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Exploring the Energy Landscapes of Protein Folding Simulations with
Bayesian Computation
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TSystems Biology Centre and *Department of Physics and Centre for Scientific Computing, University of Warwick, Coventry, United Kingdom

ABSTRACT Nested sampling is a Bayesian sampling technique developed to explore probability distributions localized in an
exponentially small area of the parameter space. The algorithm provides both posterior samples and an estimate of the evidence
(marginal likelihood) of the model. The nested sampling algorithm also provides an efficient way to calculate free energies and
the expectation value of thermodynamic observables at any temperature, through a simple post processing of the output.
Previous applications of the algorithm have yielded large efficiency gains over other sampling techniques, including parallel
tempering. In this article, we describe a parallel implementation of the nested sampling algorithm and its application to the problem
of protein folding in a Go-like force field of empirical potentials that were designed to stabilize secondary structure elements in
room-temperature simulations. We demonstrate the method by conducting folding simulations on a number of small proteins
that are commonly used for testing protein-folding procedures. A topological analysis of the posterior samples is performed to
produce energy landscape charts, which give a high-level description of the potential energy surface for the protein folding simu-
lations. These charts provide qualitative insights into both the folding process and the nature of the model and force field used.

INTRODUCTION

Approximately 50 years ago, Anfinsen and colleagues (1)
demonstrated that protein molecules can fold into their
three-dimensional native state reversibly, leading to the
view that these structures represented the global minimum
of a rugged funnel like energy landscape (1-3).

According to the hierarchical folding theory of
Baldwin and Rose (4,5), a protein folds by first forming
local structural elements, namely, a-helices and (-strands.
These secondary structure elements then interact with
each other, resulting in the formation of the folded protein.
The formation of local structural elements reduces the
entropy of the protein (for example, the side chains of
helical residues are strongly constrained by the rest of the
helix). This loss of entropy is compensated by favorable
short-range interactions, including hydrogen bonding and
desolvation of backbone polar groups. This is considered
to be a fundamental property of proteins, and any model
system attempting to simulate protein folding should mimic
this property.

Although there has been recent evidence of hierarchical
folding in long timescale molecular dynamics simulations
made possible by the use of custom designed supercom-
puters (6), simplified Go-type models remain an important
class of protein models in the investigation of energy land-
scapes. Go models assume that nonnative interactions do not
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contribute to the overall shape of the folding energy surface
(7,8). In this work we use an extended Go-type model, in
which a Go potential captures interactions between contacts
of the native state of the protein, but attractive nonnative
interactions are also permitted (for example, hydrogen
bonds can form between residues that are not in contact in
the native state). This addition allows us to explore a more
realistic rugged energy landscape compared to the “perfect
funnel” found in a standard Go model (8), while maintain-
ing the ability to perform simulations with limited computa-
tional resources.

The energy landscapes of protein-folding simulations are
most commonly visualized in terms of two- or three-dimen-
sional plots of microscopic or free energy versus a reaction
coordinate, such as the fraction of residue contacts in
common with the native state or the root mean-square devi-
ation (RMSD) between a given conformation and the native
state (9,10). Originally developed for reduced lattice
models, these approaches have since been used for all-
atom off-lattice simulations, although, in these more real-
istic models, they offer only an indirect visualization of
the energy landscape at a single scale (11). Projection into
the space defined by principal components analysis of the
contact map has also been used to provide a two-dimen-
sional visualization of the energy surface (12). Techniques
adapted from robotic motion planning have been used to
provide a probabilistic roadmap of protein folding, which
may be mapped onto a conceptual drawing of the potential
energy surface (13). Protein potential energy surfaces and
folding funnels have also been visualized by disconnectivity
graphs (14) and scaled disconnectivity graphs (15,16).
Although these latter methods have the advantage of
providing a visualization of the whole energy landscape,
they rely on creating a large database of local energy
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Protein Energy Landscapes

minima of the surface, and are therefore impractical for
large systems; they also do not provide information about
the entropy of the system (which governs the widths of
the conceptual protein-folding funnel).

