈ N − {0, α/π}. Since m̃(j) ∈ Ah(dj), this
means that it contains a full transition on the half circle {z ∈ S1 : z1 ≤ 0}. Furthermore, as
Eh(m̃(j)) ≤ C1 + 1, it is easy to see7 that there exists a constant c0 = c0(`) > 0 with∥∥(m̃(j)

1 − h
)
−
∥∥
L1(R)

≥
∥∥(m̃

(j)
1 )−

∥∥
L1(R)

≥ c0 (29)

for j = 1, J . (This estimate is essential and the arguments work only for the degree d ∈ N−
α/π due to the “sandwich” configuration created by the outermost transitions corresponding
to j = 1 and j = J .)

On the other hand, Proposition 10 (for p = 5
3) implies that there exists C2 = C2(`)

satisfying ∥∥(m̃(j)
1 − h

)
+

∥∥
L1(R)

≤ C2α
2/11 (30)

7If f = −(m̃
(j)
1 )−, then we may assume that f(0) = 1. Since ‖f ′‖L2(R) ≤

√
2C1 + 1, then f(x1) ≥

f(0)− ‖f ′‖L2(R)|x1|1/2 ≥ 1−
√

2C1 + 1|x1|1/2, which proves (29).
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and ∥∥(m̃(j)
1 − h

)
−
∥∥
L1(R)

≤ C2 (31)

for all j = 1, . . . , J .
Now we may define m : R → S1 by m(x1) = m̃(j)(x1 − 6jR) for 6jR − R ≤ x1 ≤

6jR+R, where j = 1, . . . , J , and m(x1) = (cosα,± sinα) elsewhere (so that m is continuous
everywhere). Then m ∈ Ah(d). It is clear that

ˆ ∞
−∞

(
|m′|2 + (m1 − h)2

)
dx1 =

J∑
j=1

ˆ ∞
−∞

(
|(m̃(j))′|2 + (m̃

(j)
1 − h)2

)
dx1.

Next we note that

m1(x1)− h =

J∑
j=1

(
m̃

(j)
1 (x1 − 6jR)− h

)
+

+

J∑
j=1

(
m̃

(j)
1 (x1 − 6jR)− h

)
−.

If j 6= j′, then the supports of the functions (m̃(j) − h)± and (m̃(j′) − h)± are contained
in intervals of length 2R each and are separated by at least 4R. Therefore, we may apply
Lemma 14 to estimate 〈

(m̃(j) − h)±, (m̃
(j′) − h)±

〉
Ḣ1/2(R)

for any such pair. Because of inequalities (29), (30), and (31), we obtain a constant C3 =
C3(`) > 0 such that

‖m1 − h‖2Ḣ1/2(R)
≤

J∑
j=1

∥∥m̃(j)
1 − h

∥∥2

Ḣ1/2(R)
+
C3α

2/11

R2
− 1

C3R2
.

Therefore,

Eh(m) ≤
J∑
j=1

Eh(m(j)) +
J

R2+β
+
C3α

2/11

2R2
− 1

2C3R2
.

If α is chosen sufficiently small and R sufficiently large, then the above error becomes negative,
which leads to the desired inequality.

Because the preceding result only applies to winding numbers where minimisers exist, we
also need some information for the other cases.

Proposition 18. Suppose that h ∈ (0, 1] and d ∈ Dh. Then there exists a partition
(d1, . . . , dJ) of d such that

Eh(d) ≥
J∑
j=1

Eh(dj)

and Eh(dj) is attained for all j = 1, . . . , J .
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Proof. The set Dh allows a proof by induction. The statement is true for d = α/π and
d = 1 − α/π, because Eh(α/π) and Eh(1 − α/π) are attained [21, 1, 15] and the trivial
partition has the desired property.

Now fix d ∈ Dh and assume that the statement is proved for all numbers d′ ∈ Dh with
d′ < d. If Eh(d) is attained, then we use the trivial partition again. Otherwise, Theorem 16
implies that there exists a nontrivial partition (d1, . . . , dJ) of d such that

Eh(d) ≥
J∑
j=1

Eh(dj).

Then dj < d for all j = 1, . . . , J , and therefore, the induction assumption applies. Thus for
any j ∈ {1, . . . , J}, there exists a partition (dj1, . . . , djKj ) of dj such that

Eh(dj) ≥
Kj∑
k=1

Eh(djk)

and every Eh(djk) is attained. Combining all the resulting partitions, we obtain a partition
of d with the desired properties. (If dj ∈ N for some j = 1, . . . , J , we may need to reorder
dj1, . . . , djKj in order to achieve another partition of d, but that does not invalidate the
argument.)

