
        

Citation for published version:
Whitman, CJ, Prizeman, O, Gwilliam, J, Shea, A & Walker, P 2021, 'Energy retrofit infill panels for historic
timber-framed buildings in the UK: physical test panel monitoring versus hygrothermal simulation', Architectural
Science Review, vol. 64, no. 1-2. https://doi.org/10.1080/00038628.2020.1719820

DOI:
10.1080/00038628.2020.1719820

Publication date:
2021

Document Version
Peer reviewed version

Link to publication

This is an Accepted Manuscript of an article published by Taylor & Francis in Architectural Science Review on
03 Feb 2020, available online: http://www.tandfonline.com/10.1080/00038628.2020.1719820

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 08. Mar. 2023

https://doi.org/10.1080/00038628.2020.1719820
https://doi.org/10.1080/00038628.2020.1719820
https://researchportal.bath.ac.uk/en/publications/b9ab1020-60c1-4736-8197-e440c740d6ac


Authors’ Post-print copy as accepted for publication in the Architectural Science Review, 

special edition Passive and Low Energy Architecture 2018 

Accepted 19th January 2020 

For published version, please see the publisher’s website: 

https://www.tandfonline.com/loi/tasr20 

Energy Retrofit Infill Panels for Historic Timber-Framed Buildings in 

the UK: Physical test panel monitoring versus hygrothermal 

simulation 

Christopher J. Whitman1, Oriel Prizeman1, Julie Gwilliam1, Andy Shea2, 

Pete Walker2  

 

1Welsh School of Architecture, Cardiff University, Cardiff, UK. WhitmanCJ@Cardiff.ac.uk   

2Department of Architecture and Civil Engineering, University of Bath, Bath, UK 

 

 

 

https://www.tandfonline.com/loi/tasr20
mailto:WhitmanCJ@Cardiff.ac.uk


Energy Retrofit Infill Panels for Historic Timber-Framed Buildings in 

the UK: Physical test panel monitoring versus hygrothermal 

simulation 

As we aim to decarbonise the built environment, care must also be taken to 

minimise the negative impact of retrofit actions on historic buildings’ fabric and 

cultural significance. Work to date in the UK has focused on the retrofit of 

historic solid masonry construction, with little research into historic timber-

framed buildings. With these buildings, where infill panels are beyond repair or 

have previously been substituted with inappropriate materials, there exists the 

potential to retrofit panels with a higher thermal performance. The research 

presented in this article compares the monitoring of three physical test panels 

mounted between climate-controlled chambers with digital hygrothermal 

simulations in order to investigate the risk of increased moisture which may 

threaten the surrounding historic fabric. Results of previously unpublished 

cyclical testing are is also included. Whilst all prediction methods successfully 

identified interstitial condensation where measured, major discrepancies existed 

between simulated and measured results, and between different simulation 

methods.    

Keywords: timber-framed; hygrothermal simulation; hygrothermal monitoring; 

interstitial condensation; energy retrofit; historic built environment 

Introduction  

With the 2018 Amended Energy Performance of Buildings Directive, the European 

Union has declared its aim of decarbonising the built environment by 2050 (OJEU 

2018). The Directive specifically calls for research into solutions for historic buildings, 

recognising the need to balance the energy performance of these buildings with the 

safeguarding of their cultural heritage (ibid), in addition to achieving occupant comfort 

and assuring indoor air quality. Care should therefore be taken to minimise negative 

impacts and avoid damage to the building’s significance, character and fabric (Historic 

England 2017). A key consideration is the influence of thermal insulation on the 



hygrothermal performance of the external envelope, where increases in moisture content 

arising from interstitial condensation could adversely affect the pre-existing historic 

materials. Research in the UK has so far focused on the impact of insulation on solid 

masonry construction (Gandhi, Jiang , and Tweed 2012; Rye, Scott, and Hubbard 2013; 

Baker 2015) with little investigation into the retrofit of the 68,000 historic timber-

framed buildings (Whitman 2017) which form an important part of Britain’s cultural 

identity.  