The funnel like nature of the energy landscape provides
a challenging conformational space for computer simula-
tions to explore, because only an exponentially small number
of conformations have low energy and low entropy and are
found toward the bottom of the funnel; the system also
undergoes a first-order phase transition as the protein
collapses into its native state. In this work, we use nested
sampling to explore the energy landscapes of protein folding
simulations. Nested sampling is a Bayesian sampling tech-
nique introduced by Skilling (17,18), designed to explore
probability distributions where the posterior mass is local-
ized in an exponentially small area of the parameter space.
It both provides an estimate of the evidence (also known as
the marginal likelihood, or partition function) and produces
samples of the posterior distribution. Nested sampling offers
distinct advantages over methods such as simulated anneal-
ing (19), Wang-Landau sampling (20), parallel tempering
(replica exchange) (21), and annealed importance sampling
(22), in systems characterized by first-order phase transitions
(17,23). The technique reduces multidimensional problems
to one dimension and has a single key parameter in the
trade-off between cost and accuracy. The calculation of
free energies by thermodynamic integration (24) and thermo-
dynamic observables, such as heat capacities, typically
involves multiple simulations at different temperatures.
Nested sampling provides an efficient framework for
computing the partition function and hence thermodynamic
observables at any temperature, without the need to generate
new samples at each temperature. Hence, it allows us to
directly investigate the macroscopic states of the protein-
folding pathway and evaluate the associated free energies.
Nested sampling has previously been used in the field of
astrophysics (25) and for exploring potential energy hyper-
surfaces of Lennard-Jones atomic clusters (23), yielding
large efficiency gains over parallel tempering. Its use in
this article represents, to our knowledge, the first application
of this technique to a biophysical problem.

MATERIALS AND METHODS

In general, the energy of a polypeptide, E(Q,6), is defined by its conforma-
tion, Q, and arbitrary interaction parameters, ¢. These interaction parame-
ters may be as diverse as force constants, distance cutoffs, dielectric
permittivity, atomic partial charges, etc. This energy, in turn, defines the
probability of a particular conformation, Q, at inverse thermodynamic
temperature § via the Boltzmann distribution

P(Q,0)6) = ﬁexp[ CE@0f, (1)
2(0.8) = / dQ exp| — E(Q, 0)6], @
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where Z(0, () is the partition function (or evidence, in Bayesian termi-
nology). In the following, energy is expressed in units of R7, the product
of the molar gas constant and absolute temperature and 8 = 1/RT.

In Bayesian statistics, with § an unknown parameter, D the observed data,
and H the underlying model or hypothesis, we have the following relation
(Bayes’ rule)—posterior x evidence = likelihood x prior—

P(0\D,H)Z = P(D|H,0)P(0|H),

where Z, the evidence, is defined as
Z- / P(DIH, 6)P(6]H)db.

Nested sampling provides an algorithm for estimating the evidence, Z =
P(D|H), and the procedure additionally explores the posterior distribution,
allowing its properties to be estimated.

Procedure

We define X(4) = 4 to be the proportion of the prior distribution with likeli-
hood L(X) > A. Then, following Skilling (17), the evidence is

Z= /0 l L(X)dX,

where L(X(1)) = A and dX = w(0)df, with w(6) the prior distribution. Fig. 1
shows the graph of L against X (this is not to scale, as normally the bulk of
the posterior is in an exponentially small area of the phase space). L is
a decreasing function of X, as the restriction on the likelihood becomes
tighter as A increases. The area under the curve is Z. The nested sampling
procedure estimates points on this curve (see Algorithm, below) and then
uses numerical integration to calculate Z.

Algorithm

1. Sample (uniformly, with respect to the prior distribution) K points of the
parameter space {0;...0}, i.e., the “active list”; then calculate their
likelihoods: {L(6,),...,L(0k)}.

2. Take the sample point with the smallest likelihood; save it as (L, X;)
(see below for an estimate of X); remove this point from the active list.

0 X, Xp1 1
FIGURE 1 Evidence Zis the area under the function L(X). The sample 6,
represents X,,_; — X,, of the phase space volume; the proportion of the x axis
is shaded. Its weighting for the posterior is L, (X,,_; — X,,)/Z; the proportion
of Z is shaded.
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3. Generate a new point ¢ sampled uniformly (with respect to the prior
distribution) from those points with likelihood L(f) > L* = L; then
add it to the active list.

4. Repeat Steps 2 and 3, generating (L,, X5), (L3, X3),...,(L1, Xj),... -

X, is located at the largest of N numbers uniformly distributed on
(0, Xo), where X, = 1. Skilling (17) suggests using the expected value
of the shrinkage ratio, X/X; |, to estimate X; (the estimate of X for
iteration i), where X; is the largest of N numbers uniformly distributed
on (0, X;_;). The shrinkage ratio has the probability density function
f() = Ki*', with mean and standard deviation log (f) = (—1 = 1)/K,
and, as each shrinkage ratio is independent, we find, if uncertainties are
ignored,

log(X;) = (—i * \/l)/Kinzexp(—i/K).