Proof of Theorem 1. Let d ∈ N− α/π. According to Theorem 16, it suffices to show that

Eh(d) <
J∑
j=1

Eh(dj)

for any nontrivial partition (d1, . . . , dJ) of d.
Assuming that Eh(dj) is attained for all j = 1, . . . , J , the inequality follows from Propo-

sition 17, provided that α is sufficiently small. If there is j ∈ {1, . . . , J} such that Eh(dj) is
not attained, then we replace all such dj by a partition of dj with the properties of Propo-
sition 18. Eventually, we are in a situation where we can use Proposition 17, and then the
claim follows.

Proof of Theorem 3. We argue by contradiction here. Let h ∈ (0, 1), to be chosen sufficiently
close to 1 eventually. Suppose that ` ∈ N and d = ` or d = `+ α/π. Suppose that Eh had a
minimiser m in Ah(d). We may assume without loss of generality that

lim
x→−∞

m(x1) = (cosα,− sinα).

(This is automatic if d = `+ α/π. If d = `, we may have to replace m1(x1) by m1(−x1) and
m2(x1) by −m2(−x1).) Choose a continuous lifting φ : R → R such that m = (cosφ, sinφ).
Then there exists b ∈ R such that

ˆ b

−∞
φ′(x1) dx1 = 2α.
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Indeed, there exists a largest number b with this property, and if we choose this one, then
there also exist a, c ∈ R such that b < a < c and such that m1(a) = −1, m1(c) = h, and
m1 < h in (b, c).

An easy construction shows that there exists a number C1 = C1(`) satisfying Eh(d) ≤ C1.
Since m is assumed to be an energy minimiser in Ah(d), this means that Eh(m) ≤ C1. This
implies a bound for m1 in C0,1/2([b, c]), and it follows as in the footnote 7 thatˆ c

b
(h−m1) dx1 ≥ C2 (32)

for some constant C2 = C2(`) > 0.
Define the function

m+
1 (x1) =

{
m1(x1) if x1 < b and m1(x1) > h,

h otherwise.

Then m+
1 − h ≥ 0 everywhere. Further define

m−1 (x1) =

{
m1(x1) if x1 ≥ b or m1(x1) ≤ h,
h otherwise.

Then m1 = m+
1 +m−1 −h and (m+

1 −h)(m−1 −h) = 0 everywhere. There exist m+
2 ,m

−
2 : R→

[−1, 1] such that

m+ = (m+
1 ,m

+
2 ) ∈ Ah(α/π) and m− = (m−1 ,m

−
2 ) ∈ Ah(d− α/π)

by the choice of b and the above definitions.
Now we compute

Eh(m) = Eh(m+) + Eh(m−) +
〈
m+

1 ,m
−
1

〉
Ḣ1/2(R)

.

Hence
Eh(d) ≥ Eh(α/π) + Eh(d− α/π) +

〈
m+

1 ,m
−
1

〉
Ḣ1/2(R)

.

Next we wish to estimate the quantity〈
m+

1 ,m
−
1

〉
Ḣ1/2(R)

=
1

2π

ˆ ∞
−∞

ˆ ∞
−∞

(m+
1 (s)−m+

1 (t))(m−1 (s)−m−1 (t))

(s− t)2
ds dt.

To this end, we first observe that m±1 may be replaced by m±1 − h without changing the
double integral. Furthermore, the construction guarantees that m+

1 −h = 0 in (b,∞) and, as
mentioned before, that (m+

1 − h)(m−1 − h) = 0 everywhere. Therefore,〈
m+

1 ,m
−
1

〉
Ḣ1/2(R)

= − 1

π

ˆ ∞
−∞

ˆ ∞
−∞

(m+
1 (s)− h)(m−1 (t)− h)

(s− t)2
ds dt

= − 1

π

ˆ b

−∞

ˆ b

−∞

(m+
1 (s)− h)(m−1 (t)− h)

(s− t)2
ds dt

− 1

π

ˆ c

b

ˆ b

−∞

(m+
1 (s)− h)(m−1 (t)− h)

(s− t)2
ds dt

− 1

π

ˆ ∞
c

ˆ b

−∞

(m+
1 (s)− h)(m−1 (t)− h)

(s− t)2
ds dt.
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If t ≤ b, then m−1 (t)− h ≤ 0, whereas m+
1 (s)− h ≥ 0 everywhere. Hence

− 1

π

ˆ b

−∞

ˆ b

−∞

(m+
1 (s)− h)(m−1 (t)− h)

(s− t)2
ds dt ≥ 0.