 

Retrofitting Historic Timber-Framed Buildings in the UK 

Historic timber-framed buildings in the UK consist of a structural timber frame with a 

solid infill. This is traditionally wattle-and-daub, a framework of thin timber members 

(wattlework) covered by an earthen render (daub). Other historic infills include lath and 

plaster and brick nogging (Harris 2010). Whist some of these buildings are over-clad 

with tiles, weatherboarding or continuous plaster, in many cases the timber frame is 

exposed both internally and externally (Figure 1 & Figure 2).  

 

  

Figure 1. Externally exposed frame. 

(Whitman, 2015) 

Figure 2. Internally exposed frame. 

(Whitman, 2015) 

 



When retrofitting these buildings, in order to retain the aesthetics and character 

of the building, the exposed framing often precludes the use of internal and / or external 

wall insulation. This leads to problems created by the thermal bridging of the frame, 

potentially focusing interstitial condensation at the junction between the infill panel and 

the timber-frame. In addition, achieving a seal at this junction is often problematic, 

leading to issues with moisture ingress and poor airtightness (Whitman and Prizeman 

2016).  

 

Work to any historic building in the UK should follow a set of ethical principles 

as set out by each of the four national governmental bodies related to heritage, Historic 

England (Historic England 2008), Cadw (Cadw 2011), Historic Environment Scotland 

(Historic Environment Scotland 2016) and the Northern Ireland Department for 

Communities, Historic Environment Division (Historic Environment Division 2017). In 

general, it is expected that where possible, every effort will be made to retain existing 

historic fabric, and where replacement is required that this normally takes place on a 

“like-for-like” basis (Historic England 2008). It is, however, accepted that this is not 

always possible or the best option. For example, where historic infill is beyond repair, 

has been replaced with inappropriate modern materials, or its removal is required to 

facilitate the repair of adjacent timbers, there exists the opportunity to retrofit an infill 

material with a higher thermal resistance (Oxley 2010). For this article the performance 

of three infill materials was compared.  

 

The UK Building Regulations state that designated historic buildings are exempt 

from their energy efficiency requirements, insofar as compliance would “unacceptably 

alter the appearance or character of these buildings” (HM Government 2016). This 

exemption is further extended to those buildings of traditional construction with 



permeable fabric, such as historic timber-framed buildings, where work should not 

“increase the risk of long-term deterioration of the building fabric or fittings” (ibid). 

However, in both these cases the regulations do require that the “aim should be to 

improve energy efficiency as far as is reasonably practicable” (ibid.). As such the extent 

and detail of the energy retrofit of these buildings remains at the discretion of the 

building owner in consultation with design professionals, building control and 

conservation officers. This highlights the need for quality, research-based guidance and 

best practice documents. 

UK research on retrofit of historic timber-framed buildings  

Prior to the work of the authors, in the UK there would appear to be almost no academic 

research into the retrofitting of historic timber-framed buildings. Whilst some research 

has been undertaken in France (Valkhoff 2011) and Germany (Gerner 2000; Dederich, 

Koch, and Fischer 2004) which is still relevant, little specific research involving the UK 

climate and local materials and construction techniques would appear to exist. 

The Prince’s Regeneration Trust’s book “The Green Guide for Historic Buildings,” 

(Prince's Regeneration Trust 2010) and Martin Godfrey Cook’s book, “Energy 

Efficiency in Old Houses” (Cook 2009) both contain the same case study, Berg Cottage, 

Barkway, Hertfordshire (Prince's Regeneration Trust 2010, p.27-28; Cook 2009, p.42-

45). This cottage is one of the few case studies of the retrofit of a historic timber-framed 

building in the UK where monitoring has been undertaken post-retrofit. The same 

cottage appears again briefly in the Energy Savings Trust’s “Energy Efficiency Best 

Practice in Housing Advanced insulation in housing refurbishment” (Energy Saving 

Trust 2005, p.22) and photos of it are featured in Historic England’s guidance on 

insulating timber-framed walls (Historic England 2016). Although the description in all 

sources is quite brief, the case study does include details of pressure testing, with 24 air 



changes per hour at fifty pascals(ac/hr@50 Pa) measured pre retrofit (Cook 2009, p.44) 

and at 16 ac/hr @ 50 Pa post-retrofit (Energy Saving Trust 2005, p.22). The case study 

includes the introduction of external sheep’s wool insulation behind weatherboarding, 

which achieved a reported reduction in gas consumption of 27% (Prince's Regeneration 

Trust 2010, p.28) and a reduction in overall fuel consumption by 50% (Cook 2009). It 

should however be noted, that being externally weatherboarded, this case study does not 

address those issues timber-framed buildings with their frame exposed externally. 