It is also possible to use the arithmetic expected value to estimate X; (26).
This implies that X; = o, where a = K/(K + 1). In the limit of large K, these
two approaches are identical and henceforth we will use a = exp(—1/K) or
K/(K + 1), and X,, = o".

Parallel nested sampling

For high-dimensional systems, sampling uniformly (conditional upon the
likelihood being above a fixed value, L*) is not computationally tractable.
In this case, a Markov chain can be used to explore the parameter space
(22). To generate a new point, one of the active set of points (not necessarily
the one with the lowest likelihood) is chosen to be the start of a short Monte
Carlo (MC) run, with all moves that keep the likelihood above L* being
accepted.

Starting the MC run from a copy of one of the points of the active set,
chosen at random, is crucial to nested sampling. Suppose we have a bimodal
likelihood function. Once L* is sufficiently high, the region of the param-
eter space the chain is allowed to explore will no longer be connected; it
will have two disconnected components. Without copying, all active points
that enter the subordinate component will be trapped there. With copying,
provided at least one enters the dominant mode, then as L* increases, active
points in the subordinate mode will be replaced by ones from the dominant
mode. This is particularly important for likelihood functions for which the
dominant mode splits again at a higher likelihood. In general, for a given K,
if the relative phase space volume of a mode is <1/ K in comparison to the
rest of the space at the splitting likelihood, the chances of nested sampling
exploring the mode is small (23). Therefore, the parameter K controls the
resolution of the exploration.

The number of trial MC moves per nested sampling iteration, m, is
another key parameter when using nested sampling for higher dimensional
systems. If m is too small, the parameter space is inadequately explored;
new active set samples and the current conformations they are copied
from remain very similar. Setting m too high results in longer than necessary
runtimes, as conformations partway through the MC run are already suffi-
ciently different from their starting positions. Hence, K controls which
regions of the parameter space are available to the algorithm and m controls
how well these regions are explored.

We parallelized the nested sampling algorithm by removing the P points
with the lowest likelihood at each nested sampling iteration, one for each
processor used. Each processor then runs its own independent MC simula-
tion to replace one of the removed points. For post processing, at each iter-
ation we only store the point that has the P"™ lowest likelihood and adjust
« accordingly; « = 1 — P/(K + 1).

Running a parallel nested sampling algorithm with K points explores the
parameter space more effectively than P serial nested sampling simulations
each with K/P points in the active set, while requiring equal computational
resources. Consider a likelihood function, which splits » times in the domi-
nant mode (i.e., contains the majority of the evidence), with the probabili-
ties of an exploratory active point falling into the dominant mode being
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W1,W,,... W, at the critical likelihood (which is the likelihood of splitting).
Defining success as exploring the dominant mode at the n™ split in at least
one simulation, it can be shown, using an argument similar to that of Sivia
and Skilling (18), that

P(success|one simulation with K points) = Hg[l —(1-w,) K]
3)

and

P(success|P simulations with K /P points)
P
= 1= (1-m(1- (1-wy)""))"

For example, if n = 2, W; = W, = 0.1, K = 32, and P = 4, then
P(success|parallel) = 0.933 and P(success|serial) = 0.792.

Posterior samples

The sample points removed from the active set, labeled 6, 6,,..., say, can
be used to estimate properties of the posterior distribution. Sample point 6,
represents

w, = X,-1 — X,

of the phase space volume (with respect to the prior distribution) and hence

(anl - X,,)L(ﬁ,,)
VA

Xn =

is the relative volume of the posterior space that 6, represents; see Fig. 1.

In the case of a Boltzmann distribution, at inverse temperature 3, L(6,) =
exp (—E,B) and hence, by calculating x,,(8), a single nested sampling simu-
lation can provide the expectation value of any thermodynamic observable,
such as heat capacity, at any temperature. Given a property Q(6|g) of the
posterior,

E(QI8)= Y _ x:(8)Q(6). @)

In energetic terms, the nested sampling scheme is built from a set of
decreasing energy levels, {E, }, with the energy of conformation Q, given
by Eq. 5. Each energy level has an associated weight, which is also
decreasing. At each energy level, a set of K sample points (or conforma-
tions), {Q',}, is obtained by uniform sampling from the energy landscape
below E,: @', ~ U(Q: E(Q) < E,). After every iteration, a new lowest energy
level E,, is defined to be at a fixed fraction, «, of the current energy distri-
bution. In this way, a fraction & of the whole phase space has energy below
E,,, and a fraction """ has energy below E,, ;. The phase space volume will
therefore shrink exponentially, by a factor of «, with every nested sampling
iteration, and the algorithm is able to locate exponentially small regions of
phase space.