If t ∈ (b, c) and s ≤ b, then (s − t)2 ≤ (s − c)2. Furthermore, in this case, we still have the
inequalities m+

1 (s)− h ≥ 0 and m−1 (t)− h ≤ 0. Hence

− 1

π

ˆ c

b

ˆ b

−∞

(m+
1 (s)− h)(m−1 (t)− h)

(s− t)2
ds dt ≥ 1

π

ˆ b

−∞

m+
1 (s)− h
(s− c)2

ds

ˆ c

b
(h−m−1 (t)) dt

(32)

≥ C2

π

ˆ b

−∞

m+
1 (s)− h
(s− c)2

ds.

Finally, if t ≥ c and s ≤ b, then (s − t)2 ≥ (s − c)2. Splitting m−1 − h into its positive part
(m−1 − h)+ and its negative part (m−1 − h)−, we find that

− 1

π

ˆ ∞
c

ˆ b

−∞

(m+
1 (s)− h)(m−1 (t)− h)

(s− t)2
ds dt

≥ − 1

π

ˆ b

−∞

m+
1 (s)− h
(s− c)2

ds

ˆ ∞
c

(m−1 (t)− h)+ dt.

Proposition 10 applies to m, because it is a minimiser in Ah(d). This has consequences
for m−1 as well; namely, there exists a number C3 = C3(`) such that

ˆ ∞
c

(m−1 − h)+ dt ≤
ˆ +∞

−∞
(m1 − h)+ dt ≤ C3α

2/11.

Therefore, we obtain the inequality

Eh(d) ≥ Eh(α/π) + Eh(d− α/π) +
C2 − C3α

2/11

π

ˆ b

−∞

m+
1 (s)− h
(s− c)2

ds.

If 1− h is so small that C2 − C3α
2/11 > 0, then the above error term is positive (as m+

1 − h
is nonnegative and not identically zero in (−∞, b)). This gives a direct contradiction to the
subadditivity property in Remark 6, which asserts that Eh(d) ≤ Eh(α/π) + Eh(d − α/π) (as
α/π and d− α/π are compatible neighbouring degrees).

5.2 The structure of minimisers

For the proof of Theorem 4, we first need (for technical reasons) a bound for the width of the
profile of a minimiser m of Eh subject to a prescribed winding number. We control this in
terms of the distance between any two points a1, a2 ∈ R with m1(a1) = m1(a2) = −1. This
estimate is given in Proposition 19 below. The idea underlying the proof is by now familiar:
due to the attraction of the corresponding negative parts of m1 − h, a small distance is
energetically favourable.
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The next steps in the proof of Theorem 4 will be to show that a minimiser of Eh for a
given degree `−α/π is such that m1 − h has alternating nonpositive and nonnegative pieces
as described in the theorem. For this purpose, we assume otherwise and study what happens
when we remove any piece with the ‘wrong’ sign from the profile. It is convenient to consider
first the situation that this happens on one of the tails of the profile near ±∞ (in Lemma 22),
and then anywhere else (in the proof of Theorem 4 proper).

Proposition 19. For every ` ∈ N there exist H ∈ (0, 1) and Λ > 0 such that for any
h ∈ (H, 1) and any minimiser m ∈ Ah(`− α/π) of Eh in Ah(`− α/π), the inequality

diam {x1 ∈ R : m(x1) = (±1, 0)} ≤ Λ

holds true.

Before we prove this statement, however, we establish the following auxiliary result.

Lemma 20. The function h 7→ Eh(`− α/π) is upper semicontinuous in [0, 1].

It is not too difficult to show, with arguments similar to a previous paper [14, Proposi-
tion 18], that the function is actually continuous. The above weaker statement, however, is
sufficient for our purpose here.

Proof of Lemma 20. Let Φ0 be the set of all ϕ ∈ H1(R) such that ϕ ≡ 0 in (−∞,−σ) and
ϕ ≡ 2π` in [σ,∞) for some σ > 0. Given ϕ ∈ Φ0, define

ϕα =
(

1− α

π`

)
ϕ+ α

and
fϕ(h) = Eh(cosϕα, sinϕα).