 

In addition the first SPAB U-Value report (Rye, Scott, and Hubbard 2012a), the 

research undertaken by Archimetrics did include a two timber framed-buildings, 

however neither went on to be retrofitted and covered by the subsequent “SPAB 

Building Performance Survey” (Rye, Scott, and Hubbard 2012b, 2013; Archimetrics 

Ltd 2014, 2015, 2017).    

In order to address this lack of UK research, the authors have conducted in situ 

monitoring at a number of case studies (Whitman and Prizeman 2016; Whitman et al. 

2018; Whitman et al. 2019). At one case study it was possible to undertake opening up 

and interstitial measurements (Whitman et al. 2018) which showed that unfortunately, 

favourable conditions for biological attack were being created. A key factor was that the 

replacement infill panel detail did not follow current best practice guidelines, using both 

vapour impermeable insulation and finishes. In this instance the use of rigid board 

insulation and gypsum plasterboard made the installation of interstitial sensors possible 

with minimal disruption to the construction. This would, however, be difficult to 

replicate in many other instances, where the required intervention could damage historic 

fabric, whilst at the same time potentially significantly alter the hygrothermal 

performance of the element under review. As such, the authors have also undertaken 

digital simulations (Whitman, Prizeman, and Walker 2015). These suggested that for 



the specific climate conditions simulated, none of the replacement infill panel details 

currently included in best practice guidance (Reid 1989; McCaig and Ridout 2012; 

Oxley 2010), posed a serious increase in the risk of biological attack. However, due to 

the limitations of both the software and available material data, the research concluded 

that physical monitoring was essential.  

Aims and Objectives 

The work presented in this article aims to establish the risk of interstitial condensation 

and increased moisture content within replacement infill panels for timber-framed 

buildings, and the risk posed to surrounding historic fabric. In order to achieve this, 

measured results from panels mounted between two climate-controlled chambers have 

been compared with those obtained through hygrothermal simulation. This has allowed 

the assessment of three potential replacement infill panel details and the evaluation of 

the use of numerical modelling for the assessment of this type of construction. 

Methodology  

There follows the methodologies for the selection of the infill materials to be evaluated, 

the design and monitoring of the physical test panels and the hygrothermal simulations 

undertaken. 

Test Panel Infill 

A longlist of potential infill panels was identified following a literature review of 

current advice from Historic England (McCaig and Ridout 2012; Pickles 2016) and the 

Society for the Protection of Ancient Buildings (SPAB) (Reid 1989), and other authors 

both historic (Charles 1967) and contemporary (Suhr and Roger 2013; Stanwix and 

Sparrow 2014; Valkhoff 2010), in addition to discussion with conservation practitioners 



and suppliers of insulation materials for conservation projects. The replacement infill 

panels identified are summarized in Table 1: 

Table 1. Panel infill materials identified through literature review 

Age of Infill 

Detail 

Principal materials Description Estimated U value* 

for 100mm (W/m2K) 

Traditional Wattle and Daub 

 

Clay based render on a 

supporting network of 

woven small section 

timber members. 

2.83 

Oak lath and lime 

plaster 

Lime plaster/render on 

supporting background 

of thin strips of oak 

with central uninsulated 

cavity. 

2.07 

Brick noggin Fired bricks 3.35 

Stone Varies according to 

regional availability  

4.31 

Mid-to late-

20th Century 

Rendered 

woodwool boards 

Rigid boards of 

compressed wood 

strands with 

cementitious binder. 

0.97 

Rigid insulation 

boards with 

cement render on 

expanded wire 

mesh 

Insulation boards 

include woodwool, 

expanded polystyrene, 

rockwool batts and 

Polyisocyanurate (PIR). 