The protein model

The polypeptide model we use is adapted from our previous published work
(27-30). It is fully described in the Supporting Material and a summary is
provided below.

Our polypeptide model features all-atom representations of the polypep-
tide backbone and (-carbon atoms. Other side-chain atoms are represented
by one or, in the case of branched side chains, two pseudoatoms, following
Srinivasan and Rose (31).

For a given protein sequence, R, the Boltzmann distribution defines
the probability, P(R, Q|@), of it adopting a particular conformation, Q, at
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inverse thermodynamic temperature (. This probability can be factorized
into the product of the sequence-dependent likelihood for a given confor-
mation and the prior distribution of conformations, P(R, Q) = P(R|Q)P(Q).
This can be rewritten in energetic terms as

E(R,Q) = —InP(R|Q) + E(Q), )

where sequence-dependent and sequence-independent contributions to the
energy are separated. We assume that the sequence-independent term,
E(Q), is defined by short-range interactions among the polypeptide back-
bone, B-carbon, and pseudo-atoms. At room temperature, van der Waals
repulsions and covalent bonding between atoms are extremely rigid interac-
tions that contribute to this energy. Another large contribution comes from
hydrogen bonding, but the magnitude of this interaction is vaguely under-
stood. The sequence-dependent part of the potential (the negative log-likeli-
hood) can be approximated by the pairwise interactions between side
chains, which make the largest contribution to this term. In this work, these
interactions are modeled by a Go-type potential based on a regularized
native contact map (27), which contains lateral contacts in parallel and anti-
parallel G-sheets and contacts between residues i and i + 3 in a-helices
(32,33). Our model also includes a hydrophobic packing term; hydrophobic
side chains coming into contact with hydrophobic or amphipathic side
chains are rewarded with a decrease in energy (31). The force constants
for these side-chain interactions, as well as backbone hydrogen bonding,
are optimized using a novel statistical machine learning technique (29).

Nested sampling is initialized with K conformations, uniformly distrib-
uted over the space of dihedral angles (i.e., every ¢;, ¥; ~ U[—180°, 180°]).
To generate new sample points we use our implementation of an efficient
Metropolis Monte Carlo (MMC) algorithm (28,30), which relies on local
Metropolis moves, as suggested in earlier studies (34). In contrast to other
programs that rely on local Metropolis moves in the space of dihedral
angles, our sampler utilizes local crankshaft rotations of rigid peptide bonds
in Cartesian space. An important feature of our model is the elasticity of the
a-carbon valence geometry. With flexible a-carbon valence angles, it
becomes possible to use crankshaft moves inspired by earlier MMC studies
of large-scale DNA properties. The amplitudes of proposed crankshaft
rotations were chosen uniformly from [—ag, o] where, at every 2000
nested sampling iterations, o (the maximum allowed proposed amplitude)
was recalculated, attempting to keep the acceptance rate at 50% (the trial
MC moves used for this calculation were then ignored).

We ran simulations until Z(G) converges for § = 1 (T = 25°C), which
implies that we have sampled from the thermodynamically accessible states
for all temperatures smaller than 8 (>T). The nested sampling algorithm
marches left across the x axis of Fig. 1. The step size is constant in log X
and the larger the K, the smaller the step size. For a given protein and 3,
we find that simulations terminate at approximately the same point on the
x axis (for protein G, with § = 1, this is ~e~**). This implies that the total
number of iterations is proportional to K, and the total number of MC moves
is proportional to mK. The results for protein G shown below are from
a simulation with K = 20,000 and m = 15,000, which used 32 processors
(Xeon X5650; Intel, Santa Clara, CA), had 1.38 x 10'' MC moves, and
took ~22 h.

Energy landscape charts

We use the algorithm recently introduced by Partay et al. (23), which uses
the output of a nested sampling simulation to generate an energy landscape
chart, facilitating a qualitative understanding of potential energy surfaces. It
has the advantage of showing the large-scale features of the potential energy
surface without requiring a large number of samples.

The output of a nested sampling simulation is a sequence of sample
points with decreasing energy. Each sample point (conformation), €,
represents w, = o'~' — o of the phase space and has energy E,(Q,). A
metric defining the distance between two conformations is required, and
using this, a topological analysis of the sample points is performed. As the
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metric, we use the root mean-square deviation of the backbone and side-
chain nonhydrogen atoms of a pair of conformations; that is, the sum of
the Euclidean distances of corresponding atoms after the two conformations
have been translated and rotated in space to minimize the overall distance.