As ϕ has compact support, we deduce that fϕ is a continuous function in [0, 1] for every
ϕ ∈ Φ0. We claim that

Eh(`− α/π) = inf
ϕ∈Φ0

fϕ(h).

As the inequality Eh(` − α/π) ≤ infϕ∈Φ0 fϕ(h) is obvious, it suffices to prove the opposite
inequality. To this end, if m ∈ Ah(` − α/π), then we use the localisation in Lemma 12 for
h = 1 and (17) for h < 1. More precisely, we consider the functions ω, σ and τ given in (18)
in terms of the lifting φ of m.

In the case h < 1, we see that ω ∈ L2(R) (as m1−h ∈ L2(R)), σ ∈ L2(R) (as φ′ ∈ L2(R)),
and τ ∈ L2(R) (as ∂v

∂x2
( · , 0) is the Dirichlet-to-Neumann operator associated to m1 − h, see

[15, Section 1.6], so that ‖ ∂v∂x2 ( · , 0)‖L2(R) = ‖m′1‖L2(R)). Therefore, by [15, Proposition 2.1],
for large R > 0 we can find a map m̃R ∈ Ah(`−α/π) that is constant outside [−2R, 2R] and
Eh(m̃R)− Eh(m) ≤ o(1) as R→∞, so the lifting of m̃R can be written as ϕα above.

In the case h = 1, we apply the localisation in Lemma 12, using an L4-estimate for ω
(corresponding to m1− 1 ∈ L2(R)), as well as an L∞-estimate for ω when estimating ω2 and
ωσ in (R, 2R) and w2σ2 in (R,∞).

Thus h 7→ Eh(` − α/π) is an infimum of continuous functions and therefore upper semi-
continuous.
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Proof of Proposition 19. We argue by contradiction. Suppose that there exists a sequence
hi ↗ 1 such that we have a minimiser m(i) of Ehi in Ahi(` − αi/π) for every i ∈ N, where
αi = arccoshi ∈ (0, π/2), satisfying αi → 0 and

diam
{
x1 ∈ R : m(i)(x1) = (±1, 0)

}
→∞

as i→∞. Recall that Ehi(m
(i)) = Ehi(`− αi/π) ≤ C(`) as i→∞.

By Lemma 5, there exist exactly 2` − 1 values x1 ∈ R with m(i)(x1) = (±1, 0) for every
i ∈ N. We now want to arrange these points into several groups such that the diameter
of each group remains bounded, but the distance between any two groups tends to infinity.
Indeed, after passing to a subsequence if necessary, we may find a number N ≥ 2 such that

for every i ∈ N, there exist a
(i)
1 , . . . , a

(i)
N ∈ R with a

(i)
1 < · · · < a

(i)
N and m(i)(a

(i)
n ) = (±1, 0) for

i ∈ N, and such that furthermore,

lim
i→∞

(a
(i)
n+1 − a

(i)
n ) =∞, n = 1, . . . , N − 1,

while

lim sup
i→∞

sup

{
min

n=1,...,N
|x1 − a(i)

n | : x1 ∈ R with m(i)(x1) = (±1, 0)

}
<∞.

Define
m(i)
n (x1) = m(i)(x1 − a(i)

n ), i ∈ N, n = 1, . . . , N.

As m(i) has uniformly bounded energy as i→∞, each of the sequences (m
(i)
n )i∈N is bounded

in H1((−R,R);S1) for every R > 0. Therefore, we may assume that m
(i)
n ⇀ m̃n weakly in

H1
loc(R; S1) and locally uniformly in R as i→∞. Then

E1(m̃n) =
1

2
lim
R→∞

(ˆ R

−R

(
|m̃′n|2 + (m̃n1 − 1)2

)
dx1

+
1

2π

ˆ R

−R

ˆ R

−R

(m̃n1(s)− m̃n1(t))2

(s− t)2
ds dt

)

≤ 1

2
lim
R→∞

lim inf
i→∞

(ˆ R

−R

(
|(m(i)

n )′|2 + (m
(i)
n1 − hi)

2
)
dx1

+
1

2π

ˆ R

−R

ˆ R

−R

(m
(i)
n1(s)−m(i)

n1(t))2

(s− t)2
ds dt

)
.