0.30-0.51 

Rock- or glass-

wool quilt  

 

Rendered with cement 

render on expanded 

wire mesh 

0.56 

Lightweight 

concrete blocks 

 

 1.68 

Late 20th 

Century – 21st 

Century  

 

Hemp/lime 

 

Mixture of hemp shives 

and a lime binder, also 

known as hempcrete  

0.84 

Light-earth 

(leichtlehm)  

 

A mix of straw and 

earth or clay binder 

0.83 

Cellulose fibre  0.72 

Sheep’s wool 

insulation 

 

Insulation held within 

oak lath and lime 

plaster  

0.62 

Woodfibre 

insulation  

 

Finished externally 

with lime plaster on 

woodwool carrier board 

0.42 



Cork insulation  Expanded cork board 

finished internally and 

externally with lime 

plaster. 

0.48 

* Estimated U-values calculated with Rsi and Rse as per BS 6946:2007 (British Standards Institution 2007) 

 

Considering issues of breathability, built-in moisture content, buildability and 

environmental impact, a short list of five replacement infill panel solutions were chosen. 

These were traditional wattle and daub; wood-fibre insulation with lime plaster on 

woodwool carrier board (McCaig and Ridout 2012); Cork insulation with lime plaster 

(Ty Mawr Lime Ltd. 2015); hemp-lime (Stanwix and Sparrow 2014); and sheep’s wool 

(Prizeman 2015). Of these the first three were chosen to monitor due to the lack of 

available material data, required for digital simulation, for the last two infill solutions. 

Details of the three chosen build-ups are shown in Figure 3. 

 

Figure 3. Detailed sections of three panel infill build-ups showing monitoring positions 

Physical Test Panels 

In order to physically measure the hygrothermal performance of these three construction 



details, three test infill panels 820mm x 820mm x 100mm (L x W x D) were constructed 

within oak frames constructed from reclaimed oak. 

Definition of Test Panel Dimensions  

The dimensions of the panels were dictated by the test facility, however a review of a 

representative sample of 100 surviving UK timber-framed buildings was undertaken to 

establish the average infill panel size for comparison. It was assumed that all historic 

(pre-1850) timber-framed buildings are designated as listed buildings. Therefore a 

dataset was requested from Historic England searching the National Listings using the 

search parameters “Pre-1850, Timber Framed Building; Jettied Building; Jettied House; 

Continuous Jetty House; End Jetty House; Wealden House; Single Ended Wealden 

House; Timber Framed Barn; Cruck Barn; Timber Framed House; Box Frame House; 

Cruck House; Base Cruck House” (Historic England 2014). The resulting dataset of 

66,397 entries was reviewed and classified according to age, building type (domestic, 

commercial/public or ancillary) and panel infill material. Buildings listed as “former 

timber-frame” and those subsequently entirely encased within a continuous masonry 

envelope were deleted. List entries covering multiple buildings were duplicated to 

create one entry per building. The resulting dataset contained 66,801 buildings. A 

similar exercise was completed for Wales using Peter Smith’s “Houses of the Welsh 

Countryside” (Smith 1988) updated with information from Richard Suggett’s “Houses 

and History in the March of Wales: Radnorshire 1400-1800” (Suggett 2005) and cross-

referenced with the National Monuments Record of Wales (RCAHMW 2014). The 

Welsh dataset resulted in 1023 buildings.  Both datasets were subsequently plotted 

using ArchGIS TM 10.5.1 geographic information system.  

A sub-dataset was then created including only those buildings where the timber-

frame was externally exposed and therefore visible for measurement. Externally 



plastered, weather-boarded, tile-hung and slate-hung buildings were therefore excluded. 

A representative sample of 100 buildings was then selected. These proportionally 

represented the exposed timber-framed buildings with regards to age, building type, 

panel infill material and geographical location (Figure 4). Using Google StreetviewTM, 

photos were collected of each of these 100 buildings. These were then scaled and 

measured in AutoCAD. The measurements were then plotted and the averages taken 

(Figure 5). 