A graph G is created with the sample points as nodes and arcs joining
a sample to the k nearest samples that have higher energy. In this work,
k is chosen to be 15 throughout. We then start with an empty graph (G'),
adding nodes one at a time (starting with the lowest energy) to gradually
rebuild G.

Energy landscape charts are produced with energy on the vertical axis,
and, at a given energy E,, the width of the chart is proportional to the sum
of the weights of the points below that energy (i.e., w, + w, 1 + ...), that s,
the available phase space volume in the prior space, contained at <E, On
the horizontal scale, the chart is split into different basins corresponding
to the disconnected subgraphs that exist when sample n is added to G'.
The relative widths of the basins is given by the ratio of the sum of the
weights of the sample points in the disconnected subgraphs. The ordering
of the basins horizontally is arbitrary. Due to the rapid shrinking of the
available phase space volume with decreasing energy, for better visualiza-
tion, a horizontal scaling is applied by an exponential function of the
energy, similar to Partay et al. (23). The energy landscape chart represents
a potential energy landscape for the system.

We also use a variant of the energy landscape charts where the width
of the chart is proportional to the sum of the posterior weights, x, = w,
exp(—E,B)/Z(B), i.e., (Xn + Xn+1 + -..), at inverse temperature (. Hence,
the relative widths of the basins correspond to the probabilities of adopting
a conformation from one basin or another. These energy landscape charts,
therefore, represent the energy landscape as it is experienced by the protein
at inverse temperature 8. In the following, the two versions will be referred
to as prior and posterior energy landscape charts, according to the weights
used in the calculation of their basin widths.

RESULTS

To validate the nested sampling procedure, we simulated the
folding of an isolated 16-residue polyalanine 3-hairpin. We
then conducted folding simulations on a number of small
proteins that are commonly used for testing protein folding
procedures: protein G (PDB code 1PGA), the SH3 domain
of Src tyrosine kinase (PDB code 1SRL), and chymotrypsin
inhibitor 2 (PDB code 2CI2).

Isolated polyalanine g-hairpin

We used a Go-like potential to simulate the folding of an
isolated 16 residue polyalanine (-hairpin. Fig. S1 in the
Supporting Material (bottom panel) shows a snapshot of
five (equally spaced along the log(X) axis) conformations
from a single simulation with K = 1000, m = 2500 (a total
of 1.12 x 10® MC moves). At the beginning there is a rapid
decrease in energy, moving from extended conformations
(at first those with van der Waals collisions) to hairpinlike
structures (A—C). The final part of the simulation moves
through the exponentially small volume of the phase space
containing hairpinlike structures, gradually decreasing in
energy toward a fully formed hairpin (D and E).

We used the hairpin to check the behavior of the nested
sampling procedure: Fig. S1 (top panel) shows how «g
(the maximum proposed crankshaft rotation amplitude)
varies with the energy threshold for a simulation with
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K =1000. As lower energy is reached, « is reduced to keep
the acceptance rate near 0.5. Fig. S1 (second panel) shows
the acceptance rate. Fig. S1 (third panel) shows the differ-
ence between the start and end points of a single MC chain,
specifically the drift per dihedral angle, where the drift is the
Lr-norm of the dihedral angles.

The protein model used stabilizes room temperature
secondary structure formation; it folds isolated helices and
hairpins very effectively. This is reflected in the energy land-
scape charts that consist of a single funnel (not shown).

Fig. S2 (top) shows the time evolution of the dihedral
angles of four residues of the 16-residue polyalanine. The
formation of the hairpin can be clearly seen. For example,
the dihedral angles of the residues in the strands 4 and 11
converge to the standard (-sheet area of the Ramachandran
plot. The Go-like potential used was designed for a hairpin
with a two-residue turn, and this is found to be the case. The
dihedral angles of the turn residues 8 (60 = 15, —90 * 30)
and 9 (—150 + 30, 0 = 30) are closest to the values of
a type II' turn ((60, —120) and (—80, 0)) (35). Fig. S2
(bottom) shows the energy of the snapshots (right-hand
axis) for nested sampling plotted against time. The mono-
tonic decrease of the energy over a very large energy range
allows us to view the formation of the hairpin.