Hence
N∑
n=1

E1(m̃n) ≤ lim inf
i→∞

Ehi(m
(i)).

Set dn = deg(m̃n). Then

ˆ R

−R
(m(i)

n )′ · (m(i)
n )⊥ dx1

i→∞→
ˆ R

−R
m̃′n · m̃⊥n dx1 = φ̃n(R)− φ̃n(−R) = 2πdn + o(1)
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as R → ∞, where φ̃n is a lifting of m̃n. In other words, the degree carried by m
(i)
n (corre-

sponding of the group of transitions near a
(i)
n ) is asymptotically given by dn as i becomes very

large. For fixed i, the degrees of each group of transitions of m
(i)
n are a partition of `−αi/π,

so we infer, letting i→∞, that
∑N

n=1 dn = ` (as αi → 0) and dn ≥ 0. Some of these degrees

dn may be zero; this is the case if, and only if, the group of transitions near a
(i)
n has degree

αi/π, which does not apply to n = 1 and n = N by Lemma 5. We eliminate those n, so that
after relabelling the indices, we may assume that (d1, . . . , dN ) is a nontrivial partition of `.

Finally, the upper semicontinuity of Lemma 20 implies that

E1(`) ≥ lim inf
i→∞

Ehi(`− αi/π) = lim inf
i→∞

Ehi(m
(i)) ≥

N∑
n=1

E1(m̃n) ≥
N∑
n=1

E1(dn).

On the other hand, in the proof of Theorem 1, we have seen that

E1(`) <
N∑
n=1

E1(dn)

for any nontrivial partition (d1, . . . , dN ) of `. This contradiction concludes the proof.

Remark 21. The above argument also proves for the case h = 1 that for every ` ∈ Z,
there exists a constant Λ` > 0 such that every minimizer m of E1 over the set A1(`) has the
property

diam {x1 ∈ R : m(x1) = (±1, 0)} ≤ Λ`.

The following lemma shows that the behaviour of a minimiser is consistent with the
statement of Theorem 4 at least at the tails.

Lemma 22. Let ` ∈ N. Then there exists H ∈ (0, 1) such that any h ∈ (H, 1] has the
following property. Suppose that m ∈ Ah(` − α/π) minimises Eh in Ah(` − α/π). If a ∈ R
is such that m1(x1) > −1 for all x1 > a, then m1(x1) ≤ h for all x1 > a.

Proof. If h = 1, this is obvious. If h < 1, the arguments are similar to the proof of Theorem 3.
Without loss of generality we may assume that m1(a) = −1. We define

m+
1 (x1) =

{
m1(x1) if x1 > a and m1(x1) > h,

h otherwise,

and

m−1 (x1) =

{
m1(x1) if x1 ≤ a or m1(x1) ≤ h,
h otherwise.

Then this gives the decomposition m1 = m+
1 +m−1 −h, and (m−1 −h)(m+

1 −h) = 0 everywhere.
Assume for contradiction that m+

1 6≡ h. Then we denote by b the minimum of the support
of m+

1 − h (so b > a) and let [c, b] be the connected component of the support of m−1 − h
containing b. Then the same estimates as in the proof of Theorem 3 apply. Provided that 1−h
is sufficiently small, we can then construct m−2 : R → [−1, 1] such that m− = (m−1 ,m

−
2 ) ∈

Ah(` − α/π) satisfies Eh(m−) < Eh(m). But this is impossible, as m is assumed to be a
minimiser.
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For the proof of Theorem 4, we also need the following Hölder estimate for the derivatives
of minimisers of Eh.

Lemma 23. Let ` ∈ N. Then there exists a constant C such that for all h ∈ [0, 1], any
minimiser m of Eh in Ah(`− α/π) satisfies |m′(s)−m′(t)| ≤ C

√
|s− t| for all s, t ∈ R.

Proof. If we write m = (cosφ, sinφ), then we have the Euler-Lagrange equation (7). This
implies that

|φ′′| ≤ 2 + |u′( · , 0)|.
As u′(·, 0) is the Dirichlet-to-Neumann operator associated to m1 − h, see [15, Section 1.6],
we have

‖u′( · , 0)‖L2(R) = ‖m′1‖L2(R) ≤
√

2Eh(m).

Thus
‖φ′′‖L2(a,a+1) + ‖φ′‖L2(a,a+1) ≤ 2 + 2

√
2Eh(m)

for any a ∈ R. Finally, the right-hand side is bounded by a constant depending only on ` by
Lemma 20. The Sobolev embedding theorem then implies the desired inequality.