 

Figure 4. Distribution of timber-framed buildings in England and Wales (small dots) 

and 100 representative samples (larger dots). Source: Authors’ own based on (Historic 

England 2014; Smith 1988; Suggett 2005; RCAHMW 2014) 



 

Figure 5. Dimensions of 100 representative sample infill panels. Square Framed (SF), 

Close Studded (CS), Ornamental (Orn). 

 

The results indicate that 53% were “square framed”, 46% “close studded” (tall 

rectangular panels) and 1% “ornamental”. The average dimensions of the square framed 

panels were 785mm x 950mm (L x W) with a standard deviation of ±260mm. As such, 

the test panels of 820mm x 820mm x 100mm (L x W x D) can be said to be 

representative in size.  

At the same time the width of the exposed timber frame was measured on the 

same data set. This showed an average width of 106mm, with a standard deviation of 

±52mm. Although slightly thinner than average, the oak frame for the test panels, with a 

width of 80mm can still be said to be representative. 

Age of Surrounding Timber-Frame 

 

Given that the test panels aim to represent new infill panels within existing historic 

timber-framing, the question arose as to the potential differences in hygrothermal 

behavior of modern and historic oak. A key factor would be any notable effect of age on 

the timber’s moisture sorption properties. In order to investigate this possibility, 
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Dynamic Vapor Sorption (DVS) analysis was undertaken on three 10mm cubes of oak 

felled in the 17th, 19th and 21st centuries. The analysis was undertaken by Surface 

Management Systems Ltd using their DVS-Advantage instrument. The samples were 

initially dried for 600 minutes under a continuous flow of dry air to establish their dry 

mass. The samples were then exposed to the following typical partial pressure (vapour 

pressure/ saturation vapour pressure (p/po)) profile: 0% to 40% p/po in 5 % steps, then 

to 90% p/po in 10% step increments, and then a 5% step to 95% p/po and then 

decreased in a similar manner (Demonstration & Contract Testing Services 2015). The 

instrument measured the mass of each sample throughout this process and provided 

results as percentage change in mass against percentage relative humidity. The results 

are presented in Figure 6. This shows that the older timber absorbs less moisture 

overall. It also shows a maximum hysteresis for each sorption curve (absorption against 

desorption) of 3.7%, 4.0% and 3.4% in order of age. It was therefore concluded that for 

the test cell historic reclaimed timbers should be sourced as opposed to newly felled. 

 



 

Figure 6. Sorption and desorption isotherms  for three samples of oak felled in different 

centuries.  

Climate Controlled Test Chambers 

The experimental testing took place at the University of Bath’s Building Research Park 

using their Large Environmental Chambers supplied by Temperature Applied Science 

(TAS) Ltd. The technical specification for the chambers is shown in Table 2. 

Table 2. Technical Specification of TAS Climate Controlled Chambers at the University 

of Bath’s Building Research Park: 

Chamber Temperature (°C) Relative Humidity 

(%) 

Rainfall 

(L/min) 

IR radiation 

(W/m2 @ 1m) 

Min Max Min Max 

Indoor +5 +40 10 95 N/A N/A 

Outdoor -20 +40 10 95 0.1 1,200 

 



The three panels, each measuring 1120  by 1120 mm, were mounted as part of a 

dividing wall between the two climate-controlled chambers (Figure 7 & Figure 8). 

 

  

Figure 7. Panels in climate chamber. View from 

“internal” chamber. 

Figure 8. Dual climate 

chamber 

 

Monitoring positions and sensors 

Temperature (°C) and moisture content (%) were monitored in four positions within 

each panel, one in the centre of the panel at a depth of 50mm and three at the midpoint 

of the lower timber frame, 800mm above floor level, at a depth of 10mm, 50mm and 

90mm (Figure 3). The temperature was measured using type-T thermocouples (range -

75°C to +250°C, accuracy ±0.5°C) connected to a Campbell Scientific® CR1000 data 

logger. The moisture content was measured using electrical resistance. For each 

monitoring position, copper wires were attached to two stainless steel screws, inserted 

in the oak frame, placed 20mm apart, parallel to the wood grain. The copper wires were 

connected back to a Campbell Scientific® CR1000 data logger measuring resistance, 

wired and programmed according to advice provided by Historic England (McCaig 

2016), originally developed by Dr Paul Baker of Glasgow Caledonian University. This 

method was selected due to the potential for continuous measurements and the small 



size of the wire/screw arrangement, thereby limiting the influence of the sensor on the 

wall’s performance. The wiring for both electrical resistance and temperature 

measurements was also routed to minimise the creation of any direct paths for 

hygrothermal movement.  