Due to the nature of the model used, the folding pathway
of the hairpin is relatively simple to sample, and parallel
tempering can also successfully fold the hairpin. However,
in this case, we need a very large temperature range to
explore the whole parameter space and view the folding
pathway in its entirety. For example, Fig. S2 (bottom) shows
the energy of two of the parallel tempering chains; room
temperature and 300°C. For real proteins, which have
more complicated energy landscapes and possibly high
energy barriers, it is difficult to know the temperature range
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required for parallel tempering to explore the entire param-
eter space and not be trapped in a particular basin. Nested
sampling, with its top-down, temperature-independent
approach, does not suffer from this problem.

Another of the advantages of nested sampling is that simu-
lations are temperature-independent, and hence can provide
estimates of thermodynamic variables at any temperature.
Fig. 2 shows the heat capacity (C,) curve for the 16-residue
polyalanine. The curves were calculated using nested
sampling (converged down to —25°C, so that the C, curve
does not stop abruptly at room temperature), and parallel
tempering. The solid line is calculated using 10 nested
sampling simulations each with 1.3 x 10° MC moves. The
dashed lines show twice the standard error. The parallel
tempering curve shows the heat capacity using 10 parallel
tempering simulations (again each with 1.3 x 10° MC
moves) with error bars showing twice the standard error.
For parallel tempering, the heat capacity is only calculated
for discrete temperatures and a procedure such as Boltzmann
reweighting (36) is needed to calculate the continuous curve.

There appears to be good agreement between the
methods. Previous results have found nested sampling to
be more efficient at calculating the heat capacity curves
(23). In this example, we found nested sampling to be of
similar efficiency to parallel tempering. We believe this to
be because, unlike the system presented in Partay et al.
(23), our phase transition (from coil to hairpin) occurs
over a very large energy (and hence temperature) range
from which parallel tempering can successfully sample.

Protein G

Protein G is a 56-residue protein consisting of an antipar-
allel four-stranded (3-sheet and an a-helix, with a 3-Grasp

Parallel T‘empering | —
Nested Sampling -

Cv/R

FIGURE 2 Heat capacity curve for the 16-
residue polyalanine. The nested sampling simula-
tions (solid line) use 1.3 x 10° MC moves, with

error lines denoting two standard errors from the
mean. The parallel tempering uses the same number
of MC moves again with error bars showing two
standard errors from the mean.

20

0 100 200 300 400 500
T (Celcius)
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(ubiquitin-like) fold, which has been extensively studied by
a variety of folding simulation techniques (37-40). Its native
structure is shown on the left of Fig. S3. All figures of
protein G in this article have been oriented so that the first
G-strand is the second strand from the right and the
N-terminal residue is at the top.

As described above, the nested sampling procedure can
be used to estimate the thermodynamic energy of the system
at any temperature, using Eq. 4 For protein G, at room tem-
perature (8 = 1.0), the thermodynamic energy is —190 units.
Fig. S3 shows a sample of four room-temperature, thermo-
dynamically accessible conformations found by a single
nested sampling simulation with K = 20,000 and m =
15,000. The conformers have energies —189, —190, —191,
and —190, respectively, with backbone RMSDs (from the
crystal structure) of 1.93 A, 2.96 A, 3.97 A, and 5.22 A, re-
spectively. The estimated value of the backbone RMSD at
8 =1, calculated using Eq. 5, is E(RMSD|8 = 1) = 3.21 A.

Conformers A-D in Fig. S3 have the correct backbone
topology, close to the native structure, but there is a reason-
able amount of variation in the orientation of the helix with
respect to the B-sheet at this temperature. It is important to
remember that protein structures are intrinsically flexible
(41-43), and the crystal structure (1PGA.pdb) is only one
member of an ensemble of conformations that the protein
may explore. In the Supporting Material we demonstrate
that flexible motion of protein G allows a substantial re-
orientation of the axis of the helix with respect to the sheet.
Conformers A-D in Fig. S3, which differ from the native
state principally in the orientation of the helix relative to
the sheet, may therefore be more representative of the native
state than the RMSD alone suggests.