Proof of Theorem 4. We know by Lemma 5 that for any minimiser m of Eh in Ah(`− α/π),
there exist a1, . . . , a2`−1 ∈ R with a1 < · · · < a2`−1 such that

m1(an) = (−1)n, n = 1, . . . , 2`− 1.

Lemma 22 implies that m1 ≤ h in (−∞, a1) and in (a2`−1,∞). Thus it suffices to examine
the behaviour in the intervals (an, an+1) for n = 1, . . . , 2`− 2.

Fix n ∈ {1, . . . , 2`− 2}. Without loss of generality we may assume that m1(an) = 1 and
m1(an+1) = −1. We need to show that there exists bn ∈ (an, an+1) such that m1 ≥ h in
[an, bn] and m1 ≤ h in [bn, an+1]. To this end, define

bn = inf {x1 ∈ (an, an+1) : m1(x1) ≤ h} .

It suffices to show that m1 ≤ h in (bn, an+1). We argue by contradiction and assume that
there exist cn, c

′
n ≥ bn with c′n > cn such that m1(cn) = m1(c′n) = h but m1 > h in (cn, c

′
n).

Let

m̂+
1 (x1) =

{
m1(x) if x1 6∈ (cn, c

′
n) and m1(x1) > h,

h otherwise,

m̃1(x1) =

{
m1(x) if x1 ∈ (cn, c

′
n),

h otherwise,

and m̂−1 = min{m1, h}. Then m1 = m̂+
1 + m̃1 + m̂−1 − 2h. Furthermore, define

m̂(x1) =

{
m(x1) if x1 6∈ (cn, c

′
n),

m(cn) if x1 ∈ (cn, c
′
n),

m̃(x1) =

{
m(x1) if x1 ∈ (cn, c

′
n),

m(cn) if x1 6∈ (cn, c
′
n).

35



Then

Eh(m) = Eh(m̂) + Eh(m̃) + 〈m̂1, m̃1〉Ḣ1/2(R)

= Eh(m̂) + Eh(m̃) +
〈
m̂+

1 , m̃1

〉
Ḣ1/2(R)

+
〈
m̂−1 , m̃1

〉
Ḣ1/2(R)

= Eh(m̂) + Eh(m̃)− 1

π

ˆ ∞
−∞

(m̃1(s)− h)

ˆ ∞
−∞

m̂+
1 (t) + m̂−1 (t)− 2h

(s− t)2
dt ds.

But since m is a minimiser of Eh for its winding number (which coincides with the winding
number of m̂), and since Eh(m̃) > 0 by our assumption, it follows that

ˆ ∞
−∞

(m̃1(s)− h)

ˆ ∞
−∞

m̂+
1 (t) + m̂−1 (t)− 2h

(s− t)2
dt ds > 0.

Next we want to show that in fact, if 1− h is sufficiently small, then

ˆ ∞
−∞

m̂+
1 (t) + m̂−1 (t)− 2h

(s− t)2
dt ≤ 0 (33)

for every s ∈ (cn, c
′
n). As m̃1(s)− h > 0 in (cn, c

′
n) and m̃1(s)− h = 0 outside of (cn, c

′
n) by

construction, this will give the desired contradiction.
In order to prove (33), let C1 be the constant from Lemma 23. By the choice of c′n, we

know that m′1(c′n) ≤ 0. For x1 > c′n, we conclude that m′1(x1) ≤ C1(x1 − c′n)1/2. Integration
then yields the inequality m1(x1) − h ≤ 2C1

3 (x1 − c′n)3/2 for x1 > c′n. Thus if t > c′n is such
that m1(t) ≥ h, then

m̂+
1 (t)− h ≤ min{C2(t− c′n)3/2, 1− h},

where C2 = 2C1/3. Given s ∈ (cn, c
′
n), we then see that t− s ≥ t− c′n for t > c′n and

ˆ ∞
c′n

m̂+
1 (t)− h
(s− t)2

dt ≤ C2

ˆ c′n+((1−h)/C2)2/3

c′n

(t− c′n)3/2

(s− t)2
dt+ (1− h)

ˆ ∞
c′n+((1−h)/C2)2/3

dt

(s− t)2

≤ C2

ˆ ((1−h)/C2)2/3

0

dt√
t

+ (1− h)

ˆ ∞
((1−h)/C2)2/3

dt

t2

= 3C
2/3
2 (1− h)1/3.