In addition, the dry-bulb air temperature (°C) and relative humidity (%) of each 

climate chamber were monitored with Campbell Scientific® CS215 RHT probes 

(range- 0 to 100% RH, -40°C to +70°C, accuracy ±2% RH, ±0.4°C) at 1500mm above 

floor level. Concurrently, in situ U-value measurements were undertaken in accordance 

with BS ISO 9869-1 (British Standards Institution 2014). These measurements were 

taken in two monitoring positions per panel, one close to the centre (offset from the 

interstitial monitoring position to avoid interference) and 100mm from a corner to 

assess the edge effect from the timber frame. Measurements were made using 

Hukseflux HFP01 heat flux plates and type-T thermocouples connected to a Campbell 

Scientific® CR1000 data logger with readings taken at 5-minute intervals. 

Steady State Measurements 

For the initial three weeks of monitoring the test panels were subjected to steady state 

conditions with the aim of forcing increased moisture content. To determine the set 

temperature and relative humidity of the test chamber, Glaser calculations were 

undertaken in accordance with BS EN ISO 13788:2012 (British Standards Institution 

2012). These calculations plot the vapour pressure against the saturation vapour 

pressure, across the thickness of the panel build-up under steady-state conditions and 

constant heat transfer. Where the vapour pressure touches the saturation vapour 

pressure, interstitial condensation is deemed to occur. The results of these calculations 

(Figure 9) showed that with internal conditions of 21°C/70% RH and external of 



5°C/80% RH, interstitial condensation would occur within the wood fibre panel, and the 

wattle-and-daub would see an increase in moisture towards its inner face.  

 

 

Figure 9. Glazer calculations according to BS EN ISO 13788:2012 for three infill panel 

constructions with external (left) conditions of 5°C and 80% RH and internal (right) 

conditions of 21°C and 70% RH. Source: (Author’s own, 2017) 

 

Conditions would have to be increased to 90% RH, internally and externally, to 

produce any increase in moisture content within the cork panel. Although subsequently 

modified, at the time of testing, prolonged operation of the climate chamber at 90% RH 

was not possible due to technical constraints. Therefore, the set points of 21°C/70% RH 

for the internal chamber and 5°C/80% RH for the external chamber were used for the 

initial three-week monitoring period. 

Cyclical dynamic Measurements 

Following the initial three weeks of monitoring under the steady-state conditions 

previously described, a further two weeks were then monitored using the same set 

points for the internal chamber but with diurnal cyclical climate for the external 

chamber, thereby recreating conditions closer to those found in reality. The definition of 

this climate was based  on an average April day in the West Midlands (Met Office 

2016). April was chosen due to the highest diurnal oscillation occurring in this month 



for this climate, and the West Midlands due to the location of the majority of case 

studies in the associated research project (Whitman 2017). As such the climate ranged 

from 5°C/94% RH to 12°C/61% RH and back over a twenty-four-hour period (Figure 

10). 

 

Figure 10. Set points for cyclical conditions for internal and external climate-controlled 

chambers. twenty-four-hour pattern repeated 14 times over two week period. 

The overall total of 5 weeks monitoring was limited by the cost of running the 

chambers. Ongoing research is now being funded by Historic England that will allow 

for monitoring over an extended period (minimum 2 years). 

Digital Hygrothermal Simulation 

Following each of the monitoring periods the datasets were downloaded and analysed. 

The measured hygrothermal conditions within the two climate chambers were then used 

to simulate the interstitial hygrothermal performance of the panels using WUFI® Pro 

5.3 (one dimensional hygrothermal movement) and WUFI® 2D (two dimensional). All 

material data used in the simulations was taken from the Fraunhofer materials database 

provided with the software. There is therefore a degree of error with the use of this 
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material data, as it is data measured using German materials which may differ from the 

UK materials used in the construction of the test panels. This constraint is however 

unavoidable and common to all UK users, due to the lack of adequate data for UK 

building materials, especially those found in historic buildings. 