The first half of the nested sampling simulation is spent
exploring high-energy conformations with no noticeable
secondary structure and often steric hindrances. In the
second half of the simulation, once the long-range quadratic
bias potential has pulled the secondary structure elements
close together, the short-range hydrogen-bond interaction
contributions increase to dominate the bias potential contri-
butions, having a steeper gradient in the last third of the
simulation (see Fig. S4 (top)). The short-range hydrophobic
interaction contributions are the smallest, but nevertheless
not negligible; they ensure the correct packing of the hydro-
phobic and amphipathic side chains at conformations avail-
able at room temperature (see below and Fig. 3). Fig. S4
(bottom) shows a sequence of 10 conformers in order of
decreasing energy. These conformers come from the deepest
basin of the energy landscape chart of a simulation (higher
energy conformers come from the part of the energy land-
scape chart that contains the deepest basin). The sequence
illustrates how the secondary and tertiary structure accrete
in the course of a simulation, capturing the essence of the
hierarchical folding model. The sequence is not, however,
a single folding pathway, in the sense of a molecular
dynamics trajectory; there are many conformations in the
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FIGURE 3 (Top) Prior (potential) energy landscape chart. (Bottom)
Posterior energy landscape chart at 3 = 1, for a nested sampling simulation
of protein G using K = 20,000 and m = 15,000. (Left axis) The energy is
shown in units of R7, and the width of the chart is proportional to the
sum of the prior (fop) and posterior (bottom) weights of the nested sampling
points below the given energy level (shown on the right axis). The prior
energy landscape chart shows the potential energy surface and the posterior
energy landscape chart shows, for a given temperature, the probabilities of
finding conformations from the different basins. At 8 = 1 (room tempera-
ture), only funnel 1 is accessible. The scaling function used for the prior
energy landscape chart is exp(—fE) (with f being 0.1, 0.4, and 0.7 on the
top, middle, and bottom panels of the prior energy landscape chart, respec-
tively). Example conformers from the main basins, at various energy levels,
are shown on the charts.

Biophysical Journal 102(4) 878-886



884

active set in the same basin. It is possible, though, that
Fig. S4 (bottom) represents a plausible sequence of events
leading to the native structure.

Energy landscape charts using the prior and posterior
weights for a nested sampling simulation of protein G using
K = 20,000 and m = 15,000, calculated using a connectivity
number k = 15, are shown in Fig. 3. The volume scale on the
right-hand axis shows the proportion of the prior and poste-
rior phase space volume available below the given energy
level. The width of the chart uses this scale. Basins that
contain <1/1000th of the probability mass at the point of
splitting are not shown on the diagram. Conformers have
been placed on the chart to provide examples of the samples
found in different places of the chart.

Topologically, for energy above 405 units, there is one
main basin containing virtually all of the samples. There
is little structure in the samples, as shown by the conformer
at the top of the chart. However, at energy 405 units, the
phase space splits into two main funnels: one with the helix
forming on the correct side of the sheet (funnel 1) and one
with it forming on the incorrect side (funnel 2). Funnel 1
further splits at energy —75 units, corresponding to confor-
mations where the hydrophobic residues are in the interior
of the protein (funnel 1) or on the surface of the protein (fun-
nel 1A). At room temperature (the expected energy corre-
sponding to 8 = 1 is marked by a horizontal line on both
panels of the chart), the phase space volume of both funnels
1A and 2 are <1/1000th of the main funnel and hence the
posterior energy landscape chart consists of a single funnel.
The inaccessibility of funnel 1A at room temperature indi-
cates the importance of hydrophobic interactions.

Fig. S5 shows two conformers that are placed in the same
small basin, branching off the right-hand funnel. The
conformer on the left has higher energy than the one on
the right. These conformers are very similar, and demon-
strate that the topological analysis shows how metastable
conformations are formed. The pathway to these states
would be obtained by considering conformers found in the
same basin.

DISCUSSION

It is interesting to consider how the energy landscape charts
vary from simulation to simulation. Topologically, we
always find two main funnels in the protein G simulations
(funnels 1 and 2 on Fig. 3), corresponding to the packing
of the helix on either side of the sheet. The dominant
mode with the native like backbone topology (funnel 1)
splits again at a lower energy level to two funnels, corre-
sponding to the hydrophobic residues being in the interior
(funnel 1) or on the surface (funnel 1A) of the protein.
The energy at which funnels 1 and 2 split varies significantly
between simulations, from 220 to 580 energy units. This is
probably because the RMSD metric is an imprecise way of
comparing wildly different conformations. The energy
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where funnels 1 and 1A split has a much smaller variation,
—75 to —55 energy units. This trend in the variation of split-
ting energies was also observed in the nested sampling
simulations of the other modeled proteins. Metrics other
than the RMSD might improve the reproducibility of energy
landscape charts and would be worthy of investigation.