Similarly, as m′1(cn) ≥ 0, then −m′1(x1) ≤ C1(cn−x1)1/2 for every x1 < cn, so that m1(x1)−
h ≤ 2C1

3 (cn − x1)3/2 for x1 < cn. Therefore,

ˆ cn

−∞

m̂+
1 (t)− h
(s− t)2

dt ≤ 3C
2/3
2 (1− h)1/3.

On the other hand, Lemma 23 also implies that there exists a constant R > 0, depending
only on `, such that m1 ≤ −1

2 in [an−R, an +R] for any odd number n. If Λ is the constant
from Proposition 19, then this implies that

ˆ ∞
−∞

m̂−1 (t)− h
(s− t)2

dt ≤
ˆ a1+R

a1−R

m̂−1 (t)− h
(s− t)2

dt ≤ −1

2

ˆ a1+R

a1−R

dt

(s− t)2
≤ − R

(Λ +R)2
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because s ∈ (cn, c
′
n) ⊂ (an, an+1). Therefore,

ˆ ∞
−∞

m̂+
1 (t) + m̂−1 (t)− 2h

(s− t)2
dt ≤ 6C

2/3
2 (1− h)1/3 − R

(Λ +R)2
.

If 1 − h is sufficiently small, then the right-hand side is negative, which proves (33). Thus
the estimate gives the desired contradiction and concludes the proof.

A Technical Lemmas

Here we give a few auxiliary results that are required for our proofs but are not specific to
our problem.

Lemma 24. Let p ∈ (1, 2] and f ∈ Lp(R) ∩ Ḣ1/2(R). Furthermore, let v ∈ Ḣ1(R2
+) be the

unique solution of ∆v = 0 in R2
+ with v( · , 0) = f in R. Let R > 0. Then

ˆ R

0

ˆ ∞
−∞

v2 dx1 dx2 ≤
(

8p

p+ 2

)3−2/p pR2−2/p

2π2(p− 1)
‖f‖2Lp(R).

Furthermore, if f ∈ L1(R) and IR = ( 1
R , R) (for R ≥ 1) or IR = (R, 1

R) (for R ≤ 1), then

ˆ
IR

ˆ ∞
−∞

v2 dx1 dx2 ≤
16

3π2
| logR|‖f‖2L1(R),

and if f ∈ L∞(R), then ˆ 1/R

0

ˆ R

−R
v2 dx1 dx2 ≤ 2‖f‖2L∞(R).

Proof. The L2 estimate of v is a consequence of the Poisson formula v(x1, x2) = (f ∗ gx2)(x1)
where

gx2(t) =
x2

π(t2 + x2
2)
,

combined with Young’s convolution inequality. The third inequality is an obvious consequence
of the maximum principle, which implies that supR2

+
|v| ≤ supR |f |.

Lemma 25. Let σ > 1. Suppose that ψ : (1,∞)→ [0,∞) is an integrable function such that

ˆ ∞
R

ψ2 dt ≤ R−σ

for all R ≥ 1. Then for any R ≥ 1,

ˆ ∞
R

ψ dt ≤ 2
√
σR1−σ

σ − 1
.
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Proof. Let ω ∈ (1, σ). We estimate

ˆ ∞
R

ψ dt ≤
(ˆ ∞

R
t−ω dt

)1/2(ˆ ∞
R

tωψ2 dt

)1/2

=

(
ωR1−ω

ω − 1

ˆ ∞
R

(ˆ t

R
sω−1 ds+

Rω

ω

)
(ψ(t))2 dt

)1/2

≤
(
ωR1−ω

ω − 1

(ˆ ∞
R

sω−σ−1 ds+
Rω−σ

ω

))1/2

=

(
σR1−σ

(σ − ω)(ω − 1)

)1/2

.

Here we have used Hölder’s inequality, Fubini’s theorem, and the inequality from the hypoth-
esis. Choosing ω = 1

2(σ + 1) finally gives the inequality stated.
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H. Poincaré Anal. Non Linéaire 32 (2015), no. 1, 201–224.

[4] Francesca Da Lio and Tristan Rivière, Sub-criticality of non-local Schrödinger systems
with antisymmetric potentials and applications to half-harmonic maps, Adv. Math. 227
(2011), no. 3, 1300–1348.
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