 

Results 

Thermal Performance 

Table 3. Measured and calculated U-values 

Panel type Centre 

(W/m2K) 

Corner 

(W/m2K) 

Calculated 

(W/m2K) 

Wattle-and-

daub 

2.72 2.10 2.85 

Cork 0.49 0.47 0.45 

Wood fibre 0.59 0.60 0.63 

 

The results of the in-situ U-value monitoring are presented in Table 3. Measured and 

calculated U-values along with the values calculated according to BS EN ISO 

6946:2007 (British Standards Institution 2007). A positive edge effect is seen for the 

wattle-and-daub due to the thermal conductivity of the oak frame being lower than the 

panel. A minimal negative edge effect is seen for the wood fibre as the infill has a lower 

thermal conductivity than the frame. The minimal positive edge effect for the cork was 

not expected, however thermography showed this was due to a horizontal central joint 

in the cork panel reducing the thermal performance at the central measuring location. It 

should be noted that for both the cork and woodfibre, the difference between the centre 

and corner values is so minimal that it potentially may be due to measurement error 



factors rather than an edge effect. Overall the cork had the best thermal performance, 

with an average U-value of 0.48 W/m2K. 

 

Interstitial Moisture Content 

Steady State Conditions 

The moisture content measured in each panel during the steady state conditions are 

presented in Figures 11, 12 & 13. 

 

Figure 11. Interstitial moisture content (%) measured in Wattle & Daub (W&D) panel 

from 14/09/2017 to 02/10/2017 under steady state conditions. 

 

Figure 12. Interstitial moisture content (%) measured in expanded Cork panel from 

14/09/2017 to 02/10/2017 under steady state conditions. 
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Figure 13. Interstitial moisture content (%) measured in Woodfibre and Woodwool 

panel from 14/09/2017 to 02/10/2017 under steady state conditions. 

The panel with the most stable moisture content was the wattle & daub (Figure 11), 

with only a slight increase towards the external edge of the timber frame. This increase 

was also seen to a far great extent in the other two panels. The only other monitoring 

position to show an increase was the central location in the woodfibre and woodwool 

composite panel (Figure 13), confirming the predicted interstitial condensation.  

These results were then compared with the Glaser calculations, the WUFI® Pro 

5.3 and WUFI® 2D simulations and are presented in Table 4 which indicates if the 

moisture content increased, decreased or remained steady throughout the duration of the 

test/simulation period for each of the prediction methods, compared to the measured 

results. The final column of the table indicates if there was found to be agreement 

between the simulated and measured results for each monitoring location. 

Table 4. Moisture content as measured and simulated for steady state conditions. 

Increase (↑), slight increase (↗), decrease (↓), slight decrease (↘) and steady (→). No 

agreement (), agreement (✓), approximate agreement (≈). Key findings highlighted in 

red. 
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Int. ↑ ↑ ↑ ↗ ✓ 

Cork Ext. → ↗ ↓ ↑  

Cen. → → → → ✓ 

Int. → ↘ ↑ →  

Wood fibre Ext. → ↗ ↓ ↑  

Cen. ↑ ↑ ↑ ↑ ✓ 

Int. → ↓ ↑ ↓  

 

 

The results demonstrate that there was agreement between simulations and 

measurements for four of the nine monitoring positions (44%). Most importantly, the 

measured rise in moisture content in the centre of the wood fibre panel, arising from 

interstitial condensation, was successfully identified by all three prediction techniques. 

However, these failed to foresee the measured rise in moisture content in each of the 

three external lime renders. Equally there can be seen to be contradictions between 

results generated by the two versions of WUFI®. Further research is required to 

investigate any reasons for these discrepancies. 

None of the simulation techniques nor the measured data showed any suggestion 

of interstitial condensation within the cork infill panel. Coupled with the superior 

thermal performance of this detail, these results would suggest that this potentially 

could be a good retrofit solution, assuming the three-dimensional characteristics of the 

frame were suitably plumb to accept rigid panels. 