The relative basin widths of energy landscape charts
depend on the size of the nested sampling active set, K. In
general, K determines the resolution of exploration. When
converging the evidence at lower temperatures, a larger
value of K is required. This is because at every splitting of
the likelihood function, the probability of exploring the
dominant mode decreases, according to Eq. 3. At high ener-
gies, the accessible conformational space is connected,
and the MMC procedure explores the space effectively. As
the energy lowers, the accessible conformational space
becomes increasingly disconnected. Because the MMC
procedure cannot jump between disconnected components
of the conformational space, an increasingly large set of
active points is required to sample effectively. As the poste-
rior mass is concentrated at lower energies for lower temper-
atures, K behaves as an effective minimum temperature.
Using too small an active set for a given temperature causes
large variation between different nested sampling simula-
tions; for example, the estimates for the evidence and the
relative widths of the funnels of energy landscape charts.

In the protein G simulations, we find that K = 20,000 is
large enough to produce simulation independent charts for
temperatures near § = 1. When using, for example, K =
2500, which is too small for sampling the posterior distribu-
tion at 8 = 1, we find that the active set becomes extremely
homogenous and the simulation is, in effect, exploring just
one tiny basin in one of the main funnels, by making smaller
and smaller crankshaft rotations. Hence, we find a single
room-temperature accessible conformation, as opposed to
the wide selection that is found when K = 20,000.

The magnitude of m relative to K is problem-specific. It
has been suggested that for probability distributions that
lack a large number of modes, it is optimal to set K small
and use a large m (the cost is proportional to mK) (21).
For protein G, we find the energy landscape is so complex
that we need a large K to explore all the funnels simulta-
neously, and a large m to ensure the active set remains
heterogeneous, and we therefore choose m and K to have
the same order of magnitude. Incorporating nonlocal flex-
ible motions (44) into our MMC procedure may allow
a decrease in m without losing heterogeneity and this is a
focus of future work. If this proves to be the case, we would
choose to increase K relative to m.

In our previous work (27), using MMC with parallel
tempering to simulate the folding of protein G with a simpler
model (no +y-atoms and hydrophobic interactions were
included in this model), the lowest energy structures ob-
tained were similar to those shown at the bottom of funnel
2 of Fig. 3, with the helix packed on the incorrect side of
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the sheet and a backbone RMSD of 8.6 A from the crystal
structure. This demonstrates the difficulty of using parallel
tempering or simulated annealing to reconstruct the native
structure, when the energy landscape exhibits two main fun-
nels separated by a large energy barrier. If the annealing
proceeds down the incorrect funnel it will be nearly impos-
sible for it to climb back out and down into the correct
funnel.

The reason for the double funnel is the symmetry of the
protein G topology with respect to the Go-type bias poten-
tial, which is the predominant factor at the beginning of
the simulation. The further splitting of the main funnel
into funnels 1 and 1A (Fig. 3) is also due to the nature of
the Go-type bias potential. This applies a quadratic potential
on the Cg atom contacts, which does not restrict the
hydrogen-bond pattern between the individual strands; at
high energies, both conformations (with the hydrophobic
residues of the $-sheet being in the interior or on the surface
of the protein) are similarly likely to be adopted. However,
other energy and entropy contributions due to the presence
of side chains (e.g., hydrophobic interactions and steric
clashes) ensure that only conformations with the nativelike
topology are accessible at room temperature. This way,
energy landscape charts also reflect the nature of the protein
model and force field used. For example, the energy land-
scape charts for chymotrypsin inhibitor 2, which differs in
topology from protein G, but also possesses a similar
symmetry with regard to the packing of the «-helix against
the B-sheet, also exhibit this double funnel (see the Support-
ing Material).

It would be interesting to compare energy landscape
charts of nested sampling simulations using other protein
models and force fields, for example, all-atom representa-
tions, and this will be a focus of future work.

CONCLUSION

This article has described the parallelization of the nested
sampling algorithm, and its application to the problem of
protein folding in a force field of empirical potentials that
were designed to stabilize secondary structure elements in
room-temperature simulations. The output of the nested
sampling algorithm can be used to produce energy land-
scape charts, which give a high level description of the
potential energy surface for the protein folding simulations.
These charts provide qualitative insights into both the
folding process and the nature of the model and force field
used. The topology of the protein molecule emerges as
a major determinant of the shape of the energy landscape,
as has been noted by other authors (37). The energy land-
scape chart for protein G exhibits a double funnel with a
large energy barrier, a potential energy surface that parallel
tempering struggles to explore fully. The nested sampling
algorithm also provides an efficient way to calculate free
energies and the expectation value of thermodynamic
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observables at any temperature, through a simple postpro-
cessing of the output.

SUPPORTING MATERIAL

Supporting text with 11 figures and references (45-62) is available at http://
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