Dynamic Cyclical Conditions 

The moisture content measurements in each panel during the period of dynamic 

monitoring are presented in Figures 14, 15 & 16.  



 

Figure 14. Interstitial moisture content (%) measured in Wattle & Daub (W&D) panel 

from 02/10/2017 to 13/10/2017 under dynamic conditions. 

 

Figure 15. Interstitial moisture content (%) measured in Cork panel from 02/10/2017 to 

13/10/2017 under dynamic conditions. 
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Figure 16. Interstitial moisture content (%) measured in Woodfibre and Woodwool 

panel from 02/10/2017 to 13/10/2017 under dynamic conditions. 

Most of the monitoring positions show stable conditions, with only minor 

diurnal fluctuations, most noticeable in the external location. However, in the case of 

the monitoring position towards the external edge of the woodfibre panel, there was 

recorded a sharp increase, starting approximately halfway through the monitoring 

period.  

As before, the results of the Glaser calculations, WUFI® Pro5.3 and WUFI® 2D 

3.3 were compared with the measured results. These are presented in Table 5. It should 

be noted that the Glaser calculations do not make allowance for moisture storage or 

transfer, and as such it is not possible to perform dynamic calculations. However, 

Glaser calculations for each of the set point conditions (Figure 10) did show a 

condensation risk towards the interior face of the wattle and daub, and at the centre of 

the wood fibre for 50% of the time. 
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Table 5. Moisture content as measured and simulated for dynamic cyclical conditions. 

Increase (↑), slight increase (↗), decrease (↓), slight decrease (↘) and steady (→). No 

agreement (), agreement (✓), approximate agreement (≈). 
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Wattle 
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Ext. → → ↘ → ≈ ✓ 

Cen. → ↗ → → ≈ ✓ 

Int. ↑ → ↗ →  ✓ 

Cork Ext. → → → ↘ ≈ ≈ 

Cen. → ↘ → → ≈ ≈ 

Int. → → ↗ → ≈ ✓ 

Wood 

fibre 

Ext. → ↑ → ↑  ✓ 

Cen. ↑ → ↑ →  ✓ 

Int. → → → → ✓ ✓ 

From the results,again there are discrepancies between simulated and measured results 

and between different simulation methods. However, there is a good agreement between 

the WUFI® Pro5.3 and the measured results, with the only locations in disagreement 

being the centre and external edge of the cork panel. This disagreement may be 

explained by the initial moisture content of the lime based adhesive layer between the 

two layers of cork boards being set too high in the simulation. WUFI® Pro5.3 also 

successfully identified the increase in moisture content for the external edge of the 

woodfibre panel. As such it would appear from these results that this simulation 

programme provides more consistent results than Glaser calculations or WUFI® 2D 

3.3. 

Overall, from the measured results only an increase in moisture content was 

measured towards the external face of the wood fibre panels. This in conjunction with 



the risk of interstitial condensation under forced steady state conditions, raises concern 

over this replacement infill detail. It should however be noted that this was only over a 

two-week period under a single diurnal climate variation and further research is 

required over a longer timescale under more realistic climatic conditions. 

Conclusions 

The results show that for steady state conditions the simulations successfully anticipated 

interstitial condensation where it occurred, however increases in moisture content 

towards the external face of all three panels were not predicted.  

For the dynamic cyclical conditions the simulated results from WUFI®Pro 5.3 

closely matched those measured in reality, however there were discrepancies with both 

Glaser calculations and WUFI® 2D 3.3. 

Overall the cork infill detail performed the best, with the greatest thermal 

performance and no interstitial condensation being identified. It should however be 

noted that these results are for forced steady-state conditions that are unlikely to exist in 

real life or for more realistic conditions over only a two-week period. Further research is 

therefore required before the practical implications of this study can be fully verified. 

Work has now started on a subsequent research project funded by Historic England that 

will allow longer term monitoring of test panels exposed to real external climatic 

conditions. The construction of this project is underway with initial results anticipated 

in 2021.   
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